Tag Archive for: Biochemie

Es ist Frühling – eine wunderbare Zeit für Experimente, für die man etwas Platz braucht. Deshalb habe ich heute für euch ein lustiges wie lehrreiches Spektakel für Balkon und Terrasse (oder auch für drinnen): Die Elefantenzahnpasta!

Das bekannte Experiment zeigt eine weitere wichtige Fähigkeit (die Gärung könnt ihr ja hier erforschen), die nicht nur Hefezellen, sondern auch unsere Zellen haben: Die Fähigkeit, sich vor Oxidationsmitteln zu schützen. Und da dabei eine Menge Gas entsteht, kann man diese Fähigkeit für dieses spassige Experiment nutzen.

Ihr braucht dazu

  • Hefe: am einfachsten geht das Experiment mit Trockenhefe
  • ein Gefäss mit schmaler Öffnung: z.B. eine 0,5l PET-Flasche oder ein Reagenzglas
  • etwas warmes Wasser (lauwarm, wie Hefe es gern hat)
  • etwas Geschirrspülmittel
  • ein Oxidationsmittel: Wasserstoffperoxid, als Lösung (3 – 6%) aus der Apotheke/Drogerie
  • Optional: Lebensmittelfarbe
  • Einen Trichter, der auf das schmale Gefäss passt
  • Schutzbrille, ggfs. Labormantel/Malschürze
  • Ein Backblech oder Tablett als Unterlage
Wasserstoffperoxid, Trockenhefe, Spülmittel, Lebensmittelfarbe, Reagenzglas, Schutzbrille, Trichter - das braucht ihr für die Elefantenzahnpasta!

So geht’s

  • Rührt die Trockenhefe in das warme Wasser ein, bis es keine Klumpen mehr gibt.
  • Füllt Wasserstoffperoxid in das schmale Gefäss (bis es zu ca. einem Fünftel (mit 6% H2O2) bzw. zwei Fünftel (mit 3% H2O2) gefüllt ist – verwendet dazu den Trichter!) und mischt Lebensmittelfarbe und einen Schuss Spülmittel hinein.
  • Stellt das Gefäss in das Backblech.
  • Giesst das Hefewasser schnell in das Gefäss und tretet zurück! Die Reaktion beginnt sofort!
Wasserstoffperoxid ist mit roter Farbe und Spülmittel gemischt, die Hefe in Wasser suspendiert
Alles parat: Rechts im Reagenzglas Wasserstoffperoxid-Lösung (Drogisten benutzen gerne lateinisierte Stoffnamen – hier „Hydrogenii peroxidum“ , die schonmal zu Kommunikationsschwierigkeiten mit einkaufenden Chemikern führen) mit roter Lebensmittelfarbe und Spülmittel. Links ein Teelöffel Trockenhefe in Wasser. Nun das Linke in das Rechte giessen und los gehts!

Was ihr beobachten könnt

Die Mischung beginnt sofort zu sprudeln und heftig zu schäumen. Wie ein Zahnpastastrang quillt der Schaum aus der Gefässöffnung und ergiesst/schlängelt sich auf dem Backblech aussen herum.

Elefantenzahnpasta quillt aus dem Reagenzglas!
Zahnpasta für Zwergelefanten: Einem der Chemiker-Grundsätze – so viel wie nötig, so wenig wie möglich – zuliebe habe ich den kleinen Massstab im Reagenzglas gewählt. Zudem hatte „meine“ Drogerie gerade nur 3% H2O2-Lösung vorrätig – mit 6% käme wohl noch mehr Schaum heraus. Im Übrigen: Ein guter Drogist oder Apotheker fragt nach, was ihr mit der Lösung vorhabt. Nicht irritieren lassen und ehrlich sein – sie geben sie dann schon heraus!

Sicherheitshinweise

Auch wenn sie gerne so genannt wird: Die „Elefantenzahnpasta“ eignet sich nicht zum Zähneputzen! Nehmt sie also nicht in den Mund!

Wasserstoffperoxid wirkt ätzend auf Haut und Schleimhäute (die typischen weissen Verletzungen werden manchmal erst verzögert sichtbar und tun manchmal auch dann erst weh). Wenn euch etwas von der Lösung auf die Haut gerät, spült es gründlich mit fliessendem Wasser ab. Sollte euch trotz aller Vorsicht etwas ins Auge spritzen, spült das Auge sehr gründlich mit fliessendem Wasser aus (10 Minuten lang ist Labor-Standard!) und geht bei Beschwerden zum Augenarzt!

Ausserdem kann Wasserstoffperoxid farbige Textilien bleichen. Der Labormantel bzw. die Malschürze soll eure Kleider davor schützen.

Die „Zahnpasta“ selbst enthält kaum bis kein Wasserstoffperoxid mehr und kann daher gefahrlos angefasst werden.

Entsorgung

Die „Zahnpasta“ und Reste im Reaktionsbehälter können mit viel Wasser in den Abfluss entsorgt werden. Übrige Wasserstoffperoxidlösung könnt ihr im dicht schliessenden Originalbehälter in einem dunklen Schrank aufbewahren und später für weitere Experimente verwenden.


Was passiert da – Wie entsteht die Elefantenzahnpasta?

Wasserstoffperoxid – H2O2 – ist eine recht instabile Verbindung. Unter alltäglichen Bedingungen ohne Reaktionspartner zerfällt es sehr langsam in Wasser und Sauerstoff:

2H_{2}O_{2}\rightarrow 2H_{2}O+O_{2}

Kommt Wasserstoffperoxid allerdings mit anderen Stoffen in Berührung, oxidiert es die meisten davon. Das gilt insbesondere für die Bestandteile von Lebewesen. Deshalb solltet ihr bei diesem Experiment Schutzbrille und -kleidung tragen!

Schutz vor Oxidation durch Aufräum-Enzyme

Wenn die Zellen sauerstoffatmender Lebewesen (Menschen, Tiere, Hefepilze,…) Energie aus Sauerstoff gewinnen, kann in ihnen jedoch H2O2 als unerwünschtes Nebenprodukt entstehen (so ausgeklügelt die Reaktionswege sind, fehlerfrei laufen sie noch lange nicht). Damit dieses Wasserstoffperoxid nicht wild herumoxidiert, haben die Zellen ein Aufräumkommando, das durch Fehler entstehendes H2O2 schnellstmöglich aus der Welt schafft.

Dabei handelt es sich um Enzyme mit dem Namen Katalase. Das sind Proteine, die die natürliche Zersetzung von Wasserstoffperoxid in Wasser und Sauerstoff um ein Vielfaches beschleunigen – indem sie den Ablauf der Reaktion erheblich erleichtern.

Ein Biokatalysator erleichtert den Reaktionsablauf

Denn Reaktionen laufen dann leichter ab, wenn weniger Energie nötig ist, um sie zu starten. Ein Stoff, der eine Reaktion beschleunigen kann (ohne selbst abzureagieren), indem er die zum Start der Reaktion nötige Aktivierungsenergie verringern kann, wird Katalysator genannt.

Im Auto ist der Katalysator eine Metalloberfläche, an welcher giftige Abgase zu weniger giftigen Stoffen reagieren (mehr dazu findet ihr hier). In Lebewesen heissen die Katalysatoren Enzyme. Enzyme sind also Proteine, die Reaktionen erleichtern und damit beschleunigen. Die Katalasen gehören unter diesen zu den schnellsten Enzymen überhaupt: Ein einziges Katalase-Molekül schätzungsweise bis zu 10 Millionen H2O2-Moleküle in der Sekunde umsetzen! Das hat zur Folge, dass die Geschwindigkeit des Wasserstoffperoxid-Abbaus mit Katalase praktisch nur davon abhängt, wie viel H2O2 das Enzym in gegebener Zeit „zu fassen“ bekommt.

Gasentwicklung dank Katalase

Damit ist die Katalase bestens geeignet, um durch Fehler in anderen Reaktionsabläufen entstehendes Wasserstoffperoxid sofort wieder verschwinden zu lassen – oder um aus Wasserstoffperoxid, das von aussen eindringt, in kürzester Zeit grosse Mengen Sauerstoff-Gas freizusetzen.

Wenn wir unsere Hefe durch Mischen mit Wasserstoffperoxid-Lösung (relativ) grossen Mengen H2O2 aussetzen, stürmen diese kleinen Moleküle die Hefezellen und werden dort postwendend zu Wasser und Sauerstoff-Gas umgesetzt. Sollten die Zellen dabei platzen oder ihre Aussenwände kaputt oxidiert werden, kommt die Katalase zudem direkt mit der Wasserstoffperoxid-Lösung in Berührung und das Gas entsteht noch schneller.

Nun brauchen gasförmige Stoffe ein Vielfaches mehr an Platz als flüssige Stoffe aus den gleichen Teilchen, sodass sich das Sauerstoff-Gas sehr schnell ausdehnt. Da unser Gemisch aber Seife enthält, werden die entstehenden Sauerstoffportionen in winzige Seifenbläschen eingeschlossen (über diese und andere Superkräfte von Seife könnt ihr hier nachlesen): Es entsteht Schaum.

Elefantenzahnpasta von Nahem gesehen: Die Schaumbläschen sind erkennbar.
Wenn ihr euch die „Elefantenzahnpasta“ ganz aus der Nähe anschaut, könnt ihr die kleinen Schaumbläschen erkennen.

Und dieser Schaum, nass von Seifenwasser und Hefezellresten, quillt als „Elefantenzahnpasta“-Schlange aus dem Gefäss heraus.

Zusammenfassung

Die „Elefantenzahnpasta“ besteht also aus Schaum aus Seife und Sauerstoff, der durch „Überfütterung“ der Oxidationsschutz-Enzyme von Hefezellen mit Wasserstoffperoxid entsteht.

Auch Menschenzellen haben Katalasen, die den Abbau von Wasserstoffperoxid in der gleichen Weise beschleunigen: Wenn Wasserstoffperoxid in unsere Haut gelangt, entstehen im Gewebe kleine Sauerstoffbläschen, welche wir als die weissen Verletzungen sehen können.

Wichtig: Die Schutzenzyme des Körpers sind genau darauf ausgelegt, solche Oxidationsmittel zu entfernen, die bei Fehlern in zelleigenen Prozessen entstehen. Andere Oxidations- und Bleichmittel, insbesondere unter dem Kürzel „MMS“ als „Wunderheilmittel“ vertriebene gefährliche Chlorverbindungen gehören da nicht zu! Gegen solche Stoffe hat der menschliche Körper keine eigenen Schutzmassnahmen!

Und habt ihr das Elefanzenzahnpasta-Experiment schon einmal ausprobiert? Wozu sonst verwendet ihr Wasserstoffperoxid?

Hast du das Experiment nachgemacht: 

[poll id=“10″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Wie funktioniert die Liebe? Terra incognita der Wissenschaft

Einmal mehr ist es soweit: Der Blog-Schreibwettbewerb auf Scienceblogs.de läuft. Und zwar noch bis Ende Oktober. Viele wissenschaftlich begeisterte Schreiber mit und ohne eigenen Blog haben spannende und lesenswerte Beiträge zu einem bunten Strauss aus Themen eingereicht. Und ich bin wieder mit dabei!

Gerade rechtzeitig dazu flatterte auf der Keinsteins-Kiste-Facebook-Seite eine spannende Leserfrage herein, die ich in meinem Wettbewerbs-Beitrag beantworte:

Welche Hormone bewirken, ob und wann wir uns verlieben?

Die Suche nach Antworten führte mich rasch du einem besonders interessanten Ergebnis: Einem weissen Flecken auf der Landkarte der Wissenschaft. Die Biochemie der Liebe ist nämlich ein Gebiet, dass erst ansatzweise wissenschaftlich erforscht ist. So zeige ich in diesem Artikel nicht einfach einige Moleküle, über deren Rolle in Liebesdingen schon einiges bekannt ist, sondern auch die Grenzen dessen, was die Wissenschaft zur Zeit erklären kann.

In einfachen – hoffentlich kindgerechten Worten wecke er die Entdeckerlust der Forscher von morgen, die eines Tages diesen und andere weisse Flecken auf der wissenschaftlichen Landkarte füllen mögen.

Ihr könnt auch etwas gewinnen!

Den ganzen Artikel könnt ihr ab jetzt hier auf Astrodicticum Simplex lesen – und auch ihr könnt in diesem Schreibwettbewerb wieder die Gewinner mitbestimmen. Und dabei auch noch selbst einen Preis gewinnen!

Dazu müsst ihr nur am Leser-Voting teilnehmen und eure Stimme(n) für eure(n) Lieblingsartikel abgeben. Wie das geht, erklärt der Veranstalter Florian Freistätter hier. Einsendeschluss für die Leserstimmen ist der 11. November 2018. Ihr könnt also in Ruhe die Veröffentlichung aller anderen Artikel mitverfolgen und erst am Schluss entscheiden, für wen ihr stimmen möchtet.

Ganz besonders würde es mich natürlich freuen, wenn ihr eine Stimme für meinen Beitrag da lasst. Der Preis unter den Leser-Juroren wird aber unabhängig davon, für wen ihr stimmt, verlost. Deshalb findet ihr eine Übersicht über alle Beiträge hier.


Der Scienceblogs-Schreibwettbewerb 2018 ist zu Ende und die Gewinner stehen fest: Mein Artikel „Wie funktioniert die Liebe?“ hat einen megamässigen 6. Platz gemacht! Herzlichen Dank an alle Leser, die mir ihre Stimme gegeben haben – und natürlich an Florian Freistätter und die Juroren, ohne die dieses tolle Event nicht möglich gewesen wäre!

Die Teilnehmer-Beiträge bleiben bis auf Weiteres auf Astrodicticum Simplex online, sodass ihr sie jederzeit nachlesen könnt.

So wünsche ich euch jetzt viel Spass beim Stöbern und Schmökern – und beim Verlieben!

Eure Kathi Keinstein

Experiment: Gärung - die Superkraft von Hefe

Vor ein paar Tagen war es einmal wieder soweit: Ich hatte Geburtstag. Zur Feier des Tages habe ich mich in die Küche gestellt und der Biochemie gewidmet….ähm, Kuchen gebacken. Und zwar mit Hefe! Und damit wird das Kuchenbacken tatsächlich echte Küchen-Biochemie.

Was ist eigentlich Hefe?

Unsere Backhefe besteht aus richtigen Lebewesen! Aber nicht aus Pflanzen oder Tieren, sondern aus Pilzen mit dem komplizierten Namen „Saccharomyces cervisiae“.

Wenn ihr euch jetzt an Asterix und Obelix erinnert fühlt…richtig: Das Lieblingsgetränk der beiden Comic-Gallier ist lauwarme Cervisia – ein Bier. Tatsächlich ist die Backhefe der gleiche Pilz, der auch zum Bierbrauen verwendet wird.

Der erste Teil des Namens bedeutet übrigens so viel wie „Zuckerpilz“, womit der ganze Name sich etwa mit „Bier-Zuckerpilz“ übersetzen lässt. Damit ist auch geklärt, wovon diese Pilze sich ernähren.

Hefen bilden übrigens keine Schirme und Hüte im Wald, wie ihr sie von anderen Pilzen kennt. Sie gehören nämlich zu den Einzellern und vermehren sich durch Zellteilung oder die Bildung von Ablegern. Deswegen sehen wir von ihnen ohne Mikroskop auch nicht mehr als eine gelblich-graue Masse. Mit einem Mikroskop hingegen kann man die einzelnen Hefezellen sehen:

Backhefe unter dem Mikroskop: Die Einzelzellen sind jetzt gut erkennbar.

Backhefe unter dem Mikroskop: Die Teilstriche der Skala sind jeweils 11 Mikrometer (Millionstel Meter!) voneinander entfernt. By Bob Blaylock [CC BY-SA 3.0 or GFDL], from Wikimedia Commons

Was macht ein Pilz in Brot und Kuchen?

Er lebt! Zumindest vor dem Backen. Und zwar wie alle Lebewesen von Zuckern. Nur ist Hefe dabei nicht zwingend auf Sauerstoff zum Atmen angewiesen. Während Menschen Sauerstoff als Oxidationsmittel brauchen, um aus den Zuckern chemische Energie zu gewinnen, können Hefen dazu auch andere chemische Reaktionen nutzen, die ohne Sauerstoff auskommen.

Solche Reaktionen werden zusammengefasst „Gärung“ genannt. Bei der Gärung durch Hefe entsteht als „Abfall“ der Trink-Alkohol „Ethanol“ (auf den es die Bierbrauer abgesehen haben), und… findet es selbst heraus!

 

Experiment 1: Hefegärung sichtbar machen

Ihr braucht dazu

Eine Glasflasche mit engem Hals (ca. 0,5l),
Einen Luftballon, nicht aufgeblasen
Backhefe (1 Päckchen Trockenhefe)
Wasser (lauwarm)
Einen Teelöffel Haushaltszucker

Das braucht ihr für das Experiment

So geht es

Blast den Luftballon mehrmals hintereinander auf und lasst die Luft immer wieder heraus. So wird die Ballonhülle schon einmal gedehnt und lässt sich später leichter aufblasen.

Füllt die Flasche halb mit lauwarmem Wasser und löst den Zucker darin auf. Gebt die Hefe dazu und schwenkt die Flasche kurz, sodass sich alles gut mischt.

Stülpt dann die Öffnung des Luftballons über die Flaschenöffnung und stellt das Ganze an einen warmen Ort (ideal sind 28-32°C).

Wartet ab und beobachtet, was geschieht: In der Flasche geht es sichtlich geschäftig zu, und: Der Ballon bläht sich auf!

Im Laufe von 45 Minuten bläht der Ballon sich immer weiter auf!

Ein Gas entsteht: Links der Aufbau zu Beginn des Experiments, dann von links nach rechts: nach 15min, 30min, 45min

Was geschieht da?

Die Hefe verdaut den Zucker. Dabei entsteht ein Gas, das den Ballon füllt!

Was für ein Gas ist das?

Ihr könnt es selbst nachweisen!

Experiment 2: Gas-Nachweis

Ihr braucht dazu

Die Hefemischung in der Flasche aus Experiment 1
Ein Streichholz, etwas zum Anzünden
Eine Pinzette

So geht es

Entfernt den Luftballon von der Flasche. Entzündet das Streichholz und führt es mit Hilfe der Pinzette in die Flasche mit der Hefemischung (nicht eintauchen!). Beobachtet: Das Streichholz geht aus!

Was passiert da?

Das Gas, welches die Hefe produziert, ist Kohlenstoffdioxid (CO2)! Es ist schwerer als Luft und verdrängt so den Sauerstoff nach oben aus der Flasche. Ohne Sauerstoff kann Feuer nicht brennen – und geht aus.

 

Was in den Hefezellen passiert

Der wichtigste Zucker, von dem Hefe sich ernährt, ist Traubenzucker (Glucose). Das ist ein „Einfachzucker“ (ein Monosaccharid), besteht also aus überschaubar kleinen, einzelnen Zuckermolekülen.

alpha-D-Glucose in 6-Ringform: Haworth-Strukturformel

Ein Glucose-Molekül

Aus Traubenzucker- bzw. Glucose-Molekülen können alle Lebewesen schnell Energie gewinnen. Die Hefe verwendet dazu eine Folge von Reaktionen, die die Biochemiker als „anaerobe Glykolyse“ bezeichnen.

Dabei wird aus einem Molekül Glucose in mehreren Schritten ein Molekül „Pyruvat“ hergestellt. Im Zuge dieser Schritte werden zwei Energieträger-Moleküle, die die Biochemiker abgekürzt „ADP“ nennen, „aufgeladen“, indem je ein Phosphorsäure-Anion an jedes dieser Moleküle gehängt wird (die aufgeladenen Energieträger-Moleküle heissen dann „ATP“).

Für das Aufladen sind jedoch weitere Reaktionspartner (Moleküle namens NAD+) nötig, die ihrerseits recycelt werden müssen.

Gärung: Aus Pyruvat wird Ethanol. Dabei wird ein Molekül CO2 frei und ein Molekül NAD+ rezykliert.

Alkoholische Gärung By Arne „Norro“ Nordmann. [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5 ], via Wikimedia Commons

Deswegen haben die Hefepilze ein weiteres Enzym (die Pyruvatdecarboxylase), das von den Pyruvat-Molekülen je ein Molekül Kohlenstoffdioxid (CO2) abspaltet.

Das Kohlenstoffdioxid wird danach aus den Zellen entsorgt und füllt euren Luftballon!

Übrig bleibt ein Molekül Acetaldehyd. Das ist für Zellen giftig und wird deshalb schnell zu Ethanol weiterverarbeitet, wobei die Abfall-Moleküle NADH aus der Glykolyse zu NAD+ recycelt werden.

Der Trink-Alkohol „Ethanol“ ist übrigens für uns Menschen giftig, weil es in unseren Zellen das Enzym Alkoholdehydrogenase auch gibt – nur fördert es da die Reaktion in umgekehrter Richtung: Aus Ethanol wird Acetaldehyd. Und das beschert und einen mächtigen Kater (über diesen biochemischen Katzenjammer könnt ihr hier mehr lesen).

