Grosse Sommer - Blogparade : Mein Lieblingsexperiment

Ganze vier Jahre ist es nun her, seit Keinsteins Kiste das Licht der Welt erblickt hat! Und diesen Bloggeburtstag möchte ich mit euch allen feiern – mit der grossen Sommer-Blogparade!

Vier Jahre Keinsteins Kiste

Bis in die erste Hälfte 2015 waren “Blogger” in meinen Augen Werbegesichter für Mode, Kosmetik und allerlei Lifestyle-Produkte – kurzum das, was man heute vielleicht eher mit dem Begriff “Influencer” in Verbindung bringt. Und damit so ganz und gar nicht meine Welt.

Erst als ein Neuzugang in einer völlig themenfremden Facebook-Gruppe am Rande ihren Mama-Blog erwähnte, öffnete sich mir die Tür zur ganzen Welt der Blogger – und mir war sofort klar: Davon möchte ich auch ein Teil sein! So habe ich binnen weniger Wochen diesen Blog ins Leben gerufen.

Seitdem hat sich so vieles getan und verändert. Von Anfang an war Keinsteins Kiste als Sammlung naturwissenschaftlicher Inhalte gedacht – zunächst reichlich unspezifisch in Form von “Geschichten aus Natur und Alltag”. Naturwissenschaft besteht nun in grossen Teilen aus Beobachtung…und dazu sind aufmerksame Sinne unabdingbar. So kam ich zu der Umwidmung des Blogs zu “Natur und Wissenschaft für alle Sinne”.

Doch auf Dauer erschien mir auch dies zu ungenau. Zumal ich mit meinem in der deutschsprachigen Blogsphäre nach wie vor exotischen Genre lange nach meinem Platz in deren unendlichen Weiten gesucht habe. Schlussendlich führte diese Suche an den Anfang des Blogs zurück. Mit einem Mama-Blog fing die Geschichte der Kiste an, und mit Familienblogs und ihren Autoren kann ich mich nun wahrhaftig identifizieren. Und das, obwohl ich selbst gar keine Kinder habe.

Wozu Keinsteins Kiste? Um Chemie und anderen Naturwissenschaften ein positives Gesicht zu geben!

Nichts desto trotz arbeite ich mit Kindern, und habe dabei schnell festgestellt, dass es nichts wunderbareres gibt als die kindliche Neugier. Physik (und Chemie und…) ist schliesslich, wo man spielt.

Und diese Neugier ist ein grossartiger Ansatzpunkt, um mein grosses Ziel zu verfolgen: Der Naturwissenschaft im Allgemeinen und der Chemie in Besonderen in euren Köpfen ein besseres Ansehen zu verschaffen!

Die Welt ist nämlich voll von “Fake-News”, Fehlinformationen und teils gefährlichen Irrlehren, die viel zu oft auf fruchtbaren Boden stossen. Und solch “fruchtbarer Boden” entsteht, wenn junge Menschen die Fächer, in welchen sie lernen könne, wie die Welt funktioniert und wie sie selbst diese Funktionsweisen ergründen können, als “zu schwierig”, “abstrakt”, “realitätsfern” oder gar “unwichtig” erleben. Dann nämlich verlassen sie ihre Schulen oft ohne ein grundlegendes Verständnis für die Natur der Dinge – und entsprechend anfällig für jeglichen Unsinn, der darüber verbreitet wird.

Je früher jedoch Neugier und Freude an der Erforschung der Welt geweckt werden, desto grösser sehe ich auch die Chance, dass die Aufmerksamkeit für und die Freude an naturwissenschaftlichen Zusammenhängen erhalten bleibt und Chemie und Co in den Augen einstmaliger Jungforscher ihr gutartiges Gesicht behalten.

Chemie ist nämlich überall und alles ist Chemie. So tut ihr gut daran im Gedächtnis zu behalten, dass sie eben nur manchmal gefährlich, aber immer spannend ist!

Experimente wecken Spass und Neugier – nicht nur bei kleinen Forschern

Die eindrücklichste und zugleich spassigste Art und Weise, Naturwissenschaften zu lernen, ist, selbst zu experimentieren und zu forschen. So habe ich – besonders in den letzten beiden Jahren – mehr und mehr Experimente in Keinsteins Kiste einfliessen lassen, die ihr zu Hause oder in jedem beliebigen Klassenzimmer selbst machen könnt.

Und damit auch naturwissenschaftliche nicht “vorbelastete” Eltern und Lehrer ihren Kindern die unvermeidlichen Fragen junger Forscher beantworten können (allen voran “Wie funktioniert das bloss?”), liefere ich zu jeder Anleitung auch eine ausführliche Erklärung dessen, was hinter den spannenden Beobachtungen steckt.

So können Klein und Gross beim Experimentieren etwas lernen. Aber damit nicht genug: Ihr Grossen könnt euer naturwissenschaftliches Wissen auch direkt in eurem Alltag gebrauchen! Wie? Das könnt ihr in den gesammelten Haushalts- und Alltagstipps in der Alltagskiste lernen.

So ist Keinsteins Kiste nun schon seit einem Jahr offiziell gefüllt mit “Natur und Wissenschaft für die ganze Familie”.

Grosse Sommer-Blogparade zum Geburtstag

Doch nun könnt ihr in der Blogparade selbst mitfeiern und -forschen!

Thema der Blogparade: Mein Lieblings-Experiment!

Experimente mit Aha-Effekt

Denn die Freude an Naturwissenschaft beginnt oft mit einem besonders eindrücklichen Experiment, das einen regelrechten Aha-Effekt auslöst.

So war es zumindest bei mir: In der siebten Klasse bin ich erstmals der Schmelzwärme begegnet – einem Konzept, das mir bis dahin völlig unbekannt war. Und mit dieser einschneidenden Veränderung meines Weltbildes hatte ich mein Herz unrettbar an die Chemie verloren (und das, obwohl sich die Physiker mit den Chemikern um die Einordnung dieses Konzeptes streiten könnten!).

Die ganze Geschichte von diesem Aha-Erlebnis erfahrt ihr hier, und natürlich gibt es auch eine Anleitung für das Experiment zum Nachmachen!

Oder vielleicht kehrt eure Leidenschaft auch immer wieder zu dem einen Experiment zurück?

Experimente, die euch nicht loslassen

Ich habe zum Beispiel bei jeder sich bietenden Gelegenheit Eisensulfid aus den Elementen Eisen und Schwefel hergestellt (das Teufelchen in mir spielt immer wieder gern mit Schwefel herum…). Da das eine ziemlich stinkige Angelegenheit ist, müssen dafür besondere Anforderungen an die Umgebung erfüllt sein, weshalb es das Experiment (noch) nicht in Keinsteins Kiste gibt.

Experimente, bei welchen ihr (bislang?) nur zugeschaut habt

Oder habt ihr euch bislang noch nicht selbst getraut, zu experimentieren, aber andere dabei beobachtet? Sei es der Lehrer in der Schule, der Dozent in der Uni, oder ein Show-Experimentator auf der Bühne? Welches Schau-Experiment hat euch besonders beeindruckt – vielleicht gar so sehr, dass ihr es gerne einmal selbst versuchen würdet – oder eben gerade nicht?

Im Rahmen der Lehrerausbildung hat uns unser Dozent ein wahrhaft beeindruckendes Demonstrations-Experiment gezeigt: Die Thermit-Reaktion!

Thermit-Versuch für die Schule: Die Reaktion findet im Blumentopf statt, glühendes flüssiges Eisen tropft unten heraus!

Hier bei wird Eisen(III)oxid mit Aluminium-Pulver zur Reaktion gebracht, wobei Temperaturen bis gut 2000°C entstehen! Mit grossem Getöse und Leuchtspektakel entsteht dabei flüssiges(!) metallisches Eisen. Folglich nutzen Eisenbahner diese Reaktion, um frisch verlegte Schienen zusammen zu “schweissen”. Der sehr grossen Brandgefahr wegen sollte ein solches Experiment immer ausserhalb des Schulhauses (z.B. auf dem asphaltierten Schulhof) gemacht werden.

Später habe ich dann für einige Zeit an der Berufsschule in Arth-Goldau unterrichtet und dort in der Chemikaliensammlung eine fertige Thermit-Mischung gefunden. Natürlich habe ich die ausprobieren müssen – aber leider habe ich es nicht fertig gebracht, das Ganze zu zünden (das ist nämlich – zum Glück – ohne einen speziellen Thermit-Zünder kaum zu bewerkstelligen). Die Enttäuschung bei mir und den extra auf den Hof geführten Schülern war entsprechend gross.

Aber wenn ich noch einmal die Gelegenheit bekäme, Thermit zu zünden, wäre ich sofort dabei.

Experimente in der Forschung

Oder seid ihr sogar selber Forscher (gewesen)?

In der Forschung müssen Wissenschaftler ihre Experimente immer wieder und wieder durchführen und immer das Gleiche beobachten, bevor sie ein belastbares (weil wiederholt beobachtbares) Ergebnis veröffentlichen können. Auch ich kann ein Lied davon singen.

Besonders aufregend wird das Ganze dann, wenn ein Experiment tatsächlich immer das gleiche Ergebnis liefert – und wenn andere Forscher, die den Versuch nachmachen, dieses Ergebnis ebenfalls beobachten. Dann hat man nämlich etwas gefunden, was den allgemeinen Wissenstand wirklich erweitern könnte!

Habt ihr als Forscher selbst einmal so ein eindrückliches Experiment gemacht?

Was ihr zur Blogparade wissen müsst:

Experimentiert ihr gerne – zu Hause, in der Schule oder sogar an eurem eigenen Forscher-Arbeitsplatz? Schaut ihr euch spannende Experimente lieber an? Oder würdet ihr gerne auch selbst experimentieren?

Mit dieser Blogparade möchte ich euch alle – ganz gleich welchen Bezug ihr zum Experimentieren habt – zum Mitmachen einladen:

Beschreibt in einem Blogartikel euer Lieblings-Experiment!

Erzählt, schreibt, fotografiert, filmt oder wie auch immer ihr euch ausdrückt von eurem Erlebnis beim Experimentieren oder Zusehen: Was beeindruckt euch besonders, und warum ist dies euer Lieblings-Experiment?

Und wenn ihr selbst experimentiert, habt ihr vielleicht auch eine Anleitung dazu? Und wenn ihr ganz versiert seid und die Beobachtung sogar erklären könnt, wäre das natürlich Spitzenklasse – aber nicht notwendig.

Bei Bedarf helfe ich beim Erklären auch gerne aus.

Veröffentlicht den Artikel bis zum 11. September 2019 auf eurem Blog bzw. Kanal, verlinkt darin auf diesen Artikel und postet den Link dazu hier in die Kommentare. So kann ich sie über meine Kanäle teilen und zum Abschluss in einer Zusammenfassung würdigen.

Ihr möchtet gerne ein Experiment vorstellen und habt keinen eigenen Blog? Dann könnt ihr euren Beitrag gerne als Gastbeitrag in Keinsteins Kiste einreichen! Insbesondere zwischen dem 13. Juli und 1. August habe ich drei Plätze, die sich damit wunderbar füllen liessen.

Ganz besonders würde ich mich freuen, wenn ihr anderen von dieser Blogparade “erzählt”, sodass möglichst viele die Chance haben, mit zu forschen!

Nun wünsche ich euch viel Spass beim Forschen, Experimentieren und Verbloggen,

Eure Kathi Keinstein

Der Winter ist die Jahreszeit der grossen Temperaturunterschiede: Draussen frostig kalt, drinnen lauschig warm. Und dazwischen das ständige Wechseln zwischen dicker Vermummung und leichterer langärmeliger Wohnungskleidung. Langärmelig? Wo wir uns im Sommer bei der gleichen Raumtemperatur erst im T-Shirt richtig wohl fühlen?

Dieses Phänomen beschäftigt wohl auch meine treue Leserin Claudia, die diese interessanten Fragen gestellt hat:

Warum empfinden wir Temperaturen so unterschiedlich? Warum können minus 3 Grad genauso kalt wirken wie minus 15 Grad? Und umgekehrt: Warum schwitzen und stöhnen wir bei 28 Grad im Sommer, aber im Winter finden wir dieselbe Temperatur kuschelig warm?


Wie wir Temperaturen fühlen können

Damit wir die Temperatur unserer Umgebung ertasten können, ist die menschliche Haut von feinen Nervenenden durchzogen, die als Temperatursensoren arbeiten. Davon haben wir Menschen zweierlei: Wärmesensoren für den Eindruck “warm” und Kältesensoren für den Eindruck “kalt”.

Diese Wärme- und Kältesensoren messen allerdings nicht direkt die Temperatur der Luft oder was uns sonst umgibt. Stattdessen messen sie die Temperatur des sie umgebenden Gewebes! Und die Gewebetemperatur hängt von vielen äusseren Faktoren ab:

  • Wärmeproduktion im Körper: Je mehr wir in Bewegung sind, desto mehr Wärme fällt aus den Muskeln ab und erwärmt das Hautgewebe.
  • Umgebungstemperatur: Liegt die Temperatur ausserhalb des Körpers deutlich unter der Körpertemperatur von 37°C (das ist die Regel), wird die im Körper produzierte Wärme leicht an die Umgebung abgegeben: Das Hautgewebe kühlt ab. Je wärmer die Umgebung ist, desto schwieriger ist die Wärmeabgabe über die Haut: Das Gewebe bleibt warm.
  • Schweissproduktion: Unser grosser Vorteil gegenüber den meisten anderen Säugetieren: In der menschlichen Haut gibt es Schweissdrüsen, aus welchen Flüssigkeit auf die Hautoberfläche gelangen kann. Wenn diese verdunstet, wird dafür Wärme aufgewendet (diese “Verdampfungswärme” ist analog zur “Schmelzwärme”, welche ihr mit diesem Versuch erforschen könnt): Das Gewebe unter der feuchten Hautoberfläche kühlt ab, während der aufsteigende Wasserdampf die Wärme mit sich nimmt. So läuft der menschliche Körper auch bei Lufttemperaturen nahe oder über der Körpertemperatur nicht heiss. Der Nachteil: Um die ausgeschwitzte Flüssigkeit zu ersetzen, müssen wir sie trinken. Nässe von aussen (z.B. durch Regen oder nach einem Bad) hat übrigens den gleichen Effekt.
  • Wind: Ein Luftstrom transportiert Körperwärme schneller von der Hautoberfläche ab als stehende Luft. So trägt Wind dazu bei, dass wir unsere Umgebung als kühler empfinden – ganz besonders, wenn unsere Haut feucht ist, sodass der Wind zusätzlich die Verdunstung der Feuchtigkeit fördern kann. – Luftfeuchtigkeit: Wasser kann nur dann zügig verdunsten, wenn noch nicht zu viel Wasserdampf in der die feuchte Haut umgebenden Luft ist. Bei hoher Luftfeuchtigkeit ist kurz gesagt kaum noch Platz in der Luft für weiteren Wasserdampf. Unser Schweiss bleibt also flüssig und der Kühlungseffekt durch das Schwitzen bleibt aus. Der Körper schwitzt daraufhin nur noch mehr, ohne jedoch nennenswert abzukühlen. Deshalb empfinden wir tropisches Klima schon bei mässig warmen Temperaturen als furchtbar heiss, während wir selbst mit Temperaturen oberhalb der Körpertemperatur in einer trockenen Wüste leichter fertig werden (wenn wir genug zu trinken haben!).
  • Kleidung: “Warmblütige” Tiere haben (in der Regel) ein Fell oder Gefieder, das eine wärmende (oder kühlende) Luftschicht über der Haut einschliessen und festhalten kann. Da wir Menschen weitgehend nackt sind, ersetzen wir das fehlende Fell mit Kleidung. Die hält den Wind und bestenfalls Nässe von der Haut fern und umschliesst stattdessen eine stehende Luftschicht, die geordnet Wärme aus dem Körperinneren aufnehmen und langsam an die Umgebung abgeben kann. Wehe aber, diese Kleidung saugt sich mit Wasser voll: Wenn das verdunstet, wird nämlich reichlich Wärme aus dem Körper abgeführt. Und dem Menschen in nasser Kleidung wird furchtbar kalt. Nützlich ist das nur bei hoher Umgebungstemperatur: Dann erspart uns trocknende Kleidung am Leib nämlich zumindest zeitweilig das Schwitzen.

Feuchtigkeit und Wind sind die beiden wichtigsten Faktoren, die gemeinsam bewirken, dass unsere Haut bei feuchtwindigen -3°C mitunter genauso schnell abkühlt wie bei trockenen -15°C, und wir beide Temperaturen mitunter als gleich empfinden. Diese Unzulänglichkeit unseres Temperaturempfindens stört auch gar nicht weiter. Denn zum (Über-)Leben ist die eine wie die andere Temperatur zu niedrig. Da reicht die Information “Kalt!!!” völlig aus, um schleunigst ein geschütztes, warmes Plätzchen zu suchen.

Dazu kommen körperliche Unterschiede von Person zu Person


  • Die Wärme- und Kälterezeptoren sind genetisch bedingt von Mensch zu Mensch verschieden zahlreich vorhanden und unterschiedlich auf die Körperoberfläche verteilt.
  • Männer haben meist mehr Körpermasse unter einer relativ kleinen Körperoberfläche, während Frauen eine im Verhältnis zu ihrer Masse grössere Körperoberfläche haben. Und weniger Körperoberfläche bedeutet weniger Gelegenheiten für die Körperwärme, den Körper zu verlassen. So verlieren Männer in der Regel weniger Körperwärme als Frauen in gleicher Umgebung. Mein Partner Reto ist da allerdings eine Ausnahme: Der ist sehr hager und hat merklich schneller kalt als ich.

Und warum empfinden wir die gleiche Temperatur von 28°C im Winter als warm und im Sommer als kühl?

Dieser Umstand wird auf die Funktionsweise der Wärme- und Kältesensoren in unserer Haut zurückgehen. Die funktionieren nämlich zum Einen nur in jeweils einem eng gesteckten Temperaturbereich, und registrieren zum Anderen vor allem Temperaturänderungen

Wie unsere Kalt- und Warmsensoren Temperaturänderungen messen

Dazu senden die Sensoren permanent eine regelmässige Folge elektrischer “Pings” an das Gehirn, ähnlich dem Sonar eines U-Bootes. Ein gleichförmiges Signal interessiert uns aber wenig, sodass es in der Regel vor dem Eingang ins Bewusstsein ausgefiltert wird. Erst wenn sich die Temperatur des Hautgewebes ändert, steigt die Frequenz der Pings stark und das Bewusstsein wird darauf aufmerksam. Sobald die Temperatur bei einem neuen Wert gleich bleibt, pendelt sich auch die Ping-Frequenz bei einem mässigen, vom Anfang leicht unterschiedlichen Wert ein – und gerät bald wieder in Vergessenheit. Bis zur nächsten Temperaturänderung.

Zwei abgedeckte Temperaturbereiche und ihre Grenzen

Dazu kommt, dass unsere zwei Sorten Temperatursensoren in verschiedenen Bereichen arbeiten:

  • Die Kaltsensoren von 15°C bis 30°C (Wird unsere Haut kälter, fühlt sie sich entsprechend “taub” an)
  • Die Warmsensoren von 30°C bis 45°C (würde unsere Haut wärmer, verlören die Proteine darin ganz schnell ihre Funktionsfähigkeit: Wir würden gedünstet!).

Dazu kommen Schmerzrezeptoren, die uns davor bewahren, diese Grenzen des mit Leben verträglichen Temperaturbereichs nicht fahrlässig zu überschreiten. Wenn ihr einmal eine heisse Quelle findet, die in ein (an sich kühles) Gewässer mündet, könnt ihr das selbst ausprobieren:

Habt ein (am besten elektronisches) Thermometer bei euch. Betretet barfuss das Gewässer an einer angenehm temperierten Stelle und nähert euch langsam der heissen Quelle. Sobald ihr es nicht mehr im Wasser aushaltet (weil es wehtut!), geht einen Schritt zurück – eben da hin, wo es euch nicht mehr weh tut – und messt die Temperatur.

Ich habe dieses Experiment während unsrer Australienreise machen können: Meine Schmerzgrenze liegt ziemlich genau bei 43°C (also noch innerhalb des Bereichs, den die Warmsensoren abdecken). Das macht Sinn, denn die “offizielle” Höchsttemperatur, ab welcher unsere Proteine ihre Funktionsfähigkeit verlieren, beträgt 42°C.

Doch auch plötzliche Kälte kann Schmerzreize auslösen. Das ist auch sinnvoll, denn extreme Kälte kann unser Körpergewebe genauso zerstören wie extreme Wärme!

Beispiele für die Arbeit der Warm- und Kalt-Sensoren

Wenn wir im Winter von draussen reinkommen, nimmt der Wärmeverlust über die Haut rasch ab, da die Luft aussen um uns herum schnell einmal 20°C wärmer wird. Die Haut wärmt sich rasch auf und die Kältesensoren melden: Sehr viel weniger kalt! Und sobald die Gewebetemperatur die 30°C überschreitet, beginnen die Wärmesensoren zudem “Warm!” zu melden.