Wie wird dann Haushaltszucker vergoren?

Die Moleküle des Haushaltszuckers (Saccharose) bestehen aus je zwei verbundenen Einfachzuckern: dem Traubenzucker Glucose und dem Fruchtzucker Fructose.

Saccharose, unser Haushaltszucker dargestellt in der Haworth-Strukturformel

Ein Saccharose-Molekül

In den Hefepilz-Zellen gibt es deshalb ein Enzym, das diese Paare spalten kann, bevor die Einzelteile wie oben gezeigt „verdaut“ werden.

Diese Fähigkeit – Haushaltszucker zu spalten und zu verwerten – hat der Backhefe schliesslich ihren wissenschaftlichen Namen (Saccharomyces…) eingebracht.

Wie „geht“ Hefe in Milch?

Normale Vollmilch besteht zu ca. 5% aus Milchzucker (Laktose) – das sollte ja genug Futter für die Hefe sein, oder? Weil Reto laktoseintolerant ist, habe ich allerdings laktosefreie Milch für den Kuchen benutzt…und hatte schon Sorge, die Hefe würde damit nicht aufgehen. Stattdessen ging meine Hefe aber schon nach dem Mischen mit der Milch ab wie Schmitz‘ Katze!

Hefe in laktosefreier Milch

Laktose ist auch ein Zweifachzucker, sie besteht aus je einem Molekül Glucose und Galactose.

Ein Laktose-Molekül: Haworth-Strukturformel

Auch Laktose ist ein Zweifach-Zucker, der vor der Verwertung gespalten werden muss

Unglücklicherweise hat die Back-Hefe aber kein Enzym, um Laktose zu spalten und so an die Glucose zu gelangen (sie ist also „laktoseintolerant“, wenngleich Hefepilze keinen Darm haben, der deswegen verstimmt sein könnte). Zum Glück für die Hefe enthält normale Vollmilch jedoch immer auch freie Glucose.

Laktosefreie Milch wird nun hergestellt, indem man das Enzym Laktase dazugibt, welches die Laktose in Glucose und Galactose spaltet (deshalb ist laktosefreie Milch ein wenig süsser als normale). So findet die Hefe in laktosefreier Milch sogar mehr zu fressen als in normaler Vollmilch und geht dementsprechend eifrig auf!

Was im Ofen mit der Hefe passiert

Und bevor euch nun bei all den lebendigen Pilzen der Appetit auf Brot und Kuchen vergeht: Wie alle Lebewesen sind Hefepilze auf gemässigte Temperaturen angewiesen. Wenn ihr euren Hefeteig also in den Ofen schiebt und erhitzt, sterben alle Pilze ab.

Das Kohlenstoffdioxid, das sie vorher im Teig freigesetzt haben, dehnt sich jedoch in der Hitze aus und lässt so Kuchen und Brot aufgehen und so wunderbar fluffig werden. Wenn indessen Stärke, Proteine, Fett und Zucker im Teig zu einem festen Molekülgerüst reagieren (zum Beispiel im Zuge der Maillard-Reaktion, zu der ihr hier lesen könnt), fällt das Ganze nach dem Abkühlen auch nicht mehr zusammen.

 

Entsorgung

Das Hefe-Wasser-Gemisch könnt ihr in den Ausguss entsorgen – oder vielleicht ein Brot damit backen? Den Luftballon könnt ihr nach Belieben weiter benutzen.

 

Ich wünsche euch viel Spass beim Ausprobieren und Beobachten! Was macht ihr sonst am liebsten mit Hefe bzw. Hefeteig?

Hast du das Experiment nachgemacht: 

[poll id=“15″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Nierenstein ganz nah

Was sind Nierensteine? Fördert kalkhaltiges Wasser ihre Entstehung?

Diese Leser-Frage kam auf, als ich vor ein paar Wochen über Kalkfänger geschrieben habe – Ringe aus Stahlwolle, die eine Art Köder für Kalk darstellen, der sich aus hartem Wasser absetzen kann. Diese Kalkablagerungen liessen eine Leserin an Nierensteine denken, jene unerwünschten Ablagerungen, die in unseren Nieren entstehen und auf schmerzhafte Weise den Harnleiter verstopfen können. 

Was sind Nierensteine und wie entstehen sie?

Die Nieren sind die Kläranlagen unseres Körpers. In ihnen werden verschiedene Stoffwechselabfälle, Ionen und Wasser aus dem Blut „gewaschen“ und zu dem gesammelt, was als Urin in die Harnblase und von dort nach draussen abfliesst. Normalerweise lösen sich alle Abfälle in Wasser, sodass der Urin als klare Flüssigkeit seinen Weg durch die Harnleiter von der Niere zur Blase antreten kann.

Die Wasserlöslichkeit einiger Abfälle bzw. von Kombinationen verschiedener Bestandteile ist jedoch sehr begrenzt. Wenn unter unglücklichen Umständen die Konzentration solcher Stoffe oder Kombinationen im entstehenden Urin zu hoch wird, wird es solchen Stoffen in der Lösung „zu eng“: Sie verlassen die Lösung und werden fest (Chemiker sagen „sie fallen aus“).

Dabei suchen sich die ausfallenden Teilchen meist irgendeinen Feststoff-Krümel als Anreiz und lagern sich von allen (zugänglichen) Seiten daran an. So entsteht Schicht für Schicht ein Sandkorn, das sich mit der Zeit zu einem kleinen Kieselsteinchen auswachsen kann – einem Nierenstein.

Nierensteine - wo sie zu finden sind

Ablagerungen schwer löslicher Salze können den Harnleiter (nach links unten aus der Niere abgehend) verstopfen und so zu Nierenkolik, Harnrückstau und gefährlichen Entzündungen führen. ( By BruceBlaus. Blausen.com staff (2014). „Medical gallery of Blausen Medical 2014“. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. (Own work) [CC BY 3.0], via Wikimedia Commons

Wenn solche Nierensteine in den Harnleiter geraten, können sie je nach Grösse darin stecken bleiben (dann spricht man korrekterweise von Harnleitersteinen) und somit den Abfluss für den Urin verstopfen. Die Folge sind starke, krampfartige Schmerzen (die berüchtigte Nierenkolik) und ein Rückstau des Urins, der Entzündungen mit sich bringen und die Niere schädigen kann. Wenn es einmal zu so einer Verstopfung kommt, hilft nur noch der Weg in Spital, um die Steine zerkleinern und entfernen zu lassen (heutzutage geht das meist mit Hilfe von Schallwellen von aussen).

Wer solch eine unangenehme Erfahrung aber von vorneherein vermeiden möchte, tut gut daran, über Nierensteine bescheid zu wissen. Die „unglücklichen Umstände“ lassen sich nämlich in den allermeisten Fällen recht einfach vermeiden. 

Woraus bestehen Nierensteine?

Die allermeisten Nierensteine bestehen aus Salzen, also aus Verbindungen verschieden geladener Ionen, die sich in ungünstiger Paarung schlecht in Wasser lösen. In den meisten dieser Steine (d.h. in rund 80 bis 85% aller Nierensteine), sind Calcium-Ionen, Ca2+, massgeblich an diesen Paarungen beteiligt. Richtig – das sind genau die Kationen, aus denen auch Kalk entsteht. Die Frage unserer Leserin liegt also nahe.

Anstelle von Carbonat-Anionen (CO32-) enthalten Nierensteine jedoch andere negativ geladene Ionen, allen voran das Anion der Oxalsäure (Oxalat,C2O42-, 60% aller Nierensteine). Dazu kommen Phosphat-Anionen (PO42-), 9% aller Steine) und das Anion der Harnsäure (Urat) und weitere, die allesamt mit Calcium in Wasser schwer- bis unlösliche Salze bilden.

Harnsäure kann sowohl ganz allein als ungeladenes Molekül oder als Urat-Anion mit Metall-Ionen ausfallen und Harnsäuresteine bilden (15% aller Nierensteine).

Als Folge von Harnwegs-Infektionen können überdies Magnesium (Mg2+) und Ammoniumionen (NH4+) mit Phosphat-Anionen zu „Struvit“-Steinen zusammenfinden (11% aller Nierensteine), die nach dem Mineral der selben Zusammensetzung benannt sind.

Selten sind Steine aus anderen organischen Stoffen, wie Cystin oder Xanthin, die aufgrund von genetisch bedingten Stoffwechselstörungen in zu grossen Mengen im Urin landen (je 1% aller Nierensteine).

Da es in so einer Niere höchst lebendig und bewegt zu und her geht, finden all diese Ionen und Moleküle beim Ausfallen keine Ruhe, um sich zu ordentlichen, sichtbar symmetrischen Kristallen zusammen zu lagern. So entstehen oft gerundete oder blasige, unstrukturierte Kiesel, deren Zusammensetzung aus Ionenkristallen sich erst vor dem Makro-Objektiv (wie auf dem Artikelbild) oder unter dem Elektronenmikroskop offenbart.

Nierenstein unter dem Rasterelektronenmikroskop

Oberfläche eines Calciumoxalat-Steins unter dem Rasterelektronenmikroskop. Die Breite des Bildes entspricht einer Länge von 0,45mm ! (By Kempf EK (Own work) [CC BY 3.0], via Wikimedia Commons)

Ebenso führt das lebendige Treiben rund um die Urin-Entstehung zwangsläufig dazu, dass verschiedene Ionensorten miteinander ausfallen und Mischkristalle bilden. Für einen Nierenstein eine Salzformel wie für einen Reinstoff anzugeben ist deshalb höchst schwierig bis unmöglich. 

Was erhöht die Konzentration der schwerlöslichen Salze?

So unterschiedlich wie die verschiedenen Nierensteine sind auch die Umstände, unter welchen sie entstehen. Eine Gegebenheit führt allerdings in jedem Fall zur Erhöhung der Konzentration gelöster Teilchen: Ein Mangel am Lösungsmittel.

Zu einem Überschuss an Nierenstein-Bestandteilen im Urin kommt es also für

Alle Steine

Bei Flüssigkeitsmangel – wenn zu wenig getrunken oder/und zu viel Flüssigkeit ausgeschieden wird (Schwitzen, Durchfall,…alles was zu Dehydrierung führen kann).

Calciumoxalat-Steine

Bei vermehrter Ausscheidung von Oxalat aus dem Blut in den entstehenden Urin.

An sich sind Oxalat-Anionen ganz normale Stoffwechsel-Abfallprodukte, die in jedem Körper vorkommen und transportiert werden. Dementsprechend einfach kann es zu einer „Flutung“ mit Oxalat kommen, wenn sich irgendwo eine reichhaltige Quelle auftut. Die naheliegendste solche Quelle ist die Nahrung:

Schwarztee (manchmal auch Grüntee), Spinat, Rhabarber, Rande (in Deutschland: Rote Bete), Krautstiel (in Deutschland: Mangold), Kakao und Nüsse sind Lebensmittel, die relativ viel Oxalsäure enthalten.

Auch Stoffwechselstörungen, sowohl erbliche (selten) als auch erworbene, können zur vermehrten Ausscheidung von Oxalat-Anionen führen. Ursachen für viel Oxalat im Urin können Funktionsstörungen der Nebenschilddrüsen, die Überdosierung von Vitamin D, eine zurückliegende Magen-Bypass-Operation, Morbus Cushing, die Folgen von Knochenkrebs und weitere sein.

Harnsäure-Steine

Bei vermehrter Ausscheidung von Harnsäure-Salzen (Urat) aus dem Blut.

Harnsäure bzw. Harnsäure-Anionen sind ein Stoffwechselprodukt, das beim Abbau von Purinen entsteht. Purine wiederum sind Bestandteile der Nukleinsäuren, also DNA und RNA – kurz: des Erbguts in allen Zellen. Kurzum: Wo (zerstörte) Zellen sind, sind auch Purine nicht weit. Dabei können diese Zellen sowohl aus der Nahrung als auch aus unserem eigenen Körper stammen.

Dummerweise besteht die allermeiste für uns geniessbare Nahrung aus Zellen – sowohl pflanzliche als auch tierische. Dennoch gelten Innereien, Fleisch, Fisch und vor allem die Haut von Fisch und Geflügel als besonders zell- und damit als purinreich.

Körpereigene Zellen werden z.B. durch Hungerkuren oder Krebserkrankungen und deren Bekämpfung verstärkt zum Abbau ihrer selbst und damit zur Lieferung von Purinen zur Verstoffwechselung bewegt.

Die häufigste Ursache für einen Harnsäure-Überschuss im Körper ist jedoch eine Ausscheidungsstörung in den Nieren: Wenn die (auch in normalem Umfang) im Stoffwechsel entstehende Harnsäure nicht raus kann, sammelt sie sich an. In den Nieren können so Steine entstehen, bei Ablagerung in den Gelenken kommt es zur Gicht.

Ein „saurer“, also niedriger pH-Wert im Urin führt zudem dazu, dass Natriumurat, das Salz aus Natrium (Na+) und Urat-Ionen, besonders leicht ausfällt. Übergewicht gilt das wichtige Ursache für sauren Urin. Überdies hemmt Alkohol (Ethanol) die Ausscheidung von Harnsäure über die Nieren.

Struvit-Steine

Bei basischem Urin in Folge von Infektionen.

Struvit (MgNH4PO3) fällt nur in basischer Umgebung aus. Da menschlicher Urin gewöhnlich schwach sauer ist, kommen solche Steine unter normalen Umständen nicht vor (anders z.B. bei Hauskatzen: die haben gewöhnlich basischen Urin und können daher auch bei gesunder Ausgangslage Struvit-Steine entwickeln).

Anders wird das, wenn sich der Mensch einen Harnwegsinfekt mit Bakterien einfängt, die Harnstoff zu Ammoniak (NH3)abbauen können. Letzterer ist nämlich basisch, d.h. er nimmt H+-Ionen auf (so entstehen daraus Ammonium-Ionen NH4+), was zu einer Erhöhung des pH-Werts in der Umgebung – hier im Urin – führt. So können in der Gegenwart von ammoniakproduzierenden Bakterien Struvit-Steine entstehen.

Und Calciumcarbonat?

Während Calcium in vielen Nierensteinen eine Rolle spielt, ist vom Carbonat-Anion bis hierhin keine Spur. Tatsächlich ist Calciumcarbonat, wenn überhaupt, nur selten Bestandteil von Nierensteinen. Das wird daran liegen, dass unter den Bedingungen im menschlichen Körper nicht das stark basische Carbonat (CO32-), sondern das weniger basische und leichter lösliche Hydrogencarbonat (HCO3) vorkommt. 

Welche Bestandteile können über die Ernährung beeinflusst werden?

Mit der Nahrung nehmen wir vor allem drei wichtige Bestandteile von Nierensteinen auf:

  • Calcium : findet man als Ca2+-Ionen unter anderem in Milch und Milchprodukten, sowie Mineral- und Leitungswasser. Ca2+ ist nicht nur Bestandteil von Nierensteinen, sondern auch ein für den Körper unverzichtbarer Mineralstoff. Besonders für den Knochenbau und -erhalt benötigen wir unbedingt Calcium. Deshalb wird ein Verzicht auf Calcium zur Vorbeugung von Nierensteinen gar nicht mehr empfohlen (es sei denn, es findet sich tatsächlich zu viel davon im Urin). Die für gesunde Erwachsene empfohlene Calcium-Zufuhr von 1000 – 1200 mg pro Tag führt birgt gemäss der Schweizerischen Gesellschaft für Ernährung auch das geringste Risiko für die Entstehung von Calciumsteinen. Wie das kommt? Calcium allein macht noch keinen Nierenstein. Dazu braucht es schliesslich auch Anionen:
  • Oxalat : Viele Pflanzen – auch und gerade solche, die als gesund gelten – enthalten relativ viel Oxalsäure bzw. Oxalat-Anionen. So kann die Aufnahme von oxalsäurereicher Nahrung direkt zu einer Flutung der Nieren mit Oxalat führen. Wenn dann auch Calcium vorhanden ist, entstehen leicht Oxalat-Steine.
  • Harnsäure : Purine aus Proteinen in Fleisch und Fisch werden zu Harnsäure verstoffwechselt, sodass auch hier eine Aufnahme mit der Nahrung schnell zu einer Flutung führen kann. Ausserdem führt die fleischhaltige Nahrung zu einem niedrigen, d.h. sauren pH-Wert im Urin, was die Entstehung von Harnsäuresteinen weiter begünstigt.

Wie senke ich mein Nierensteinrisiko durch Ernährung?

Alle Steine

Viel trinken ist grundsätzlich Empfehlung Nummer 1, wenn es um Nierensteine geht. Schliesslich müssen sich in einem grossen Urin-Volumen wesentlich mehr Nierenstein-Bestandteile ansammeln, bevor etwas fest wird, als in einem kleineren Volumen. Patienten, die bereits mit Nierensteinen zu tun hatten oder haben, wird daher empfohlen, am Tag mindestens 2,5 bis 3 Liter zu trinken.

Calcium-Steine

In der Gegenwart von Natrium(Na+-)Ionen werden Calcium-Ionen besonders leicht vom Blut in den Urin befördert. Deshalb lässt sich die Calciumausscheidung allein durch Masshalten bei der Verwendung und damit der Aufnahme von Koch- oder Speisesalz (Natriumchlorid) verringern, ohne dass der Körper auf wertvolles Calcium verzichten müsste. Zu wenig Salz ist allerdings auch nicht angebracht, da mit dem Salz auch das Wasser seinen Weg in den Urin findet – und wenig Wasser führt zu einem niedrigen Urin-Volumen…und damit zu Nierensteinen. Empfohlen wird die Aufnahme von 4 bis 6 Gramm Kochsalz pro Tag (Achtung bei Fertigprodukten! Die enthalten oft mehr Kochsalz, als man meinen möchte!).
Zudem lässt sich Calcium hinsichtlich der Entstehung von Nierensteinen auch mit Hilfe von Zitronensäure „unschädlich“ machen: Citrat-Anionen bilden nämlich mit Ca2+ eine sogenannte Komplexverbindung, die gut wasserlöslich ist, aber das Calcium-Ion für die Reaktion zu Calciumoxalat und anderen schwer löslichen Salzen unzugänglich macht. Zitrusfrüchte und -säfte sind daher eine gute und schmackhafte Wahl (nicht nur) für die Flüssigkeitszufuhr.

Oxalat-Steine

Wer zu Oxalat-Steinen neigt, sollte eine Oxalsäure-Überflutung möglichst vermeiden. Das heisst Zurückhaltung bei oxalsäurereichen Nahrungsmitteln, zu welchen verschiedene Gemüse, Nüsse, aber auch Schokolade (Kakao!) zählen. Da Nierensteine zudem oft Gemische aus verschiedenen Stein-Typen sind, ist deshalb eine rein vegetarische Ernährung zur Vermeidung von Harnsäuresteinen nicht zu empfehlen: Zu schnell gerät man dabei an Oxalsäure, die dann vom Regen in die Traufe führen kann.
Es gibt jedoch einen Trick für all jene, die auf ihr oxalatreiches Lieblings-Gemüse nicht verzichten wollen: Verspeist die Oxalsäure gemeinsam mit Calcium, zum Beispiel aus Milchprodukten oder Mineralwasser! Dann bildet sich das schwerlösliche Calciumoxalat nämlich schon im Verdauungstrakt – und wird mit dem Stuhlgang gleich wieder ausgeschieden. Damit ist das Calcium allerdings auch verloren und trägt nicht nur Deckung des Tagesbedarfs bei!

Harnsäuresteine

Wer mit Harnsäure-Steinen zu tun hat, sollte Fleisch und Fisch in Massen essen (maximal 1 Portion von 120g pro Tag an höchstens 5 Tagen in der Woche) und besonders purinhaltige Bestandteile meiden. Eine rein vegetarische oder gar vegane Ernährung ist jedoch der Oxalsäure wegen sehr schwierig und wird daher nicht empfohlen. Wer Übergewicht abbauen möchte, sollte das Abnehmen langsam angehen, um eine Flutung mit körpereigenen Purinen zu vermeiden! Hydrogencarbonat-Ionen – zum Beispiel aus Mineral- oder auch Leitungswasser – können dabei helfen, den sauren Urin-pH zu erhöhen (d.h. „basischer zu machen“).

Struvit-Steine

Harnwegsinfekte sollten frühzeitig behandelt werden, um Struvit-Steine und eine Nierenbeckenentzündung zu vermeiden! Meine persönliche Waffe für den „Präventiv-Schlag“ bei einer Harnwegs-Reizung sind Preiselbeer- bzw. Cranberry-Getränke (zum Beispiel aus Trink-Granulat). Damit kann ich vieles schon im Keim ersticken. Bei anhaltenden Schmerzen oder/und Fieber aber unbedingt zum Arzt gehen und eine Urin-Probe untersuchen lassen! Das dauert nur ein paar Minuten und zeigt, ob ihr einen Infekt mit Bakterien habt, der mit Antibiotika behandelt werden sollte! 

Fazit

Die Entstehung von Nierensteinen kann verschiedene Ursachen haben. Dabei können die Rahmenbedingungen für die Stein-Entstehung teilweise durch die Ernährung beeinflusst werden.

Calcium, genauer das Ca2+-Ion, welches massgeblicher Bestandteil an Kalkablagerungen in Bad und Küche ist, ist auch in den meisten Nierensteinen enthalten. Für die Vermeidung von Nierensteinen sind jedoch die Anionen, die mit dem Calcium schwer lösliche Verbindungen bilden, viel bedeutsamer. Die Aufnahme solcher Anionen, wie Oxalat und Urat, und damit ihre Konzentration im entstehenden Urin in den Nieren lässt sich über die Ernährung recht gut steuern. Dabei sind Calcium und das in „hartem“ Wasser gelöste Hydrogencarbonat-Anion mitunter sogar nützliche Hilfsmittel!

Viel trinken und eine massvolle, aber vielseitige Ernährung helfen grundsätzlich dabei, einen ausgeglichenen Stoff-Haushalt (nicht nur) in den Nieren zu bewahren und der Entstehung von Nierensteinen vorzubeugen.

Mehr Infos rund um Nierensteine und Ernährung

Die folgenden Quellen sind in diesen Artikel eingeflossen:

Merkblatt „Ernährung und Nierensteine“ von der Schweizerischen Gesellschaft für Ernährung

Infoseite rund um Harn- und Nierensteine, mit Tabellen zu Stein- und Nahrungsmittel-Zusammensetzung

 

Blogbild Photosynthese

Habt ihr euch auch schon einmal gefragt, wovon Pflanzen eigentlich leben? Mit dieser Frage habe ich den ersten Teil der Experimente um das geheimnisvolle Leben der Pflanzen begonnen. Darin habt ihr erfahren, dass Pflanzen fast ausschliesslich von Luft und Wasser leben, und wie sie diese „Zutaten“ zum Leben aufnehmen und Abfälle wieder ausscheiden können.

Kein Leben ohne Energie

Doch was ist das eigentlich, das Leben? Nach Ansicht der Biologen sind Lebewesen Ansammlungen von Stoffen, die – mit Hilfe von chemischen Reaktionen – sich selbst vermehren können. Lebewesen nehmen also einfache Moleküle aus ihrer Umgebung auf und bauen sie zu grossen, komplexen Molekülen, Zellen und Geweben um. Für Pflanzen heisst das: Sie nehmen Wasser und Kohlendioxid aus ihrer Umgebung und bauen aus den Atomen dieser Moleküle Zucker, Proteine und vieles mehr, die sie zu Blättern, Stängeln und Blüten zusammenfügen. Mit anderen Worten: Pflanzen bringen Ordnung in das vormals fein verteilte Durcheinander der Kleinmoleküle.

Leben ist Ordnung
Leben ist Ordnung: Ein ungeordneter Haufen Atome (in kleinen Molekülen) – entsprechend dem Haufen Bausteine links – kann zu einem Lebewesen geordnet werden – wie die Bausteine zum Gesicht rechts.

Die Gesetze der Thermodynamik schreiben der Natur jedoch vor: Ordnung machen erfordert Arbeit – bzw. Energie. Das gilt für das Zimmeraufräumen ebenso wie für das Wachstum von Pflanzen und anderen Lebewesen.

Was leben will, braucht also (mindestens) eine verlässliche Energiequelle, um all seine chemischen Prozesse am Laufen zu halten.

Wir Menschen erledigen das beim Essen: In unserer Nahrung sind Moleküle – vornehmlich Zuckermoleküle – enthalten, in welchen Energie gespeichert ist. Diese „chemische“ Energie kann freigesetzt werden, wenn solche Moleküle mit passenden Partnern reagieren und dabei weniger energiereiche Produkte entstehen.

Grüne Pflanzen halten es anders: Sie bauen ihre Zuckermoleküle selbst! Und die Energie, welche sie in diese Moleküle einbauen, liefert ihnen das Sonnenlicht. Ganz verlässlich jeden Tag aufs Neue. Den Prozess, in welchem aus Kohlendioxid und Wasser mit Hilfe von Sonnenenergie Zuckermoleküle entstehen, nennen Biologen und Biochemiker „Photosynthese“.

Photosynthese: Wie aus Luft und Wasser Zucker wird

‚Die Photosynthese‘ fasst eine ganze Reihe von Reaktionen und Prozessen zusammen, für die wiederum eine ganze Reihe von Proteinen gebraucht wird – und natürlich Licht. Das Ganze lässt sich in einer einfachen Reaktionsgleichung zusammenfassen, welche die Ausgangsstoffe und das (vorläufige) Endprodukt der Photosynthese enthält:

Wer nachzählt, wird feststellen, dass links und rechts des Pfeils von jeder Sorte gleich viele Atome stehen, wie es sich für eine ordentliche Reaktionsgleichung gehört. 6 Moleküle Kohlendioxid (CO2) und 6 Wasser-Moleküle (H2O) werden also zu einem Traubenzucker- (bzw. Glucose-) Molekül (C6H12O6) und 6 Sauerstoff-Molekülen (O2) umgebaut.

Um Traubenzucker-Moleküle zu machen ist Energie erforderlich, die in diesen Molekülen gespeichert wird und später wieder freigesetzt werden kann. Lebewesen, d.h. Tiere, Menschen und auch Pflanzen können Glucose zu diesem Zweck im Zuge der Zellatmung kontrolliert „verbrennen“ (dazu benötigen wir den Sauerstoff, den wir atmen). Dass Zucker sich mit einem kleinen Trick auch ganz einfach anzünden und zur Energiefreisetzung abbrennen lässt, könnt ihr mit der „mysteriösen Pharao-Schlange“ selbst ausprobieren.

Licht wird zu chemischer Energie

Bevor es an die Zellatmung geht, muss der Energieträger Glucose jedoch erst einmal hergestellt werden – mit Lichtenergie. Und Licht lässt sich mit farbigen Molekülen sammeln: Im Artikel zu Farben, Licht und Glanz erkläre ich ausführlich, wie passende Lichtportionen (man nennt sie Photonen oder Lichtquanten) Elektronen auf eine höhere Etage innerhalb der Elektronenhülle eines Moleküls „anregen“ können. Je nachdem wie ein solches Molekül gebaut ist, können derart „angeregte“ Elektronen von der höheren Etage aus sehr einfach „ihr“ Molekül verlassen, um in die Elektronenhülle eines anderen Moleküls in der Nähe „einzuziehen“.

Ein Molekül mit dieser Fähigkeit zur Abgabe von Elektronen ist Chlorophyll, das vornehmlich blaues und rotes Licht zur Elektronenbeförderung verwendet (grünes und gelbes Licht lässt es unbehelligt, weshalb es uns grün erscheint). In den grünen Teilen von Pflanzen sitzen Chlorophyll-Moleküle dicht an dicht in Proteine eingebettet, wie Rosinen in einem sehr rosinenreichen Kuchen. Das Ganze hat die Form eines molekularen Hohlspiegels: So können angeregte Chlorophyll-Moleküle ihre Nachbarn anregen und ihre gesammelte Lichtenergie an das „Chef“-Chlorophyll im Brennpunkt des „Spiegels“ weiterleiten. Einmal angeregt kann dieses Molekül sehr einfach ein Elektron an ein benachbartes Protein abgeben, welches es wiederum an seinen Nachbarn weiterreicht und so fort, bis das Elektron schliesslich auf ein kleineres, bewegliches Elektronen-Transportmolekül (NADPH) verladen und zur Zucker-Herstellung „verschifft“ wird.

Dem ursprünglichen „Chef“-Chlorophyll – jetzt ein elektrisch positiv geladenes „Radikal“ – missfällt das nun fehlende Elektron jedoch so sehr, dass es sich schleunigst ein neues sucht. Behilflich ist ihm dabei ein weiteres Nachbar-Protein – ein Enzym, das Wassermoleküle auseinanderbauen kann:

Die vier Elektronen, die bei dieser Reaktion entstehen, werden zum Wiederauffüllen der Elektronenhülle von Chlorophyll verwendet. Die Wasserstoff-Ionen (H+) dienen als „Treibstoff“ für molekulare Dynamos (Proteine names ATP-Synthase), die das Energieträger-Molekül ATP „generieren“. Einzig die Sauerstoff-Atome haben keinen direkten Nutzen. So werden je zwei davon zu einem Sauerstoff-Molekül (O2) verbunden und kurzerhand durch die Spaltöffnungen in den Pflanzenblättern entsorgt.

In dieser „Lichtreaktion“ werden also Lichtquanten gesammelt, um mit ihrer Energie Wassermoleküle zu zerlegen und den Elektronentransporter NADPH sowie den Energietransporter ATP zu beladen. Dabei bleiben Sauerstoff-Moleküle als Abfall übrig, der entsorgt werden muss.

Und dass letzteres wirklich funktioniert, könnt ihr selbst nachweisen:

Versuch 1 : Sauerstoff durch Photosynthese

Sauerstoff ist Ausgangsstoff für jede Art von Verbrennung, zum Beispiel der von Kerzenwachs. Ohne Sauerstoff kann keine Verbrennung stattfinden. In einem abgeschlossenen Raum verbraucht eine brennende Kerze daher sämtlichen Sauerstoff und verlischt dann. Eine brennende Kerzenflamme zeigt also an, dass Sauerstoff in ihrer Umgebung vorhanden ist. Und das könnt ihr euch zu Nutze machen. Dazu braucht ihr:

  • Ein dicht verschliessbares Einmachglas, am besten mit Scharnier-Deckel
  • Eine Kerze, ggfs. mit Untersatz
  • Streichhölzer
  • Frische grüne Pflanzenteile bzw. -blätter
  • Sonnen- oder elektrisches Licht
  • Eine Zange, Wäscheklammer oder ähnliches

Durchführung Teil 1:

  • Zündet die Kerze an und platziert sie wie auf dem Bild im liegenden Einmachglas (Bei der Verbrennung entsteht Kohlenstoffdioxid (CO2), das schwerer als Luft ist und daher nach unten sinkt. Daher sollte die Flamme oben im Glas brennen, damit sie nicht vorzeitig erstickt).
Position der Kerze im Glas – Hier nach dem Verlöschen mit Blättern. So kann der Aufbau einige Stunden von der Sonne beschienen werden.
  • Verschliesst das Glas dicht und wartet, bis die Flamme erloschen ist. Nun ist im Glas kein Sauerstoff mehr vorhanden, sondern ein Gemisch aus Stickstoff (der Hauptbestandteil von Luft) und Kohlenstoffdioxid.
  • Sobald das Kerzenwachs erstarrt ist, stellt das Einmachglas aufrecht und öffnet es vorsichtig (da Kohlenstoffdioxid schwerer als Luft ist, dringt es nicht hinaus, und so lange es keine Verwirbelungen gibt, kommt so kein Sauerstoff hinein).
  • Entzündet ein Streichholz und lasst es mit der Zange/Klammer vorsichtig in das Glas hinab.

Das Streichholz wird verlöschen: Es ist wirklich kein Sauerstoff im Glas!

Durchführung Teil 2:

  • Platziert nun die Pflanzenteile hinten bzw. unten im Glas und platziert die brennende Kerze davor. Ich lasse dabei ein paar Tropfen Wasser im Glas (z.B. an nassen Pflanzenteilen), damit die Blätter nicht übermässig Wasser ausschwitzen.
  • Schliesst das Glas und wartet, bis der Sauerstoff darin verbraucht ist und die Flamme verlischt.
  • Stellt das Glas ungeöffnet für einige Stunden an die Sonne bzw. unter eine helle Lampe.
  • Anschliessend stellt das Einmachglas aufrecht und senkt wie oben beschrieben ein brennendes Streichholz hinein.
Nachweis Sauerstoff
Das Streichholz brennt im Einmachglas: Hier ist Sauerstoff vorhanden!

Das Streichholz wird vollständig abbrennen: Da von aussen kein Sauerstoff ins Glas kommt, muss im Glas Sauerstoff entstanden bzw. freigesetzt worden sein!


Auch im Dunkeln wird gearbeitet: Von der Photosynthese zur Kartoffel

Die „Last“ der im Zuge der Lichtreaktion beladenen Elektronen- bzw. Energietransporter wird an ihrem Bestimmungsort innerhalb der Blätter verwendet, um die Kohlenstoff-Atome aus CO2-Molekülen zu Zucker-Molekülen zu verknüpfen. Wie in der Summengleichung für die Fotosynthese angegeben bilden 6 Kohlenstoffatome (samt Sauerstoff und Wasserstoff) dabei ein Molekül Glucose (C6H12O6). Damit diese noch recht kleinen Moleküle in „ihrer“ Zelle keine Unordnung schaffen, werden sie dort miteinander zu langen Ketten verknüpft: Zu Stärke-Molekülen.

Strukturformel Stärke bzw. Amylose
Einfaches Stärkemolekül („Amylose“) – eine Kette aus Glucose-Molekülen, hier als Sechsringe dargestellt.

Aus diesem Zwischenlager kann die Glucose jederzeit – also auch im Dunkeln – wieder freigesetzt werden, zum Beispiel für die Zellatmung oder zum Umbau in andere Verbindungen. Dazu zählt zum Beispiel der „Fruchtzucker“ Fructose. Und ein Molekül Fructose lässt sich mit einem Molekül Glucose zu einem Paar verbinden – besser gesagt zu einem Molekül Saccharose, die wir alle als Haushaltszucker kennen. Die Saccharose kann nun durch das Leitungssystem einer Pflanze aus den Blättern zu anderen Orten transportiert, dort wieder in Stärke umgewandelt und eingelagert werden.

So können Pflanzen auch ihre Teile versorgen, die ständig im Dunkeln liegen, wie ihre Wurzeln. Manche Pflanzen können auf diese Weise enormen Mengen an Stärke in entsprechend voluminösen Wurzeln einlagern. Und da auch der menschliche Körper Stärke abbauen und verwerten kann, landen diese Wurzeln – zum Beispiel Kartoffeln – häufig auf unserem Teller.

Da der Abtransport der Zucker aus den Blättern auch im Dunkeln möglich ist, wird tagsüber ein Teil der mittels Photosynthese hergestellten Zucker in die Stärke-Zwischenspeicher in den Pflanzen-Blättern gefüllt, während ein anderer Teil in die Wurzeln abtransportiert wird. Nachts – ohne Licht – kommt die Photosynthese zum Erliegen, sodass nur noch Zucker abtransportiert werden und die Zwischenspeicher sich leeren.

Und den Füllstand dieser Zwischenspeicher könnt ihr sichtbar machen:

Versuch 2 : Sichtbare Stärke in Pflanzen-Blättern

Stärke wird deutlich sichtbar, wenn man sie mit (elementarem) Iod in Berührung bringt: In Wasser verdrillen sich die langen Stärkeketten zu Spiralen, ähnlich einem gekräuselten Geschenkband. In diese Kräusel passen Iod-Atome wunderbar hinein, sodass aus (in Lösung braunem) Iod und farbloser Stärke mit Iod gefüllte Spiralen entstehen, die sehr dunkelviolett oder sogar schwarz aussehen. Wenn sich Pflanzenteile in Iodlösung dunkel färben, enthalten sie also Stärke, was ihr als Nachweis nutzen könnt. Dazu braucht ihr:

  • Eine lebende Blattpflanze
  • einen schwarzen ( = lichtundurchlässigen ) Plastiksack (z.B. ein Abfallsack)
  • Schnur zum Zubinden des Sacks
  • Iod-Lösung:
    • entweder Iod-Kaliumiodid-Lösung („KI3„): 3g Iod und 10g Kaliumiodid auf 1l Wasser, oder auch fertig zu kaufen, z.B. als Testlösung für den Erntezeitpunkt von Obst oder in der Apotheke/Drogerie (da die dunkle Färbung mit dieser Variante deutlicher ausfällt als mit der zweiten, lohnt sich der Einkauf für das „Testen“ von Blättern)
    • oder Betaisodona-Lösung bzw. -salbe (Polyvidon-Iod, eine andere, wasserlösliche Einschluss-Verbindung mit Iod) aus der Apotheke): Aus der Salbe könnt ihr eine Lösung herstellen, indem ihr 2 bis 3 cm davon aus der Tube in ein Glasgefäss drückt und wenige Milliliter Wasser dazu gebt. Die Salbe löst sich in wenigen Minuten vollständig darin auf (ggfs. könnt ihr ein wenig umrühren), sodass eine kräftig braune Flüssigkeit übrig bleibt.
  • Sonnen- oder elektrisches Licht
  • eine Herdplatte oder vergleichbare Wärmequelle
  • evtl. Brennsprit/Spiritus, ein zusätzliches Glasgefäss und eine Grillzange oder ähnliches
  • eine Pinzette
  • Eine kleine Schale aus Glas (kein Kunststoff – der könnte vom Iod ebenfalls dunkel verfärbt werden!)

Durchführung:

  • Stülpt den Plastiksack über einen Zweig eurer Pflanze mit Blättern (nicht über die ganze Pflanze – einige Blätter sollen am Licht bleiben!).
Plastiksack über einem Zweig unseres chinesischen Ahorns (der mehr als genug Blätter zum Experimentieren hat).
  • Lasst die Pflanze mindestens 3 Tage lang am Licht (ggfs. giessen nicht vergessen!).
  • Pflückt ein Blatt von eurer Pflanze. Dann entfernt den Plastiksack und pflückt ein weiteres Blatt, welches zuvor im Sack gewesen ist.
  • Wenn ihr mit Kaliumtriiodid-Lösung arbeitet: Legt jedes Blatt einzeln in einen Kochtopf mit Wasser und lasst es auf dem Herd mindestens 15 Minuten kochen. Dabei werden die Blatt-Zellen so weit zerstört, dass Iod-Lösung einfach hineindringen kann.
  • Wenn ihr mit Betaisodona arbeitet: Legt jedes Blatt einzeln für wenige Minuten in kochendes Wasser (bis das Wasser sich grünlich zu färben beginnt). Dann fischt das jeweilige Blatt mit einer Pinzettte aus dem Wasser und legt es in ein Gefäss mit etwas Ethanol („Alkohol“: Brennsprit bzw. Spiritus). Erhitzt den Alkohol vorsichtig, indem ihr das Gefäss in das leicht kochende Wasser in eurem Kochtopf taucht.
Extraktion von Chlorophyll
Extraktion von Chlorophyll im Wasserbad: Im Becherglas sind Alkohol und das Blatt, im Topf ist Wasser. Die lange Grillzange erlaubt es mir, auf Abstand zu den Dämpfen zu bleiben.

Der Alkohol löst das verbliebene grüne Chlorophyll aus den beschädigten Blattzellen, sodass das Blatt ausgebleicht zurückbleibt. So ist die dunkle Farbe der Iodstärke später besser zu sehen.

Brennsprit bzw. Spiritus ist leicht entzündlich! Verwendet kein offenes Feuer zum Erhitzen, sondern einen Elektroherd! Alkohol-Dampf kann überdies benommen machen! Nicht einatmen! Haltet Abstand zum Topf und schaltet – wenn vorhanden – die Dunstabzugshaube ein! Verwendet überdies so wenig Alkohol wie möglich.

  • Legt die Blätter auf eine flache Glas- oder Porzellanschale. Verteilt Iodlösung auf den Blättern und lasst sie wenige Minuten einziehen.

Das Blatt, welches der Sonne ausgesetzt war, wird sich dunkel färben: Hier ist durch Fotosynthese Stärke entstanden und eingelagert worden. In den Blättern unter dem Plastiksack konnte keine Stärke entstehen. Aus diesen Blättern wurde die Stärke also nur abtransportiert, sodass keine/kaum Stärke übrig ist, die sich dunkel färben könnte!

Reaktion von Iod mit Stärke im Blatt
Links: Ein belichtetes Blatt vom chinesischen Ahorn nach dem Erhitzen in Ethanol: Der Bereich um die grosse mittlere Blattader ist weitgehend gleichmässig hell. Rechts: Nach dem Beträufeln mit Polyvidon-Iod zeigen sich dunkle Strukturen – hier hat sich das Iod in Stärkemoleküle eingelagert!

Entsorgung von Iod-Lösungen

Iod ist sehr giftig für Wasserorganismen, weshalb es als Sonderabfall entsorgt werden muss!

Verwendet also möglichst wenig davon. Unbenutze Iod-Lösung könnt ihr in einer braunen Flasche im Dunkeln (Schrank) gut aufbewahren und für weitere Nachweise verwenden (z.B.: Welche Gemüse/welches Obst enthält Stärke?).

Ich habe übrigens meine abgelaufene Betaisodona-Salbe zur Herstellung von Polyvidon-Iod-Lösung verwendet und ihr so ein zweites Leben verschafft, anstatt sie zu entsorgen.

Wenn trotzdem Iod-Reste anfallen, bringt diese zur Entsorgung in die Apotheke (zurück) oder zu einer Sonderabfall-Entsorgungsstelle (Schweiz: An der Hauptsammelstelle der Gemeinde; Deutschland: Schadstoffmobil).