Wenn wir dagegen im heissen Sommer nach draussen gehen, wird die Wärmeabgabe über die Haut plötzlich schwierig, sodass die Temperatur des Gewebes leicht bei über 30°C ansteigt. Die Wärmesensoren, die zuvor inaktiv waren, melden nun: Warm!. Wenn wir aber wieder in die auf 20°C klimatisierte Wohnung gehen, sinkt die Gewebetemperatur: Die Wärmesensoren melden “weniger warm”. Unterschreitet die Gewebetemperatur dabei die 30°C, beginnen die Kältesensoren zudem, “Kalt!” zu melden.

Aus der Kälte kommend empfinden die Kältesensoren 28°C (im Gewebe!) also als “Wärmer!” (= “weniger kalt”), ehe die Wärmesensoren mit einer ersten “Warm!”-Meldung zu arbeiten beginnen.

Indessen beginnen aus der Wärme kommend die Kaltsensoren erst bei knapp unter 30°C mit einer ersten “Kalt!”-Meldung zu arbeiten, nachdem die Wärmesensoren zunächst “weniger warm” gemeldet haben.

Die Fähigkeit unserer Temperatursensoren, Temperaturänderungen zu messen, erlaubt uns also, die Richtung einer Temperaturänderung (nach oben oder nach unten) zu erkennen, auch wenn uns das Gefühl für die absolute Temperatur damit abgeht.

Kalt haben oder frieren? Wo ist der Unterschied?

Wenn wir Kälte empfinden bzw. “kalt haben”, wie wir hier in der Schweiz sagen, frieren wir nicht automatisch. Das geschieht nämlich erst, wenn die Innentemperatur unseres Körpers unter den Sollwert fällt.

Dazu kommt es entweder, wenn wir zu viel Wärme an die Umgebung verlieren und so eine (beginnende) Unterkühlung erleiden, oder wenn wir Fieber bekommen. Dann nämlich setzt die Körper-Kontrollzentrale den Sollwert für die Temperatur im Körperinneren um wenige Grad Celsius nach oben (die höhere Temperatur bedeutet mehr Energie für Stoffwechselvorgänge zur Infektabwehr und eine unbequemere Umgebung für Krankheitserreger – kurzum: Kriegszustand).

Beim Vergleich des neuen Solls mit dem Ist-Zustand stellen die Gewebe so dasselbe fest wie bei einer Unterkühlung: “Wir sind zu kalt – wir müssen mehr Wärme produzieren und festhalten!”

Viel Wärme können vor allem die Muskeln produzieren, wenn sie sich bewegen. Also fangen die Muskeln wild an zu zucken und zu zittern: Schüttelfrost! Dazu kommt ein generelles Kälteempfinden, das uns unter möglichst warme Decken kriechen lässt – dort geht dem Körper weniger Wärme verloren.

Auch eine “Gänsehaut” dient(e) übrigens dazu, Wärme im Körper festzuhalten: Sie ist der Versuch, unser (fast) nicht mehr vorhandenes Fell zu sträuben, sodass es eine lauschig warme Luftschicht über der Haut umschliessen kann.

Zusammenfassung

Wir Menschen (und viele andere Tiere) nehmen vornehmlich Änderungen der Temperatur unseres Hautgewebes wahr. Diese Temperatur kann von einer Vielzahl von Faktoren beeinflusst werden.

Zur Temperaturwahrnehmung kommen zwei Sorten Sensoren für verschiedene Temperaturbereiche zum Einsatz. So kann die Überschreitung der Grenze zwischen den beiden Bereichen je nach Richtung zu unterschiedlichen Signalfolgen führen.

Zusätzliche Schmerzrezeptoren hindern uns daran, den wahrnehmbaren lebensfreundlichen Temperaturbereich leichtfertig zu verlassen.

Kalt haben bedeutet aber nicht automatisch frieren: Wir frieren erst (mit Schüttelfrost und starkem Verlangen nach wärmerer Umgebung), wenn die Körperinnentemperatur unter den Sollwert fällt.

Sind euch diese Eigenheiten unserer Temperaturwahrnehmung auch schon aufgefallen? Bei welchen Umgebungsbedingungen fühlt ihr euch denn am wohlsten?

Zeolith und Detox - Taugen Klinoptilolith und Co zum Entgiften?

Im ersten Beitrag über Zeolith – besser Zeolithe, denn es handelt sich um eine ganze Familie von Stoffen – habe ich euch diese ganz besonderen Steine als Wasserenthärter, Spülmaschinentrockner und Rohstoff für Katzenstreu vorgestellt. Die Zeolithe bestehen aus einem festen Ionengitter aus Silizium- und Aluminiumionen, das negativ geladen ist (je grösser der Aluminiumanteil ist, desto mehr). Dieses Gitter enthält relativ grosse Aussparungen, regelrechte “Poren”. In diesen Poren können Wassermoleküle und positiv geladene Ionen (Kationen) angelagert werden. So ist gewährleistet, dass der Zeolith als Ganzes nicht elektrisch geladen ist.

So können Zeolithe mit grossem Aluminiumanteil ( Silizium : Aluminium = 1:1 gilt als gross!) nicht nur viel Wasser aufnehmen, sondern auch als Ionenaustauscher herhalten: Wenn im Wasser ausserhalb des Kristalls Kationen sind, die dem Zeolith besser “passen”, werden diese Ionen in den Poren angelagert und die ursprünglichen dafür freigesetzt. Da der in Waschmitteln eingesetzte synthetische Zeolith A Calcium-Ionen lieber bindet als Natrium-Ionen, kann er das Waschwasser “enthärten”, indem er die Calcium-Ionen daraus aufnimmt und dafür Natrium-Ionen abgibt.

Die “Schwamm-Wirkung” der Zeolithe führt schnell zu weiteren Anwendungs-Ideen. Warum nicht auch Sachen aufsaugen, die nicht nur lästig, sondern wirklich gefährlich sind?

Zeolith und “Detox” – Wie sinnvoll ist die “Entgiftung” mit den saugfähigen Steinen?

Zu den Metall-Kationen, die es sich gern im Zeolith-Gitter gemütlich machen, gehören zum Beispiel auch Cäsium- (Cs+ ) und Strontium-(Sr2+) Ionen. Deren radioaktive Vertreter entstehen als Nebenprodukte in Kernreaktoren und können bei Lecks oder gar einem Reaktorunglück zum Problem werden. So wurden schon nach der Katastrophe von Tschernobyl Zeolithe verwendet, um solche radioaktiven Ionen aus verseuchtem Wasser zu filtern (näheres dazu hier).

Könnte man das nicht nutzen, um – nicht nur radioaktive – Schwermetalle und andere Schadstoffe aus unserem Körper zu entfernen? Mit Hilfe von natürlich vorkommenden Steinen?

So zumindest lautet die Idee verschiedener Hersteller von Nahrungsergänzungsmitteln und ihrer Anhänger.

Was Detox-Zeolithe tun sollen

Produktbeschreibungen für Detox-Kuren mit “Zeolith” offenbaren eine ganze Palette von Wirkungen. Allen voran steht eine “Reduzierung der Ammonium- und Schwermetallbelastung des Körpers”, indem es “Giftstoffe und überschüssige Säuren im Darm bindet”. In den Beschreibungen angegebene Folgen dessen seien zum Beispiel (wörtliche Zitate von Anbietern von Zeolith-Kuren von Googles Seite 1, die ich hier bewusst nicht verlinke):

  • Entlastung des Stoffwechsels von Leber, Niere, Bauchspeichedrüse und Blut (mittels Entgiftung über den Darm)
  • “schnellere Regenerationen”
  • Stärkung des Immunsystems
  • Anti-Aging-Effekt
  • Steigerung von Energie, Vitalität und Lebensqualität
  • Bindung und Entfernung von freien Radikalen
  • Versorgung mit Calcium und Magnesium (allenfalls durch Beimengung von entsprechenden Verbindungen)

Um all das zu erreichen genüge es laut der Hersteller, regelmässig und allenfalls dauerhaft Zeolithe einzunehmen.

Was Zeolithe im Magen-Darm-Trakt tun können

Stoffe aus dem Darminhalt aufnehmen

Einmal verspeist können Zeolithe Ionen und wasserlösliche Stoffe genau an ihrem Aufenthaltsort aufnehmen: Im Inneren von Magen und Darm – im Nahrungsbrei.

Metallionen aus dem Darminhalt austauschen

Je nach Zusammensetzung können Zeolithe aber nicht nur Schwermetalle, sondern auch wertvolle Nährstoffe wie Calcium oder Eisen aus der Nahrung abgreifen.

Für die Reihenfolge, welche Ionen gegen welche ausgetauscht werden, gibt es eine Faustregel: Zweifach positiv geladene “haften” besser am Zeolith als einfach positiv geladene Ionen, kleine Ionen besser als grosse. Ein Zeolith, der Natrium (Na+) oder Kalium (K+) enthält, wird diese Ionen demnach für Calcium- (Ca2+), Magnesium-(Mg2+) und Eisen- (Fe2+)ionen abgeben. Währenddessen würde ein Zeolith, der Calciumionen enthält, diese nur gegen kleine zweiwertige Ionen, wie Magnesium- oder Eisenionen wieder hergeben.

Radioaktives Cäsium entfernen

Cäsium ist chemisch den Elementen Natrium und Kalium ähnlich und damit gut wasserlöslich. So können seine Ionen (Cs+) sich – im Unterschied zu denen vieler anderer Schwermetalle – ziemlich frei im Körper bewegen und sich überdies an Klinoptilolith anlagern. Das funktioniert zumindest im Tierversuch bei Ratten und Hühnern. Mit Menschen hat man das im Rahmen einer Studie noch nicht probiert.

Magensäure neutralisieren

Zeolithe sind tatsächlich basisch. Säure zur Neutralisation finden sie auf ihrem Weg durch den Verdauungstrakt auch reichlich vor: Im Magensaft, wo sie wichtige Aufgaben hat. Neben denen neutralisiert sie auch gleich die Zeolithe. So ist von deren basischen Eigenschaften nach dem Magendurchgang nichts mehr übrig. Für die Neutralisation der Magensäure sorgt der Körper schliesslich selbst beim Übergang in den Darmtrakt: Dessen Inhalt ist nämlich grundsätzlich schwach basisch.

Was Zeolithe im Magen-Darm-Trakt aus Chemikersicht nicht können

Schwermetalle und Giftstoffe aus “Speicherorganen” wie Leber, Nieren, Haut und Zähnen entfernen

Der Darm ist zur Aufnahme, nicht zur Ausscheidung solcher Stoffe geschaffen. Schliesslich wollen wir die nützlichen darunter ja aus dem Nahrungsbrei herausholen und sie nicht wieder an diesen verlieren. Was einmal aus der Nahrung in den Körper gelangt, bleibt also drin. Ausnahme: Gut wasserlösliche Ionen und Kleinstmoleküle, die durch Ionenkanäle und Transportproteine zwecks Elektrolythaushalt rein und raus können!

Es sei denn, es findet einen anderen Weg hinaus – über die körpereigenen Entgiftungsanlagen: Leber, Nieren und Lunge. Die Leber wiederum hat tatsächlich einen Hinterausgang in den Darm: Die Galle. Gallenflüssigkeit enthält tatsächlich grosse Abfall-Moleküle, die in der Leber so umgebaut wurden, dass sie wasserlöslich sind. So können sie ungehindert über den Darm ausgeschieden werden. Diese Moleküle sind nun aber so gross, dass sie auch nicht fälschlich wieder in den Körper hinein gelangen können.

Schwermetallionen effektiv gegen Natrium-, Kalium- und ähnliche Ionen austauschen

Die meisten Schwermetallionen schwimmen gar nicht frei im Darminhalt oder sonstwo im Körper umher, sondern sind an die verschiedensten Moleküle gebunden. Diese Bindungen müssen erst gebrochen werden, bevor die Ionen in die Poren des Zeoliths gelangen können (denn die meisten “Anhängsel”-Moleküle sind dafür zu gross). Somit ist theoretisch nur ein kleiner Teil der Schwermetalle im Darminhalt für das Zeolith “zu haben”.

Zwischen Giftstoffen und Nützlichem unterscheiden

Neben unerwünschten Stoffen gibt es in Magen und Darm eine Unzahl weiterer Stoffe: Nährstoffe, unverwertbare Nahrungsbestandteile, Bestandteile der Verdauungsflüssigkeiten, die sich alle mehr oder weniger gern um Zeolith-Pulverkörner herum lagern oder in die Poren eindringen. Und all jene, die sich eher gern mit Klinoptilolith oder anderen Zeolithen abgeben, konkurrieren mit jeglichen Giftstoffen um den Platz in den Zeolith-Poren. Da bleibt dann nur noch ein Bruchteil des Platzes für die Dinge, die man eigentlich “ausleiten” will.

Giftige organische Moleküle aus dem Darminhalt entfernen

Die Moleküle der berühmt-berüchtigten Giftstoffe sind nämlich entweder so gross (Aflatoxine, Pestizide, Antibiotika,…), dass sie gar nicht in die Poren von Naturzeolith (ergo Klinoptilolith) hinein passen. Oder sie sind so klein (z.B. Methanol), dass sie flink an jedem Zeolith vorbei in den Körper gelangen.

Den Körper mit Silizium versorgen

Unsere Magensäure ist nicht in der Lage, das Gitter von Klinoptilolith anzugreifen und Atome heraus zu lösen (und im basischen Inhalt des Darmes geht das erst recht nicht). Das ist auch gut so. Denn wenn sie das könnte, würde zuerst das Aluminium aus dem Zeolith freigesetzt. Und das hat einen denkbar schlechten Ruf, wenn es um die körperliche Gesundheit geht.

einen “Kater” bekämpfen

Nicht nur, dass sich Ethanol und sein Abbauprodukt Acetaldehyd (der eigentliche Verursacher des Katers) sich kaum an Klinoptilolith anlagern. Das Acetaldehyd und damit der Kater entstehen zudem in Zellen fernab vom Darm, wo die Zeolithe nie hingelangen und etwas daran ändern könnten. Was wirklich gegen einen Kater hilft und was im Körper mit dem Alkohol passiert, könnt ihr hier nachlesen.

Freie Radikale entfernen

Zeolithe sind Ionenaustauscher, keine Radikalfänger. Letztere sind Stoffe, die bei lebensförderlichen Bedingungen zu Redoxreaktionen – also dem Austausch von Elektronen – in der Lage sind. Solche Eigenschaften sind von Zeolithen nicht bekannt. Ausserdem: Freie Radikale entstehen in allen Zellen, die Energie aus der “Verbrennung” von Sauerstoff gewinnen. Also praktisch im ganzen Körper. Und das ist in den meisten Fällen weit weg vom Inhalt des Darmes.

Ammoniak aus dem Darminhalt entfernen

Ammoniak (NH3) ist ein kleines, dem Wasser ähnliches Molekül. Tatsächlich lässt das sich auch gut in den Poren von Naturzeolith unterbringen. Das Problem: Es gibt im menschlichen Darm keinen Ammoniak. Sofern wir nicht Ammoniak-Lösung trinken, was aber kaum jemand freiwillig tun wird: Die ist ätzend, giftig und stinkt! Allenfalls gibt es Ammonium-Ionen (NH4+) , die im menschlichen Darm entstehen (durch Bakterien, die unverdaute Proteine zersetzen). Die wiederum sind gut wasserlöslich und gelangen über die Blutbahn in die Leber. Dort wird das Ammonium zu Harnstoff verbaut und findet über die Nieren nach draussen. Und das schafft eine gesunde Leber gut und gern allein.

Nur Widerkäuer (Rinder, Schafe,… ) haben Bakterien in ihrem Verdauungstrakt, die wirklich Ammoniak produzieren. Das ist ein Grund für den Einsatz von Zeolithen in Nutztierfutter.

Bakterien, Pilze oder Viren bekämpfen

Bakterien und Pilze sind Lebewesen, die aus mindestens einer kompletten Zelle bestehen Damit sind sie um viele Grössenordnungen grösser als alle bereits erwähnten Moleküle. Nie im Leben passen die in die Poren von Klinoptilolith oder einem ähnlichen Zeolith!

Auch Viren – wenngleich keine klassischen Lebewesen – sind um Grössenordnungen grösser als die Poren im Zeolith-Gitter.

Eine Anwendungsmöglichkeit massgeschneiderter, synthetischer Zeolithe mit grossen Poren ist die Verwendung als “Behälter” z.B. für Antibiotika-Moleküle oder Silber-(Ag+)Ionen. Letztere haben eine bakterizide Wirkung und lassen sich durch Ionenaustausch im Zeolith deponieren. Solche präparierten Zeolithe werden dann verwendet, um z.B. keimabweisende Oberflächen herzustellen.

Dass Zeolithe ohne solches Gepäck meines Wissens keine Bakterien töten, ist übrigens gut so. Denn in unserem Darm gibt es eine Menge davon, die überaus wichtig für unsere Gesundheit sind. Und falls Zeolithe doch Bakterien töten, wäre das ein triftiger Grund, sie nicht einzunehmen!

Krebs heilen

Wissenschaftler haben tatsächlich Hinweise darauf gefunden, dass Zeolithe in der Nährflüssigkeit in Zellkulturen zu schnellerem Absterben der Zellen führen (und damit ein Zellgift sind). Im Tierversuch führen sie nach Auftragen zudem zur Verkleinerung von Hauttumoren durch extreme Austrocknung derselben. Dementsprechend sind die Krebsforscher an Zeolithen interessiert. Von den genannten Hinweisen zu einem wirksamen und anwendbaren Medikament ist es aber noch ein weiter Weg.

Und was ist mit Bentonit?

Bentonit wird häufig im Zusammenhang mit Zeolithen genannt und vertrieben, obwohl es gar nicht zu letzteren zählt. Bentonit ist nämlich eine Tonerde, die hauptsächlich aus dem Tonmineral Montmorillonit besteht. Das enthält zwar wie die Zeolithe Silizium, Aluminium, Sauerstoff und verschiedene positive Metallionen und kann sehr viel Wasser aufnehmen. Silizium und Aluminium sind aber nicht in einem festen Gerüst angeordnet, sondern bilden locker verbundene Schichten.

Deshalb hat Bentonit – anders als Zeolithe – die Eigenart, im Zuge der Aufnahme von Wasser aufzuquellen und dann fest zu werden. Und das nicht zu knapp. Das kann besonders im Magen-Darm-Trakt, wo im Allgemeinen wenig Platz ist, unangenehme, wenn nicht gar gefährliche Folgen haben: Verstopfung! Daher ist die Einnahme von Bentonit gar nicht zu empfehlen!

Und die übrigen Detox-Wirkungen? Gibt es dazu Untersuchungen?

“Stärkung des Immunsystems”, “Anti-Aging-Effekt”, “Steigerung von Energie, Vitalität und Lebensenergie” sowie “schnellere Regenerationen” (warum steht das in der Mehrzahl?!) sind äusserst schwammige Begriffe. So wie die ganze Welt um “Detox” und “Entgiftung” als Modeerscheinung eine äusserst schwammige Angelegenheit ist.

Von “Schlacken”, “Toxinen” und “Umweltgiften” ist da die Rede, aber kaum jemand (wenn nicht niemand), der Zeolithe und andere Entgiftungshilfen anpreist, weiss diese Stoffe oder ihre Herkunft im Einzelnen zu benennen. Kein Wunder: Die Liste dessen, was Klinoptilolith nicht kann, ist ja ziemlich lang und viele populäre Kandidaten für diese Stoffgruppen darauf vertreten. Damit wären konkrete Angaben zur Wirkweise von Zeolith und anderen Detox-Kuren ja viel zu leicht widerlegbar, um lange geduldet zu werden. Dementsprechend uneinheitlich und diffus sind auch die Beschreibungen der Wirkweise dieses und anderer Detox-Hilfsmittel.

Und was man nicht genau benennen kann, kann man nur schwerlich untersuchen. Deshalb gibt es weder Studien, die einen gesundheitlichen Vorteil von Detox-Kuren (ob nun mit oder ohne Zeolith) belegen, noch solche, welche die gegenteilige Aussage stützen würden.

Anders sieht das aus, wenn sich der Begriff “Detox” auf die medizinische Behandlung akuter Vergiftungen (im Mediziner-Jargon “Intox”) bezieht. Die wird wiederum wird nur fällig, wenn ein giftiger Stoff in grossen Mengen (meist versehentlich) aufgenommen wurde oder/und das Versagen von Nieren oder Leber aufgefangen werden muss. Solche Entgiftungsmassnahmen gehen oft am empfindlichen Verdauungstrakt vorbei. Ein Beispiel ist die Hämodialyse (maschinelle “Blutwäsche”), die sowohl als Notfallmassnahme als auch langfristig bei Patienten ohne funktionierende Nieren zum Einsatz kommt.

Mit Detox-Kuren im Sinne der Anbieter von Nahrungsergänzungsmitteln haben solche – gut als wirksam belegten – Methoden aber nichts zu tun.

Fazit

Die Wirkweise und der mögliche Nutzen von Detox-Kuren ist im Allgemeinen höchst unklar, nicht zuletzt weil es zu den schwammigen und uneinheitlichen Aussagen der Anbieter kaum bis keine belastbare/n Studien gibt.

Das gilt auch für Zeolithe, insbesondere Klinoptilolith, als Entgiftungs-Hilfsmittel. Meine Fachkollegin Dr. Arnold hat für einen Vortrag zum Thema gerade einmal 19 Veröffentlichungen rund um die Anwendung von Zeolithen am Menschen gefunden – wissenschaftlich unbrauchbare und solche mit fragwürdigen Schlussfolgerungen mit eingeschlossen! Die kommentierte Liste mit Links gibt es am Ende ihres hochinteressanten Handouts zum Vortrag, das auch für meinen Artikel eine wichtige Grundlage ist und viele weitere Einzelheiten enthält.

Die Liste der möglichen Wirkungen, die aus Chemiker-Sicht nicht funktionieren dürften, ist dagegen lang. Das sind (nicht nur) in meinen Augen genügend Gründe, um dem Detox-Hype im Allgmeinen und Zeolithen zum Einnehmen im Besonderen aus dem Weg zu gehen. Und euch zu raten, dasselbe zu tun.

Umweltbelastung und überzogene Preise

Dazu kommt, dass die Gewinnung von Naturzeolith – im Tagebau – naturgemäss nicht eben umweltfreundlich ist. Für ein Mittel ohne nachgewiesene Wirkung die Erde umgraben und Landschaften zerstören? Da gibt es sinnvollere und nachhaltigere Wege, etwas für die Gesundheit zu tun!

In jedem Fall rechtfertigen weder die Herstellungskosten für Naturzeolith noch die Liste den stolzen Preis für Zeolith-Produkte zur Detox-Kur: Angeblich liegt der Preis für ein Kilo Naturzeolith beim Grosshersteller bei rund 35 Eurocent. Fein gemahlen und in einer an Medikamente erinnernden Dose verpackt findet sich das Kilo Steinstaub dann für gut und gerne 150 Euro (!) im Angebot wieder! Da möchte ich gar nicht wissen, wie gross diese Diskrepanz in der teuren Schweiz ausfällt.

Da freue ich mich lieber an dem wasserenthärtenden Zeolith in meinem Waschmittel und denke schmunzelnd an Helge Schneiders “Katzenklo, Katzenklo, ja das macht die Katze froh!” – mit Zeolithstreu. Und bin mir dabei stets bewusst: Zeolith kann eben doch nicht alles.

Und seid ihr schon einmal mit Zeolithen als Detox-Kur in Kontakt gekommen? Was haltet ihr davon? Was sind eure Erfahrungen?

Ein Laien-Defibrillator - Wie funktioniert er?

Eine Fernseh-Notaufnahme in einer typischen Krankenhausserie: Alarmbereitschaft – es herrscht hektisches Treiben. Von draussen ist das Martinshorn des vorfahrenden Rettungswagen zu hören. Die Tür fliegt auf, Sanitäter im Laufschritt schieben eine Rolltrage herein, darauf ein regloser, bereits verkabelter Mensch. Sofort schart sich eine Gruppe blau oder grün gekleideter Gestalten um ihn. Alles ist gleichzeitig zu tun: Beatmungsgerät anschliessen, Tropf erneuern, EKG überprüfen….

Plötzlich ertönt ein alarmierender Dauerpiepton, ein Monitor zeigt eine waagerechte Linie [ein verbreiteter Fehler in solchen Filmszenen… warum? Das erfahrt ihr in diesem Artikel!]: Herzversagen. “Reanimation!”, brüllt der leitende Arzt über das Treiben seiner Helfer und greift nach zwei handtellergrossen, mit einem Gerät verkabelten Platten. In einer fachlich gut beratenen Produktion macht sich einer seiner Helfer inzwischen an eine Herzmassage.

“Defibrillator aufladen – 200 Joule!”, fordert der Arzt mit den Platten an den Händen, und ein schrilles, ansteigendes Pfeifen zeigt an, dass das Gerät in Bereitschaft geht. Schon sind die Platten an die nackte Brust des leblosen Patienten gedrückt. “Achtung, zurück!” Alle anderen Helfer lösen sich von der Rolltrage. Im nächsten Augenblick endet das Pfeifen des Geräts in einem heftigen Schnappen. Der Oberkörper des Patienten bäumt sich auf, springt regelrecht von der Liege. Danach fällt er zurück, so leblos wie zuvor.

“Noch einmal – 250 Joule!”, befielt der Arzt, und das Geschehen wiederholt sich. Einmal, zweimal,… Ist dem Patienten ein Happy End beschieden, stellt sich auf dem Monitor schliesslich eine gleichmässige EKG-Kurve samt rhythmischem Piepsen ein – das Herz schlägt wieder. Bei einem weniger guten Ende bleibt die Linie waagerecht und die Szene endet mit dem traurigen Dauerpiepton, der einen vollkommenen Herzstillstand anzeigt. Der Patient ist tot.

Herzversagen, ein Defibrillator und unser Alltag – wie passt das zusammen?

Schon längst gibt es Defibrillatoren – Elektroschock-Geräte zur Wiederbelebung – nicht mehr nur in Krankenhausserien und dem Arbeitsalltag von Notärzten und Sanitätern. Gefühlt an jedem öffentlichen Ort hier im Dorf hängt ein grüner Kasten mit den drei Buchstaben “AED”. Darin: Ein Defibrillator zur Benutzung durch Laien.

Und das hat seinen guten Grund: Allein in der Schweiz sterben jährlich 10’000 Menschen  an plötzlichem Herzversagen. Das sind durchschnittlich 27 pro Tag! Damit gehört ein plötzlicher Herztod in Industrieländern zu den häufigsten Todesursachen – und zwar noch vor Schlaganfall und Krebs.

Um auf die Geräte aufmerksam zu machen, die solche Leben retten können – die sind nämlich wirklich einfach zu bedienen – hat Victoria von “Kuchenerbse” eine spannende Blogparade ins Leben gerufen. Im Zuge derer zeige ich euch, was ein Defibrillator eigentlich tut, und warum es so wichtig und richtig ist, die Laiengeräte bei einem Notfall auch einzusetzen.

Was ein Defibrillator, kurz “Defi”, tut? Er versetzt unserem Herzen buchstäblich einen Tritt in den…nein, nicht den Gesässmuskel, sondern den Herzmuskel, damit der wieder richtig schlägt. Um zu verstehen, wie der Defibrillator das anstellt, müssen wir verstehen, wie unser Herz funktioniert.

Wie funktioniert unser Herz?

Das Herz ist eine Pumpe, bestehend aus einem Muskel mit mehreren Hohlräumen – zwei Vorhöfen und zwei Herzkammern, der sich rhythmisch zusammenzieht und so das Blut in die Blutgefässe pumpt.

Was treibt das Herz zum Schlagen an?

Der Herzmuskel hat seinen eigenen, vom restlichen Körper unabhängigen elektrischen Antrieb. Einige wenige Zellen im oberen Bereich des Herzens erzeugen Elektrizität, die das ganze Organ zum Schlagen anregt.

Wie wird im Herzen Strom erzeugt?

Körperzellen können wie kleine Batterien funktionieren: Ihre Aussenhülle ist nämlich – je nach ihrer Ausstattung mit Proteinen – nur für bestimmte Ionen (elektrisch geladene Teilchen) durchlässig. Einige Proteine bilden für bestimmte Ionensorten kleine Tunnel durch die Zellwand, andere sind richtige kleine Pumpen, die “ihre” Ionen nur in eine Richtung befördern. So können sich in der Zelle andere Ladungen ansammeln als draussen.

In den sogenannten Schrittmacher-Zellen des Herzens (die bilden den sogenannten Sinusknoten) sind im Ruhezustand in der Zelle mehr negative Ladungen als positive, während mehr positive Ladungen (vor allem Calcium-, Ca2+-Ionen) draussen sind. Würde man jetzt ein Voltmeter mit einem Kontakt in der Zelle und einem Kontakt draussen anlegen, könnte man eine Spannung (Potentialdifferenz) messen. Das ist grundsätzlich an vielen Zellen möglich.

Strompulse durch veränderliche Spannung

Das Besondere an den Schrittmacherzellen ist, dass ihre Aussenhülle für positive Ionen leicht durchlässig ist. Dafür sorgen besondere Protein-Tunnel durch die Zell-Aussenwand (die Mediziner haben Humor, denn sie nennen diese speziellen Tunnel “funny channels”, also “lustige Kanäle”).

Schema für eine Schrittmacherzelle: positive Ladungen sammeln sich draussen, negative drinnen. Durch Ionenkanäle dringen positive Ionen durch die Aussenhülle in die Zelle.

Ein Schema für eine Schrittmacherzelle: rechts oben ein offener “funny channel”, durch den Calcium- (rot) und Kalium-(violett) Ionen in die Zelle gelangen.

So strömen verschiedene postive Ionen mit der Zeit nach innen (Triebkraft dafür ist Osmose, die ich anlässlich der Ei-Experimente hier näher erkläre). Damit wird das Innere der Zelle immer weniger negativ. Wird dabei ein bestimmter Wert (das “Schwellenpotential”) unterschritten, wertet die Zelle dies als Signal, all ihre Eingänge für Ca2+-Ionen zu öffnen.

Schema für eine Schrittmacherzelle: Das Schwellenpotential ist erreicht, Calcium-Kanäle öffnen sich.

Sinkt die Spannung zwischen innen und aussen auf -40 Millivolt, öffnen sich Tunnel für Calcium-Ionen, die so in die Zelle strömen können. Die Spannung sinkt damit sehr schnell weiter.

Nun stürmen die Ca2+-Ionen die Zellen wie Kunden einen Apple-Store beim Erscheinen eines neuen Iphones. So wird die elektrische Ladung drinnen sogar positiv. Das wiederum siganlisiert der Zelle:”Wir sind überfüllt!” Es öffnen sich “Notausgänge” für Kalium(K+)-Ionen, die daraufhin eiligst nach draussen strömen, sodass das Potential rasch wieder in negative Bereiche absinkt.

Schema für eine Schrittmacherzelle: Die Spannung wird wieder aufgebaut.

Durch den Einstrom der vielen positiven Ladungen wird die Spannung positiv. Jetzt öffnen sich Tunnel für Kalium-Ionen (die “Notausgänge”), sodass die K+-Ionen nach draussen können. Die Spannung wird dadurch wieder negativ.

Währenddessen (und eigentlich ständig) arbeiten winzige Pumpenproteine in der Zellhülle daran, die Ca2+-Ionen unter Verbrauch chemischer Energie langsam wieder nach draussen zu befördern. Die Durchlässigkeit der Zellhülle für positive Ionen führt jedoch dazu, dass dies eine rechte Sisyphus-Arbeit ist. Denn die Ionen strömen schneller wieder rein, als sie rausgepumpt werden können. So “entlädt” sich die Zelle bald von neuem und muss wiederum die K+-Notausgänge öffnen, um ihr Ausgangspotential wieder herzustellen.

Das alles geschieht normalerweise 60 bis 100 mal in der Minute.

Wie können solche Signale durch den Herzmuskel fliessen?

Alle Zellen im Herzmuskel sind durch allgemein ionendurchlässige Kanäle miteinander verbunden. Wenn positive Ionen die Schrittmacherzellen stürmen, drängen sie auch durch diese Kanäle in benachbarte Zellen und “entladen” diese ebenfalls, sodass sie wiederum ihre Nachbarn mit entladen, auch wenn die keine “funny channels” besitzen.

Längsschnitt durchs menschliche Herz mit eingezeichneten Reizleitungen

Die “Nerven”, durch welche sich die elektrischen Impulse durch das Herz ausbreiten, sind violett eingezeichnet: Der Sinusknoten liegt links oben (1). Von dort breiten sich die Signale über die Vorhöfe aus (einer davon ist links angeschnitten) und münden in den AV-Knoten (2). Weiter werden sie über das His-Bündel zu den Verzweigungen der Purkinje-Fasern (3) in das Muskelgewebe um die Herzkammern weitergeleitet. (von J. Heuser [CC BY 2.5 ], via Wikimedia Commons)

So breitet sich die Entladung zunächst in die Muskelzellen der Herzvorhöfe aus. Und Muskelzellen erkennen viel Ca2+ in ihrem Inneren als Signal für “Zieh dich zusammen!”. So ziehen sich die Vorhöfe zusammen und quetschen dabei das Blut aus ihrem Innern in die Herzkammern.

Indessen erreicht die Ausbreitung der Entladung die nächsten Nachbarn der Vorhof-Muskelzellen – eine besondere Art Nervenzellen, die vom AV-Knoten ausgehen, sich zum His-Bündel und weiter zu den Purkinje-Fasern verzweigen. Diese feinen “Nervenenden” münden schliesslich in die unteren Enden der Herzkammern (also an der Herzspitze!), von wo die sich ausbreitende Entladung ihren Weg durch die Herzkammer-Muskelzellen nimmt (und zwar von der Herzspitze zurück in Richtung der Vorhöfe!). Die so in die Muskelzellen einströmenden Calcium-Ionen bewirken wiederum, dass die Muskelzellen sich zusammenziehen. So wird das Blut aus den Herzkammern in den kleinen und grossen Kreislauf hinausgedrückt.

Animation der Erregungsausbreitung durch das schlagende Herz - dazu: Verlauf einer normalen EKG-Kurve

Der Weg der sich ausbreitenden Entladungen (rot) durch den schlagenden Herzmuskel: Die Wellen und Zacken im EKG stehen für Änderungen der Spannung an den Zellen. Der erste Hügel zeigt die Ausbreitung der Entladung über die Vorhöfe an, die grosse Zacke die Ausbreitung in die Herzkammern. Der zweite Hügel dahinter entsteht durch die Rückkehr der Herzkammerzellen zur ursprünglichen Spannung. (By Kalumet [GFDL or CC-BY-SA-3.0], from Wikimedia Commons)

Warum es keinen Signal-Salat gibt

Dabei sind die Herzmuskelzellen so eingerichtet, dass es nach der Entladung ein Weilchen (etwa 2-3 Zehntelsekunden) dauert, bis die Notausgänge sich öffnen und das Potential im Inneren wieder negativ wird. In diesem Zeitraum kann sich keine weitere Entladung durch die Zellen ausbreiten (denn die sind ja schon entladen). So wird verhindert, dass ein Impuls vom Sinusknoten anfängt, innerhalb des Herzmuskels im Kreis zu laufen. Stattdessen verläuft das Signal im Sande, sobald es keine Nachbarzellen mehr gibt, die noch nicht entladen sind.

Was passiert, wenn die Sinuszellen kaputt gehen?

So ein lebenswichtiges Organ wie das Herz ist natürlich mit Notfallsystemen ausgestattet. So können auch die Zellen des AV-Knotens als Schrittmacher wirken – allerdings langsamer (40 bis 55 mal pro Minute), sodass normalerweise stets ein Impuls vom Sinusknoten ankommt, bevor der AV-Knoten selbst einen erzeugen kann. Wenn der Sinusknoten aber ausfällt, treibt der AV-Rhythmus zumindest die Herzkammern zum langsamen Weiterarbeiten an. Damit stirbt der Körper nicht sofort, wenn es im Sinusknoten hakt. So erhalten Ärzte die Gelegenheit, dem Patienten einen Herzschrittmacher – ein technisches Gerät, das die Arbeit des Sinusknotens übernimmt und rhythmisch elektrische Entladungen anstösst – einzupflanzen.

Übrigens: Wenn neben dem Sinusknoten auch der AV-Knoten streikt, können die Herzkammern sogar ein wenig von alleine pumpen – allerdings nur 25 bis 40 mal pro Minute, was zur Versorgung des Körpers mit Sauerstoff nicht wirklich ausreicht. Deshalb kann der Notarzt seinen Defibrillator zu einem “äusseren” Schrittmacher umfunktionieren und durch die Hand-Elektroden, die sonst zur Verabreichung des grossen Elektroschocks dienen, kleinere Strompulse schicken (in so einem Zustand ist der Patient naturgemäss bewusstlos und wird im Folgenden narkotisiert, sodass er von den Stromschlägen nichts mitbekommt). Die halten das Herz des Patienten auf Trab, bis er in der Klinik ankommt und einen richtigen Herzschrittmacher bekommen kann.

Und wann braucht man einen Defibrillator?

Wenn nun innerhalb des Herzgewebes, zum Beispiel in einer Purkinje-Faser, etwas kaputt ist, kann es passieren, dass sich die Zellen an der kaputten Stelle nicht entladen können. Wenn dann ein Impuls vom Sinusknoten eintrifft, versandet er an dieser Stelle. Das führt jedoch dazu, dass die Zellen gleich hinter der kaputten Stelle in Entladungsbereitschaft bleiben. So kann sich der Impuls, nachdem er über eine andere Purkinje-Faser in den Herzmuskel gelangt ist, auch rückwärts durch die beschädigte Faser bis zum Hindernis ausbreiten.

Wenn er dort versandet, ist das nicht weiter schlimm. Wenn der rückwärts gerichtete Impuls allerdings weitere entladungsfähige Zellen findet, kann er sich einen Weg um das Hindernis herum suchen und die inzwischen in die Bereitschaft zurückgekehrten Zellen erneut entladen. Der Impuls läuft dann im Kreis!

Vom Flattern und Flimmern

Und diese Kreisläufe können ziemlich schnell vonstatten gehen. Schon bei einer grosszügigen Entladungspause von 3 Zehntelsekunden wären rein rechnerisch über 180 Umläufe in der Minute möglich: Extremes Herzrasen! Im schlimmsten Fall wächst sich das Ganze zu einem regelrechten Kurzschluss. Die Pulse laufen dann so schnell, dass das Herz nur noch wie rasend zuckt und nicht mehr richtig pumpen kann.

Bei 200 bis 350 Umläufen in der Minute durch die Herzkammern sprechen Ärzte von “Kammerflattern”. Das kann mit einem noch tastbaren aber entsprechend rasenden Puls einher gehen, wenngleich der Patient bewusstlos ist. Dann kann der Notarzt versuchen, den Kurzschluss mit einem Medikament, das die Zellen zeitweise für Ionen undurchlässig(er) macht, zu unterbrechen.

Bei etwa 300 bis 800 Umläufen in der Minute sprechen Ärzte von Kammerflimmern. Eigentlich handelt es sich dabei dann weniger um geordnete Umläufe als um ein wildes Entladungs-Chaos kurzgeschlossener Zellen. In diesem Zustand hat ein Patient keinen Puls mehr – das Herz kann gar nicht mehr pumpen.

Woher kennt man dann die mögliche Anzahl Umläufe bzw. Zuckungen?

Auf dem EKG (Elektrokardiogramm), das den Weg der elektrischen Entladungen durch das Herz aufzeichnet, kann man Kammerflimmern sehen: Es zeigen sich 300 bis 800 kleine Zacken pro Minute auf dem Monitor. Spätestens jetzt kann ein Defibrillator Leben retten.

EKG-Aufzeichnung während eines Kammerflimmerns: Eine dichte Reihe vieler kleiner Zacken.

Kammerflimmern auf dem EKG

Ich kann mich jedoch nicht erinnern, solch eine Zackenreihe je in einem Film oder einer Krankenhausserie gesehen zu haben. Dabei ist genau dieses Flimmern – und nicht ein stehendes Herz (die waagerechte Linie) – der eigentliche Anlass für den Einsatz des Defibrillators. Trotzdem erfreut sich das Defibrillieren in Filmszenen grosser Beliebtheit. Gibt ja schliesslich eine Menge Dramatik her.

Was macht ein Defibrillator?

Weil der Strom im Herzen in Form sich ausbreitender Entladungen von Zellen fliesst, kann man einen Kurzschluss recht einfach unterbrechen: Man sorgt dafür, dass sich alle Zellen auf einen Schlag entladen. Dann muss der kreisende Impuls zwangsläufig versanden. Und um alle Zellen gleichzeitig zu entladen, braucht man einen mächtigen Strompuls als Anstoss. Den liefert der Defibrillator.

Der stärkste aller Schrittmacher

Das Gerät enthält einen Kondensator – ein elektrisches Bauteil, das sich wie eine Mega-Schrittmacherzelle “aufladen” kann, indem es positive und negative Ladungen voneinander getrennt speichert. Auf Knopfdruck kann der Kondensator entladen und dieser “Puls” auf die Reise geschickt werden: Durch die Kabel vom Gerät zu den Paddles – den flachen Elektroden – in der Hand des Notarztes oder den Klebe-Elektroden eines automatischen Defibrillators und über deren grosse Oberfläche in den Brustkorb des Patienten.