Entsorgung von Ethanol (Brennsprit bzw. Spiritus)

Brennsprit ist unbegrenzt mit Wasser mischbar: Sehr kleine Mengen (einige Milliliter) können mit viel Wasser in den Ausguss entsorgt werden. Grössere Mengen müssen wie andere Lösungsmittel in den Sonderabfall gegeben werden. Wer einen sicheren Spiritusbrenner hat, kann den Alkohol auch abbrennen (in brandsicherer Umgebung, Feuer nicht unbeaufsichtig lassen!).

Und wenn ihr nun Lust auf weitere Experimente zu Hause mit Pflanzen habt, findet ihr sie gleich hier in Keinsteins Kiste:

Extrahiert das grüne Chlorophyll und weitere Blattfarbstoffe (die es auch in grünen Blättern gibt!) aus Blättern und trennt sie mittels Papierchromatographie!

Legt eine Hermetosphäre an und beobachtet, wie Pflanzen Monate und Jahre lang in einem abgeschlossenen Glas überleben!

Viel Spass beim Lesen und Experimentieren wünscht

Eure Kathi Keinstein

Hast du die Experimente nachgemacht:

[poll id=“37″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Vor etwa einem Monat fand ich einen skurril anmutende Post in meinem Facebook-Feed: Die Tierschutzorganisation PETA wurde für die Auszeichnung eines veganen Hundefutters auf Soja-Basis als „tierfreundlichste Hundenahrung“ heftig kritisiert. Veganes Hundefutter? Ist denn das die (bzw. eine) Möglichkeit?

Wie bei vielen Themen aus den Bereichen Ernährung, Gesundheit und Tierschutz üblich ging es auch in den Kommentaren zu jenem Beitrag heftig zu und her – wobei die Kommentierenden zu grossen Teilen in die Kritik an PETA mit einstimmten und die Ansicht teilen, dass vegane Ernährung für den Hund vollkommen widernatürlich sei.

Als bekennende Alles-Esserin beschlich mich indessen beim Lesen der Kommentare Ratlosigkeit: Was wäre denn die natürliche Nahrung für einen Haushund? Und was braucht so ein Hund eigentlich für ein gesundes Leben? Kann vegane Hundenahrung das alles liefern? Und wie sieht das bei Katzen aus?

 

Was ist Veganismus?

Veganismus ist eine aus dem Vegetarismus hervorgegangene Einstellung sowie Lebens- und Ernährungsweise. Vegan lebende Menschen meiden entweder zumindest alle Nahrungsmittel tierischen Ursprungs oder aber die Nutzung von Tieren und tierischen Produkten insgesamt.

(Definition aus https://de.wikipedia.org/wiki/Veganismus)

Demnach gibt es mindestens zwei „Grade“ der veganen Lebensweise: Die vegane – also tierproduktfreie – Ernährung, und das Meiden der Nutzung von Tieren und tierischen Produkten in vielen bzw. allen Lebensbereichen. Dabei lässt allein der Bedarf nach veganen Futtermitteln vermuten, dass es bei der veganen Einstellung über die Ernährung hinaus verschiedene Abstufungen gibt. Denn es ist gewiss nicht von der Hand zu weisen, dass die Haltung von Haustieren letztlich auch unter die „Nutzung von Tieren“ fällt.

Hier möchte ich jedoch bei der veganen Ernährung bleiben. Ob und wie diese funktioniert, unterscheidet sich bei Mensch und Hund weniger, als manche denken mögen. Deshalb machen hier die menschlichen Nahrungsbedürfnisse und Ernährungsmöglichkeiten, welche einem verantwortungsvollen Veganer bestens vertraut sein sollten, den Anfang – und können sodann mit den Bedürfnissen unserer vierbeinigen Hausgenossen verglichen werden.

 

Was ist die natürliche Nahrung des Menschen?

Der Mensch unterscheidet sich von anderen Tieren in seinem aussergewöhnlich grossen Gehirn, das zu atemberaubenden Denkleistungen fähig ist, dabei aber Unmengen von Energie frisst, welche fortlaufend vom Rest des Körpers bereitgestellt werden muss. So ist der Mensch auf eine regelmässige Zufuhr energiereicher Nahrung angewiesen, und zwar überall, wo ihn seine Wanderlust und sein Streben nach Verbreitung hinverschlägt.

Ein Wesen mit hohem Energiebedarf und Verbreitungswillen tut also gut daran, in möglichst jeder Umgebung etwas – besser etwas mehr – zu futtern zu finden, wobei ihm sein ausgeprägtes Denkvermögen eine wertvolle Hilfe sein kann. Damit lässt sich allemal erklären, dass der Mensch zum Einen praktisch die ganze Erde besiedeln konnte, und dass zum Anderen die heute verbliebenen Volksstämme mit einer „urtümlichen“ Lebensweise massiv unterschiedliche, aber ihrem Lebensraum bestens angepasste Speisepläne haben. Das Spektrum reicht von teilweise vegetarisch lebenden afrikanischen Stämmen bis zu den praktisch ausschliesslich Fleisch und Fisch essenden Inuit der Arktis.

Kurzum: Der Mensch ist einer der am wenigsten spezialisierten und damit anpassungsfähigsten Allesfresser unseres Planeten. Und das versetzt ihn auch in die Lage, die verschiedensten Ernährungsphilosophien zu ersinnen und zu leben – die in den heutigen Industrienationen nicht länger an seinen Lebensraum gebunden sind.

 

Welche Stoffe in tierischen Produkten braucht der Mensch zum Leben?

Dass sich auch auf dem Speiseplan von Völkern mit Zugang zu pflanzlicher und tierischer Nahrung letztere stets mit einem erheblichen Anteil findet, deutet darauf hin, dass tierische Nahrung dem Menschen auch dann Nutzen bringt, wenn er nicht „aus Mangel an Alternativen“ darauf zurückgreifen muss. Aber welche Nährstoffe machen Fleisch und andere tierische Produkte zu für uns wertvollen Nahrungsmitteln?

Calcium: Milch und Milchprodukte enthalten reichlich Calcium-Ionen (Ca2+). Bezogen auf den menschlichen Körper ist Calcium ein sogenanntes Mengenelement, d.h. ein beträchtlicher Anteil – ca. 1 bis 1,1 kg eines erwachsenen Menschen – des Körpergewichts entfallen auf Calcium. Calciumsalze wie Hydroxylapatit sind massgebliche, harte Bestandteile von Knochen und Zähnen, wie auch mein Zahn 16 zu berichten weiss. Für die Aufnahme von Calcium und dessen Einbau in Knochen benötigt der Körper das Vitamin D3, welches bei veganer Ernährung ebenfalls besonderer Aufmerksamkeit bedarf. Calcium kommt auch in vielen Pflanzen vor. Diese enthalten jedoch oftmals Säuren wie Oxal-(Rhabarber!) und Phytinsäure(Getreide, Hülsenfrüchte, Erdnüsse!) enthalten, die mit Calciumionen sehr stabile Salze bilden. Diese Salze lassen sich weder bei der Verdauung noch im weiteren Stoffwechsel in nennenswerter Menge zerlegen. Deshalb kann der Körper pflanzliches Calcium oft nur zu kleinen Teilen nutzen – die „Bioverfügbarkeit“ des pflanzlichen Calciums ist vermindert.

Eisen: Eisen zählt zu den lebensnotwendigen Spurenelementen. Es kommt im menschlichen Körper in Form von Fe2+– und Fe3+-Ionen, die Bestandteile verschiedener Proteine sind, vor. Am bekanntesten sind wohl die Fe2+-Ionen, die im Zentrum der Häm-Gruppe des roten Blutfarbstoffs Sauerstoff transportieren. Darüber hinaus sind die beiden Eisen-Ionensorten, die sich relativ leicht ineinander umwandeln lassen, in Enzymen für die Übertragung von Elektronen von einem Teilchen zum anderen, also für Redox-Prozesse, zuständig. Blutwurst und Leber enthalten viel Eisen als Fe2+ und Fe3+, ebenso rotes Fleisch. Pflanzen enthalten ausschliesslich Fe3+, welches mehr noch als Fe2+ mit verschiedenen Pflanzenbestandteilen, insbesondere mit Phytinsäure, sehr stabile Salze bildet und damit weniger bioverfügbar ist als tierisches Eisen.

Jod: Ist vor allem ein unverzichtbarer Bestandteil von Schilddrüsenhormonen. Dabei kommt dieses Element in unserer Nahrung vergleichsweise selten vor. Jodid-Ionen (I) sind ein Bestandteil von Meerwasser und daher in Meeresfrüchten und Fisch zu finden. Dennoch lässt die Jodversorgung durch unsere Nahrung generell zu wünschen übrig (auch bei Mischköstlern, bei Veganern aber noch mehr), sodass Speisesalz und auch Tierfuttermittel häufig mit Jod angereichert werden.

Kreatin:Kreatin und Kreatinphosphat: bei veganer Ernährung nur als Lebensmittel- oder Futterzusatz zu haben

Kreatin st eine stickstoffhaltige organische Verbindung, die als Kreatinphosphat für die Regeneration des „entladenen“ Energieträgermoleküls ADP zu ATP, der „geladenen“ Form zuständig ist. ( Die „Ladung“ besteht dabei in der Phosphoryl-(-PO32-) gruppe, die vom Kreatinphosphat ab- und an ein ADP-Molekül angehängt wird. Kreatin dient also der Energieaufbereitung zur Muskelarbeit und für Hirn- und Nervenfunktionen. Kreatin kann vom Körper selbst synthetisiert werden, wenn passende Aminosäuren als Bausteine, Vitamin B12 und Folsäure verfügbar sind. Fertiges Kreatin (und Aminosäuren) finden sich reichlich in (frischem) Fleisch und Fisch, also in Muskelmasse. Milch enthält weniger Kreatin, in Pflanzen findet es sich allenfalls in Spuren.

Langkettige Omega-3- bzw. n-3-Fettsäuren: Sind Fettsäuren, die mehrere C=C-Doppelbindungen enthalten (und damit „ungesättigt“ sind), wobei die erste dieser Doppelbindungen 3 Kohlenstoff-Atome vom „Schwanzende“ entfernt(den allgemeinen Aufbau von Fettsäuren habe ich in der Geschichte über Tenside beschrieben), die übrigen näher am „Kopf“ zu finden sind. Omega-3-Fettsäuren werden zahlreiche erhaltende Wirkungen auf das Herz-Kreislaufsystem (Blutdruck, Blutfettwerde, Entzündungsmediation, Gefässzustand…) zugeschrieben. Sie finden sich vornehmlich in Fischfetten – Pflanzen, ausser Algen, enthalten jedoch nur alpha-Linolensäure (eine Fettsäure mit 18 Kohlenstoff-Atomen und 3 Doppelbindungen). Der Körper kann daraus auch Eicosanpentaensäure (EPA, 20 C-atome und 5 Doppelbindungen) und Docosahexaensäure (DHA, 22 C-Atome und 6 Doppelbindungen) herstellen, braucht dazu aber Enzyme, die auch mit dem Omega-6-Fettsäurestoffwechsel beschäftigt sind, sowie die Vitamine B und C und die Spurenelemente Magnesium und Zink. Mit anderen Worten: Die Verlängerung der alpha-Linolensäure zu EPA und DHA ist für den Körper grosser Aufwand und hängt von der Verfügbarkeit einer ganzen Reihe von Hilfsmitteln ab.

Vitamin B12 (Cobalamin): Cobalamin oder Vitamin B12 : muss zuführen oder -füttern, wer sich vegan ernährt bzw. Veganes füttertIst als Coenzym B12 an der Herstellung der Purinbasen Adenin und Guanin beteiligt, die als Bausteine „A“ und „G“ für den Aufbau von DNA- und RNA-Strängen benötigt werden. Da besonders Zellen mit hoher Teilungsrate beim ständigen Kopieren ihres Erbguts laufend neue DNA aufbauen müssen, bekommen solche, wie die regelmässig nachgebildeten Blutzellen, einen B12-Mangel am ehesten zu spüren: Es kommt zu Anämien (Blutarmut bzw. -veränderungen) und darüber hinaus zu Nervenschäden. Vitamin B12 gibt es praktisch ausschliesslich in tierischen Nahrungsmitteln. Eine gute Folsäureversorgung, die mit veganer Nahrung einfach zu bewerkstelligen ist, kann einer Anämie vorbeugen und so einen B12-Mangel kaschieren, verhindert aber die Nervenschäden nicht!

Vitamin D (Calciferol): Kann der Körper selbst herstellen – wenn er genug Sonnenlicht bekommt. Zusätzliche Quellen sind tierische Produkte, allen voran Lebertran und Salzwasserfisch. Vitamin D3 (Cholecalciferol) ist für die Calciumaufnahme (s. dort) und damit für den Knochenbau notwendig.

Zink: Ist ein essenzielles Spurenelement, das im Körper in Form von -Ionen vorliegt. Dort hat es als Bestandteil von Enzymen vielfältige Aufgaben, zum Beispiel bei der Übersetzung der Erbinformation in Protein-Baupläne und bei der Unterstützung des Immunsystems (durch Bremsen von überschiessenden Immun-Reaktionen, was Zink für Wundsalben so interessant macht). Zink ist in pflanzlicher Nahrung vorhanden, ist aber wie die Eisen- und Calciumionen oft in sehr stabilen Salzen gebunden und damit weniger bioverfügbar.

Vitamin B2 (Riboflavin): Ist eine Vorstufe von Coenzymen, also „Assistenten“-Molekülen, die von bestimmten Enzymen für die Erfüllung ihrer Aufgabe benötigt werden. Mit Riboflavin-Abkömmlingen arbeiten viele Enzyme, die für Redoxprozesse, also Elektronenübertragungen zuständig sind, welche vielerorts im Stoffwechsel stattfinden. Riboflavin findet sich unter anderem in Milch, Fisch, Fleisch, und Eiern.

 

Wie kann man diese wichtigen Nährstoffe aus Tierprodukten ersetzen?

Calcium: Kann zum Beispiel in calciumreichem Mineralwasser, Grünkohl, Brokkoli, Sesam, Haselnüssen, Sojabohnen oder Tofu gezielt zugeführt werden. Ein erhöhter Calciumbedarf kann zudem mit Nahrungsergänzungsmitteln gedeckt werden.

Eisen: Fe3+-Ionen kommen zum Beispiel in Hülsenfrüchten (schlechte Bioverfügbarkeit wegen enthaltener Phytinsäure!) oder Vollkornbrot vor. Eine Hausärztin empfahl mir zudem einmal, meines tendenziell niedrigen Eisenspiegels auch rote Früchte, im Speziellen Erdbeeren (es war gerade Frühling). Verschiedene Lebensmittel, zum Beispiel Kaffee oder schwarzer Tee, wirken zudem einer effektiven Eisenaufnahme entgegen. Für eine zusätzliche Eisenzufuhr gibt es zudem Nahrungsergänzungsmittel. Da jedoch auch deren Bioverfügbarkeit begrenzt ist, empfiehlt mein Hausarzt bei Eisenmangel eine (einzelne!) Infusion zum Wiederauffüllen der körpereigenen Eisenspeicher.

Jod: Kann mit angereicherten Lebensmitteln wie jodiertem Speisesalz oder Nahrungsergänzungsmitteln zugeführt werden.

Kreatin: Wird in zahlreichen Nahrungsergänzungsmitteln vermarktet, die sich auch in der Fitnessbranche grosser Beliebtheit erfreuen.

Langkettige Omega-3-Fettsäuren: Alpha-Linolensäure kommt in zahlreichen Pflanzenölen, zum Beispiel dem namensgebenden Leinöl, vor, welche auch in Kapselform als Nahrungsergänzungsmittel erhältlich sind. Die Weiterverarbeitung zu EPA und DHA kann durch gute Versorgung mit den dazu nötigen Hilfsmitteln unterstützt werden.

Vitamin B12 (Cobalamin): Verschiedene B12-Varianten sind als Nahrungsergänzungsmittel erhältlich. Die recht komplexen Moleküle werden von kultivierten Bakterien produziert, welche – wie ich festgestellt habe – als vegan gelten, so lange sie vegan (d.h. auf tierproduktfreien Nährböden) kultiviert werden. Jedoch kann der Mensch nicht alle B12-Varianten nutzen! Spirulina und andere Produkte mit Cyanobakterien („blaugrüne Algen“) eigenen sich zum Beispiel nicht zur Nahrungsergänzung, obwohl sie zuweilen dafür beworben werden!

Vitamin D: Der einfachste Weg zu Vitamin D ist genügend Sonne auf der Haut. Darüber hinaus enthalten Avocado und einige Speisepilze Vitamin D. Manche Pilzsorten können sogar gezielt damit angereichert werden. Mit Nahrungsergänzungsmitteln kann zusätzlich Vitamin D zugeführt werden, auch in Kombination mit Calcium. Allerdings sind die Dosierungsvorschriften auf der Packung, oder besser vom Arzt, unbedingt einzuhalten – Vitamin D gehört zu jenen Vitaminen, die bei Überdosierung zu Vergiftungserscheinungen führen können!

Zink: Kann zum Beispiel in Soja, Haferflocken oder Hülsenfrüchten (bei verminderter Bioverfügbarkeit durch Phytinsäure!) aufgenommen werden. Zusätzlich gibt es zinkhaltige Nahrungsergänzungsmittel.

Vitamin B2 (Riboflavin): Ist zum Beispiel in Vollkornprodukten, Broccoli, Spargel oder Spinat enthalten. In verschiedenen Nahrungsergänzungsmitteln sind die B-Vitamine zudem kombiniert enthalten.
Funktioniert vegane Ernährung bei Kindern und während Schwangerschaft und Stillzeit?

Kinder und Jugendliche im Wachstum, ob vor oder nach der Geburt, haben einen erhöhten Bedarf an vielen der genannten Nährstoffe, zum Beispiel Calcium und Vitamin D für den Knochenaufbau, Vitamin B12 für die Entwicklung des Nervensystems und viele andere mehr. Deshalb ist die gute Versorgung von vegan ernährten Schwangeren, Kindern und Jugendlichen eine noch grössere Herausforderung als die vegane Ernährung für nicht-schwangere Erwachsene. Das gilt übrigens auch für ältere Menschen, die einige Nährstoffe aus verschiedenen Gründen weniger effektiv aufnehmen als Jüngere.

Deshalb raten sowohl das Schweizerische Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV) als auch die Deutsche Gesellschaft für Ernährung (DGE) ausdrücklich von einer veganen Ernährung von Schwangeren, Kindern und Alten ab. In Italien diskutiert das Parlament gar einen Gesetzesentwurf, der Gefängnisstrafen für die Fehlernährung von Kleinkindern vorsieht.

Entsprechende Organisationen im englischsprachigen Raum teilen diese Bedenken, trauen „ihrer“ Bevölkerung aber die Bewältung der Herausforderungen einer veganen Ernährung anscheinend eher zu. So heissen sie eine mit dem nötigen Wissen und Aufwand betriebene vegane Ernährung ihrer gesundheitlichen Vorteile wegen in allen Lebensphasen gut. Nichts desto trotz machen Einzefälle von schwerwiegender Fehlernährung hüben wie drüben Schlagzeilen.

 

Was fressen unsere Haustiere?

Was braucht der Haushund?

Der Hund gilt als bester Freund des Menschen – und zwar schon praktisch ebenso lange, wie es den modernen Menschen gibt. So hatten unsere Haushunde ebenso lange Zeit, ihre Verdauung an die extrem vielfältige Lebensweise „ihrer“ Menschen anzupassen. Das heisst, Haushunde, die schon rund 20.000 Jahre an der Seite des Menschen leben, sind heute Allesfresser wie wir auch.

Damit steht Hunden im Prinzip die gleiche Vielfalt von Ernährungsphilosophien offen wie dem Menschen. Als höhere Säugetiere haben Hunde jedoch auch einen ähnlichen Bedarf an Nährstoffen wie wir. Dabei weicht allerdings die Fähigkeit zur Verwertung dieser Nährstoffe mitunter stark von der unseren ab.

So nehmen Hunde zum Beispiel Calcium – das auch sie für den Knochenbau benötigen – wesentlich schlechter auf als der Mensch. Kommt dazu die schlechtere Bioverfügbarkeit von pflanzlichem Calcium, wird deutlich, dass die Calciumversorgung eines Hundes bei veganer Fütterung Schwierigkeiten machen wird und den Einsatz von hochdosierten Nahrungsergänzungsmitteln erfordert.

Zwei zusätzliche „tierische“ Nährstoffe für den Hund sind überdies erwähnenswert:

L-Carnitin: Carnitin : Muss veganer Ernährung für den Hund unbedingt zugesetzt werden!Eine sticktstofforganische Verbindung, die als Rezeptormolekül – also als Andockstelle für Signalmoleküle – und als Transporthilfe für langkettige Fettsäuren in die Mitochondrien fungiert. Sie kommt vornehmlich in rotem Fleisch, Fisch, Leber und Herz vor. Menschen wie Hunde können L-Carnitin bei ausreichender Versorgung mit den nötigen Aminosäuren und verschiedenen Nährstoffen selbst herstellen. Hunde scheiden L-Carnitin jedoch vermehrt über die Niere aus, weshalb sie auf regelmässige Zufuhr angewiesen sind. Folgen eines Carnitin-Mangels sind schwere Herzerkrankungen.