Dort entlädt der Puls bestenfalls alle Zellen zwischen den Elektroden – alle Herzzellen eingeschlossen – gleichzeitig. Die Brustmuskeln werten die Entladung als Befehl, sich zusammen zu ziehen. Deshalb bäumt sich der Körper des Patienten in der Krankenhausserie beim Defibrillieren so von der Liege auf. Auch die Herzmuskelzellen ziehen sich zusammen und bleiben allesamt für wenige Zehntelsekunden entladen, bevor sie alle zusammen zur “Bereitschaft” zurückkehren.

Wenn dann die nächste “normale” Entladung vom Sinusknoten her kommt, kann sie sich ordnungsgemäss ausbreiten, und das Herz schlägt bestenfalls normal weiter. Zumindest vorerst – denn der Schaden an der Leitung im Herzen, der zum Kurzschluss geführt hat, wird durch den Stromschlag oft nicht behoben. Dafür haben die Ärzte nun Zeit, diesen Schaden auszumachen und zu beheben (indem sie zum Beispiel einen Herzinfarkt behandeln).

Warum müssen beim Defibrillieren alle anderen zurücktreten?

Der menschliche Körper, ganz besonders die Hautoberfläche, ist im Ganzen elektrisch leitfähig. So kann der heftige Stromschlag, der sich vom Defibrillator in die Brust des Patienten fährt, auch auf Menschen ausbreiten, die den Patientenkörper berühren. Deshalb warnt der Notarzt vor dem Auslösen des Stromschlags seine Mitarbeiter, und alle treten kurz zurück, damit niemand ungewollt getroffen wird.

Das tut nämlich nicht nur weh, sondern ein unkontrollierter Strompuls von aussen kann auch zum Kurzschluss im Herzen führen (genau deshalb ist es so gefährlich, in Steckdosen oder an Leitungen unter Strom herumzufummeln!). Und der Notarzt will ja nicht als nächstes einen seiner Kollegen defibrillieren müssen…

Wie können Laien mit einem so gefährlichen Gerät umgehen?

An vielen öffentlichen Orten, Bahnhöfen, Schulen, Sportplätzen,… findet man heutzutage tragbare Defibrillatoren, die von Laien eingesetzt werden sollen, wenn plötzlich jemand “wie tot” zusammenbricht. Doch ist das nicht gefährlich? Kann man damit nicht furchtbar viel falsch machen?

Nein: Diese Laien-Defibrillatoren (AED) sind so aufgebaut, dass sie so gut wie automatisch funktionieren! Eine Bedienungsanleitung mit Bildern (ähnlich der Karte mit den Sicherheitshinweisen im Flugzeug) zeigt, wie man die Elektroden auf den nackten Brustkorb des Patienten klebt. Sobald die Elektroden an das Gerät angeschlossen sind, “liest” der AED zunächst das EKG des Patienten. So kann er selbst erkennen, ob ein normaler, langsamer, schneller Herzschlag oder die vielen kleinen Zacken eines Kammerflimmerns auftreten.

Ein typischer AED (Laien-Defibrillator) mit Zubehör

Ein halbautomatischer Laien-Defibrillator mit rotem Knopf, Anleitungskarte, Klebeelektroden und Handbuch (By GO (MedPlus Medizintechnik GmbH) [CC BY 4.0 ], via Wikimedia Commons)

Nur dann, wenn das Gerät eine Rhythmusstörung erkennt, die durch einen Stromschlag behoben werden kann (zum Beispiel ein Kammerflimmern), gibt es einen Alarm von sich und fordert den Helfer dazu auf, einen Stromstoss auszulösen. Das wird entweder auf einem Bildschirm angezeigt, oder das Gerät spricht sogar zum Helfer.

In der Regel kann der Helfer die Entladung auslösen, indem er einen grossen roten Knopf drückt. So kann ein Mensch seine Mithelfer warnen: “Achtung, Abstand halten!”, sodass alle Helfer zurückweichen können, bevor der Stromstoss kommt.

Seltener funktionieren die Geräte vollautomatisch und lösen den Stromstoss von selbst aus. Das ist jedoch für die Helfer weniger sicher (wenn jemand die Warnung des Geräts überhört, bekommt er zwangsläufig einen Schlag ab), sodass bevorzugt halbautomatische Geräte mit dem roten Knopf zum Einsatz kommen.

Nach dem Stromstoss verfolgt das Gerät weiter das EKG des Patienten, sodass es bei Bedarf weitere Defibrillations-Versuche machen kann.

Was können wir tun, wenn jemand in unserer Umgebung “umkippt”?

Wenn jemand in eurer Umgebung unvermittelt zusammenbricht, können ganz einfache Massnahmen Leben retten:

  1. Sollte jemand in einer gefährlichen Situation “umgekippt” sein, bringt ihn oder sie zunächst rasch in Sicherheit oder lasst jemanden die Umgebung sichern (auch um euch selbst als Helfer nicht zu gefährden!).
  2. Wählt die Notrufnummer (oder lasst das jemanden tun: in der Schweiz und Österreich 144, in Deutschland 112). Die Notrufzentrale wird sofort eine/n Ambulanz/Krankenwagen und allenfalls einen Notarzt losschicken. Zudem kann der Mitarbeiter am Telefon euch direkt bei den nächsten Schritten anleiten:
  3. Macht einen kurzen “BAP”- (Bewusstsein-Atmung-Puls-)Check: Sprecht den Patienten eindringlich an (“Können Sie mich hören?” etc.). Wenn er nicht reagiert – also bewusstlos ist – prüft seine Atmung (hebt und senkt sich der Brustkorb?) und seinen Puls (am besten an der Halsschlagader oder ggfs. in der Leistengegend – und nicht mit dem Daumen!).
  4. Findet ihr keinen regelmässigen Puls, schickt jemanden, den nächsten Defibrillator zu holen (oder holt ihn selbst, wenn er in unmittelbarer Nähe ist). Beginnt dann sofort mit einer Herz-Lungen-Wiederbelebung:
  5. Legt den Bewusstlosen auf den Rücken. Macht das Brustbein des Patienten frei (von Knöpfen und anderen Störenfrieden) und platziert eure Handballen etwa drei Finger breit oberhalb der Magengrube – einen über den anderen. So könnt ihr das Brustbein kurz und kräftig nach unten drücken (keine Scheu vor möglichen Rippenbrüchen – die sind im Vergleich zum Tod durch Herzversagen das kleinere Übel!). Drückt in rhythmischen Abständen – etwa 100 bis 120 mal pro Minute. Am besten reanimiert man zu zweit: einer drückt und einer beatmet! Als passender Rhythmus für eine solche Herzmassage bei Erwachsenen* gilt der Beat des BeeGees-Songs “Stayin’ alive” (wie passend) oder neuerdings auch von “Macarena”. Wenn euch ein Mitarbeiter der Notrufzentrale am Telefon anleitet, kann er euch den Rhythmus auch vorgeben.
  6. Mund-zu-Nase-Beatmung: Legt den Kopf des Bewusstlosen leicht in den Nacken. Schaut nach, ob die Atemwege frei sind (wenn nicht, macht sie frei). Haltet dann mit einer Hand den Mund zu, indem ihr den Unterkiefer gegen den Oberkiefer schiebt und legt eure geöffneten Lippen über die Nasenlöcher des Bewusstlosen. Dann atmet einfach aus (unsere Ausatemluft enthält noch reichlich Sauerstoff). Der Brustkorb des Bewusstlosen sollte sich leicht heben. Nehmt die Lippen von der Nase und atmet vor der nächsten Atemspende normal ein.
  7. Wenn ihr den AED zur Hand und einsatzbereit habt, macht eine möglichst kurze Pause beim Drücken und klebt die Elektroden auf die nackte Haut des Bewusstlosen. Macht dann mit Herzmassage und Beatmung weiter, bis euch das Gerät andere Anweisungen gibt (z.B. zur Auslösung des Stromstosses).
  8. So lange das Gerät keine Entwarnung gibt (weil es einen “normalen” Puls registriert), macht auch nach dem Stromstoss mit der Wiederbelebung weiter – bis die Sanitäter oder/und der Notarzt eintreffen und übernehmen!

Eine Herz-Lungen-Wiederbelebung ist mächtig anstrengend und es gibt vieles gleichzeitig zu tun. Fordert daher andere Personen in der Umgebung auf, euch zu helfen und löst euch beim Drücken ab, bis der Arzt kommt (wörtlich gemeint!).

*Kinder haben eine höhere Herzfrequenz: Je kleiner das Kind ist, desto weniger stark (für die Herz-Lungen-Wiederbelebung bei einem Säugling reichen allenfalls zwei Daumen kräftiger Hände aus), aber desto schneller müsst ihr drücken, um den Kreislauf in Gang zu halten. Laien-Defibrillatoren sind grundsätzlich auf Erwachsene ausgelegt. Beachtet allfällige Altersangaben auf dem Gerät! Vielen AEDs liegen aber spezielle Elektroden für Kinder bei. Solch ein Gerät erkennt diese automatisch, wenn sie angeschlossen werden, und schaltet auf einen Kinder-Modus um.

Bei solchen Notfällen gilt zudem immer: Lieber einmal zuviel den Notruf wählen bzw. den AED holen als einmal zu wenig. Scheut euch also nicht, den Laien-Defibrillator zu benutzen – falsch machen kann man damit nichts! – und die Profis zur Hilfe zu rufen.

Wie könnt ihr einen AED-Defibrillator finden?

Hier in der Schweiz sind die Standorte von Laien-Defibrillatoren deutlich durch grüne Tafeln mit “AED” in weissen Buchstaben gekennzeichnet. Die sind kaum zu übersehen.

Kasten am Flughafen mit Laien-Defibrillator und grüner Hinweistafel mit "AED"

Ein Laien-Defibrillator mit typischer Hinweistafel am Flughafen von Amsterdam.(By Steven Fruitsmaak [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5 ], from Wikimedia Commons)

Was aber, wenn ihr in einem Notfall nicht wisst, wo der nächste solche Standort ist?

Hier helfen die Website und App von CISALI (“Citizens save lives”): Hier sind viele Defibrillatoren rund um den Globus auf einer Google-Map verzeichnet. So könnt ihr auf einen Blick sehen, wo ihr den nächsten findet. Aber woher nehmen die die Daten?

Ganz einfach: Von euch! Jeder, der unterwegs in seiner Umgebung einen Defibrillator findet, gleich von welchem Hersteller oder von wem dort platziert, kann den Standort des Geräts auf der Website oder über die Map melden!

Ich habe heute morgen einen AED im hiesigen Einkaufszentrum entdeckt, der auf der CISALI-Karte noch fehlt. Den habe ich vorhin gleich angemeldet – das geht ganz einfach ohne Registrierung oder dergleichen. Vielleicht kann damit irgendwann einmal ein Leben mehr gerettet werden. Viva la Reanimation!

 

Und was ist mit euch? Habt ihr schon einmal jemanden wiederbeleben müssen? Oder wurdet gar selbst reanimiert? Wisst ihr, wo in eurer Umgebung es einen AED gibt? Und würdet ihr ihn im Notfall auch benutzen?

 

Seit April 2019 ist dieser Beitrag Teil der Blogparade “Dein krassestes Müll-Erlebnis” auf www.aktiv-durch-das-leben.de . Denn allein die Recherche für diesen Beitrag als solche war schon krass!

Rauchen schadet der Gesundheit – das weiss jeder, denn es steht schliesslich auf jeder Tabak-Packung. Dass Zigarettenabfälle ebenso der Umwelt schaden, wird dabei jedoch verschwiegen. Und wer kennt sie nicht, die in Bahngleisen, an Strassenrändern, in Parks und an Stränden herumliegenden Zigarettenkippen, die viele Leute achtlos in die Gegend werfen. Selbst in der deutschsprachigen Schweiz findet man sie noch. Und hier sei das achtlose Wegwerfen von Zigarettenkippen innerhalb Europas noch am meisten verpönt.

 

Wie ein winziger Stummel zum Problem wird

Einze Zigarettenkippe ist doch winzig, oder nicht? Die Weltgesundheitsorganisation WHO schätzt das Gewicht eines Filters, 5x5x15mm, auf 0,17g. Was kann so ein kleines Ding schon stören? Die Menge machts: Von 5 bis 6 Billionen (das ist eine 5 oder 6 mit 12 Nullen!) Zigaretten, die weltweit in einem Jahr geraucht werden, landeten laut WHO im Jahr 2014 bis zu 4 Billionen Filter irgendwo in der Gegend – und nicht im vorgesehenen Aschenbehälter. Das sind bis zu 680’000 Tonnen Zigarettenkippen!

Und wir alle wissen, wie abstossend es aussieht, wenn die überall herumliegen. Dabei ist der äussere Eindruck noch das kleinste Problem.

 

Warum gibt es Zigarettenfilter, wenn die so viel Abfall machen?

Bis in die 1950er Jahre bestanden Zigaretten nur aus Tabak und einer Papierhülse, die weitestgehend verbrannten. Dann fand man heraus, dass der Tabakrauch neben dem Nicotin, auf das man es abgesehen hatte, reihenweise (weitere) gesundheitsschädliche Stoffe enthält: Schwermetalle, Verbrennungsrückstände wie aromatische Kohlenwasserstoffe, Teer und viele mehr… und die alle atmeten die Raucher ungehindert ein – und wurden all zu schnell krank davon.

Nun tragen krankmachende Produkte nicht gerade zum guten Ruf eines Industriezweigs bei. Deshalb ersannen die Hersteller eine Vorrichtung, um die gesundheitsschädlichen Stoffe (zumindest teilweise) vom übrigen Rauch abzutrennen, bevor der Raucher ihn einatmet: Einen Filter.

Wie ein Filter funktioniert

Ein Filter ist ein poröses – also ein von winzigen Öffnungen durchzogenes – Material, durch welches der Rauch hindurchströmt. Dabei bleiben bestimmte Partikel – weil sie zu gross für die Öffnungen sind – in dem Material hängen, während kleine Moleküle ungehindert hindurch gelangen können.

Ein ganz einfacher Filter ist das Spielzeugsieb im Sandkasten: Feiner Sand gelangt hindurch, gröbere Kiesel bleiben in den Maschen hängen. Auch ein Kaffeefilter funktioniert so: Wasser mit darin gelösten Farb- und Aromastoffen gelangt hindurch, während die groben Kaffeesatz-Partikel im Filter zurückbleiben.

Das passende Material, um Billionen handliche, möglichst leichte Filter für Zigarettenrauch herzustellen, war seinerzeit und bis heute ein Kunststoff namens Celluloseacetat.

 

Was ist Celluloseacetat?

Cellulose: Ein Naturstoff

Cellulose ist ein Biopolymer, d.h. ein riesenlanges Kettenmolekül, das von Lebewesen hergestellt wird. Und zwar in diesem Fall von Pflanzen. Die speichern nämlich ihre energiereichen Zucker – speziell Glucose, die sie per Fotosynthese herstellen – indem sie die kleinen Zucker-Moleküle zu langen Ketten aneinander knoten: Cellulose ist damit ein Vielfachzucker, ein Polysaccharid. Die Rohform, in welcher Cellulose in der Industrie aus Pflanzen gewonnen wird, ist besser als “Zellstoff” bekannt. Sie dient unter anderem zur Herstellung von Papier.

Ein Ausschnitt aus einem Cellulose-Molekül - dem Rohstoff für die Herstellung von Zigarettenfiltern

Zellulose – ein Biomolekül. Die Zeichnung zeigt ein sich immer wiederholendes Kettenglied.

Es gibt reichlich Mikroorganismen, die sich von lebenden oder toten Pflanzenteilen ernähren. Die leben entweder eigenständig oder besiedeln den Verdauungstrakt verschiedener pflanzenfressender Tiere (und des Menschen!). Dort übernehmen sie für ihre grossen Wirte die Verarbeitung der Cellulose zu verwertbaren Einfach- oder Zweifachzuckern. Damit ist Cellulose gut biologisch abbaubar.

Essigsäure: Ein weiterer Naturstoff kommt dazu

Wenn man die Cellulose aber mit reiner Essigsäure (und einem passenden Katalysator) zusammenbringt, können die Essigsäure-Moleküle mit den OH-Gruppen der Glucose-Ringe in der Cellulose reagieren. Die Reaktion wird Veresterung genannt: Aus einer Säure (hier Essigsäure) und einem Alkohol (ein Stoff mit OH-Gruppen, hier die Cellulose – ja, Zucker sind chemisch gesehen Alkohole) entsteht ein sogenannter Ester.

Chemiker benennen solche Stoffe als [Säure][Alkohol]-Ester (hier so etwas wie “Essigsäurecellulosyl-Ester”) oder als [Alkohol][Salz/Rest der Säure] (hier: “Celluloseacetat” – denn die Salze und andere Verbindungen der Essigsäure heissen “Acetate”). Da die Cellulose an diesem Molekül den Löwenanteil hat, ist der zweite Name treffender. Deshalb hat sich “Celluloseacetat” als Name für diesen Ester allgemein durchgesetzt.

Celluloseacetat: In dieser Ausführung sind zwei von drei OH-Gruppen der Zucker-Ringe mit Essigsäure verestert.

Celluloseacetat für Zigarettenfilter: Zwei von drei OH-Gruppen der Cellulose sind nun mit je einem Essigsäurerest (CH3COO-) verestert.

Je nachdem, wie viele OH-Gruppen der Cellulose so verestert sind, haben die verschiedenen Celluloseacetate leicht unterschiedliche Eigenschaften. Für die Herstellung von Fasern – auch für Zigarettenfilter – eignet sich die Sorte mit zwei von drei veresterten OH-Gruppen pro Glucose-Ring besonders gut.

Aber: Aus zwei Naturstoffen wird ein Kunststoff

Und da auch Essigsäure ein Naturstoff ist, könnte man meinen, Celluloseacetat trage seine Bezeichnung als “Biokunststoff” zu Recht. Es gibt allerdings ein Problem damit:

Die Essigsäurereste an den Zuckerketten sind so sperrig, dass die massgeschneiderten Enzyme von cellulosefressenden Mikroben die Acetylcellulose kaum mehr spalten können. Und da Acetylcellulose ein Kunststoff ist, hält die Natur dafür keine (bekannten) massgeschneiderten Enzyme bereit. Somit hat Acetylcellulose eine unliebsame Eigenschaft mit den Erdölkunststoffen gemein: Sie ist nur schwerlich biologisch abbaubar (das dauert mindestens 15 Jahre, in Salzwasser angeblich sogar bis 400 Jahre!).

Das mag den Herstellern von Textilfasern vielleicht gefallen: Wer möchte schon Kleidung oder Regenschirme, die sich bei Wind und Wetter langsam auflösen? Wenn es um Wegwerfprodukte wie Zigarettenfilter geht, wird die mangelnde oder fehlender Abbaubarkeit aber zum Problem. Denn einmal weggeworfen bleibt so ein Kunststoff viel zu lange unbehelligt liegen.

 

Kann man Celluloseacetat recyceln?

Mit vielen Kunststoffen kann man das. Auch mit Celluloseacetat dürfte das nicht all zu schwer sein. Ester sind nämlich empfindlich gegenüber basischen Stoffen. Eine Base katalysiert nämlich die sogenannte Ester-Verseifung (mit dieser Reaktion wird auch Seife hergestellt, deshalb heisst sie so!) : Aus einem Ester werden in basischer Umgebung wieder Säure und Alkohol – also Essigsäure und Cellulose. Und die mag man voneinander trennen, um die Cellulose weiter abzubauen oder wiederzuverwerten…

Oder man verwendet zur Herstellung von Zigarettenfiltern statt Acetylcellulose einen anderen, biologisch abbaubaren Stoff. Dann müsste man die Billionen von Kippen nicht einmal wieder einsammeln, um sie zu recyceln…

Schön wäre es, wenn das so einfach wäre. Leider wird dabei nicht berücksichtigt, welchem Sinn und Zweck Zigarettenfilter dienen: Die filtern giftige Stoffe aus dem Rauch. Die dann zwangsläufig im Filter hängen. Und die vor dem Recycling da wieder raus zu bringen wäre aufwändig und teuer – und sie in abbaubaren Filtern liegen zu lassen nicht weniger gefährlich.

 

Das eigentliche Problem mit Zigarettenfiltern

… ist somit nicht der Kunststoff, aus dem sie bestehen. Sondern das, was nach dem Rauchen darin ist. Und in Zigarettenrauch lassen sich bis zu 9600 verschiedene Stoffe nachweisen, von welchen laut WHO mindestens 7000 gefährlich sind.

Im Zigarettenfilter bleiben davon vor allem jene hängen, die zu grösseren Partikeln zusammen klumpen und so nicht mehr durch die Poren passen.