Taurin: Taurin: Muss veganer Ernährung für Katzen und Hunde zwingend zugesetzt werden!Ein kleines organisches Molekül, das menschliche und Hundekörper aus schwefelhaltigen Aminosäuren herstellen können. Es unterstützt die Arbeit reizleitender Zellen (Nerven, Muskeln) – nicht zuletzt derer des Herzens. So fördert Taurin die Herzgesundheit und ist überdies ein starkes Antioxidans – es kann also Gewebe vor Stress bewahren, indem es reaktive (Abfall-)Verbindungen abfängt und unschädlich macht, ehe sie mit ihrer Umgebung ungewollte und nicht selten schädliche Reaktionen eingehen. Entsprechend seiner Aufgabe kommt Taurin vornehmlich in Muskelfleisch einschliesslich des Herzens vor, sodass eine vegane Ernährung ohne Nahrungsergänzungsmittel bei Hunden trotz eigener Herstellung zu einer Unterversorgung und damit zu Herzerkrankungen führen kann.

Zudem haben trächtige und säugende Hündinnen sowie heranwachsende Welpen ebenso erhöhte Nährstoffbedürfnisse wie menschliche Schwangere und Kinder, sodass ihre vegane Ernährung auch in gleicher Weise Schwierigkeiten macht.

Eine verantwortungsvolle vegane Ernährung für Hunde ist damit mit zusätzlichem Aufwand gegenüber der entsprechenden Ernährung von Menschen verbunden, geht ebenso wie letztere mit dem Einsatz von Nahrungsergänzungsmitteln und vermehrten (Tier-)arztbesuchen zur Überwachung der Nährstoffversorgung einher und erfordert auch vom menschlichen Veganer zusätzliches Wissen. Ob sich bei all dem Aufwand tatsächlich die vegane Ernährung oder vielmehr die vermehrte Zuwendung als solche förderlich auf die Gesundheit der Hunde auswirkt, ist dabei zweifelhaft.

Wesentlich einfacher ist für den allesfressenden Hund hingegen eine ovo-lacto-vegetarische Ernährung, bei welcher zwar auf Fleisch-, nicht aber auf Milch- und Eiprodukte verzichtet wird.

Was braucht die Hauskatze?

Katzen begleiten den Menschen auch schon, seit er sesshaft geworden ist. Allerdings waren sie bis vor Kurzem weniger beste Freunde als Nutztiere, deren Aufgabe es war, im Umfeld menschlicher Ansiedlungen Mäuse und andere ungeliebte Gäste zu jagen (und zu fressen) und somit fern zu halten. So hatten Hauskatzen bis in die jüngste Zeit keinen Anlass, ihre Verdauung einer Fütterung durch Menschen anzupassen. Sie sind daher echte Fleischfresser geblieben.

Somit entspricht eine vegane wie auch eine ovo-lacto-vegetarische Ernährung nicht der Natur der Katze. Dazu kommt, dass Katzen sich nicht wie Hunde durch Aushungern zu einer Nahrungsumstellung zwingen lassen – sie sterben lieber als ihre Futterprägung aufzugeben.

Nicht nur in meinen Augen entbehrt eine solche Katzen-Ernährung daher jeden Rest eines Sinns, sondern auch Fachtierärzte und andere Experten für Tierernährung stehen ihr ablehnend gegenüber.

Fazit

Vegane Ernährung ist für den Menschen möglich, aber kompliziert. Sie erfordert viel Wissen und noch mehr Aufwand, insbesondere wenn Heranwachsende damit versorgt werden sollen. Ein gedankenloses Weglassen „alles Tierischen“ kann sogar gefährlich werden. Überdies lässt mich allein schon die Häufigkeit, mit welcher in der Liste der veganen Ersatznahrung „Nahrungsergänzungsmittel“ – zuweilen gar als einzige Alternative – auftauchen, daran zweifeln, dass die vegane Ernährung des Menschen irgendwie „natürlich“ sein kann.

Eine ganzheitlich vegane Lebensweise kann noch komplizierter werden – nicht zuletzt, wenn es um die Haltung von Haustieren geht:

Ein Haushund kann vegan ernährt werden, ohne dass dies „unnatürlicher“ als beim Menschen wäre (es ist aber ebenso wenig „natürlicher“!) – das ist aber mindestens genauso kompliziert und aufwändig und erfordert Wissen über die menschliche Ernährung hinaus.

Eine Katze frisst hingegen von Natur aus Fleisch und braucht es auch. Eine vegane oder auch nur vegetarische Ernährung von Katzen kann daher (nicht nur) in meinen Augen nicht im Sinne der Tiere sein.

Aber ist es überhaupt „vegan“, Haustiere zu halten? Was meint ihr?

Rezension - Dietrich Mebs : Leben mit Gift

Geschichten aus Natur und Alltag gibt es nicht nur auf Keinsteins Kiste, sondern auch in zahllosen spannenden Büchern. Nachdem ich eine Quelle für Neuerscheinungen von Sachbüchern rund um Chemie und mehr aufgetan habe, möchte ich von Zeit zu Zeit ausgewählte Lektüre mich euch teilen.

Dieser Artikel enthält Links aus dem Amazon-Partnerprogramm (gekennzeichnet mit (*) ) – euch kosten sie nichts, mir bringen sie vielleicht etwas für meine Arbeit ein. Ich habe für diese Rezension ein Rezensionsexemplar des Buches erhalten. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Dietrich Mebs: „Leben mit Gift – Wie Tiere und Pflanzen damit zurechtkommen und was wir daraus lernen können“

Gerne regt Mensch sich darüber auf, dass die Menschheit mit menschengemachten Giften um sich wirft und die Natur wie auch die eigene Gesundheit gefährdet – und schwört gleichzeitig auf die Sanftheit und Verträglichkeit von Naturprodukten. Dass ein Grossteil der Pflanzen- und Tierwelt jedoch ein Arsenal entwickelt hat, welches jeden menschlichen „Giftmischer“ wie einen blutigen Anfänger dastehen lässt, bedenken dabei nur wenige. Und zu diesen zählt der Biologe und Biochemiker Dietrich Mebs, dessen Buch, welches ganz im Sinne meines eigenen Leitsatzes – „Chemie ist überall – alles ist Chemie“ steht, ich hier vorstellen möchte:

Schätzungsweise 100’000 Tierarten produzieren Gift oder entnehmen es der Umwelt, speichern es und setzen es in verschiedener Weise ein. Der richtige Umgang damit ist für Tiere und Pflanzen eine Überlebensfrage. Sie stehen untereinander in einem ständigen Wettbewerb, und wer das wirksamste Gift verwendet oder die beste Entgiftungstechnik beherrscht, ist eindeutig im Vorteil. Diese Strategien beschäftigen Forscher schon lange – und dennoch erleben sie immer wieder Überraschungen. Wie schnell und flexibel Organismen reagieren, um mit gefährlichen Substanzen fertigzuwerden, erweist sich oft als Nachteil für uns, etwa wenn sie Resistenzen entwickeln. Im Umgang mit Giften bleibt der Mensch ein Anfänger; es ist viel eindrucksvoller, was Pflanzen und Tiere bewerkstelligen, um damit zu leben.

 

Zum Inhalt des Buches

„Denkt immer daran, ein guter Naturforscher ist der, der sich rechtzeitig wundert“

zitiert Dietrich Mebs in der Einführung einen seiner Professoren. Und zum Wundern über die Tricks und Finessen der Natur ist dieses Buch gemacht.

Zu Beginn klärt Mebs jedoch erst einmal die wichtigsten Begriffe, unterscheidet „Gift“ von „Toxin“ und stellt  kurz vor, wie Wissenschaftler Gifttiere und -Pflanzen klassifizieren. Gut so, denn damit wissen nun alle, worüber im Folgenden gesprochen – besser geschrieben wird. Anschliessend gibt es eine kleine Übersicht über die wichtigsten Bestandteile von Giften – bei welchen es sich in der Regel um Stoffgemische handelt, während ein Toxin eine definierte chemische Substanz natürlichen Ursprungs ist.

Die Reise in die faszinierende Welt der giftigen Tiere beginnt in einem Korallenriff, in welchem Clownfische mit ihrer ganz eigenen Tarnkappen-Technologie in Symbiose mit giftigen Seeanemonen leben. Auch andere „heikle“ Lebensgemeinschaften beruhen auf der erfolgreichen Tarnung eines Beteiligten, gerne auch kombiniert mit einer chemischen Appeasement-Strategie, um einen giftigen Hausherrn milde zu stimmen.

Die oft mit mildem Humor gewürzten Kapitelüberschriften führen den Leser weiter von stech- und bombardierfreudigen Insekten über die Blausäure-Experten unter den Schmetterlingen zu allzeit betrunkenen Fruchtfliegen. Hier beschreibt Mebs, was nun zunehmend von Interesse ist: Wie sich all diese Tiere vor ihrem eigenen – oftmals hochgefährlichen – Gift oder toxischen Bestandteilen ihrer Nahrung schützen.

Andere Tiere haben sich wiederum hochgradig auf den Umgang mit ihrer Lieblingsumgebung, oder -nahrung spezialisiert, indem sie den Kontakt mit deren Giften akribisch meiden. Und wer, wie die Doppelgänger des berühmten Monarch-Falters, kein eigenes Gift besitzt, aber Schutz sucht, bedient sich der Mimikry und bemüht sich um Ähnlichkeit mit seinem giftigen Pendant.

Giftige Lebewesen gibt es jedoch nicht nur in exotischen Ländern, sondern auch bei uns vor der Haustür, sodass es nicht verwundert, dass der erste vorgestellte Fressfeind, der Resistenzen gegenüber Giften seiner Beute entwickelt hat, ein Einheimischer ist: Der Igel, ein fleissiger Insektenfresser. Ganz ähnliche Resistenzen weisen auch einheimische Kröten-Jäger wie Marder und Ringelnattern auf. Doch auch rund um den Globus treten Resistenzen bei zahlreichen Jägern auf.

Zur Neutralisierung von aufgenommenen Giften greifen verschiedenste weniger resistente Arten bis hin zum Menschen auf Tonerde als Nahrungszusatz zurück. Wer sich allerdings auf eigentlich giftige Nahrung spezialisiert, dem bleibt wenig anderes übrig, als die Giftstoffe schnellstmöglich wieder auszuscheiden oder mit Hilfe von Enzymen abzubauen. Oder er überlässt die Entgiftung, wie viele Wiederkäuer und die Blattschneider-Ameisen, fleissigen Mikroorganismen, mit welchen sie in Symbiose leben.

Zum Ende dieses bunten Reigens verschiedener biochemischer Strategien zum Umgang mit allgegenwärtigen Giften sieht der Mensch als evolutionsgeschichtlich junge Art ziemlich alt aus. Doch haben auch wir einzigartige Möglichkeiten zum Leben mit Gift, zum Beispiel mit der ausgefeilten Zubereitung unserer Nahrungsmittel.

 

Mein Eindruck vom Buch

Dietrich Mebs gewährt in seinem Buch einen spannenden Einblick in das Wettrüsten in der Natur und gibt einen verständlichen Überblick über erstaunliche Kniffe und Strategien, die die Evolution hervorgebracht hat. Ein paar Grundkenntnisse in Biochemie – oder die Geduld, das ein oder andere Fachwort nachzuschlagen oder zu erinnern – können dabei nützlich sein, um die hier wohl kompakt aber nicht ohne Fachjargon geschilderten biochemischen Hintergründe nachzuvollziehen. „Speziell für Leser mit fachlichem Hintergrund“ ist das Buch deshalb noch lange nicht, zumal sich in den letzten Kapiteln die Biochemie der Gift-Resistenzen in meinen Biochemiker-Augen stark wiederholt und wenig in die Tiefe geht (was aus didaktischer Sicht aber sicher seine Berechtigung hat).

Prof. Dr. Dietrich Mebs

Studiertie Biologie und Biochemie in Frankfurt am Main. Nach der Promotion war er zunächst wissenschaftlicher Assistent am Institut für Rechtsmedizin der Universität Frankfurt; 1979 habilitierte er im Fach Rechtsmedizin und wurde 1985 zum Honorarprofessor ernannt. Neben seiner forensischen Tätigkeit in der Toxikologie und Spurenanalytik sind seine Forschungsschwerpunkte die Biologie und Biochemie tierischer und pflanzlicher Gifte. Auf zahlreichen Reisen hat er Material für seine Forschungen gesammelt.

Anekdoten aus dem Forscher-Alltag des Wissenschaftlers und Sammlers Mebs lockern den Text jedoch stetig auf und zaubern auch dem lesenden Wissenschaftler (so zumindest mir) immer wieder ein Schmunzeln auf die Lippen. So ist sowohl für den Laien als auch für den fachlich versierteren Leser immer wieder für Kurzweil gesorgt.

Am Ende bleibt die Neugier – denn je weiter ich mit meiner Lektüre kam, desto deutlicher blieb der Eindruck, dass es zum „Leben mit Gift“ in der Natur noch zahllose offene Fragen und eine Menge zu erforschen gibt. In sofern bin ich jetzt schon neugierig auf eine Neuauflage oder einen Nachfolgeband in ein paar Jahren.

Das im Schlusswort eingebrachte Argument für diese Forschung – den „Wissenserwerb um des Wissens willen“ (welches ich durchaus zu schätzen weiss) – erscheint mir angesichts der dazu nötigen, möglicherweise stark belastenden Tierversuche, wie sie auch in diesem Buch Erwähnung finden, etwas schwach. Im Zuge des Umgangs mit Problematiken wie den ebenfalls erwähnten multiresistenten Krankheitskeimen könnte ich mir jedoch durchaus vorstellen, dass wir aus den Strategien der Natur auch praktisch Nutzbares lernen können. In sofern bin ich sehr gespannt, was es in den nächsten Jahren hier noch zu (be)wundern gibt.

 

Eckdaten rund ums Buch

(*)

Dietrich Mebs: Leben mit Gift: Wie Tiere und Pflanzen damit zurechtkommen und was wir daraus lernen können(*)

S.Hirzel-Verlag 2016
Broschiert, 160 Seiten, davon 16 Seiten mit Farbfotografien
ISBN 978-3-7776-2619-1   (E-Book 978-3-7776-2619-2)

 

Fazit

Dietrich Mebs gewährt in seinem Buch einen spannenden, unterhaltsamen Einblick sowohl in die Strategien der Natur, insbesondere von Tieren, im Umgang mit Gift als auch in das zuweilen abenteuerliche Leben des Gift-Forschers. Als Leserin mit fachlichem Hintergrund haben mich Oberflächlichkeit und sich wiederholende Elemente schlussendlich nicht vollends zufrieden gestellt. Doch eben deshalb macht die Lektüre Lust auf mehr – und mehr findet vor allem der fachlich versierte Leser im reich gefüllten Literaturverzeichnis am Ende des Bands.

Wer also einen lockeren Einstieg in das spannende Thema „Gift in der Natur – bzw. Tierwelt“ sucht, dem sei dieser Band empfohlen.

26.9.2016: Diese Geschichte ist nun auch ein Beitrag zur Blogparade „Wertvolle Frischekicks für den Morgen danach“ auf Barbertrends.me!

In der laufenden Oktoberfest-Saison ist ein ganz besonderes Tier einmal mehr weit verbreitet zu beobachten. Auch nach der grossen Hochzeitsfeier in der letzten Woche hat ER so manchen Gast am Ende heimgesucht: Der „Kater“. Überhaupt nicht flauschig bringt dieses spezielle Exemplar der Gattung Felis Kopfschmerz, Übelkeit und manch andere Symptome – einen regelrechten Katzenjammer – über jeden, der im Vorfeld allzu reichlich Alkoholisches genossen hat.

Nur wer ist bloss auf die Idee gekommen diese ungeliebten Symptome nach unseren schnurrenden Hausgenossen zu benennen?

Tatsächlich sind Katzen damit nicht weiter verbunden als durch eine Ähnlichkeit bei der Aussprache von Begriffen: So ist dereinst im Studentenjargon der morgendliche „Katarrh“ (wenngleich dieses Wort eigentlich eine Erkältungskrankheit meint) zum ähnlich klingenden „Kater“ umgemünzt worden. Der Katzenjammer ist noch älter: Er entstand in der Zeit Goethes aus dem gar zu ordinären „Kotzen-Jammer“.

Was wir seit Jahrhunderten, oder besser seit Jahrtausenden nach dem Konsum von alkoholischen Getränken erleben, sind letztlich nichts anderes als Vergiftungserscheinungen. Und die reichen je nach Dosis von Enthemmung über zunehmende körperliche und geistige Beeinträchtigungen bis zum Tod. Ausserdem ist eine chronische Vergiftung möglich, die durch regelmässige Aufnahme von Alkohol über lange Zeiträume entsteht.

Aber was läuft in unserem Körper schief, wenn wir Alkohol zu uns nehmen? Warum ist ein „Kater“ so unangenehm? Und was hilft wirklich dagegen?

 

Ethanol ist giftig

Ethanol, wie der „Trinkalkohol“ unter Chemikern genannt ist, wird von Gefahrstoff-Experten nicht als Gift gekennzeichnet. Das ist Substanzen vorbehalten, die schon in kleinsten Mengen gefährliche Wirkung zeigen.

Dennoch ist Ethanol, in ausreichender Menge eingenommen, in vielfältiger Weise giftig. Am schnellsten bekommen das unerwünschte Mikroorganismen zu spüren, denen wir mit alkoholhaltigen Desinfektionsmitteln den Garaus machen. Doch auch für den Menschen ist Ethanol alles andere als gesund. In erster Linie ist er als Nerven- und Lebergift bekannt, wirkt sich darüber hinaus aber auch auf andere Bereiche des Lebens aus.

Einmal getrunken gelangt der Ethanol so gut wie vollständig in den menschlichen Körper hinein, aber auf direktem Weg praktisch nicht mehr wieder hinaus. Nur weniger als 10% können unverstoffwechselt abgeatmet oder mit dem Harn wieder ausgeschieden werden. Ethanol ist nämlich hervorragend mit Wasser mischbar, sodass er sich rasch und ungehindert in alle Körpergewebe (ausser Fettgewebe) verteilen kann. Dazu zählen auch die Plazenta und die Mutterbrust, sodass, was eine werdende oder stillende Mutter trinkt, auch dem Ungeborenen bzw. dem Säugling schaden kann.

 

Aufnahme und Direktwirkung von Ethanol

Etwa 20% des Ethanols, den wir trinken, gelangt direkt vom Magen in das Blut, während rund 80% erst im Dünndarm aufgenommen werden. Damit bleibt dem Fremdstoff Ethanol genügend Zeit um die Magenschleimhaut zu reizen. Das kann wehtun, zu Übelkeit beitragen und damit die erste Abwehr unseres Organismus‘ gegen Giftstoffe fördern: Erbrechen.

So habe ich auf den ersten Schüler-Partys beobachten können, wie die Körper von Mitschülern, die in ihrer Unerfahrenheit zu eilig tranken, eine Flut von Ethanol postwendend auf dem gleichen Weg zurückschickten, den sie gekommen war.

Der im Verdauungstrakt verbleibende Ethanol gelangt rasch durch die Magen- bzw. Dünndarmwand in die Blutbahn und wird darin weiter verteilt. So hemmt Ethanol die Freisetzung der Hormone ADH (AntiDiuretisches Hormon) und Vasopressin, die dafür sorgen, dass der Organismus stets genügend Wasser bei sich behält. Sind diese Hormone Mangelware, zieht es uns alsbald ungehemmt auf die Toilette. Wenn wir auf einer heissen Party ausserdem noch schwitzen, macht sich der unkontrollierte Flüssigkeitsverlust rasch bemerkbar: Durst, Kopfschmerzen, trockene Schleimhäute, Schwindel, Schwächegefühl, Benommenheit können die Folgen sein.

Dazu bewirkt Ethanol eine Erweiterung der äusseren Blutgefässe – vornehmlich in der Haut. Gerötete Wangen und eine „Schnapsnase“ sind offensichtliche Folgen davon. Allerdings wird durch die rege Durchblutung, die auch in kalter Umgebung nicht abnimmt, reichlich Körperwärme abgegeben. Zum Warmhalten taugen alkoholische Getränke entgegen zahlreicher Mythen daher nicht (im Gegenteil: im angetrunkenen Zustand droht die Gefahr einer Unterkühlung!).

All das nehmen jedoch erstaunlich viele Menschen gerne auf sich – womöglich weil Ethanol sich im Hirn ebenso leicht verteilt wie in allen anderen Geweben und dort als Nervengift in Erscheinung tritt. Dabei scheint die erste Wirkung kleiner Mengen als durchaus angenehm empfunden zu werden: Enthemmung, vermindertes Gefahrenbewusstsein…alles scheint leichter zu gehen. Von den unweigerlich damit einhergehenden Störungen der Nerven- und Muskelfunktionen – verlangsamte Reaktionszeit, undeutliche Sprache – Koordinationsschwierigkeiten,… – bekommt man da häufig nicht viel mit.