Dazu gehören unter anderem

  • Kohlenwasserstoffe (“Teer”: sowohl langkettige, wie man sie auch als Erdölbestandteile kennt, als auch ringförmige (“cyclische”) und aromatische Kohlenwasserstoff, darunter Benzol, Toluol und die ebenso als krebserregend bekannten PAK bzw. PAH (Polyaromatischen Kohlenwasserstoffe bzw. polyaromatic hydrocarbons)
  • Phenol und damit verwandte Stoffe, die ebenfalls zu den aromatischen Verbindungen zählen und giftig sind
  • Nicotin und andere Giftstoffe aus der Gruppe der Alkaloide
  • Schwermetallionen z.B. von Cadmium, Quecksilber, Kupfer, Arsen, Nickel, Blei
  • Rückstände von Pflanzenschutzmitteln (aus dem Tabak-Anbau)
  • Spuren radioaktiver Isotope wie Polonium 210 (die werden von der Tabakpflanze besonders eifrig aus der Luft gesammelt)

 

Neue Zigarette im Vergleich mit Zigarettenkippe: Rückstände aus dem Zigarettenrauch färben den gebrauchten Filter bräunlich.

Links: Filter einer neuen Zigarette – das saubere Zelluloseacetat ist weiss.
Rechts: Filter einer gerauchten Zigarette: Rückstände aus dem Rauch färben den Filter gelblich braun (By Akroti [CC BY-SA 2.5 ], from Wikimedia Commons)

Achtung! Zigarettenfilter halten nicht was sie versprechen!

All diese Stoffe werden vom Zigarettenfilter höchstens zur Hälfte abgefangen, sodass sie auch im eingeatmeten Rauch enthalten sind! Passivraucher bekommen überdies den ungefiltert aufsteigenden Rauch vom anderen Ende der Zigarette mit!

 

Welcher Schaden durch weggeworfene Zigarettenkipppen entsteht

Das ist eine stattliche Liste als Umweltgifte und als gesundheitsschädlich berüchtigter Stoffe. Und sie alle landen tagtäglich dort, wo wir zur Arbeit gehen, wo unsere Kinder spielen, wo wir unsere Ferien geniessen möchten. Und dort will sie wirklich niemand haben. Denn Wind und Wetter ausgesetzt lösen sich die Schadstoffe mit der Zeit aus den Kippen, gelangen in Böden und Gewässer.

Besonders das Nicotin und andere Stoffe aus der Gruppe der Alkaloide sind akut giftig. Und das nicht nur für Kleinlebewesen (deshalb wurde Nicotin als Pflanzenschutzmittel im Ackerbau verwendet, bis es in den 1970er Jahren als zu giftig verboten wurde!). Ebenso können sich kleine Kinder, die Zigarettenkippen finden und verschlucken, daran vergiften.

Schon ein bis drei Kippen können bei Kleinkindern Vergiftungserscheinungen wie Übelkeit, Durchfall und Erbrechen auslösen. Und das passiert gar nicht so selten. Allein der Giftnotruf Berlin hat im Jahr 2008 921 Fälle von verschluckten Tabakabfällen bei Kleinkindern gezählt. Anfang der 2000er Jahre waren es noch rund 260 Fälle im Jahr.

 

Was wird gegen den Sondermüll auf den Strassen getan?

Kein Wunder, treiben Städte, Gemeinden und Tourismusbetriebe einen Riesenaufwand, um die Kippen zu beseitigen. Allein in der “sauberen” Schweiz legen Städte und Gemeinden Jahr für Jahr 55 Millionen Franken nur für das Beseitigen von Zigarettenkippen hin!

Andere Länder greifen zu wahrhaft drakonischen Massnahmen: In Singapur, das wir bald besuchen werden, gibt es schmerzhaft hohe Bussgelder für das Wegwerfen von Zigarettenkippen (und anderen Abfällen). Sogar mit Stockschlägen oder Gefängnisstrafen muss man laut den Reiseinformationen des Eidgenössischen Departements für auswärtige Angelegenheiten EDA rechnen.

Selbst das hilft jedoch nur so lange, wie konsequent überwacht und bestraft wird. Dass viele Stoffe in Zigarettenkippen eigentlich als Sonderabfall entsorgt gehören, ist zu vielen Menschen rund um den Globus nicht bewusst. Auch in Mitteleuropa.

 

Was ihr gegen die Kippenflut tun könnt

  1. Ihr alle könnt dazu beitragen, dass weniger Zigarettenkippen eure Umwelt verdrecken. Und zwar so:
  2. Nicht (mehr) rauchen: Die wirkungsvollste Methode – und sowieso besser für eure Gesundheit. Auch wenn es oft leichter gesagt als getan ist.
  3. Wenn ihr doch (noch) raucht: Nicht dort rauchen, wo Kinder spielen oder ihr die Natur geniessen möchtet
  4. Ganz wichtig: Wenn ihr raucht, entsorgt Asche und Kippen in einen dafür vorgesehenen Abfallbehälter! Werft sie niemals einfach weg!
  5. Wenn ihr dort rauchen möchtet, wo es keine fest angebrachten Aschenbehälter gibt: Nehmt einen verschliessbaren Aschenbecher mit, damit ihr Asche und Kippen später richtig entsorgen könnt!
  6. Wenn ihr andere beobachtet, die ihre Kippen einfach in die Gegend werfen: Weist sie auf die Gefährlichkeit der Zigarettenabfälle und allenfalls vorhandene Ascheimer hin.
  7. Sprecht mit euren Kindern offen und eindringlich darüber, dass auch Zigarettenkippen “richtig giftig” sind. Dass sie nicht in den Mund genommen werden dürfen oder auch nur herumliegen sollten. Im besten Fall bleibt etwas davon hängen, wenn sie später einmal als Jugendliche unter sich sind.
  8. Nehmt die Säuberung “eures” Spielplatzes, Dorfplatzes, Seeufers oder Lieblings-Naherholungsgebietes selbst in die Hand – am besten mit der ganzen Familie. Sammelt herumliegende Kippen ein, um sie ordnungsgemäss zu entsorgen. Nicht vergessen: Schutzhandschuhe tragen!

 

Sind E-Zigaretten eine Lösung für das Kippenproblem?

Warum steht “Steigt auf E-Zigaretten um” nicht auf der Liste oben? Diese handlichen elektrischen Geräte erzeugen Wärme, welche eine Flüssigkeit mit oder ohne Nikotin aus Tabak oder anderen Erzeugnissen zum Verdampfen bringt. Der Dampf kann dann anstelle von Zigarettenrauch eingeatmet werden.

Sollte das nicht alle Probleme mit giftigem Rauch und Kunststoff-Filtern lösen?

Auch E-Zigaretten bestehen aus Kunststoffen, Metallen, Elektronik, enthalten Batterien und müssen mit Patronen – Behältern für die zu verdampfenden “Liquids” – bestückt werden.

Eine E-Zigarette der vierten Generation: ein hochtechnisches Stück Elektronik

Eine E-Zigarette wie diese ist ein hochtechnisches elektronisches Gerät, das aus einer Vielzahl von Stoffen besteht und alle Umweltprobleme von Elektronik und ihrer Herstellung mit sich bringt. (By Jacek Halicki [CC BY-SA 4.0 ], from Wikimedia Commons)

Laut WHO ist der noch junge E-Zigaretten-Markt weitgehend unreguliert. Das heisst vor allem, er ist in seiner Vielfalt unüberschaubar. Viele Produkte sind für den Einweggebrauch bestimmt oder von beschränkter Lebensdauer. Die Zusammensetzung der Liquids unterscheidet sich zudem stark zwischen verschiedenen Marken und Herkunftsländern.

Darüber, was nun wo genutzt wird und welche Folgen für Umwelt und Gesundheit das haben mag, gibt es noch wenig Daten. Und die Vielfalt der Produkte macht einheitliche Aussagen darüber schwer.

Laut WHO sei jedoch abzusehen, dass das Umsatteln von Tabak auf E-Zigaretten das Abfallproblem nicht löst. Dazu müsste sich nämlich erst etwas an der laxen Einstellung der Raucher bzw. Dampfer zur Umweltverschmutzung ändern. An die Stelle der Zigarettenkippen von heute würden sonst leere Liquid-Behälter und Überreste ausgedienter E-Zigaretten treten – mit Resten der Liquids und aller Stoffe, die in den Geräten verarbeitet sein mögen.

Somit ist das Umsteigen auf E-Zigaretten in meinen Augen kein sicherer Weg, um die Umweltbelastung durch “Zigarettenabfälle” zu vermindern. Zumindest keiner, der nicht auch durch umweltbewussten Umgang mit Rauchwaren begangen werden könnte.

 

Fazit

Weggeworfene Zigarettenkippen verschandeln nicht nur den Anblick unserer Umwelt. Sie enthalten überdies eine bunte Sammlung gefährlicher Stoffe, die aus den Filtern in die Umgebung freigesetzt werden. Eine Kippe mag bedeutungslos klein wirken – weltweit kommen aber bis zu 680’000 Tonnen schadstoffbeladener Kippen pro Jahr zusammen!

Der übliche Zigarettenfilter besteht aus dem biologisch schwer abbaubaren Kunststoff Celluloseacetat. Der ist für sich nicht giftig, kann aber über Jahrzehnte in der Umwelt verbleiben. Ein biologisch abbaubarer Ersatzstoff würde sich zwar schneller auflösen, ändert aber an der “Beladung” des Filters mit Schadstoffen nichts. Deshalb sind biologisch abbaubare Zigarettenfilter keine Lösung.

E-Zigaretten sind ebenfalls keine Lösung, so lange das Bewusstsein für die Gefährlichkeit von Rauch- bzw. Dampf-Abfällen fehlt.

Deshalb mein Aufruf an euch: Lasst das Rauchen wie das Dampfen. Und wenn das keine Option ist, entsorgt eure Abfälle dort, wo sie hingehören: In den Aschenbecher bzw. Ascheimer! Und wenn ihr andere dabei beobachtet, wie sie ihre Kippen (oder Liquid-Behälter) achtlos in die Gegend werfen: Weist sie auf die Gefährlichkeit hin!

Und hier der Bericht “Tobacco and its environmental impact” der WHO, 2017 , aus welchem ich die Weltgesundheitsorganisation im Artikel zitiert habe.

Fliegenpilz hebt Moos ab - Wie Pilze wachsen - das Geheimnis weicher Kraftprotze

Zur Zeit haben sie wieder Hochsaison: Pilze – die nicht nur im Wald aus dem Boden schiessen. Dabei nehmen nicht nur die Pilze selbst zuweilen wunderliche Formen an. Auch ihr Standort erscheint uns manchmal unmöglich. So hat meine Leserin Pia schon Pilze gefunden, wo eigentlich Autos fahren sollten – und damit eine Anregung zu ihrer Leserfrage:

Mich fasziniert immer, dass ein Pilz-Fruchtkörper durch ziemlich harte Oberflächen kommt, obwohl er doch selber weich ist. Ich habe einmal Champignons gesehen, die eine asphaltierte Hofeinfahrt durchbrochen haben. Wie “macht” der Pilz das?

Röhrling wächst zwischen Steinen

Dieser Röhrling (Birkenröhrling? Kiefernsteinpilz? Egal – in jedem Fall lecker) hat seinen Weg zwischen den Steinen hindurch gefunden. Dabei hilfreich: Der Hut wächst erst dann in die Breite, wenn der Stiel ihn über die Hindernisse hinaus gehoben hat. Was aber, wenn es keine Lücken zum Hindurchwachsen gibt?

 

Was sind eigentlich Pilze?

Biologen teilen die Welt der Lebewesen in zwei grosse Gruppen ein: Solche, deren Zellen ohne Zellkern auskommen (diese nennen sie Prokaryonten) und solche, deren Zellen einen Zellkern haben (diese nennen sie Eukaryonten).

Die Prokaryonten sind meist einzellige Lebewesen, wie zum Beispiel Bakterien. Und sie sind erdgeschichtlich die ältere Art von Leben – den Zellkern hat die Evolution nämlich erst nach der lebensfähigen kernlosen Zelle hervorgebracht.

Vielzellige Lebewesen, die wir mit dem blossen Auge überall sehen können, zählen zu den Eukaryonten. Die werden von den meisten Menschen unbedarft in zwei Reiche eingeteilt: Die Pflanzen und die Tiere (zu denen auch wir Menschen zählen). Dabei fällt allerdings eine dritte und um so spannendere Gruppe durchs Raster: Das Reich der Pilze.

Richtig: Pilze sind weder Tiere noch Pflanzen, sondern eine ganz eigene Sorte Lebensform!

Wie sind Pilze aufgebaut?

Ohne Vergrösserungshilfen gesehen besteht ein vielzelliger Pilz hauptsächlich aus einem Fadengeflecht, dem sogenannten Myzel, das meist verborgen im Boden oder in totem Holz wächst (es gibt auch einzellige Pilze wie die Bäckerhefe, mit der ich hier experimentiert habe). Was wir im Wald an der Oberfläche sehen, sind die Fruchtkörper, die aus dem Myzel-Geflecht wachsen, damit der Pilz sich vermehren kann.

Pilze sind jedoch weder Tier noch Pflanze, sodass sich Pilzzellen deutlich von Tier und Pflanzenzellen unterscheiden. Pilzmyzel und Fruchtkörper bestehen nämlich aus Bündeln von langen, schlauchartigen Zellen (die die Pilzforscher Hyphen nennen). Die Formgebenden unter diesen Schlauchzellen sind teilweise alles andere als “weich”, sondern haben ein Zell-Aussenskelett aus grossen Proteinen.

Das Zellskelett hält das Innere der Zelle in gewünschter Form zusammen: weiche Zell-Innereien, Proteine, Nährstoffe finden so ihren Platz…und natürlich auch Wasser. Und zwar eine ganze Menge davon. Wer schon einmal Speisepilze im Ofen oder in der Sonne getrocknet und gesehen hat, was dann übrig bleibt, kann erahnen wie viel Wasser in so einem Pilzfruchtkörper steckt.

Die Wassermenge wird über die Menge der wasserlöslichen Stoffe in den Zellen gesteuert: Je mehr solche Salze und Proteine in den Zellen sind, desto mehr Wasser gelangt durch Poren dazu, und desto praller werden die Zellen: Auf die Zellaussenwand wirkt von innen ein zünftiger osmotischer Druck.

Wie wachsen Pilze?

Die Stränge des Myzels wachsen, indem jeweils an der Spitze der Hyphen-Bündel weitere Zellen angebaut werden. Wenn im Wald andauerndes warmes sowie feuchtes Wetter herrscht, wachsen ausserdem neue Hyphen-Bündel in Form von Fruchtkörpern.

Pilze vermehren sich durch Sporen

Viele dieser Fruchtkörper haben die “klassische” Form mit Stiel und Hut. Auf der Hutunterseite befinden sich dann feine Lamellen oder Röhren, in denen die Enden besonderer Hyphen verborgen sind – nämlich solcher, die Sporen produzieren und freisetzen können.

Ständerpilz mit Stiel und Hut, hier seitlich aus einer Steinstufe wachsend

Typische Pilzfruchtkörper aus Stiel und Hut mit Lamellen. Diese hier wachsen seitlich aus einer Stufe aus porösem, steinähnlichem Material – nicht unbedingt dort, wo man Pilze erwarten würde.

Als ich neulich ein paar schöne Maronenpilze mit herrlich hellgelben Röhren gefunden und abgeschnitten habe, waren die Röhren im Handumdrehen dunkelgrau verstaubt: Durch die Bewegung hatten sich Sporen daraus gelöst und in meinem Tragebehälter alles eingestaubt. Dem Geschmack tut das übrigens keinen Abbruch – das Pilzgericht daraus war nachher trotzdem sehr lecker.

Diese Sporen haben die gleiche Aufgabe wie Samen von Pflanzen: Sie gehören eigentlich in den Waldboden, wo jede einzelne von ihnen den Anfang für ein neues Pilzmyzel machen kann.

Das Myzel wird übrigens nicht beschädigt, wenn ihr den Stiel eines Fruchtkörpers sorgfältig mit einem scharfen Messer abschneidet. So können die “Pilze”, die wir sammeln, über Jahre hinweg aus dem gleichen Pilzgeflecht nachwachsen!

Wie Pia schon beobachtet hat, schieben die Fruchtkörper mitunter nicht nur Laub und Tannennadeln, sondern zuweilen erstaunlich schwere Hindernisse auf ihrem Weg an die Erdoberfläche “beiseite”.

Woher nehmen die Pilze diese Kraft?

Wachstum bedeutet, dass in komplexen biochemischen Reaktionen sehr grosse Moleküle aufgebaut und angeordnet werden. Diese Biochemie wird allerdings nicht davon beeinflusst, dass irgendwer vorab eine Raumplanung macht. Aber die Produkte dieser Reaktionen müssen schliesslich irgendwo hin. Und Platz gäbe es in der Regel auch genug – wenn da die Sache mit dem Wasser nicht wäre.

Wenn neue Zellen entstehen, voller Salze und Proteine, ziehen sie das Wasser aus ihrer Umgebung durch Poren geradezu in sich hinein. Den Vorgang habe ich anlässlich der Experimente zur Osmose mit Ei ausführlich erklärt. So entsteht in den Zellen ein beträchtlicher Druck. Der hält nicht nur die Zellen prall, sondern wirkt auch auf ihre direkte Umgebung.

Wenn es dort Schwachstellen oder Schlupflöcher gibt, nimmt der wachsende Pilz den Weg des geringsten Widerstands. So finden die Pilzfruchtkörper leicht einen Weg durch porösen Humus oder Laub und Nadeln auf dem Waldboden.

Wiesenchampignons

Auch diese Champignons haben es nicht leicht auf ihrem Weg durch das Wurzelgeflecht des Rasens. Dafür beherrschen sie einen zusätzlichen Trick: Die Fruchkörper entfalten sich erst, nachdem sie durchgedrungen sind, zu ihrer vollen Grösse.

Ist die Umgebung jedoch von härterer Natur, weil sie zum Beispiel von Asphalt oder Pflaster bedeckt ist, lastet der Druck fortlaufend darauf. Der Fruchtkörper beginnt also im porösen Untergrund zu wachsen. Er hat es leicht, bis er auf die harte Decke stösst. Dann drückt er laufend von unten dagegen. Besonders wenn der Asphalt ähnliches Risse oder Schwachstellen hat (die müssen für uns nicht immer sichtbar sein), geben die der Dauerbelastung langsam aber sicher nach.

Langsamkeit ist Trumpf

Und Langsamkeit ist neben dem osmotischen Druck das Geheimnis der Kraft der Pilze. Denn weil sie (relativ) langsam wachsen, können sie den Asphalt durch ausdauerndes Dagegendrücken zum Nachgeben bringen, ohne selbst dabei Schaden zu nehmen.

Ein Material muss also nicht unermesslich hart sein, um feste Körper aufzubrechen, sondern sich nur ausreichend langsam und ausdauernd ausbreiten!

 

Wo ihr eure Leserfrage stellen könnt

Habt ihr auch eine spannende Frage rund um Naturwissenschaftliches im Alltag? Und möchtet ihr gern eine Antwort darauf in Keinsteins Kiste lesen? Jeden Sonntag könnt ihr eure Fragen auf meiner Facebook-Seite kommentieren. Es ist gerade nicht Sonntag? Dann könnt ihr natürlich jederzeit einen der älteren Fragen-Beiträge nutzen!

Habt ihr auch schon einmal einen seltsamen Pilz oder einen Pilz an einem seltsamen Ort gefunden? Was glaubt ihr, wie er dorthin kam?

Wie funktioniert die Liebe? Terra incognita der Wissenschaft

Einmal mehr ist es soweit: Der Blog-Schreibwettbewerb auf Scienceblogs.de läuft. Und zwar noch bis Ende Oktober. Viele wissenschaftlich begeisterte Schreiber mit und ohne eigenen Blog haben spannende und lesenswerte Beiträge zu einem bunten Strauss aus Themen eingereicht. Und ich bin wieder mit dabei!

Gerade rechtzeitig dazu flatterte auf der Keinsteins-Kiste-Facebook-Seite eine spannende Leserfrage herein, die ich in meinem Wettbewerbs-Beitrag beantworte:

Welche Hormone bewirken, ob und wann wir uns verlieben?

Die Suche nach Antworten führte mich rasch du einem besonders interessanten Ergebnis: Einem weissen Flecken auf der Landkarte der Wissenschaft. Die Biochemie der Liebe ist nämlich ein Gebiet, dass erst ansatzweise wissenschaftlich erforscht ist. So zeige ich in diesem Artikel nicht einfach einige Moleküle, über deren Rolle in Liebesdingen schon einiges bekannt ist, sondern auch die Grenzen dessen, was die Wissenschaft zur Zeit erklären kann.

In einfachen – hoffentlich kindgerechten Worten wecke er die Entdeckerlust der Forscher von morgen, die eines Tages diesen und andere weisse Flecken auf der wissenschaftlichen Landkarte füllen mögen.

Ihr könnt auch etwas gewinnen!

Den ganzen Artikel könnt ihr ab jetzt hier auf Astrodicticum Simplex lesen – und auch ihr könnt in diesem Schreibwettbewerb wieder die Gewinner mitbestimmen. Und dabei auch noch selbst einen Preis gewinnen!

Dazu müsst ihr nur am Leser-Voting teilnehmen und eure Stimme(n) für eure(n) Lieblingsartikel abgeben. Wie das geht, erklärt der Veranstalter Florian Freistätter hier. Einsendeschluss für die Leserstimmen ist der 11. November 2018. Ihr könnt also in Ruhe die Veröffentlichung aller anderen Artikel mitverfolgen und erst am Schluss entscheiden, für wen ihr stimmen möchtet.

Ganz besonders würde es mich natürlich freuen, wenn ihr eine Stimme für meinen Beitrag da lasst. Der Preis unter den Leser-Juroren wird aber unabhängig davon, für wen ihr stimmt, verlost. Deshalb findet ihr eine Übersicht über alle Beiträge hier.


Der Scienceblogs-Schreibwettbewerb 2018 ist zu Ende und die Gewinner stehen fest: Mein Artikel “Wie funktioniert die Liebe?” hat einen megamässigen 6. Platz gemacht! Herzlichen Dank an alle Leser, die mir ihre Stimme gegeben haben – und natürlich an Florian Freistätter und die Juroren, ohne die dieses tolle Event nicht möglich gewesen wäre!

Die Teilnehmer-Beiträge bleiben bis auf Weiteres auf Astrodicticum Simplex online, sodass ihr sie jederzeit nachlesen könnt.

So wünsche ich euch jetzt viel Spass beim Stöbern und Schmökern – und beim Verlieben!

Eure Kathi Keinstein

Was ist Krebs? - Zellbiologie erklärt zur Solidaritätskampagne von Kinderkrebs Schweiz

Meine Familie hat Glück gehabt. So weit ich zurückdenken kann oder aus Erzählungen der Älteren weiss, hat bei uns noch kein Kind Krebs bekommen. In Retos Familie ist das anders. Reto hat eine seiner Schwestern nie kennengelernt. Denn sie ist vor seiner Geburt an Leukämie gestorben – der häufigsten Krebs-Sorte, die Kinder bekommen.

Das ist jetzt über 40 Jahre her. Und trotzdem spüre ich bis heute die selischen Narben, die dieses furchtbare Schicksal bei Retos Familie hinterlassen hat. So etwas sollte keine Familie durchmachen müssen.

Heute – 40 Jahre später – kommt es schon weniger oft so weit. Heute werden nämlich vier von fünf Kindern, die Krebs bekommen, wieder gesund. Das heisst – so gesund wie es eben möglich ist. Denn der Kampf gegen den Krebs ist bis heute für den Körper und die Seele schrecklich anstrengend und ermüdend. Und für kleine Kinderkörper und -seelen ist er ganz besonders anstrengend.

Kinderkrebs Schweiz

Deshalb setzt sich der Dachverband Kinderkrebs Schweiz dafür ein, dass fleissig weiter an Mitteln gegen den Krebs geforscht wird, die den Kampf damit erleichtern, und damit aus 4 von 5 eines Tages 5 von 5 wieder gesunden Kindern werden.

Und auch jenen Kindern und Familien, die heute gegen den Krebs kämpfen müssen, möchte der Verein ein Stück Kraft und Zuversicht schenken. So sammelt Kinderkrebs Schweiz noch den ganzen September über eure lieben Wünsche an ein krebskrankes Kind auf dieser Website, um die schönsten darunter zu den Kindern zu bringen, die in den Kinderspitälern wegen Krebs behandelt werden müssen.

Mein Beitrag

Ganz gewiss haben die erkrankten Kinder selbst, ihre Geschwister, Eltern, Freunde und Verwandte ganz gewiss viele Fragen zu dem, was da mit ihnen bzw. ihren Angehörigen geschieht. Darum widme ich meinen heutigen Beitrag allen Kindern und Familien, die dieses schwere Schicksal teilen oder miterleben. Und ich versuche, darin einige Antworten in Worte für Kinder (und Laien) zu kleiden.

Was ist Krebs?

Krebs ist, wenn das Material, aus welchem euer Körper besteht, ungebremst zu wachsen beginnt. Und zwar dort, wo es nicht wachsen soll.

Bestimmt fragt ihr euch nun: Woraus besteht ein menschlicher Körper, und wie wächst er?

Woraus besteht dein Körper?

Der Körper jedes Menschen besteht aus winzigkleinen Zellen. Jede Zelle ist ein winziger Sack aus einer Haut aus Molekülen. Dieser Sack enthält (in der Regel) einen Zellkern und verschiedene winzige Organe, die für verschiedene “Körperfunktionen” der Zelle zuständig sind. Im Zellkern ist das Erbgut der Zelle, die DNA, gelagert. Das ist eine Sammlung von Bauplänen für alle Bestandteile der Zellen und alle Stoffe, die die Zellen herstellen können.

Die Zellen sind so unglaublich klein, dass ihr sie ohne ein Mikroskop nicht sehen könnt. Ein erwachsener Mensch besteht aus 100 Billionen von ihnen – das sind 100’000’000’000’000, also 1000 x 1000 x 1000 x 1000 x 100, oder eine 1 mit vierzehn Nullen!

menschliche Zellen unter dem Fluoreszenzmikroskop: Der Zellkern ist blau, das Zellskelett grün gefärbt

Menschliche Körperzellen unter dem Mikroskop: Die Zellkerne mit der DNA sind mit blauer, das “Skelett” der Zellen, welches zu ihrer Hülle gehört, mit grüner “Leuchtfarbe” eingefärbt. So leuchten sie unter einer UV-Lampe in diesen Farben auf – sie fluoreszieren. Ein Mikroskop mit einer UV-Lampe nennt man deshalb “Fluoreszenz-Mikroskop”. Mit einem solchen wurde dieses Bild gemacht. ( By ZEISS Microscopy from Germany [CC BY 2.0 ], via Wikimedia Commons)

Wie ein Mensch entsteht

Jeder Mensch bestand am Anfang seines Lebens aus einer einzigen Zelle, die durch Verschmelzung von Mamas Eizelle und Papas Spermienzelle entstanden ist (wie das geht, habe ich hier beschrieben). Diese eine Zelle hat ihre ganze Bauplan-Sammlung abgeschrieben, ihre Bestandteile allesamt noch einmal hergestellt und sich schliesslich geteilt. Und die beiden neuen Zellen haben das gleiche getan. Und noch einmal, und noch einmal.

Durch die Auswahl von bestimmten Bauplänen aus der Sammlung wurden einige der neuen Zellen zu Knochen- andere zu Muskel-, zu Haut-, zu Augen-, zu Herz- und Lungen- und Blut- und vielen anderen verschiedenen Zellsorten, aus denen ein vollständiger Körper besteht.

Und sie werden es noch. Damit Kinder immer grösser werden können, müssen ständig neue Zellen her. Selbst in den Körpern von Erwachsenen gibt es Zellen, die sich das ganze Menschenleben lang teilen. Hautzellen und Blutzellen (die ständig durch neue ersetzt werden) gehören dazu, aber auch solche, aus denen Haare und Fingernägel wachsen.

Wenn aus Wachstum Krebs wird

Damit einem Menschen genau zwei gerade Arme und Beine und passende Organe in der richtigen Grösse wachsen, enthalten die Baupläne in den Zellen Angaben und Regeln, wie schnell und wann welche Zellen sich wohin ausbreiten und welche Stoffe sie wann in welcher Menge herstellen sollen.

Molekülmodell eines DNA-Abschnitts

Ein kleines Stück eines DNA-Moleküls: Kohlenstoff-Atome sind grau, Wasserstoff-Atome weiss, Sauerstoff-Atome rot, Stickstoff-Atome violett und Phosphor-Atome gelb. Die Art und Weise, wie diese Atome miteinander verbunden sind, ist eine Art Geheimschrift: Sie kann in die Baupläne für unsere Zellen übersetzt werden!

Empfindliche Baupläne

Nun ist die DNA ist ein chemisches Molekül wie andere auch. Das heisst, sie kann in chemische Reaktionen verwickelt werden: Die Begegnung mit anderen, angriffslustigen Molekülen, oder der Einfluss von Licht oder anderer Strahlung kann dazu führen, dass Atome der DNA augetauscht werden oder verloren gehen. Oder dass Atome dazu kommen, die nicht zum Bauplan gehören. Ausserdem kommt es vor, dass die Zellen beim Abschreiben ihrer Baupläne für die Zellteilung Schreibfehler machen.

Deshalb gibt es in jeder Zelle Proteine, die ständig Korrektur lesen und Fehler oder Schäden an der DNA ausbessern. Und wenn sich etwas gar nicht mehr reparieren lässt, befehlen sie der einzelnen Zelle, lieber Selbstmord zu machen, bevor dem Körper etwas schlimmeres passiert.

Niemand ist perfekt – auch die Korrekturleser in den Zellen nicht

Wenn die “Rechtschreib”-Kontrolleure einer Zelle allerdings einen Fehler übersehen, passieren schlimme Dinge. Besonders dann, wenn der übersehene Fehler eine jener Regeln unlesbar macht, die die Zellteilung und damit das Wachstum von Körperteilen ordnen und begrenzen soll. Dann bleibt eine Zelle übrig, die ihre Grenzen nicht mehr kennt, sich unkontrolliert teilen kann und vielleicht sogar Stoffe von sich gibt, die kein Mensch braucht. Kurzum: Das ist ein furchtbar schlecht erzogener Rabauke – eine Krebszelle.

Und das schlimmste ist: Wenn die Krebszelle sich erneut teilt, schreibt sie den Fehler ganz ungeniert mit ab. So gibt es dann bald zwei von der schlimmen Sorte, dann vier, dann acht…

Im glücklichen Fall kommt ein Spezialagent des Immunsystems, eine “natürliche Killerzelle” (über die und ihre Kollegen vom Immunsystem ihr hier mehr lesen könnt), vorbei und erkennt eine einzelne oder wenige Krebszelle/n von aussen. Dann gibt die natürliche Killerzelle ihnen sofort den Befehl zum Selbstmord – und schafft das Problem so aus der Welt.

Ein Tumor entsteht

Im unglücklichen Fall teilen sich die Krebszellen aber unbemerkt weiter und wuchern da hin, wo es ihnen gerade passt. Und uns nicht. Aus ein paar Zellen wird so ein Haufen, aus dem Haufen ein Gewebeknötchen, aus dem Knötchen eine Geschwulst, die wir spüren und manchmal sogar sehen können.

Manche dieser Zellen begnügen sich damit, ihre eigene Clique zu gründen, gemeinsam abzuhängen und einfach im Weg zu sein. Von solchen spricht man von einem “gutartigen” Tumor. Der lässt sich meist einfach wegoperieren, wenn er stört, und die Sache ist in der Regel erledigt.

Wenn die Zellen aber richtige Rabauken sind, die sich mit “Ellbogen” ihren Weg durch andere Zellgruppen in benachbarte Gewebe bahnen, handelt es sich um wirkliche Krebszellen, die einen “bösartigen” Tumor bilden.

Schema: Krebszellen durchdringen eine Gewebegrenze

nach: Cancer Research UK (Original email from CRUK) [CC BY-SA 4.0 ], via Wikimedia Commons

Die fiesesten unter ihnen verlassen “ihren” Tumor sogar irgendwann und reisen in der Blutbahn oder der Lymphe durch den Körper, um sich anderswo festzusetzen und Rabauken-Kolonien zu gründen. Die werden von den Krebs-Ärzten dann “Metastasen” genannt.

Wie entstehen unerkannte Schreibfehler?

Schreibfehler entstehen dort, wo abgeschrieben wird. Wann und wo genau ein Abschreibfehler passiert und übersehen wird, ist letztenendes reines Pech. Für Pech gilt aber: Je mehr abgeschrieben wird, desto grösser ist die Wahrscheinlichkeit, dass dabei mal ein Fehler passiert und der Korrektur entgeht.

Alles in allem sind schlimme Schreibfehler besonders wahrscheinlich wenn

  • in den Körpern älterer Menschen die Korrekturleser nachlässig werden
  • äussere Einflüsse (z.B. Strahlung) die DNA häufiger beschädigen
  • viele andere Moleküle/Atome mit der DNA reagieren können
  • Fehler schon in der ersten Zelle eines Kindes vorhanden waren und so vererbt wurden
  • bestimmte Viren ihr Erbgut in die DNA von Zellen einbauen und dabei die Teilungsregeln beschädigen (gegen einige dieser Viren, wie das Gebärmutterhalskrebs-Virus HPV oder den Erreger der Leberentzündung Hepatitis kann man sich aber impfen lassen!)
  • und vor allem: Wenn in Zellen, die sich häufig, schnell und fortlaufend teilen, naturgemäss viel abgeschrieben wird
    → dazu gehören nachwachsende Gewebe wie die Haut
    → und die Zellen in Körpern von Kindern – denn Kinderkörper wachsen ja noch

In welchen Körperteilen kann Krebs entstehen?

Grundsätzlich in praktisch allen. Und obwohl man meinen könnte, dass das ganz besonders für Kinder gilt, bekommen Kinder anderswo Krebs als Erwachsene und alte Menschen. Warum das so ist, haben die Forscher noch nicht wirklich herausgefunden.

Besonders häufig – in drei Vierteln aller Fälle – werden bei Kindern nämlich die Zellen des Immunsystems und ihre Vorläufer (45%: 33% Leukämien, 12% (Non-)Hodgkin-Lymphome) oder die Zellen von Gehirn und Nerven (30%: 20% Hirn und Rückenmark, 7% sympathisches Nervensystem, 3% Augenkrebs) zu bösartigen Rabauken.

(Zahlen: Krebsliga Schweiz)

Augenkrebs?! Warum steht der hier unter Hirn und Nerven?

Ja, Augenkrebs gibt es wirklich. Der kommt aber nicht davon, dass ihr zu viel am Bildschirm sitzt oder schrille Farben anschaut, wie gern einmal behauptet wird. Stattdessen entstehen in der Netzhaut im Auge Rabauken-Zellen durch ebensolches Pech, wie bei anderen Krebsarten auch. Und die Netzhaut ist streng genommen ein ausgelagerter Teil des Gehirns – deshalb ordne ich den Augenkrebs bei den Krebsarten der Nerven ein.

Zum Glück lässt sich so ein “Retinoblastom” – so heisst der Augenkrebs in der Ärztesprache – leicht erkennen und gut behandeln. Wie das geht, erklärt Kinderkrebs Schweiz hier. Bei früher Erkennung werden sogar 19 von 20 statt 4 von 5 Kindern mit Augenkrebs wieder gesund!

Weitere Krebsarten bei Kindern

Dazu kommen Weichteilkrebs (also Muskeln, Fett- und Bindegewebe, 7%), Nierenkrebs (5%), Knochenkrebs (4%) und Krebs der zur Fortpflanzung gedachten Keimzellen (3%). Habt ihr mitgerechnet? Da fehlen noch 6% bis zu den runden 100%! Das sind wohl verschiedene, bei Kindern sehr seltene Krebsarten an anderen Körperteilen.

Warum bekommen Kinder gerade dort Krebs?

Während Nervengewebe tatsächlich besonders im Kindesalter wachsen, werden Blut- und Immunzellen das ganze Leben lang neu gebildet. Allein daran wie häufig sich Zellen teilen, lässt sich also nicht festmachen, wo Krebs entsteht. Warum Kinder an ganz bestimmten Stellen – und an anderen als Erwachsene – Krebs bekommen, müssen die Forscher erst noch herausfinden.

Wie kann man Krebs behandeln?

Der simpelste Weg, Rabaukenzellen loszuwerden ist, sie in einer Operation aus dem Körper heraus zu schneiden. Das geht bei gutartigen Geschwulsten (meistens) recht einfach. Bei Krebszellen, die wild in anderes Gewebe eindringen, ist es aber schwer bis unmöglich, sie wirklich alle wegzuschneiden. Und bei Krebsarten der Blutzellen ist das ganz unmöglich, weil die Rabauken dabei nicht an einem festen Ort versammelt, sondern im Körper verteilt und oft beweglich sind. Deshalb müssen sie auf andere Weise getötet werden.

Dazu verwenden kann man

Zellgifte = Chemotherapie

Diese Medikamente (sogenannte Zytostatika, d.h. “Zellbremsen”) stören Zellen bei der Teilung, in dem sie sich Beispiel an die DNA heften und so das Abschreiben der Baupläne verhindern. So entstehen keine neuen Krebszellen, während die alten Krebszellen an den Schreibblockaden sterben.

Cisplatin, ein nach wie vor häufig genutztes Medikament zur Chemotherapie, lagert sich an DNA an.

Moleküle des Chemotherapie-Medikaments “Cisplatin” (in dessen Mitte befindet sich tatsächlich ein Platin-Atom) verbinden sich mit einem Strang der DNA-Doppelspirale. Die Abschreibe-Proteine der Zelle laufen die DNA-Stränge entlang und bleiben an einem solchen Hindernis hängen. So kann die DNA nicht weiter abgeschrieben werden. Das funktioniert bei den allermeisten Krebsarten – aber leider auch bei gesunden Zellen. (By AlchemistOfJoy [CC BY-SA 3.0 ], from Wikimedia Commons)

Solche Gifte wirken auf sich schnell teilenden Zellen besonders stark – also auf Krebszellen, aber auch auf solche, aus denen Haare wachsen oder Blutzellen entstehen. Deswegen fallen vielen Krebspatienten, die eine Chemotherapie erhalten, die Haare aus. Ausserdem werden auch viele andere Zellen bei ihrer Arbeit gestört – deshalb wird den Patienten von der Chemotherapie nicht selten furchtbar schlecht.

Damit all das nicht (oder weniger) geschieht, versuchen Forscher, die Zellgifte gut verpackt direkt zu den Krebszellen zu bringen und erst dort loszulassen. Oder sie erfinden neue Zellgifte, die Krebszellen (besser) von normalen Zellen unterscheiden können.

(Be-)Strahlung

Dass Strahlung die DNA-Baupläne beschädigen kann, hatte ich weiter oben schon erwähnt. Und wenn die Beschädigungen gross genug sind, sterben die Zellen daran. Auch die Krebszellen. Zudem kann man Strahlung genau auf bestimmte Stellen bündeln. Dazu können die Krebs-Ärzte Röntgenstrahlen (also sehr energiereiches, unsichtbares Licht) oder Elektronen bzw. Protonen (das sind winzige Teilchen, die auf Zellen wie Kanonenkugeln wirken) verwenden.

Auch wenn man solch einen Beschuss ziemlich genau auf ein Krebsgeschwulst richten kann, leiden darunter auch die gesunden Zellen in der Umgebung. So kann einem leider auch von der “Bestrahlung” ziemlich schlecht werden.

Antikörper

Das sind ganz besondere Proteine, die normalerweise von Zellen des Immunsystems hergestellt werden, um Krankheitserreger zu erkennen und zur Bekämpfung zu markieren (wie das im Einzelnen vor sich geht, könnt ihr hier bei mir nachlesen). Krebsforscher versuchen nun, passende Antikörper zu den jeweiligen Krebszellen eines Patienten zu basteln. Wenn die ihr Ziel – die Krebszellen – finden und sich daran heften, rufen sie die Zellen des Immunsystems auf den Plan. Die können nun die Krebszellen (und bestenfalls nur die) gezielt angreifen und vernichten.

 

Zum Töten von Krebszellen NICHT verwenden kann man

Methoden und Mittel aus der “alternativen Medizin”

Wer gesagt bekommt, dass er Krebs hat, hat Angst. Angst um sein Leben und vor den unangenehmen Behandlungen, die auf ihn zukommen mögen. Das ist ganz natürlich. Genauso natürlich ist auch die Verlockung, die davon ausgeht, wenn jemand einen “einfacheren”, “sanften” oder gar “natürlichen” Weg verspricht, die fiesen Krebszellen wieder los zu werden.

Homöopathische “Medikamente”, Wunder- und Geistheiler, eine besondere Ernährungsweise oder das unsinnige Verwenden teils gefährlicher Chemikalien sind nur eine kleine Auswahl dessen, was den Menschen (auch) “gegen Krebs” verkauft wird. Häufig deshalb, weil jemand damit viel Geld verdienen möchte.

Wo “alternative” Methoden dennoch helfen können

Manche Vorgehensweisen aus dem Bereich “neben” der Medizin können dennoch ihren Nutzen haben. Nämlich dann, wenn sie zur Begleitung der Behandlung durch den Krebs-Arzt (den “Onkologen”) angewendet werden. Dazu zählen besonders solche Dinge, bewirken, dass ein Patient mit Krebs sich besser fühlt, weniger Angst hat und weniger unter den Nebenwirkungen seiner Behandlung leidet.