 

Ethanol wird oxidiert

Der Organismus hingegen bemerkt das schon. Und Funktionsstörungen, bzw. deren Ursache, werden stets schnellstmöglich beseitigt. Da Ethanol allerdings nicht einfach wieder ausgeschieden werden kann, muss er verstoffwechselt, das heisst in chemischen Reaktionen abgebaut werden. Das übernimmt die Leber. Der Ethanol, der dort angeschwemmt wird, wird in den Leberzellen oxidiert (Auf unserer Grillparty erfährst du mehr über diese Art der chemischen Reaktion).

Dazu wird ein Oxidationsmittel benötigt, das Elektronen an Ethanol abgeben kann. Das allgemein gebräuchliche Oxidationsmittel im Körper ist das Molekül-Ion Nicotinamidadenindinucleotid, kurz „NAD+„: Das Enzym Alkohol-Dehydrogenase (ADH) katalysiert die Oxidation des Ethanols durch NAD+ zu Acetaldehyd:

 

 

Bei dieser Reaktion werden also zwei Elektronen und ein Wasserstoffkern (H+) vom Ethanol auf NAD+ übertragen und ein weiterer Wasserstoffkern (H+) „freigesetzt“.

Unglücklicherweise ist Acetaldehyd (CH3CHO) auch giftig. Wie fast alle Gifte kann es Erbrechen auslösen, führt zudem zu Kopfschmerzen und Pulsrasen und schädigt umliegendes Gewebe. Deshalb wird das Acetaldehyd in den Mitochondrien der Leberzellen weiter oxidiert. Das Enzym Aldehyd-Dehydrogenase (AlDH) katalysiert dort die Oxidation des Acetaldehyds zu Essigsäure (CH3COOH):

 

 

Essigsäure, bzw. ihr Anion, das Acetat, ist Bestandteil unseres natürlichen Stoffwechsels und damit fürs Erste unproblematisch.

Für die Oxidation eines Ethanol-Moleküls zu Essigsäure werden zwei Moleküle NAD+ benötigt, die aus dem Vitamin Niacin hergestellt werden und damit nur begrenzt verfügbar sind. Je mehr Ethanol aufgenommen wird, desto mehr NAD+ wird verbraucht und desto mehr NADH sammelt sich an. Das bringt den sonst ausgeglichenen Stoffwechsel gehörig in Schieflage.

 

Redox-Stau und seine Folgen

Normalerweise werden das Oxidationsmittel NAD+ und das Reduktionsmittel NADH im Zuckerstoffwechsel gebraucht: Bei der Glykolyse, die zum Beispiel in arbeitenden Muskeln oder im Gehirn abläuft, wird in mehreren Reaktionsschritten aus Glucose (Traubenzucker) Energie in Form von energiereichen ATP-Molekülen gewonnen. Einer dieser Schritte ist eine Oxidation mit NAD+. Das dabei als „Abfall“ entstehende Pyruvat wird anschliessend mit NADH zu Lactat (dem Anion der Milchsäure) reduziert und NAD+ in diesem Zuge zurückgewonnen.

Das Lactat wird in der Blutbahn in die Leber transportiert, wo es mit NAD+ zu Pyruvat oxidiert und zur Gluconeogenese, einer Folge von Reaktionen zur Herstellung von Glucose, unter welchen eine Reduktion mit NADH  zu finden ist, verwendet. So nimmt die Leber den Muskeln etwas Stoffwechsel-Arbeit ab und gewinnt das dazu nötige Oxidationsmittel gleich selbst zurück.

Cori-Zyklus


Vereinfachte Darstellung des Glucose-Stoffwechsels: Das Oxidationsmittel NAD+ wird sowohl im Rahmen der Gluconeogenese in der Leber als auch im Rahmen der Glykolyse laufend wieder zurückgewonnen.
Wird durch den Abbau von Ethanol in der Leber (links) NAD+ ohne direkten Ersatz reduziert, wird die Oxidation von Lactat zu Pyruvat und damit die Glucose-Erzeugung gehemmt, während die Lactat-Produktion zunächst weiterläuft. Die Folgen sind ein Lactat-Überschuss im Blut (Lactatacidose) und ein zunehmend niedriger Blutzuckerspiegel (Hypoglykämie)

 

Bei der Oxidation von Ethanol funktioniert die Rückgewinnung des Oxidationsmittels jedoch nicht. Sobald die Leber Ethanol abbauen muss, wird NAD+ verbraucht und nicht ersetzt. So fehlt bald das Oxidationsmittel für die Lactat-Oxidation, sodass in der Leber nicht genügend Pyruvat für die Glucose-Herstellung bereitgestellt werden kann.

Das vom Rest des Körpers angelieferte Lactat staut sich so bis in die Blutbahn zurück, sodass der pH-Wert im Blut absinkt (Mediziner nennen diesen Zustand „Lactatacidose“). Dass das unangenehm ist, weiss jeder, der sich schon einmal beim Sport so sehr verausgabt hat, dass seine Muskeln schmerzten. Eine nicht ausreichende Versorgung der Muskeln mit Sauerstoff kann nämlich auch zum Lactat-Stau führen – der allerdings innerhalb von Sekunden behoben wird, sobald man eine Pause macht und wieder zu Atem kommt.

Ein Lactat-Stau durch Alkoholgenuss wird sich hingegen erst wieder auflösen, wenn der Ethanol weitgehend abgebaut und die Stoffwechselwege damit wieder frei sind. Hinzu kommt, dass ohne Glucose aus der Leber der Blutzuckerspiegel absinken kann, sodass andere Organe Energiemangel zu beklagen haben und dies mit verminderter Leistungsfähigkeit quittieren.

 

Eine Laus auf der Leber: Folgen der Essigsäure-Entstehung

Essigsäure bzw. Acetat wird gleich am Ort seiner Entstehung mit dem Hilfsstoff Coenzym A zu dem Molekül Acetyl-CoA zusammengesetzt, welches normalerweise im Citratzyklus zu zwei Molekülen CO2 abgebaut wird, die abgeatmet werden können (das Coenzym A bleibt dabei übrig und wird wiederverwendet). Dieser Essigsäure-Abbau im Citratzyklus erfordert aber NAD+ und erzeugt NADH, sodass der Mangel an ersterem (wie auch der Überschuss an zweiterem) den Abbau von Acetyl-CoA ausbremst. Überschüssige Essigsäure wird daraufhin in sogenannte „Ketonkörper“ verpackt. Das sind Moleküle, die zum Abtransport ins Blut gelangen können, dort aber unglücklicherweise den pH-Wert weiter senken.

Citratzyklus: Rückstau im "Kreisverkehr" trägt zum Kater bei


Abbau von Essigsäure im Citratzyklus (vereinfachte Darstellung): Eine Essigsäure- bzw. Acetylgruppe (enthält 2 C-Atome: C2) ist an Coenzym A gebunden (Acetyl-CoA) und wird von diesem auf Oxalacetat übertragen. Das entstehende Citrat (mit insgesamt 6 C-Atomen) wird im Folgenden oxidiert, wobei Kohlendioxid (CO2) abgespalten wird, ehe der verbleibende Molekülrest mit 4 C-Atomen zu Oxalacetat recycelt wird.
Ein Mangel am Oxidationsmittel NAD+ führt zu einem Rückstau entgegen der gezeigten Reaktionsrichtung, bis über die Entstehung und Einspeisung von Acetyl-CoA hinaus, sodass überschüssige Essigsäure in Ketonkörpern untergebracht werden muss.
nach: TCA cycle By Yikrazuul (Own work) [CC BY 3.0]

Da sich die meisten Stoffwechselreaktionen selbst regulieren, entsteht darüber hinaus weiterer Rückstau: Ein Überschuss an Essigsäure bremst so die Oxidation von Acetaldehyd. Dieses erhält so die Gelegenheit, unkontrolliert mit verschiedenen Proteinen in seiner Umgebung zu reagieren und diese funktionslos zu machen. Im schlimmsten Fall gehen die betroffenen Zellen daran ein, was zu Entzündungserscheinungen im Lebergewebe führt. Wiederholt oder gar dauerhaft auftretend kann eine solche „alkoholische Hepatitis“ die gleichen Langzeitfolgen wie eine Virus-Hepatitis haben.

 

Noch eine Laus: Entgiftung durch Cytochrom P450

Die Leber ist ein auf Entgiftung spezialisiertes Organ. So kann Ethanol auch mit Hilfe des Proteins Cytochrom P450, einer recht universellen Entgiftungsvorrichtung der Leber, abgebaut werden: Dabei wird NADPH, ein dem NADH-ähnliches Molekül, zu NADP+ oxidiert um das Protein zu aktivieren, welches den Ethanol mit molekularem Sauerstoff zu Acetaldehyd und weiter zu Essigsäure oxidieren kann.

Allerdings entstehen dabei auch freie Radikale, also Atome oder Kleinmoleküle, denen einzelne Elektronen fehlen. Solche Teilchen reagieren auf ihrer Suche nach Elektronen blindlinks (radikal eben) mit allem, was ihnen in die Quere kommt, was wiederum zur Schädigung von Biomolekülen, Zellen und Gewebe führt.

Zum Schutz vor Radikalen enthalten Zellen leicht oxidierbare, also Elektronen spendende Moleküle wie Glutathion, die Radikale abfangen und damit unschädlich machen können. Allerdings muss Glutathion nach getaner Arbeit durch Reduktion mit NADPH zurückgewonnen werden. Und NADPH wird bereits durch den Ethanol-Abbau an Cytochrom P450 in Beschlag genommen. So sorgen neben dem Acetaldehyd-Rückstau auch zunehmend nicht-abgefangene Radikale für Stress im Lebergewebe.

Cytochrom P450 erledigt ausserdem den Abbau von vielen Medikamenten und anderen Drogen: Wenn der Alkoholstoffwechsel das Protein in Beschlag nimmt, müssen andere Stoffe warten: Wirkungen von Medikamenten und Drogen können so erheblich verlängert bzw. verstärkt werden.

 

Was hilft wirklich gegen einen Kater?

Da ein „Kater“ nichts anderes ist als eine Vergiftungserscheinung ist, sollte man ihn meiner Meinung nach auch wie eine Vergiftung behandeln und den Körper bei der Entgiftung auf natürlichem Weg unterstützen. Kurz gesagt: „Abwarten und Tee trinken“.

Länger gesagt: Dem Flüssigkeitsverlust kann durch reichliches Trinken (aber keinen Alkohol!) entgegengewirkt werden. Wer mehr als Wasser bei sich behält, kann möglichen Elektrolytverlust durch Erbrechen oder Durchfall mit Salzigem (z.B. klarer Brühe) ausgleichen. Wem das bekannt vorkommt: Tatsächlich ist eine Magen-Darm-Grippe auch nichts anderes als eine Vergiftung: Hierbei entstammen die Giftstoffe jedoch den Krankheitserregern. So ist beim Kater wie bei der Grippe zudem Ruhe an einem gemütlich warmen Ort von Nutzen.

Beim Alkohol spielen zusätzlich der Stoffwechsel-Stau in der Leber und häufige Kopfschmerzen eine Rolle. Sofern Flüssigkeitsausgleich und Ruhe dem Kopfweh nicht ausreichend entgegenwirken, können Kopfschmerztabletten helfen. Allerdings reizen Aspirin, Paracetamol und Co die Magenschleimhaut noch zusätzlich und müssen in der Leber unter den beschriebenen erschwerten Umständen abgebaut werden. Wer keinen Durchfall hat, kann mit Fieberzäpfchen den Magen schonen oder das Erbrechen von Tabletten umgehen – die Leberbelastung bleibt so jedoch die gleiche wie durch Tabletten.

So erachte ich auch alle weiteren Medikamente und Fremdstoffe, die über die Leber verstoffwechselt werden, eher als hinderlich denn als hilfreich. Stattdessen nutze ich das Wirksamste aller Mittel gegen einen Kater: Ich trinke keinen Alkohol.

 

Und wenn es ganz schlimm kommt?

Sollte euch einmal jemand begegnen, der nach übermässigem Alkohol-Genuss schwerwiegende Symptome (Bewusstlosigkeit, Unterkühlung, Dehydrierung, Schock-Anzeichen,…) zeigt oder zu entwickeln droht, sind lebensrettende Sofortmassnahmen und ein Notruf angesagt. Eine schwerwiegende „Alkoholvergiftung“, die Extremform von Rausch und Kater, kann zum Tod (meist durch Atemlähmung – Ethanol ist ein Nervengift!) führen!

 

Und was tut ihr gegen einen Kater?

 

Literatur: 

J.M. Berg, John L.Tymoczko, L.Stryer: Biochemie. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin 2003

E.Oberdisse, E.Hackenthal, K.Kuschinsky: Pharmakologie und Toxikologie. Springer Verlag, 2013

Polylactid - Werkstoff mit Potential in Sachen Umweltschutz

Kürzlich haben Reto und ich im Urlaub eine spannende Entdeckung gemacht. An einem heissen Tag im den Denver Botanic Gardens im US-Bundesstaat Colorado trieb uns der Durst in die dortige Freilicht-Cafeteria. Wir erstanden dort handgebrauten Eistee in grossen, durchsichtigen Plastikbechern – und diese Becher waren das Spannende – besonders für Chemiker, Science-Begeisterte und Umweltfreunde. Sie trugen nämlich eine aufgedruckte grüne Banderole mit der grossen Aufschrift „100% compostable – please discard in marked containers“ – also „100% kompostierbar – bitte in vorgesehene (beschriftete) Abfallbehälter entsorgen“.

Kompostierbarer Kunststoff als Mittel gegen Müllberg und Erdöl-Krise?

Ein kompostierbarer Plastikbecher? Der sich zudem noch wie ein ganz normaler Plastikbecher anfühlt und zu verhalten scheint? Meine wissenschaftliche Neugier war sofort geweckt. Als der Eistee seiner Bestimmung zugeführt worden war, entdeckte ich auf dem Boden des Bechers ein vertrautes Symbol: Ein Dreieck aus drei umlaufenden Pfeilen mit der Ziffer 7 in der Mitte. Und den drei Buchstaben „PLA“.

Das Pfeildreieck ist heutzutage auf praktisch allen Kunststoff-Verpackungen zu finden und gibt Auskunft über die Art des Kunststoffs, und in welchen Recyclingweg er einfliessen soll. Dafür wird den verbreitetsten Kunststoff-Typen je eine Ziffer zugeordnet. Die Ziffer 7 steht dabei für „sonstige Kunststoffe“ – eben jene, die noch nicht so verbreitet sind. Die Buchstaben darunter geben die genaue Kunststoffsorte an. „PLA“ steht für Polymilchsäure (engl. Poly Lactic Acid), oder auch Polylactid. Beide Namen stehen für den gleichen Stoff und beziehen sich auf zwei verschiedene Herstellungswege.

Bei Milchsäure klingeln bei Biochemikern und Medizinern, aber auch bei Molkereimitarbeitern die Glocken: Das (oder besser das Anion der Milchsäure, Lactat) ist ein Stoff, der im Stoffwechsel fast jedes Lebewesens produziert wird und dort häufig als „Abfall“ anfällt. Und aus diesem Naturstoff hat jemand ein Polymer gemacht und Plastikbecher hergestellt, die sich wieder zu Naturstoffen kompostieren lassen? Lässt sich mit solch einem Biokunststoff etwa das immer rarer werdende Erdöl als Rohstoff für herkömmliche Kunststoffe ersetzen? Könnten damit unsere stetig wachsenden Müllberge bald der Vergangenheit angehören?

Aber fangen wir am Anfang an:

Was ist ein Polymer?

Die Vorsilbe „Poly“ ist aus dem Altgriechischen abgeleitet und steht für „viel“. Und Polymere sind in der Tat Moleküle mit viel drin: nämlich mit vielen Atomen. Im Chemieunterricht in der Schule bekommt man es häufig mit sehr kleinen Molekülen mit zwei bis zehn Atomen zu tun. Für die organischen Chemiker sind diese Moleküle geradezu winzig. Sie bezeichnen nämlich auch noch Moleküle wie unsere Vitamine mit (ca. 50) Atomen als klein. Dahingegen sind Polymere wahre Riesenmoleküle mit tausenden von Atomen, die lange Ketten und manchmal richtige Netzwerke bilden.

Das Besondere dabei ist, dass diese Ketten aus sich immer wiederholenden Kettengliedern bestehen. Es gibt nämlich bestimmte sehr kleine Moleküle, die unter den richtigen Umständen miteinander reagieren und sich wie Glieder zu einer Kette verbinden können. Ein bekanntes Beispiel dafür ist das Gas Ethen – auch als Ethylen bekannt. Das kann man in Gasflaschen füllen und herumtransportieren und bei Bedarf verbrennen – es ist nämlich sehr reaktionsfreudig. Wenn man allerdings ein Ethylen-Molekül auf die richtige Weise reaktiv macht, d.h. „aktiviert“, kann es ein anderes Ethylen-Molekül angreifen, sich mit diesem verbinden und es wiederum aktivieren. So entsteht Glied für Glied ein lange Kettenmoleküle, aus denen ein fester, reaktionsträger Kunststoff hergestellt werden kann: Polyethylen.

Ein Polymer ist also Stoff, der aus kettenartigen Riesenmolekülen besteht, die wiederum aus miteinander verbundenen kleinen Molekülen aufgebaut sind. Diese kleinen Moleküle werden vor der Reaktion zur Kette Monomere genannt.

Und eine solche Polymerisationsreaktion, oder kurz Polymerisation kann man auch mit Milchsäure machen. Das Schöne daran ist: Milchsäure kann man billig in einem weit verbreiteten Verfahren herstellen. Oder besser, man lässt sie herstellen.

Milchsäureherstellung mittels Fermentierung

Fast jedes Lebewesen kann Glucose – Traubenzucker – zu Milchsäure (bzw. ihrem Anion Lactat) abbauen. Damit können diese Lebewesen Energie gewinnen. Im Zuge das Abbaus wird chemische Energie aus dem Zucker frei, welche in einem sehr vielseitigen Molekül, genannt ATP (Adenosintriphosphat), zwischengespeichert wird. ATP wiederum dient als „Kraftstoff“ für vielerlei Reaktionen und Prozesse in einem Organismus, die Energie benötigen.

Milchsäuregärung


Schema für die Milchsäuregärung: Der Abbau von Glucose zu Pyruvat ist eine Redox-Reaktion. Das hierfür benötigte Oxidationsmittel NAD+ wird im Zuge der Weiterreaktion des Pyruvats zu Lactat (dem Anion der Milchsäure) zurückgewonnen.

Der Abbau von Glucose zu Lactat zwecks ATP-Erzeugung wird von verschiedenen Enzymen katalysiert. Der gesamte Prozess wird Fermentierung oder auch Milchsäure-Gärung genannt. Es gibt eine ganze Reihe von Bakterienstämmen, deren Lebensinhalt darin besteht Zucker zu Milchsäure (und nichts anderem) zu vergären. Diese Bakterien der Gattung Lactobacillus werden seit je her zur Herstellung von Milchprodukten wie Käse, Joghurt oder Kefir eingesetzt. So liegt nahe, dass diese Bakterien für den Menschen nicht gefährlich sind. Im Gegenteil: Bestimmte Lactobacillus-Arten besiedeln unsere Schleimhäute und sorgen dafür, dass Krankheitserreger dort keinen Platz finden um sich zu vermehren.

Und eben diese Bakterien werden genutzt, um Milchsäure als Rohstoff für Polylactid-Kunststoff zu gewinnen. Dazu muss man die Bakterien mit Glucose füttern. Und Glucose findet man reichlich in Pflanzen, zum Beispiel in Stärke (Stärke ist nämlich nichts anderes als ein Polymer aus Zuckermolekülen). Deshalb wird in den USA Mais angebaut um Bakterienfutter für die Milchsäuregärung zu gewinnen (andere Pflanzen tun es aber mindestens genauso, wie z.B. Zuckerrohr). Aktuell wird sogar daran geforscht, Pflanzenabfälle, die beim Ackerbau entstehen, als Bakterienfutter zu verwenden (Assoziation Ökologischer Lebensmittelhersteller (AÖL), 2014).

Von der Milchsäure zum Plastik

Die fertig gegorene Milchsäure kann auf zwei Wegen zu dem Polylactid genannten Kunststoff verarbeitet werden.

Zum einen kann Polymilchsäure (chemisch dasselbe wie Polylactid) durch eine Polykondensation von Milchsäure-Monomeren hergestellt werden. Wer die drei organischen Reaktionstypen an unserer Grillparty kennengelernt hat, weiss, dass bei der chemischen Reaktion namens Kondensation zwei Moleküle (bei der Polykondensation sind das die angefangene Kette und das jeweils nächste Monomer) zu einem grösseren Molekül reagieren und stets ein neues, kleines Molekül übrig bleibt. Bei der Polykondensation von Milchsäure ist dies ein Wassermolekül für jedes angehängte Monomer. Und all diese Wassermoleküle müssen irgendwo hin.