Es ist aber ganz wichtig, solche Massnahmen immer mit dem Krebsarzt/den Krebsärzten zu besprechen. Viele solche Mittel und Methoden – auch solche, die ganz harmlos erscheinen – können nämlich mit den eigentlichen Krebsmedikamenten “in Streit” geraten und deren Wirkung stören. NIE solltet ihr die eigentlichen Krebsmedikamente ohne Besprechung mit eurem Krebsarzt einfach weglassen, um “etwas anderes” zu probieren!

Dazu, wie ihr hilfreiche Angebote für Krebskranke von den “Geldverdienern” unterscheiden und sie gut mit eurem Krebs-Arzt besprechen könnt, hat die Krebsliga Schweiz eine tolle Broschüre herausgegeben, die ihr hier als .pdf-Datei herunterladen könnt.

Besondere Hochachtung habe ich übrigens vor den ehrenamtlichen Klinik- bzw. Spitalclowns, welche die (nicht nur krebs-)kranken Kinder im Spital besuchen und Freude in ihren schweren Alltag bringen. Lachen soll schliesslich sehr gesund sein! Die Clowns – wie meine treue Leserin Claudia alias “Clownine Kunst” in Leipzig, Deutschland – kosten die jungen Patienten und ihre Familien in Regel gar nichts und haben gewiss eine grössere Wirkung als manch überteuertes “Mittelchen”.

Kann man die Krankheit Krebs ganz und gar besiegen?

DAS wirksame und nebenwirkungsarme Mittel gegen alle Krebsarten hat man leider noch nicht gefunden. Dazu kommt, dass die meisten Krebsbehandlungen zuerst für Erwachsene erfunden werden. Kinder funktionieren aber in vielen Dingen anders als Erwachsene. Denn Kinder müssen schliesslich noch wachsen. So muss für jedes neue Mittel noch einmal neu untersucht werden, ob und wie es auch bei Kindern eingesetzt werden kann.

Denn Kinder sollen schliesslich nicht nur gesund, sondern auch gross werden und ein möglichst normales Leben führen können.

Dazu wird immer wieder der Erfolg neuer Behandlungsweisen bei Kindern an mutigen jungen Patienten untersucht. Bei so einer “Frühen Klinischen Studie” (Early Clinical Trial, ECT) werden Methoden und Medikamente, die z.B. bei Erwachsenen schon funktionieren, versuchsweise bei Kindern eingesetzt. Dabei passen die Ärzte ganz besonders genau auf ihre Schützlinge auf. Denn sie wollen schliesslich nicht nur “ihre” Kinder gesund machen, sondern möglichst nützliche Ergebnisse sammeln, um später noch mehr Kinder gesund machen zu können.

Mein Wunsch an krebskranke Kinder

Deshalb lautet mein Wunsch für ein – eigentlich für alle krebskranken Kinder: Behaltet eure Zuversicht. Freut euch an den kleinen Dingen und geniesst es, euren schweren Alltag für ein paar Augenblicke zu vergessen. Immer wieder. Und ich wünsche euch, dass aus 4 von 5 schnell 5 von 5 werden: Dass bald ein Weg für euch erforscht wird, der leichter zu gehen und für euch alle zu schaffen ist!

Eure Kathi Keinstein

Experiment: Gärung - die Superkraft von Hefe

Vor ein paar Tagen war es einmal wieder soweit: Ich hatte Geburtstag. Zur Feier des Tages habe ich mich in die Küche gestellt und der Biochemie gewidmet….ähm, Kuchen gebacken. Und zwar mit Hefe! Und damit wird das Kuchenbacken tatsächlich echte Küchen-Biochemie.

Was ist eigentlich Hefe?

Unsere Backhefe besteht aus richtigen Lebewesen! Aber nicht aus Pflanzen oder Tieren, sondern aus Pilzen mit dem komplizierten Namen “Saccharomyces cervisiae”.

Wenn ihr euch jetzt an Asterix und Obelix erinnert fühlt…richtig: Das Lieblingsgetränk der beiden Comic-Gallier ist lauwarme Cervisia – ein Bier. Tatsächlich ist die Backhefe der gleiche Pilz, der auch zum Bierbrauen verwendet wird.

Der erste Teil des Namens bedeutet übrigens so viel wie “Zuckerpilz”, womit der ganze Name sich etwa mit “Bier-Zuckerpilz” übersetzen lässt. Damit ist auch geklärt, wovon diese Pilze sich ernähren.

Hefen bilden übrigens keine Schirme und Hüte im Wald, wie ihr sie von anderen Pilzen kennt. Sie gehören nämlich zu den Einzellern und vermehren sich durch Zellteilung oder die Bildung von Ablegern. Deswegen sehen wir von ihnen ohne Mikroskop auch nicht mehr als eine gelblich-graue Masse. Mit einem Mikroskop hingegen kann man die einzelnen Hefezellen sehen:

Backhefe unter dem Mikroskop: Die Einzelzellen sind jetzt gut erkennbar.

Backhefe unter dem Mikroskop: Die Teilstriche der Skala sind jeweils 11 Mikrometer (Millionstel Meter!) voneinander entfernt. By Bob Blaylock [CC BY-SA 3.0 or GFDL], from Wikimedia Commons

Was macht ein Pilz in Brot und Kuchen?

Er lebt! Zumindest vor dem Backen. Und zwar wie alle Lebewesen von Zuckern. Nur ist Hefe dabei nicht zwingend auf Sauerstoff zum Atmen angewiesen. Während Menschen Sauerstoff als Oxidationsmittel brauchen, um aus den Zuckern chemische Energie zu gewinnen, können Hefen dazu auch andere chemische Reaktionen nutzen, die ohne Sauerstoff auskommen.

Solche Reaktionen werden zusammengefasst “Gärung” genannt. Bei der Gärung durch Hefe entsteht als “Abfall” der Trink-Alkohol “Ethanol” (auf den es die Bierbrauer abgesehen haben), und… findet es selbst heraus!

 

Experiment 1: Hefegärung sichtbar machen

Ihr braucht dazu

Eine Glasflasche mit engem Hals (ca. 0,5l),
Einen Luftballon, nicht aufgeblasen
Backhefe (1 Päckchen Trockenhefe)
Wasser (lauwarm)
Einen Teelöffel Haushaltszucker

Das braucht ihr für das Experiment

So geht es

Blast den Luftballon mehrmals hintereinander auf und lasst die Luft immer wieder heraus. So wird die Ballonhülle schon einmal gedehnt und lässt sich später leichter aufblasen.

Füllt die Flasche halb mit lauwarmem Wasser und löst den Zucker darin auf. Gebt die Hefe dazu und schwenkt die Flasche kurz, sodass sich alles gut mischt.

Stülpt dann die Öffnung des Luftballons über die Flaschenöffnung und stellt das Ganze an einen warmen Ort (ideal sind 28-32°C).

Wartet ab und beobachtet, was geschieht: In der Flasche geht es sichtlich geschäftig zu, und: Der Ballon bläht sich auf!

Im Laufe von 45 Minuten bläht der Ballon sich immer weiter auf!

Ein Gas entsteht: Links der Aufbau zu Beginn des Experiments, dann von links nach rechts: nach 15min, 30min, 45min

Was geschieht da?

Die Hefe verdaut den Zucker. Dabei entsteht ein Gas, das den Ballon füllt!

Was für ein Gas ist das?

Ihr könnt es selbst nachweisen!

Experiment 2: Gas-Nachweis

Ihr braucht dazu

Die Hefemischung in der Flasche aus Experiment 1
Ein Streichholz, etwas zum Anzünden
Eine Pinzette

So geht es

Entfernt den Luftballon von der Flasche. Entzündet das Streichholz und führt es mit Hilfe der Pinzette in die Flasche mit der Hefemischung (nicht eintauchen!). Beobachtet: Das Streichholz geht aus!

Was passiert da?

Das Gas, welches die Hefe produziert, ist Kohlenstoffdioxid (CO2)! Es ist schwerer als Luft und verdrängt so den Sauerstoff nach oben aus der Flasche. Ohne Sauerstoff kann Feuer nicht brennen – und geht aus.

 

Was in den Hefezellen passiert

Der wichtigste Zucker, von dem Hefe sich ernährt, ist Traubenzucker (Glucose). Das ist ein “Einfachzucker” (ein Monosaccharid), besteht also aus überschaubar kleinen, einzelnen Zuckermolekülen.

alpha-D-Glucose in 6-Ringform: Haworth-Strukturformel

Ein Glucose-Molekül

Aus Traubenzucker- bzw. Glucose-Molekülen können alle Lebewesen schnell Energie gewinnen. Die Hefe verwendet dazu eine Folge von Reaktionen, die die Biochemiker als “anaerobe Glykolyse” bezeichnen.

Dabei wird aus einem Molekül Glucose in mehreren Schritten ein Molekül “Pyruvat” hergestellt. Im Zuge dieser Schritte werden zwei Energieträger-Moleküle, die die Biochemiker abgekürzt “ADP” nennen, “aufgeladen”, indem je ein Phosphorsäure-Anion an jedes dieser Moleküle gehängt wird (die aufgeladenen Energieträger-Moleküle heissen dann “ATP”).

Für das Aufladen sind jedoch weitere Reaktionspartner (Moleküle namens NAD+) nötig, die ihrerseits recycelt werden müssen.

Gärung: Aus Pyruvat wird Ethanol. Dabei wird ein Molekül CO2 frei und ein Molekül NAD+ rezykliert.

Alkoholische Gärung By Arne “Norro” Nordmann. [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5 ], via Wikimedia Commons

Deswegen haben die Hefepilze ein weiteres Enzym (die Pyruvatdecarboxylase), das von den Pyruvat-Molekülen je ein Molekül Kohlenstoffdioxid (CO2) abspaltet.

Das Kohlenstoffdioxid wird danach aus den Zellen entsorgt und füllt euren Luftballon!

Übrig bleibt ein Molekül Acetaldehyd. Das ist für Zellen giftig und wird deshalb schnell zu Ethanol weiterverarbeitet, wobei die Abfall-Moleküle NADH aus der Glykolyse zu NAD+ recycelt werden.

Der Trink-Alkohol “Ethanol” ist übrigens für uns Menschen giftig, weil es in unseren Zellen das Enzym Alkoholdehydrogenase auch gibt – nur fördert es da die Reaktion in umgekehrter Richtung: Aus Ethanol wird Acetaldehyd. Und das beschert und einen mächtigen Kater (über diesen biochemischen Katzenjammer könnt ihr hier mehr lesen).

Wie wird dann Haushaltszucker vergoren?

Die Moleküle des Haushaltszuckers (Saccharose) bestehen aus je zwei verbundenen Einfachzuckern: dem Traubenzucker Glucose und dem Fruchtzucker Fructose.

Saccharose, unser Haushaltszucker dargestellt in der Haworth-Strukturformel

Ein Saccharose-Molekül

In den Hefepilz-Zellen gibt es deshalb ein Enzym, das diese Paare spalten kann, bevor die Einzelteile wie oben gezeigt “verdaut” werden.

Diese Fähigkeit – Haushaltszucker zu spalten und zu verwerten – hat der Backhefe schliesslich ihren wissenschaftlichen Namen (Saccharomyces…) eingebracht.

Wie “geht” Hefe in Milch?

Normale Vollmilch besteht zu ca. 5% aus Milchzucker (Laktose) – das sollte ja genug Futter für die Hefe sein, oder? Weil Reto laktoseintolerant ist, habe ich allerdings laktosefreie Milch für den Kuchen benutzt…und hatte schon Sorge, die Hefe würde damit nicht aufgehen. Stattdessen ging meine Hefe aber schon nach dem Mischen mit der Milch ab wie Schmitz’ Katze!

Hefe in laktosefreier Milch

Laktose ist auch ein Zweifachzucker, sie besteht aus je einem Molekül Glucose und Galactose.

Ein Laktose-Molekül: Haworth-Strukturformel

Auch Laktose ist ein Zweifach-Zucker, der vor der Verwertung gespalten werden muss

Unglücklicherweise hat die Back-Hefe aber kein Enzym, um Laktose zu spalten und so an die Glucose zu gelangen (sie ist also “laktoseintolerant”, wenngleich Hefepilze keinen Darm haben, der deswegen verstimmt sein könnte). Zum Glück für die Hefe enthält normale Vollmilch jedoch immer auch freie Glucose.

Laktosefreie Milch wird nun hergestellt, indem man das Enzym Laktase dazugibt, welches die Laktose in Glucose und Galactose spaltet (deshalb ist laktosefreie Milch ein wenig süsser als normale). So findet die Hefe in laktosefreier Milch sogar mehr zu fressen als in normaler Vollmilch und geht dementsprechend eifrig auf!

Was im Ofen mit der Hefe passiert

Und bevor euch nun bei all den lebendigen Pilzen der Appetit auf Brot und Kuchen vergeht: Wie alle Lebewesen sind Hefepilze auf gemässigte Temperaturen angewiesen. Wenn ihr euren Hefeteig also in den Ofen schiebt und erhitzt, sterben alle Pilze ab.

Das Kohlenstoffdioxid, das sie vorher im Teig freigesetzt haben, dehnt sich jedoch in der Hitze aus und lässt so Kuchen und Brot aufgehen und so wunderbar fluffig werden. Wenn indessen Stärke, Proteine, Fett und Zucker im Teig zu einem festen Molekülgerüst reagieren (zum Beispiel im Zuge der Maillard-Reaktion, zu der ihr hier lesen könnt), fällt das Ganze nach dem Abkühlen auch nicht mehr zusammen.

 

Entsorgung

Das Hefe-Wasser-Gemisch könnt ihr in den Ausguss entsorgen – oder vielleicht ein Brot damit backen? Den Luftballon könnt ihr nach Belieben weiter benutzen.

 

Ich wünsche euch viel Spass beim Ausprobieren und Beobachten! Was macht ihr sonst am liebsten mit Hefe bzw. Hefeteig?

Ausflugstipp: Sea Life Center Konstanz - mit Gewinnspiel

Reto und ich haben vom Sea Life Center Konstanz für die Begehung vor Ort kostenfreien Eintritt und eine Zusage für den Versand weiterer Freikarten für eine Familie plus Plüsch-Schildkröte als Souvenir für die Kinder als Gewinn erhalten. Ich bedanke mich sehr für die Zusammenarbeit! Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Was ist Sea Life?

Bestimmt habt ihr schon mal von “Sea Life” gehört. Schliesslich steht dieser Name für die grösste Besucher-Aquarienkette der Welt. In 47 Städten rund um die Welt (32 davon in Europa) gibt es ein Sea Life Center, in welchem kleinen und grossen Besuchern die Bewohner von Meeren, Flüssen, Seen und anderen Gewässern in aufwändig gestalteten Aquarien ganz nahe gebracht werden.

Die Sea Life Center werden von der Merlin Entertainment Group betrieben, dem grössten Anbieter von Unterhaltungseinrichtungen und Freizeitparks in Europa und dem zweitgrössten solchen Unternehmen weltweit. So gehören neben den Sea Life Aquarien zum Beispiel auch die Legoland-Freizeitparks und die “Madame Tussaud’s”-Wachsfiguren-Kabinette (die man längst nicht mehr nur in London findet) zum Konzern.

Wie kommt nun Unterhaltungsindustrie in Keinsteins Kiste?

Die Sea Life Center möchten mehr als bloss unterhalten. Sie möchten informieren, eine geheimnisvolle und gefährdete Welt erlebbar machen und so kleinen und grossen Besuchern nahe bringen, wie wichtig es ist, die Gewässer der Erde und ihre Bewohner zu schützen.

So haben Sea Life und ich etwas gemeinsam: Wir möchten euch spannende Geheimnisse der Natur und ihre Erforschung näher bringen. Um euch zu zeigen, wie viel Spass Natur und Wissenschaft machen können, aber auch um Grundlagen für verantwortungsvolles Tun in allen Lebenslagen schaffen. Denn was Menschen kennen und schätzen, werden sie auch respektieren und schützen.

Heute darf ich euch auf Einladung des Sea Life Centers in Konstanz eine Entdeckungsreise durch die Unterwasserwelt vorstellen, im Rahmen derer ihr euch selbst als Meeresforscher versuchen könnt. Und das Beste daran: Das Sea Life Center hat seine Einladung auf euch erweitert: Ich darf Eintrittskarten für eure ganze Familie in das Sea Life Aquarium in Konstanz verlosen! Wie das vor sich geht, erfahrt ihr am Ende dieses Beitrags.

Jetzt geht es aber los auf Tauchgang

Reto und ich haben uns einen regnerischen Samstag Anfang September für unseren Besuch im Sea Life Konstanz ausgesucht. Das trübe Wetter scheint perfekt dafür, um “indoor” in fremde Welten abzutauchen. Die Sommerferien in Baden-Würtemberg und Bayern sind allerdings noch nicht zu Ende. So müssen wir damit rechnen, dass wir längst nicht die einzigen sind, die heute hier auf Tauchgang gehen.

So laufen wir bereits auf der mächtigen Rampe zum Eingang des Sea Life Centers auf eine Warteschlange auf. Die allerdings könnte grösser sein – es finden sogar alle Wartenden unter dem Vordach im Trockenen Platz. Direkt am Bodensee, am Konstanzer Hafen gelegen wirkt das Gebäude von aussen eher schlicht, ist durch den markanten Schriftzug an der Fassade aber unverkennbar.

Sea Life Center Konstanz - Aussenansicht

Freundlicher Empfang

Dank der freundlichen und fleissigen Mitarbeiter an der Kasse erreichen wir nach einigen Minuten den Eingangsbereich, der schon erahnen lässt, wie das Innere dieses Grossaquariums geschnitten ist: Eng und lauschig.

Deshalb meine Empfehlung an Familien mit kleinen Kindern: Vor dem Eingang gibt es einen überdachten Kinderwagen-Parkplatz. Nutzt den und lasst Kinderwagen und allfällige andere Fahrzeuge unbedingt draussen! Ihr tut euch selbst und allen anderen Gästen damit einen grossen Gefallen!

An der Tageskasse erhalten wir unsere Freikarten und ein Informationsblatt mit den Schau-Fütterungszeiten. Am Samstag werden allerdings nur die Pinguine gefüttert (die Fische in den anderen Becken brauchen nicht jeden Tag etwas zu fressen, lernen wir später), sodass wir diesen Fixpunkt gleich auf unsere gedankliche Agenda setzen.

Für unsere Kinder könnten wir jetzt Material für zusätzliche interaktive Stationen und Forscher-Aufgaben in der Ausstellung zubuchen. Unser Hauptaugenmerk liegt heute aber auf dem neuesten Angebot hier in Konstanz, das im Eintrittspreis enthalten ist: Wir dürfen uns selbst am Traumberuf “Meeresforscher” versuchen und eine in Not geratene Meeresschildkröte retten.

 

Im Sea Life durch die Welt der Gewässer und Meere

Das Sea Life Konstanz zeigt die Wasserbewohner entlang einer Reise den Rhein hinunter, durch den Bodensee und weiter bis nach Rotterdam, von dort ins offene Meer, in tropische Ozeane, den Amazonas hinauf und schliesslich an den Rand der Antarktis am fernen Südpol der Erde.

So beginnt unser Tauchgang in einer künstlichen Gletscherhöhle, wie sie in den Höhen der Alpen an der Quelle des Rheins zu finden sein mag. Ein Willkommensvideo soll vornehmlich die kleinen Besucher in grundlegende Hausregeln und den Gebrauch der Zusatzmaterialien einführen. Eine automatisch öffnende Tür am Ende des Raumes, die die Besucher für den Rundgang dosieren soll, sorgt für ein gewisses Freizeitpark-Gefühl. Da wir aber im Aquarium sind, zieht es die meisten Besucher, die die Tür von Hand aufschieben, gleich weiter. Wir lassen uns ebenfalls vom Strom treiben.

Umweltschutz für Kinder aufbereitet

Unser Weg führt durch aufwändig ausgestaltete Räume an den Bewohnern des Rheins und des Bodensees in offenen Becken vorbei. Kindgerechte und humorvolle Beschreibungstafeln und -bildschirme geben den gezeigten Tieren Namen – sind aber weniger ausführlich als die klassischen Gehege-Tafeln im Zoo. Das bedeutet zwar weniger Informationen für die Grossen, ermöglicht jedoch auch weniger lesesicheren Primarschulkindern, die Ausstellung selbstständig zu entdecken.

Dabei wird stets grosses Gewicht auf den Natur- und Umweltschutz gelegt: Es werden in jedem Bereich Projekte vorgestellt, mit welchen sich der Sea Life Trust für den Schutz der Wasserbewohner und ihrer Lebensräume engagiert. Ausserdem werden Tipps gegeben, wie wir alle dazu beitragen können, indem wir unseren Lebenswandel auf den Schutz von Meeren und Gewässer ausrichten können.

Für die Kleinsten gibt es zudem reichlich Hocker, die auf den Weg durch die Ausstellung mitgenommen werden können und – vor allem später – den Blick in etwas höher gelagerte Becken ermöglichen.