Polykondensation von Milchsäure


Polykondensation von Milchsäure: Der grüne Rahmen markiert ein Milchsäure-Kettenglied, die roten Rahmen markieren die Atome, die als Wassermolekül übrig bleiben. Anfang und Ende der Kette aus n Milchsäure-Molekülen entstehen aus einem weiteren (n + 1) Milchsäure-Molekül.

Deshalb muss die Polykondensation von Milchsäure in einem Lösungsmittel durchgeführt werden, in welchem sich das Wasser löst. Und dieses Lösungsmittel muss anschliessend vom Kunststoff getrennt und bestenfalls aufbereitet und wiederverwendet werden. Das ist im industriellen Massstab aufwändig und relativ teuer.

So geht man bevorzugt den zweiten Weg.

Polylactid kann nämlich zum anderen durch eine ringöffnende Polymerisation von Lactid-Monomeren gewonnen werden. Ein Lactid-Molekül besteht aus zwei Milchsäure-Molekülen, die miteinander zu einem Ring aus sechs Atomen verbunden sind. Solch ein Lactid-Ring kann eine Komplexreaktion mit bestimmten metallorganischen Verbindungen (also organischen Molekülen, die mindestens ein Metall-Atom enthalten) eingehen und im Zuge dessen geöffnet werden. Das so aktivierte Lactid kann einen weiteren Lactid-Ring öffnen und ihn zwischen sich und dem Metall-Atom einfügen (wie das genau vor sich geht ist noch nicht ganz geklärt). Dabei bleibt, anders als bei der Polykondensation, kein kleines Molekül übrig.

Ringöffnungspolymerisation zur Herstellung von Polylactid


Ringöffnungs-Polymerisation von Dilactid: Die metallorganische Verbindung XiM-OR (M steht für ein Metallatom, Xi für i weitere daran gebundene Atome, R für einen organischen Rest) bildet mit Dilactid einen Komplex. Anschliessend binden das Metall und der organische Rest in noch ungeklärter Weise an die markierten Atome und nehmen den geöffneten Ring in die Mitte. Das C-Atom rechts oben steht in der zweiten Zeile ganz links neben dem RO, und die Atome des Rings gegen den Urzeigersinn gelesen finden sich von links nach rechts in der unteren Zeile wieder. So werden n weitere Ringe (n LA) geöffnet und in die Kette eingefügt, ehe das Metall-Atom am Kettenende gegen ein Wasserstoff-Atom ausgetauscht wird.

So kann die ringöffnende Polymerisation ohne Lösungsmittel durchgeführt werden. Allerdings muss die metallorganische Verbindung in kleinen Mengen als Katalysator dazugegeben werden. Zudem neigen die Polylactid-Ketten dazu miteinander zu reagieren, sodass man weitere Stoffe (Radikalfänger) beimengt, um eben dies zu verhindern.

Alles in allem können zur industriellen Herstellung von Polylactid auf diesem Weg lange, schraubenartige Reaktoren, sogenannte Extruder, eingesetzt werden, an deren einem Ende die Monomere samt Katalysator und Zusätzen hineingegeben werden, während am anderen Ende das Polymer in Form von Kunststoff-Fäden oder -Folie hinauskommt. Die Polymerisation findet während des Durchlaufs durch die Maschine statt.

Wofür kann man PLA benutzen?

In der Medizintechnik ist Polylactid schon lange als Werkstoff beliebt. Da der menschliche Körper selbst Lactat erzeugt, werden Polylactid und seine Abbauprodukte (letztlich Lactat) vom Organismus nicht als Fremdstoffe wahrgenommen. Darüber hinaus kann Polylactid im menschlichen Körper abgebaut werden. So werden schon seit 1966 bei Operationen Nähfäden aus Polylactid verwendet, die nach ein paar Wochen im Körper zersetzt sind und somit nicht gezogen werden müssen. Eine andere Anwendung in dieser Richtung ist die Herstellung von Knochenprothesen, die aufgrund ihrer Abbaubarkeit mit der Zeit durch nachwachsendes Knochengewebe ersetzt werden können.

Im Botanischen Garten in Denver haben wir das Polylactid jedoch in einer viel alltäglicheren Anwendung kennengelernt: Als Einweggeschirr bzw. Verpackungsmaterial (denn nicht nur die Becher, auch Trinkhalme, Plastik-Teller und -besteck – eigentlich alles, was in der Cafeteria ausgegeben wurde, war mit dem Hinweis auf Kompostierbarkeit versehen).

Bei der Verwendung eines Kunststoffs ist man jedoch gut beraten, auf seine besonderen Eigenschaften zu achten. Reines Polylactid nämlich wird schon ab 50-60 °C sehr weich und verformt sich. Deshalb muss es mit Zusatzstoffen hitzebeständig gemacht werden, bevor man heisse Speisen und Getränke darin servieren kann.

Kunststoff auf dem Komposthaufen?

Die Aufschrift „100% compostable“ verleitet in der Tat dazu anzunehmen, wir könnten unsere Becher nun einfach auf den Komposthaufen werfen und warten, bis sie von selbst verrotten. Mit bestimmten anderen Biokunststoffen klappt das wirklich, aber mit Polylactid ist das leider nicht ganz so einfach.

Um Polylactid zu kompostieren muss man es nämlich in industriellen Anlagen in 95% Luftfeuchtigkeit auf 60°C warm halten und passende Mikroorganismen dazugeben, die bei solch hohen Temperaturen leben können (AÖL, 2014). Kompostierung ist nämlich der von Enzymen katalysierte Abbau von organischem Material – idealerweise zu nährstoffreichem Humus. Und Enzyme werden von Lebewesen bereitgestellt und genutzt. Für den Abbau von Polylactid übernehmen das thermophile, also wärmeliebende Bakterien.

Es ist also keine gute Idee Polylactid-Verpackungen einfach in die Landschaft zu werfen. Dort werden sie nicht von selbst verrotten. Deshalb hatte der Betreiber des Botanischen Gartens rund um die Cafeteria Abfalleimer mit dem Hinweis „nur für kompostierbare Kunststoffabfälle“ aufgestellt um das gebrauchte Geschirr zu sammeln und in seine eigene oder eine externe Kompostieranlage zu schaffen.

Wie umweltfreundlich ist das Ganze?

Wenn man bestimmen möchte, wie umweltfreundlich ein Kunststoff tatsächlich ist, gibt es eine ganze Reihe von Faktoren zu berücksichtigen, die von der Erzeugung und Verwendung bis hin zur Entsorgung des Kunststoffs eine Rolle spielen. Wichtige solche Faktoren sind:

Landnutzung und Nahrungsmittelkonkurrenz

Zur Herstellung von Milchsäure, dem Ausgangstoff für die Erzeugung von Polylactid, müssen (zumindest heute) Pflanzen angebaut werden, um daraus Bakterienfutter zu gewinnen. Die dazu nötige Ackerfläche nimmt Platz ein, und der Mais oder andere Pflanzen, die als Bakterienfutter dienen, können nicht als Nahrungsmittel für Menschen genutzt werden.

Im Augenblick wird noch so wenig PLA produziert, dass der Platzbedarf verschwindend ist und der Ackerbau zwecks Erzeugung von Biogas und Biosprit eine vielfach grössere Konkurrenz zum Nahrungsmittelanbau darstellt. Für die Zukunft stehen für einen vollständigen Ersatz unserer Kunststoffe durch Biokunststoffe Schätzungen von 1 bis 12% der weltweit verfügbaren Ackerfläche für den dafür notwendigen Rohstoffanbau im Raum (AÖL, 2007).

Umweltverträglichkeit des Rohstoff-Anbaus

Bei jeder Art von Ackerbau ist kritisch abzuwägen, inwieweit Monokulturen und der Einsatz von chemischen Pflanzenschutzmitteln sich schädlich auswirken und minimiert werden können. Zudem werfen gentechnisch veränderte Nutzpflanzen (der in den USA zur PLA-Herstellung angebaute Mais ist in der Regel gentechnisch verändert) immer wieder heftige Diskussionen auf.

Sozialverträglichkeit

Werden die Rohstoffe für die PLA-Herstellung unter „fairen“ Bedingungen angebaut und verarbeitet? Wie bei allen Ackerbau- und anderen Produkten ist hier oft massgeblich, in welchen Ländern mit welcher Gesetzgebung die Rohstoffe angebaut werden.

Umweltverträglichkeit von Zusatzstoffen

Nicht nur der Katalysator, der zur Herstellung des Polylactids erforderlich ist, bleibt ein Teil des entstehenden Kunststoffs. Auch zur Vermeidung von unerwünschten Quervernetzungen, zur Erhöhung der Biegsamkeit (reines PLA ist relativ spröde) und der Wärmebeständigkeit werden Zusätze verwendet, deren Auswirkungen auf die Umwelt in die Bewertung des fertigen Kunststoffprodukts mit einfliessen. Denn wieviel nützt ein vollständig kompostierbares Polymer, wenn der Hitzeschutz-Stoff darin am Ende übrig bleibt und auch noch Schwierigkeiten bereitet?

Sicherheit

Neben der Sicherheit beziehungsweise der Schonung unserer Umwelt legen wir mindestens genauso viel Wert auf unsere eigene, gesundheitliche Sicherheit. Da PLA aus Milchsäure, einem in unserem Organismus allgegenwärtigen Stoff, aufgebaut ist, gilt es als gesundheitlich unbedenklich. Aber wie sieht das mit den Zusatzstoffen aus?

Recycling/Kompostierung

PLA lässt sich industriell herstellen und vielseitig anwenden…aber wohin damit, wenn man es nicht mehr braucht? Der Kunststoff ist kompostierbar, allerdings nur in speziellen industriellen Anlagen. Die müssen zuerst gebaut und dann unterhalten werden, zumal eine gemeinsame Entsorgung mit vergleichbaren herkömmlichen Kunststoffen wie PET nicht möglich ist. Denn die von PET abweichenden Eigenschaften des Polylactids würden in auf PET ausgerichteten Maschinen zu erheblichen technischen Problemen führen (AÖL, 2014).

Ökobilanz

Anbau und Transport von Rohstoffen, Herstellung und Entsorgung von Produkten gehen mit der Entstehung von teils umweltbelastenden Abfallstoffen einher. Da Pflanzen ihre Glucose und andere Kohlenstoffverbindungen letztlich mittels Fotosynthese aus Kohlendioxid (CO2) gewinnen, welches sie der Atmosphäre entnehmen, kann bei der Entsorgung (Kompostierung, Verbrennung,…) von Pflanzen und reinen Pflanzenprodukten nicht mehr CO2 entstehen, als sie zuvor aufgenommen haben.

Das deutsche Bundesumweltamt äussert in einer Broschüre aus dem Jahr 2009, dass durch die Nutzung von Biokunststoffen wie PLA anstelle von herkömmlichen Kunststoffen, die aus Erdöl hergestellt werden, fossile Rohstoffvorkommen geschont werden, da diese durch nachwachsende Rohstoffe ersetzt werden. Darüber hinaus kann der CO2-Ausstoss dank der oben beschriebenen CO2-Bilanz verringert werden.

Die Gesamt-Umweltbelastung, die die Nutzung von PLA-Bechern wie unseren im Botanischen Garten mit sich bringt, entspreche jedoch jener, die PET-Becher mit sich bringen. Das bedeutet, Mehrweg-Becher seien in ökologischer Hinsicht auch kompostierbaren Kunststoffen deutlich überlegen.

Fazit

Polylactid, kurz PLA, zählt zu den Biokunststoffen und ist – unter industriell herstellbaren speziellen Bedingungen – biologisch abbaubar. Da PLA aus nachwachsenden Rohstoffen hergestellt wird, trägt seine Verwendung zur Schonung begrenzter fossiler Rohstoffe wie Erdöl bei und mindert den CO2-Ausstoss.

Allerdings sind PLA laut dem Bundesumweltamt ganzheitlich (also unter Berücksichtigung aller genannter Faktoren) betrachtet (noch) nicht umweltfreundlicher als der gängige Kunststoff PET. Ein System mit Mehrweg-Getränkebehältern ist also immer noch um Längen schonender.

In einem Betrieb wie dem Botanischen Garten Denver, der seinen PLA-Abfall zentral sammelt und kompostiert oder recycelt, finde ich diesen und andere Biokunststoffe nichts desto trotz spannend. Zumal gerade ein Gartenbetrieb den anfallenden Kompost wiederum weiterverwenden kann. Und wenn die Forschung bezüglich der Vergärung von Pflanzenabfällen zu Ergebnissen führt, tut sich hier womöglich ein attraktiver Ersatz für unsere Kunststoffe aus Erdöl auf. Die Zukunft wird es zeigen.

Und wo hattet ihr schonmal mit kompostierbaren oder anderen Biokunststoffen zu tun?

Der Blogtour Fahrplan

07.09. pyramideneulehttp://welt.pyramideneule.de Thema: Wildvögel füttern
08.09. Kathi Keinsteinhttps://www.keinsteins-kiste.ch/ Thema: Kompostierbare Kunststoffe
09.09. MrAndroid http://www.mrmrs-android.de/ Thema: Jedes Jahr ein neues da – Wieso du dein Smartphone behalten solltest
10.09. Zaxumo – http://zaxumo.blogspot.de/ Thema: Umweltfreundliche Kosmetik

12.09. Lilyanahttp://www.buecherfunke.de/ Thema: Ebooks
13.09. Lebenslounge – http://www.lebenslounge.com/ Thema: Recycling im Haushalt

 

Vitamine - Schlagwort Nummer 1 in Sachen gesunde Ernährung

Was sind Vitamine? Warum sind Vitamine fett- oder wasserlöslich? Wozu brauchen wir die Vitamine? Warum muss der Mensch Vitamine aufnehmen und wo findet er sie? Kann man zu viele Vitamine haben?

Wer kennt sie nicht, die Aufforderungen wohlmeinender Mütter, wir mögen unser Gemüse und den Salat essen, mit allen Vitaminen, die darin seien? Die zahllosen Fernseh-Werbespots von Herstellern, die ihren Produkten mit dem Unterstreichen eines fantastischen Vitamingehalts einen gesunden Anstrich zu geben suchen?

Wer hat sich hingegen schon gefragt, was das für Stoffe sind, die da so eifrig beworben werden und warum und wozu wir sie eigentlich brauchen? Dieser Artikel soll eine Übersicht über die Vitamine geben, die der Mensch zum Leben benötigt (auch Tiere brauchen Vitamine, aber nicht unbedingt die gleichen wie der Mensch). Dabei liegt der Schwerpunkt jedoch nicht wie auf vielen anderen Seiten bei Tagesbedarf und Mangelsymptomen, sondern auf den Aufgaben der einzelnen Vitamine im Organismus und den Eigenschaften, nach welchen man diese vielfältigen Moleküle ordnet.

Was sind Vitamine?

Vitamine und andere Nahrungsergänzungsmittel liegen hoch im Trend. Die Regale in Supermärkten und Drogerien sind voll davon, und mein Hausarzt hat eine besondere Vorliebe für Vitamin C zur begleitenden Therapie von fast allem. In der Kosmetik-Branche wird Vitamin A als Jungbrunnen für die Haut gehandelt. Aber welche Wunderstoffe verbergen sich hinter diesen kaum aussagekräftigen Buchstabenkürzeln?

Vitamine sind kleine organische Moleküle, die für höhere Tiere (dazu gehört auch der Mensch!) lebenswichtig sind, und die diese Organismen nicht selbst herstellen können.

Der Name rührt übrigens daher, dass man früher irrtümlicherweise alle Vitamine für Amine (eine Stoffklasse, deren Mitglieder mit dem Ammoniak verwandte Stickstoff-Atomgruppen enthalten) hielt und entsprechend aus lat.: vita (Leben) und Amin ein Kunstwort als Bezeichnung schuf.

Und das war es dann auch mit den Gemeinsamkeiten der Vitamine. Tatsächlich verbirgt sich hinter diesem Namen eine Vielzahl verschiedener Stoffe mit ebenso verschiedenen Funktionen.

Welche Vitamine gibt es?

Der menschliche Organismus braucht im Wesentlichen 13 verschiedene Stoffe, die er nicht selbst herstellen kann. Sie alle sind unter verschiedenen Namen und Kürzeln auf Verpackungen von Lebensmitteln oder Vitamin-Präparaten anzutreffen – und natürlich auch in deren Inhalt. Diese 13 Stoffe werden in wasserlösliche und fettlösliche Vitamine eingeteilt.

 

Vitamin A Retinol E 160a (beta-Carotin) fettlöslich
Vitamin B1 Thiamin wasserlöslich
Vitamin B2 Riboflavin E 101 wasserlöslich
Vitamin B3 Niacin wasserlöslich
Vitamin B5 Pantothensäure wasserlöslich
Vitamin B6 Pyridoxin wasserlöslich
Vitamin B7, H Biotin wasserlöslich
Vitamin B9 Folsäure wasserlöslich
Vitamin B12 Cobalamin wasserlöslich
Vitamin C Ascorbinsäure E 300, 301, 302 wasserlöslich
Vitamin D Calciferol fettlöslich
Vitamin E Tocopherol E 306 – 309 fettlöslich
Vitamin K Phyllochinon fettlöslich

Tabelle 1: Die 13 Vitamine für den Menschen (nach [1] und nutri-facts.org)

Warum sind Vitamine fett- oder wasserlöslich?

Eine Lösung im Sinne der Chemie ist ein homogenes Gemisch zweier Stoffe. „Löslichkeit in“ kann bei der Einteilung der Vitamine also auch durch „Mischbarkeit mit“ ersetzt werden. Wie gut sich zwei Stoffe miteinander mischen lassen, hängt von den anziehenden Wechselwirkungen zwischen ihren Molekülen ab.

Polare Bindungen ziehen sich an

Die Natur dieser Wechselwirkungen hängt damit zusammen, wie die Elektronen der Atome in den jeweiligen Molekülen im Molekül verteilt sind. Eine Elektronenpaar-Bindung zwischen zwei Atomen ist nämlich weder so starr noch so symmetrisch, wie der Strich, mit welchem man sie in einer Strukturformel darstellt, es vermuten lässt.

Vielmehr ziehen die verschiedenen Atomsorten „ihre“ Elektronen ungleich stark zu sich hin (diese Eigenschaft wird Elektronegativität genannt: Je höher die Elektronegativität eines Atoms ist, desto stärker zieht es Elektronen an). Das resultiert innerhalb eines Moleküls in einem regelrechten Tauziehen zwischen den Atomen: Das stärkere, an einer Bindung beteiligte Atom zieht „seine“ Bindung zu sich hin, während dem schwächeren Atom am anderen Ende relativ wenig von den Elektronen ebendieser Bindung bleibt.

polare Bindung


Ladungsverteilung entlang einer polaren Bindung: Je dunkler blau eine Fläche, desto wahrscheinlicher ist ein Elektron darin anzutreffen. Die Wahrscheinlichkeit dafür ist rund um das stärkere (elektronegativere) Sauerstoffatom wesentlich grösser als um das schwächere Wasserstoffatom. Delta + und Delta – markieren einen Ladungsüber- oder unterschuss, welcher kleiner ist als die Ladung eines Elektrons.

So „entzogene“ Elektronen können die Kernladung des schwächeren Atoms natürlich nicht mehr ganz ausgleichen, während sie am stärkeren Atom sogar zu einem negativen Ladungsüberschuss führen. Die so entstehenden elektrischen Ladungen betragen nur einen Bruchteil der Ladung eines ganzen Elektrons, haben jedoch gravierende Auswirkungen auf die Eigenschaften eines Moleküls. Denn entgegengesetzte elektrische Ladungen ziehen einander an, was dazu führt, dass Moleküle, die solche verschobenen „polaren“ Bindungen enthalten, einander anziehen: Die Sieger beim atomaren Tauziehen ziehen die Verlierer des nächsten Moleküls an und umgekehrt. Das Resultat ist eine anziehende Wechselwirkung zwischen den Molekülen.

Auch unpolare Bindungen ziehen sich an – auf ganz andere Weise

Doch auch zwischen Molekülen, in welchen die Atome an den Enden ihrer Bindungen gleich „stark“ sind, gibt es eine anziehende Wechselwirkung. Entlang solcher „unpolaren“ Bindungen entstehen äusserst kurzzeitig, jedoch stetig aufs Neue Ladungsunterschiede, wenn die beteiligten Elektronen zwischen den Atomen hin und her schwingen. Und das tun sie andauernd. Die so entstehenden Ladungen für den Augenblick ziehen sich auf ihre ganz eigene Weise gegenseitig an.

Diese beiden Wechselwirkungen sind in einer Weise verschieden, welche dazu führt, dass sie nicht miteinander kompatibel sind. Moleküle verschiedener Sorten lassen sich also nur zueinander bringen, wenn sie vornehmlich zur gleichen Art von Wechselwirkungen befähigt sind.

Wie du die Löslichkeit eines Stoffs an seiner Strukturformel abschätzt

Und diese Befähigung lässt sich an der Strukturformel eines organischen Moleküls abschätzen, wenn man ganz wenige Dinge weiss:

1. Kohlenstoff- und Wasserstoffatome sind in etwa gleich stark.

2. Sauerstoffatome sind sehr stark und gewinnen gegen Kohlenstoff und Wasserstoff immer.

3. Stickstoffatome sind ebenfalls stark und gewinnen gegen Kohlenstoff und Wasserstoff, jedoch nicht gegen Sauerstoff.

4. Moleküle mit polaren und unpolaren Bindungen sind zu Wechselwirkungen beider Art fähig. In kleinen Molekülen überwiegt bei ausgewogener Verteilung unterschiedlicher Bindungen jedoch die polare Wechselwirkung.

Wasser enthält demnach zwei stark polare Bindungen. Es wird sich also gut mit anderen polaren Molekülen mischen lassen. So verwundert es nicht, dass auch die Moleküle der wasserlöslichen Vitamine reichlich polare Bindungen haben, während die fettlöslichen Vitamine über weiter Strecken aus unpolaren Kohlenstoff-Wasserstoff-Ketten bestehen (wie Fette auch).

 

Vitamine_Löslichkeit


Löslichkeit ausgewählter Vitamine:
Ascorbinsäure besitzt über das ganze Molekül verteilt polare Bindungen und ist somit gut mit Wasser mischbar.
Retinol besitzt nur eine polare Bindung, während der grösste Teil des Moleküls aus unpolaren Bindungen aufgebaut ist. Damit lässt sich Retinol nicht mit Wasser, dafür jedoch mit fettartigen Stoffen, die ebenfalls hauptsächlich unpolare Bindungen enthalten, gut mischen.

Wozu brauchen wir die 13 Vitamine?

Die wasserlöslichen Vitamine werden vielerorts gebraucht. Wasser ist im menschlichen Organismus allgegenwärtig, sodass die Mischbarkeit der Vitamine mit Wasser ihre Beweglichkeit und damit ihre Verteilung erheblich fördert.

Die B-Vitamine

Die B-Vitamine sind direkte Vorstufen zur Herstellung von Coenzymen: Enzyme sind hochkomplexe, leistungsstarke Katalysatoren, die hauptsächlich aus Peptidketten – miteinander verbundenen Aminosäuren – bestehen. Diese Ketten lassen sich zu vielfältigen Formen falten und reagieren auf verschiedenste Weise miteinander oder mit ihrer Umgebung.

Peptide können aber nicht alles. Deshalb haben die meisten Enzyme zusätzliche Bestandteile, die keine Peptidketten sind und nach der Herstellung des Proteins angefügt werden müssen. Sind diese Bestandteile kleine organische Moleküle, nennt man sie Coenzyme. Ohne Coenzyme oder andere Zusatz-Bestandteile können viele Enzyme ihre Aufgabe im Stoffwechsel – das Katalysieren von ganz bestimmten Reaktionen – nicht erfüllen. Da oftmals viele verschiedene Enzyme auf das gleiche Coenzym zurückgreifen, ist es von Vorteil, wenn die B-Vitamine im ganzen Organismus verfügbar sind.

Ascorbinsäure (Vitamin C)

Ascorbinsäure ist ein Antioxidans, das zum Beispiel zur Kollagen-Herstellung nötig ist: Kollagen ist ein faserartiges Protein, das wie ein Seil aus drei verdrillten Ketten „geflochten“ ist. Es ist überall dort gefragt, wo Zusammenhalt von Nöten ist: In der Haut, Sehnen, Bändern, Blutgefässwänden, Knochen, aber auch in Zahnfleisch und Zähnen. Damit ein Kollagen-„Seil“ wirklich hält, müssen die Ketten „klebrig“ sein – mit anderen Worten: die einzelnen Ketten – jede ein riesiges Molekül – müssen miteinander wechselwirken. Dazu wird die Aminosäure Prolin an bestimmen Positionen in der Peptidkette des Kollagens mit einer zusätzlichen OH-Gruppe versehen.

OH-Gruppen enthalten eine polare Bindung, die zu einem Extrem der polaren Wechselwirkung fähig ist: Das Sauerstoff-Atom gewinnt das Tauziehen um die O-H-Bindung haushoch, während das Wasserstoff-Atom gleich in doppelter Hinsicht als Verlierer dasteht. Die beiden Elektronen, welche die O-H-Bindung bilden, sind nämlich seine einzigen. So wird der Kern des Wasserstoff-Atoms geradezu entblösst, wenn ein stark elektronegatives Atom wie Sauerstoff diese Bindung zu sich hinzieht. Zum Ausgleich zieht es so entblösste Wasserstoffkerne zu anderen, elektronenreichen Atomen besonders hin. Wenn ein solches Atom ein „ungenutztes“ (nichtbindendes) Elektronenpaar hat, findet der entblösste Wasserstoffkern darin etwas „Deckung“. Das Resultat ist eine vergleichsweise stark anziehende Wechselwirkung, die Wasserstoff-Brücke genannt wird.


Wasserstoff-Brücken zwischen Wassermolekülen: Ein Sauerstoff-Atom ist stark genug um den Kern eines benachbarten Wasserstoff-Atoms zu „entblössen“ – und es hat zwei nichtbindende Elektronenpaare (dargestellt am rechten Molekül), die jeweils einem Wasserstoff-Kern Deckung bieten können. Neben Sauerstoff sind ausserdem nur die Atome der Elemente Stickstoff und Fluor in der Lage Wasserstoffbrücken zu bilden!

Das Kollagen-Seil klebt also über Wasserstoffbrücken zwischen den einzelnen Ketten zusammen. Das Enzym, welches das Anfügen der OH-Gruppen an Prolin katalysiert, die Prolin-Hydroxylase, oxidiert dazu das Prolin und reduziert im Gegenzug das Molekül α-Ketoglutarat (Eine Redox-Reaktion ist eine Elektronenübertragung: Oxidation und Reduktion sind untrennbar miteinander verbunden). Wenn aber einmal kein Prolin zur Hand ist, reduziert das Enzym α-Ketoglutarat und oxidiert dafür sich selbst – und wird damit unbrauchbar. Dann kann Vitamin C (bzw. das Anion der Ascorbinsäure) das Enzym reduzieren (und wird dabei selbst oxidiert) und damit reaktivieren [1].

Ohne Vitamin C würde der Organismus sein Kollagen mangels aktiver Prolin-Hydroxylase zunehmend ohne OH-Gruppen und Wasserstoffbrücken herstellen. Solches Kollagen kann Gewebe nicht gut zusammenhalten, was zu brüchigen Blutgefässen, instabilem Zahnfleisch und anderen Problemen führt, mit anderen Worten zu Skorbut.

 

Die fettlöslichen Vitamine interagieren bei ihren Aufgaben häufig mit anderen fettlöslichen Molekülen, sodass ihnen ihre Mischbarkeit mit solchen zum Vorteil gereicht.

Retinol (Vitamin A)

Retinol ist am Sehvorgang, an Wachstum bzw. Regeneration von Gewebe und an der Fortpflanzung beteiligt. Es ist als Mittel für gute Nachtsicht und Anti-Aging-Wirkstoff für die Haut sehr populär.

Auf der Netzhaut (Retina) im Auge sind lichtempfindliche Zellen, ihrer Form nach „Stäbchen“ genannt, für die Hell-Dunkelsicht verantwortlich. Die Stäbchen enthalten ein Protein namens Rhodopsin, welches ein direkt aus Vitamin A hergestelltes Molekül enthält. Dieses „11-cis-Retinal“ verändert seine Struktur, wenn Licht darauf fällt (es wird zu all-trans-Retinal) und löst damit eine Signalkaskade aus, die letztlich die Information „es ist hell“ an das Gehirn weiterleitet. Wenn bei wenig Licht (nachts halt) die für das Farbensehen zuständigen „Zapfen“-Zellen nicht mehr funktionieren, ist der Mensch ganz auf die Stäbchen angewiesen. Ein Mangel an Vitamin A, also Retinol, zur „Ausrüstung“ der Stäbchen führt deshalb zur zunehmenden Einschränkung unserer Nachtsicht-Fähigkeit. [1],[2].

Cholecalciferol (Vitamin D3)

Cholecalciferol ist die Vorstufe eines Hormons, das den Calcium- und Phosphatstoffwechsel reguliert und damit z.B. für den Einbau von Calcium in die Knochensubstanz unverzichtbar ist. Vitamin-D-Mangel führt somit vor allem zu Störungen des Knochenwachstums, aber auch der Knochenerhaltung. Die Folgen werden bei Kindern im Wachstum als Rachitis, bei Erwachsenen als Osteomalazie bezeichnet [1].

Tocopherol (Vitamin E)

Tocopherol ist ein Antioxidans, das ähnlich wie Vitamin C wirkt, aber im Gegensatz dazu fettlöslich ist. Seine Aufgaben sind das „Fangen“ von Radikalen (hochreaktiven Molekülbruchstücken) und anderen oxidierend wirkenden Stoffen, indem es sie reduziert. Da Vitamin E fettlöslich ist, verrichtet es diese Aufgabe vornehmlich in der Umgebung anderer fettlöslicher Moleküle, wo Vitamin C nicht so leicht hinkommt. Das können Membranlipide (fettähnliche Verbindungen in Zell- und anderen Membranen, Lipidproteine oder unsere Fettdepots sein, die so allesamt vor Schäden durch Oxidation geschützt werden.

Phyllochinon (Vitamin K)

Phyllochinon bzw. Vitamin K (K wie Koagulation = Blutgerinnung) ist als Coenzym an der Biosynthese von Gerinnungsfaktoren, zum Beispiel des Proteins Prothrombin, beteiligt. Unter Einwirkung von Phyllochinon werden bestimmte Aminosäuren am Ende der Peptidkette des Prothrombins so verändert, dass sie fest an Calcium-Ionen binden können. So findet das Prothrombin an der Oberfläche von Blutplättchen an einer Verletzung Halt und kann von dort vorhandenen Enzymen aktiviert werden. Dazu wird ein Teil der Peptidkette (Thrombin) abgespalten und kann seinerseits weitere Gerinnungsfaktoren (z.B. durch Spaltung von Fibrinogen) aktivieren. Ohne Vitamin K würde der Organismus unverändertes Prothrombin herstellen, welches nicht am Ort seiner Bestimmung haften und somit nicht zur Blutgerinnung führen könnte [1].

Warum kann der Körper die Vitamine nicht selbst herstellen?

Dass wir Vitamine zu uns nehmen müssen, ist eine Folge von „Erbkrankheiten“, die sich bei den Vorfahren des Menschen und verschiedener heutiger Tiere vor Jahrmillionen entwickelt haben.

Vitamin C zum Beispiel können die meisten Tiere heutzutage selbst herstellen. Auch beim Menschen und anderen Trockennasenprimaten (also allen Affen sowie Koboldmakis) ist ein Stoffwechselweg dafür entwickelt. Allerdings ist bei gemeinsamen Urahnen dieser Arten (den Menschen eingeschlossen) vor 61-74 Millionen Jahren eine Mutation des Gens für das Enzym L-Gulonolactonoxidase aufgetreten. Dieses Enzym katalysiert den letzten Schritt zur Herstellung von Vitamin C in unserem Organismus. Die Mutation (ein Fehler in der Gensequenz, dem Bauplan für das Enzym) führte dazu, dass die Nachfahren jener Urahnen-Spezies keine funktionsfähige L-Gulonolactonoxidase mehr herstellen können.

Die Ur-Spezies, die diesen Gendefekt entwickelte, hat davon vermutlich nichts mitbekommen, da sie reichlich Vitamin C-haltiges Obst zum fressen hatte. Auch die heutigen Affen leiden gewöhnlich nicht an Vitamin C-Mangel, da sie reichlich ascorbinsäure-reiche Nahrung auf ihrem Speiseplan stehen haben und damit ihre „Erbkrankheit“ ganz unbewusst und sehr erfolgreich selbst „behandeln“. Einzig der Mensch ist zwischenzeitlich auf die abwegige Idee gekommen, er käme ohne Früchte aus und könne z.B. nur mit Schiffszwieback verpflegt über die Weltmeere segeln (bis zahlreiche Todesfälle aufgrund von Skorbut im 18. Jahrhundert zur näheren Beschäftigung mit Nahrungsmittel-Inhaltsstoffen führten). Meerschweinchen, echte Knochenfische, einige Sperlingsvögel und Fledertiere haben übrigens einen ähnlichen Gendefekt und sind daher ebenso auf Vitamin C in der Nahrung angewiesen. [3]

Wie kommen wir zu unseren Vitaminen?

Die meisten Vitamine sind Bestandteile unserer Nahrung. Als Vitamin-Präparate werden sie häufig bei Mangelerscheinungen oder vorsorglich bei unausgewogener Ernährung, erhöhtem Bedarf (Krankheit, Schwangerschaft, Medikamenten-Nebenwirkungen, Stress,…) oder Stoffwechselstörungen zugeführt. Dabei ist zu beachten, dass nur die fettlöslichen Vitamine (und Vitamin B12) in begrenztem Umfang im Organismus gespeichert werden können. Alle anderen müssen sehr regelmässig aufgenommen werden.

Während die meisten B-Vitamine fast ausschliesslich in tierischen Produkten zu finden sind, sind die übrigen zumeist in pflanzlicher Nahrung enthalten. Der Mensch ist also nicht umsonst ein „Allesfresser“ – er braucht all diese Nahrungsmittel gleichermassen.

 

Vitamin A (Retinol) Leber, Eigelb, Milch und Milchprodukte, als Beta-Carotin in Karotten, gelbem und dunkelgrünem Blattgemüse, Palmöl
Vitamin B1 (Thiamin) Brauhefe, Schweinefleisch, Vollkorngetreide, Nüsse, Hülsenfrüchte
Vitamin B2 (Riboflavin) Hefe, Leber, Milch und Milchprodukte, Eier, grünblättrige Gemüse, Fleisch
Vitamin B3 (Niacin) Hefe, Leber, Geflügel, mageres Fleisch, Nüsse, Hülsenfrüchte (Niacin-Verbindungen in Getreide sind für den Menschen nicht verwertbar!)
Vitamin B5 (Pantothensäure) Hefe, Innereien, Eier, Milch und Milchprodukte, Gemüse, Hülsenfrüchte, Vollkorngetreide
Vitamin B6 (Pyridoxin) Huhn, Leber, Fisch, Walnüsse, Erdnüsse, Vollkorngetreide, Mais
Vitamin B7 (Biotin) Hefe, Leber, Niere, Eigelb, Sojabohnen, Nüsse, Getreide
Vitamin B9 (Folsäure) Leber, dunkelgrünes Gemüse, Bohnen, Weizenkeime, Hefe; auch Eigelb, Milch und Milchprodukte, rote Beete, Orangen, Vollkorngetreide
Vitamin B12 (Cobalamin) Leber, Niere, Fisch, Eier, Milch und Milchprodukte
Vitamin C (Ascorbinsäure) Zitrusfrüchte, schwarze Johannisbeere, Paprika, grünes Gemüse, Erdbeere, Guave, Mango, Kiwi
Vitamin D (Calciferol) Sonnenlicht!!, ansonsten: Lebertran, Salzwasserfisch, wenig: Eier, Milch und Milchprodukte, Fleisch
Vitamin E (Tocopherol) Pflanzenöl, Nüsse, Vollkorngetreide, Weizenkeime, Samen, grüne Blattgemüse
Vitamin K (Phyllochinon) Grünblättrige Gemüse, einige Pflanzenöle, Haferflocken, Kartoffeln, Tomaten, Spargel, Milch und Milchprodukte

Tabelle 2: Vorkommen der Vitamine in Nahrungsmitteln nach nutri-facts.org

Die grosse Ausnahme bildet Vitamin D (Calciferol). Dies ist das einzige der beschriebenen 13 Moleküle, das der menschliche Organismus selbst herstellen kann (und damit eigentlich gar kein Vitamin ist). Dass es trotzdem zu den Vitaminen gezählt wird, hängt damit zusammen, dass zur Biosynthese von Calciferol UV-B-Strahlung nötig ist. Und die kommt in der Regel von der Sonne, also von „aussen“.

Vitamin D entsteht in der Haut aus Cholesterin, genauer gesagt aus 7-Dehydrocholesterin. Einfallende UV-B-Strahlung kann einen Ring im 7-Dehydrocholesterin-Molekül öffnen, wodurch Prävitamin D3 entsteht, welches zum eigentlichen Cholecalciferol (Vitamin D3) weiterreagiert. In Leber und Niere kann daraus dann das weiter oben genannte Hormon Calcitriol hergestellt werden [1].

Vitamin-D-Bildung


Biosynthese von Vitamin D und Calcitriol nach [1]

Im Lehrbuch für Biochemie [1] findet sich im Zusammenhang mit der Vitamin-D-Synthese eine Randnotiz, dass bei arabischen Beduinen-Frauen, die ihr Leben in Ganzkörperverhüllung verbringen, die Vitamin-D-Mangelerscheinung Osteomalazie auftritt – und dass, obwohl sie in der stets sonnenverwöhnten Wüste leben. Wer ständig eine Burka trägt ist also gut damit beraten auf eine ausreichende Vitamin-D-Zufuhr durch Nahrungsergänzung zu achten.

Ebenso stehen Vegetarier und vor allem Veganer vor der Herausforderung ihren Bedarf an B-Vitaminen zu decken und gegebenenfalls ihren Speiseplan mit Vitamin-Präparaten zu ergänzen.

Kann man zu viele Vitamine aufnehmen?

Im ersten Semester des Chemiestudiums fand ein Kommilitone im Praktikumslabor eine Kilopackung Ascorbinsäure (in Reinform ein weisses, kristallines Pulver) und fragte unseren Praktikumsassistenten, was denn wohl passieren würde, wenn er löffelweise davon ässe. Der Assistent antwortete: „Nichts“, und fügte hinzu, dass mein Kommilitone allenfalls vielleicht Sodbrennen oder/und Magenschmerzen bekäme, weil mehrere Gramm Ascorbinsäure auf einmal geschluckt vorübergehend zu Magenübersäuerung führen können.

Eine „Vergiftung“ (Hypervitaminose) mit wasserlöslichen Vitaminen ist tatsächlich kaum möglich und tritt allenfalls in exotischen Fällen auf (z.B. Langzeit-Überdosierung von Vitaminpräparaten oder seltene Stoffwechselkrankheiten), da sie im Organismus gut beweglich sind und über die Niere ziemlich ungehindert wieder ausgeschieden werden können.

Bei fettlöslichen Vitaminen sieht das etwas anders aus, denn sie können nicht so einfach über die Niere ausgeschieden werden und sammeln sich im Organismus an. Insbesondere die Vitamine A und D können akute und/oder chronische Vergiftungserscheinungen (bis hin zum Tod) hervorrufen.

Da sich die Vitamin-D-Synthese bei Sonneneinstrahlung jedoch selbst reguliert, kann eine Hypervitaminose D – wie alle anderen Vitamin-„vergiftungen“ – nur durch übermässige Zufuhr von Vitamin-Präparaten verursacht werden. Ebenso verhält es sich mit der Hypervitaminose A (es sei denn, man wäre auf einer Polarexpedition und würde den Fehler machen Eisbärenleber zu essen… Die ersten akuten Vitamin-A-Vergiftungen wurden bei Polarforschern dokumentiert, die eben dies getan hatten [4]).

Zusammenfassung

Der menschliche Organismus benötigt zur Aufrechterhaltung aller Funktionen 13 organische Stoffe, die er nicht eigenständig herstellen kann. Diese Stoffe werden als Vitamine zusammengefasst, obwohl ihre Struktur und Funktionen sehr vielfältig sind. Dabei lassen sich die Vitamine in wasser- und fettlösliche Stoffe ordnen. Die Anzahl und Verteilung von polaren Bindungen in ihren Molekülen lassen eine Einschätzung der Löslichkeit zu. Die Löslichkeit der Vitamine steht im Zusammenhang mit ihren Aufgaben und einer möglichen Giftwirkung bei Überdosierung.

Literatur

[1] Biochemie der Vitamine: J.M. Berg, John L.Tymoczko, L.Stryer: Biochemie. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin 2003

[2] Überblick über den Stoffwechsel einschliesslich Vitamin-Aufnahme und der Prozesse beim Sehen: S.Silbernagl, A.Despopoulos: Taschenatlas der Physiologie. Georg Thieme Verlag, Stuttgart 2003

[3] Genetik der Wirbeltiere bezüglich Ascorbinsäure (Vitamin C): G. Drouin, J. R. Godin, B. Pagé: The genetics of vitamin C loss in vertebrates. In: Current genomics. Band 12, Nummer 5, August 2011

[4] Giftigkeit der Vitamine: Dietrich Mebs: Gifttiere – Ein Handbuch für Biologen, Toxikologen, Ärzte und Apotheker. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1992