Im Raum mit dem Bodensee-Becken fällt mir dann erstmals die Hintergrund-Musik auf, die uns durch die ganze Ausstellung begleitet. Dezent gibt sie der Unterwasser-Erlebniswelt einen kinowürdigen Soundtrack.

 

Unser Hauptziel: Die interaktive Schildkröten-Rettung

Gleich hinter Konstanz am Bodensee finden wir uns – einem Unterbruch der Reiseroute gleich – am interaktiven Schildkrötenstrand wieder. In diesem Raum ist mächtig etwas los, möchten sich doch alle Kinder einmal als Meeresschützer versuchen. Und es gibt hier reichlich zu tun:

Hier am "Strand" gibt es viele Schildkröten zu retten!

Am “Strand” haben wir auch am regnerischen Feriensamstag reichlich Auswahl an Plüsch-Schildkröten in Not. Ich entscheide mich für ein Exemplar und trage es gleich zur Waage. Ein Mikrochip im Innern des Plüschtiers kommuniziert mit dieser Station. Auf dem Bildschirm können wir die Art auswählen, der unsere Schildkröte angehört, und ihr einen Namen geben. Unser Schützling soll “Keinstein” heissen. Die Waage teilt uns ausserdem mit: Keinstein, die Unechte Karettschildkröte, wiegt viel zu wenig. Er muss dringend aufgepäppelt werden!

Plüsch-Schildkröte "Keinstein" auf der Waage

Meine Wahl fiel auf “Keinstein”, die unechte Karettschildkröte.

 

Technik mit Kinderkrankheiten…

So geht es weiter zur Schildkrötentränke. Hier zeigt sich eine Kinderkrankheit der empfindlichen Technik: Die Fortschritts-Daten in Keinsteins Chip werden nicht erkannt: Der Bildschirm schickt uns zurück zur Waage. Eine aufmerksame und sehr hilfsbereite Sea Life-Mitarbeiterin bietet uns gleich eine Ersatz-Schildkröte an. Wir geben jedoch nicht so schnell kleinbei – wir wollen schliesslich Keinstein retten. Also noch einmal zurück auf Anfang.

Und dann klappt alles reibungslos.

Keinstein hat sich satt gefressen!

Alles richtig gemerkt – und Keinstein ist satt!

An der Fütterungsstation zeige ich, dass ich mir gut gemerkt habe, was Unechte Karettschildkröten am liebsten fressen. An der Röntgenstation werde ich selbst zur Tierärztin, denn Keinstein ist ganz schön ramponiert: Pflaster, Verband und Salbe sorgen dafür, dass alle Blessuren rasch heilen können.

Keinstein in der Röntgenkammer: Floss gebrochen!

Oh weh, Flosse gebrochen! Da hilft wohl nur ein Pflaster…oder doch ein stabiler Gipsverband?

Bis es soweit ist, gibt es endlich etwas zu trinken. Wir messen die gewünschte Menge Wasser ab und pumpen sie durch die abenteuerliche Installation gleich in Keinsteins Maul.

Keinsteins hat Durst!

Keinstein hat Durst! Nur noch abmessen, dann gibt es was zu trinken.

Dann heisst es Abschied nehmen: Das Display zeigt an, dass wir alle Meeresschützer-Aufgaben erfolgreich erledigt haben. Keinstein ist gesund und munter und darf ins Meer zurück. Also setzen wir ihn am “Strand” aus und sehen ihm nach, während er wieder ins Meer zurück kriecht – um bald aufs neue von einem Kind gerettet zu werden.

Wir setzen Keinstein am "Strand" wieder aus.

Tschüss, Keinstein! Auf dass noch viele Kinder dich retten mögen!

 

… ist dank hervorragender Betreuung kein Problem

Die moderne Technik ist scheinbar noch recht empfindlich und mit “Kinderkrankheiten” behaftet. Dank der sorgfältigen Betreuung durch die Mitarbeiter “strandet” aber niemand bei diesem Abenteuer. Ein Bisschen Geduld zahlt sich dabei wie so oft aus: Im zweiten Anlauf klappt alles prima.

Und das obwohl die Anlage recht störanfällig zu sein scheint. Zum Glück ist jede Station in vierfacher Ausführung eingerichtet. So stört selbst an diesem betriebsamen Samstag kaum, dass ein bis zwei Ausgaben je Station gerade defekt sind.

Alles in allem ist die Schildkrötenrettung besonders für Jungforscher ein herziger wie lehrreicher Spass für zwischendurch, bevor es weiter auf die Reise durch die Meere geht.

 

Meeresbewohner zum Staunen

Besondere Freude macht mir in Einrichtungen wie dem Sea Life, die jungen Besucher zu beobachten und ihnen zuzuhören.

Zum Beispiel dem kleinen Jungen, der mit grossen Augen in das (für meine recht verwöhnten Erwachsenensinne nur mässig spektakuläre) Quallenbecken schaut: “Mama, sind das auch Tiere?” (Ja, antwortet die Mutter.) “Wo (bzw. wie) fühlen die sich wohl?”

Ohrenqualle im Aquarium

Ja, das ist auch ein Tier: Die Ohrenqualle – eine völlig harmlose Bewohnerin der Ostsee

Oder den beiden Mädchen am Rotterdamer Hafenbecken: “Papa, da ist ein langer Fisch! Was ist das für einer?” (Sie müssen etwas warten, bis sie Papas Aufmerksamkeit auf die rechte vordere Ecke des Beckens lenken können, bleiben aber hartnäckig.) “Ein Aal”, erklärt der Vater. “Ist das ein Zitteraal?”

Ist er nicht – es handelt sich um den europäischen Aal. Rund 30 Jahre älter als diese Kinder verbinde ich diesen Aal noch mit einem geräucherten Leckerbissen auf der Weihnachtstafel. Heute sind die Bestände so überfischt, dass der Räucheraal rar geworden ist. So rar, dass diese Kinder ihn nicht mehr kennen. Um so wichtiger ist es, ihnen solche Tiere nahe zu bringen.

Tierwelt für alle Sinne

In der kleinen Halle mit dem grossen, offenen Rochenbecken finden wir ein weiteres kleines Highlight: Am Berührbecken dürfen wir und die mutigen Jungforscher die bizarrren Eihüllen der Rochen und Haie in die Hand nehmen und uns von durchsichtigen Garnelen anknabbern lassen. Einige Seesterne und andere Tiere in weiteren Becken machen gerade Berühr-Pause. Animateurin Melanie, die wir bereits von der Pinguinfütterung kennen, hat ein wachsames Auge und spannende Erklärungen dazu parat.

Physik-Tricks im Aquarium

Der Übergang in wirklich tropische Gefilde beginnt mir einer weiteren rar gewordenen Gattung: Den Seepferdchen. Eine besonders grosse und eindrückliche Art wird hier sogar nachgezüchtet! Auf weniger augenscheinliche Expemplare gewähren nach aussen gewölbte Halbkugel-Becken einen besonders guten Blick. Die gläserne Wölbung hat nämlich die gleiche Wirkung wie eine Lupe: Sie bricht das Licht auf eine Weise, die das Innere des Aquariums grösser aussehen lässt, als es wirklich ist!

Seepferdchen im hinter kugelrundem Glas

Seepferdchen vergrössert: Die Glas-Halbkugel wirkt wie eine Lupe!

Dahingegen wirken nach innen gewölbte Glasscheiben wie ein Weitwinkelobjektiv: Das Innere des Aquariums wirkt zwar kleiner, aber wir haben da hindurch einen besonders grossen Teil des weitläufigen Beckens im Blick.

“Findet Nemo” im tropischen Meer

Im tropischen Meer gelangen wir schliesslich zu der Art Becken, für das die Sea Life-Center bekannt sind: Ein Plexiglas-Tunnel, durch den wir “unter Wasser” hindurchgehen – und einen Hai von unten in Augenschein nehmen – können. Besonders spannend an der Konstanzer Ausführung ist, dass wir dieses Becken während des Rundgangs aus verschiedenen Richtungen einsehen und immer neues entdecken können.

Reto mit Fotomodell im Plexiglastunnel

“Fische sind Freunde – und Reto auch”, denkt sich wohl dieser Hai, der auf der Tunnelwölbung posiert.

So erwische ich nicht nur Reto beim Foto-Shooting mit einem besonders bequemen Hai, sondern auch einen sehr lebendigen Kollegen von unserem “Keinstein”. Und wer besonders aufmerksam ist, findet in diesem und den umliegenden Becken praktisch alle wichtigen Charaktere aus “Findet Nemo”, dem Animationsfilm um den kleinen Clownfisch aus dem Indischen Ozean.

Wer findet Nemo im Korallenbecken?

Wer findet Nemo im Korallenbecken?

 

Spektakel im Süsswasser: Tropischer Regenwald

Auch im Tropenwald gibt es viel Wasser – das berühmteste Gewässer ist wohl der Amazonas-Fluss. Diesem ist der vorletzte Ausstellungsraum gewidmet. Zwei besonders populäre Bewohner sind hier vertreten: Eine Art der vielfältigen giftigen Pfeilgiftfrösche und die berüchtigten Piranhas. Letztere lösten vor allem deshalb Staunen aus, weil sie sich fernab ihrer Fütterungszeit (nur Montags um 15 Uhr) in ihrem schillernden Schuppenkleid ausnehmend schön präsentierten.

Doch auch weniger bekannte und um so spektakulärere Arten wie Diskusfische finden hier Platz.

Ein Diskusfisch im Amazonas-Becken

Diskusfische wie dieser spucken Wasser, um Insekten über der Wasseroberfläche “abzuschiessen” und nach dem Absturz in den Fluss zu fressen.

 

Fütterung bei den Eselspinguinen

Unsere Tauchfahrt führt uns zu guter Letzt in die eisige Antarktis – genauer gesagt an deren erfrischend kühlen Rand. Dort – genauer gesagt auf den Falkland-Inseln – leben nämlich die im Sea Life Konstanz präsentierten Eselspinguine.

In den meisten Zoos und Aquarien, die ich kenne, werden die ebenfalls in milderem Klima heimischen Humboldt-Pinguine gehalten. So sind die zehn Vögel hier für Reto und mich eine willkommene Abwechslung – und sehen im Übrigen der Schweizer Fernseh-Knetfigur “Pingu” richtig ähnlich.

Der Eselspinguin betrachtet uns Besucher genauso neugierig wie wir ihn.

Wer ist hier nun im Zoo? Irgendwie fühlen wir uns beobachtet…

Um die Fütterung nicht zu verpassen, sind wir zwischenzeitlich von unserem Rundgang fort ans Ende der Ausstellung geeilt und haben uns zur lebhaften Besucherschar in den recht begrenzten Raum geschoben. So kommt es, dass uns Melanie, die Moderatorin, später am Berührbecken schon bekannt ist.

Hier erklärt Melanie kindgerecht spannend und humorvoll, warum wir nicht mit Blitz fotografieren, an die Scheiben klopfen oder durch das Glas mit den Tieren spielen sollen (die Pinguine stossen sich dabei den Schnabel und können sich so verletzen). Während ein Tierpfleger die Vögel hinter dem Glas mit Fisch versorgt, erzählt unsere Moderatorin Wissenswertes zu den Pinguinen. So lernen selbst wir noch etwas neues:

Warum gibt es schwule Pinguine?

Das Sea Life Konstanz hat einst fünf Pinguin-Pärchen, also fünf Männchen und fünf Weibchen anschaffen wollen. Wie sich bald zeigte, sind jedoch sechs der erhaltenen Tiere männlich und vier weiblich. So gibt es nun vier Pärchen, die Nachwuchs bekommen können – und zwei Männchen bilden ein schwules Paar. Aber warum macht die Natur sowas?

In der freien Natur muss stets ein Elternteil das gemeinsame Ei auf den Füssen hüten, während der andere Elternteil auf Nahrrungssuche geht. Später werden dann die Rollen getauscht. Wenn nun der jagende Elternteil von einer Robbe oder einem anderen Feind gefressen wird und nicht zurückkehrt, muss der andere Elternteil irgendwann das Ei allein zurücklassen, um nicht zu verhungern. Schwule (oder lesbische) Pinguin-Paare adoptieren solche verwaisten Eier und ziehen gemeinsam das Junge gross. So können die homosexuellen Vögel zur Erhaltung ihrer Art beitragen, obwohl sie keinen eigenen Nachwuchs zeugen.

 

Der Tauchgang ist fast ein wenig zu schnell vorbei

Als wir das Pinguinbecken abseits der Fütterungszeit ein zweites Mal erreichen, finden wir auch die angekündigten Unterschriftenbögen von Greenpeace zur Unterstützung des Antarctic Trust, der sich für die Erhaltung von Arten und Lebensräumen rund um den Südpol einsetzt. Von den Eindrücken unserer Unterwasser-Reise beflügelt ist der Bogen schnell unterschrieben.

Dann heisst es zu unserem Bedauern auch schon wieder auftauchen. Am Ende der Ausstellung erwartet uns der unvermeidliche Souvenirshop mit den ebenso unvermeidlichen Plüschschildkröten und vielem mehr.

Zugabe! Zugabe!

Aber ganz zuende ist unsere Reise doch noch nicht: Von hier aus gelangt man nämlich direkt in das Naturmuseum Bodensee im Obergeschoss, das im Eintritt zum Sea Life enthalten ist! Hier erfahren wir viel Interessantes zur Natur und Naturgeschichte der Bodenseeregion und lernen viele ihrer tierischen Bewohner anhand von sehr lebendig wirkenden ausgestopften Exemplaren kennen. Es lohnt sich wirklich, diesen Abstecher an Land zu machen.

Ausserdem: Wir haben anfangs an der Kasse Stempel auf die Hand erhalten. Mit diesen könnten wir unseren Tauchgang noch einmal von vorne beginnen, um noch mehr zu entdecken, eine weitere Fütterung zu erleben, oder… Und das den ganzen Tag lang beliebig oft.

Aber nach unserer ausführlichen Reise zieht uns nun der Hunger in eines der Restaurants am Hafen.

 

Öffnungszeiten und Eintrittspreise

Das Sea Life Center Konstanz hat jeden Tag von 10 bis 17 Uhr – im August von 10 bis 18 Uhr – geöffnet. Einzig am heiligen Abend (24.12.) bleibt das Aquarium geschlossen.

Ein Tagesticket für Erwachsene kostet an der Kasse derzeit EUR 18,75, für Kinder von 3 bis 15 Jahren rund EUR 12,86 (Kleinkinder unter 3 Jahren sind frei). Das macht den Sea Life – Besuch für Familien zu einem teuren Unterfangen. Daher zwei Spar-Tipps:

1. Bucht eure Tickets vorab online – so sind sie 30% günstiger (EUR 13,10 für Erwachsene, EUR 9,00 für Kinder, Stand September 2018).

2. Tut euch für euren Besuch mit zwei bis drei Familien zusammen, sodass ihr mindestens 10 Leute über 3 Jahren seid, und meldet euch als Gruppe an. Dann zahlt jede Person über 3 Jahren EUR 8,00.

 

Wie kommt man zum Sea Life Center?

Aus der Schweiz kommt man denkbar einfach mit dem Zug nach Konstanz: Der Hauptbahnhof Konstanz gehört – obgleich in Deutschland gelegen – quasi zum Schweizer Schienennetz. Das heisst, Billetts/Fahrkarten gibt es an den Billett-Automaten der SBB. Ausserdem bieten die SBB vorläufig bis zum 31.10.18 einen ermässigten Fahr- und Eintrittspreis als “RailAway-Kombi” an. Und mit dem GA fahrt ihr sogar gratis bis nach Konstanz (und solltet die Eintrittskarten online direkt beim Sea Life buchen – das kommt am günstigsten).

Da ihr von der Schweiz (oder von Österreich) aus nichts desto trotz die Landesgrenze überquert: ID/Personalausweis nicht vergessen! Normalerweise bekommt ihr von der Grenzüberquerung aber gar nichts mit: Es gibt in der Regel keinerlei Grenzkontrollen – Schengenraum sei Dank.

Auch von Deutschland aus empfehle ich die Anreise mit der Bahn – das erspart euch Stadtverkehr und Parkplatzsuche. Mit dem Baden-Württemberg-Ticket für Familien könnt ihr günstig im Nahverkehr aus dem ganzen Bundesland an- und abreisen.

Vom Bahnhof sind es ca. 400m Fussweg am Hafen entlang nach Süden: Das Aquarium steht direkt am Bodensee.

Und noch einmal mein dringender Rat an alle Eltern mit Kleinkindern und Babys: Lasst den Kinderwagen wirklich draussen auf dem Kinderwagenparkplatz stehen, denn drinnen wird es eng!

 

Gesamteindruck vom Sea Life Konstanz

Das Sea Life Konstanz bietet eine aufwändig gestaltete, farbenfrohe Aquarien-Ausstellung, die uns zuweilen das Gefühl gab, durch einen Freizeitpark zu spazieren. Das reichhaltige “Drumherum” nimmt – im Vergleich zu anderen Grossaquarien, die ich kenne, etwas den Fokus von den Tieren selbst.

Trotzdem gibt es in den Becken viele spannende und bizarre Lebewesen zu entdecken und zu bestaunen. Wie für jeden Aquarien-Besuch lohnt es sich auch hier, sich Zeit zu nehmen und aufmerksam zu beobachten, was in den Becken kreucht und….schwimmt.

Die Ausstellung ist speziell auf Primarschul- (Grundschul-) und Kindergartenkinder zugeschnitten. Dennoch kommen auch Grössere und Erwachsene auf ihre Kosten, wenn sie sich auf die bunte Tauchfahrt einlassen und gemeinsam mit den Nachwuchs-Forschern auf Entdeckung gehen. Wer detaillierte und weiterführende zoologische Informationen zu den Aquarienbewohnern schätzt, findet davon in anderen Aquarien allerdings einiges mehr.

Die Ausstellung im Sea Life Konstanz ist im Vergleich zu anderen Aquarien ziemlich eng gestaltet! An unserem gut besuchten Tag war zum Überholen auf dem linearen Weg durch die Ausstellung (um zur Pinguinfütterung zu gelangen) vielfach Geduld und Umsicht erforderlich. Trotzdem konnten wir an allen Becken beobachten ohne uns bedrängt zu fühlen. Ich zumindest habe das Aquarium nicht als überlaufen empfunden.

Grösster Wehmutstropfen sind die stolzen Eintrittspreise, die den Besuch im Sea Life für Familien schnell zur Grossinvestition werden lassen. Wenn euch die bunte Unterwasser-Expedition trotz der oben genannten Tipps zu teuer ist, könnt ihr euer Glück ja beim

 

Gewinnspiel

versuchen!

Zu gewinnen gibt es einen freien Eintritt in das Sea Life Konstanz für eure ganze Familie – inklusive einer Plüsch-Schildkröte als Andenken für eure Nachwuchs-Schildkrötenretter!

Wie ihr am Gewinnspiel teilnehmen könnt

Kommentiert dazu einfach bis zum 25. September 2018 unter diesem Beitrag und verratet uns: Was war eure bislang spannend Tier-Beobachtung im, auf oder unter Wasser (im Aquarium oder sogar draussen in der Natur)? Gebt dabei eine gültige Email-Adresse im entsprechenden Feld an, damit ich euch im Fall eines Gewinns erreichen kann!

Anschliessend werde ich den Gewinner unter allen gültigen Kommentaren auslosen.

Teilnahmebedingungen

  • Das Gewinnspiel wird von Keinsteins Kiste in Zusammenarbeit mit dem Sea Life Center Konstanz veranstaltet. Vielen Dank für die Bereitstellung und den Versand des Preises!
  • Das Gewinnspiel startet am 11. September 2018 und endet am 25. September 2018 um 24.00 Uhr.
  • Die Teilnahme am Gewinnspiel ist kostenlos.
  • Ihr müsst mindestens 18 Jahre alt sein (Liebe Kinder: Tut euch mit euren Eltern, Grosseltern oder anderen Erwachsenen zusammen!).
  • Ihr müsst eine Post-Adresse in der Schweiz, Deutschland oder Österreich haben, an welche der Gewinnpreis versandt werden kann.
  • Gewinnpreis sind Tageskarten für den Besuch des Sea Life Centers Konstanz für eine Familie plus je eine Plüsch-Schildkröte für die Kinder der Gewinner-Familie.
  • Es gibt 1 Los für einen Kommentar mit gewünschtem Inhalt (s.o.).
  • Eine Auszahlung des Gewinns in bar ist nicht möglich. Der Rechtsweg ist ausgeschlossen.
  • Der Gewinner wird ausgelost und per eMail benachrichtigt. Dabei wird er darum gebeten, der Weitergabe seiner Postadresse an das Sea Life Center Konstanz zuzustimmen, damit der Gewinn direkt vom Verlag versandt werden kann.
  • Die Gewinne gelten auf den Namen der teilnehmenden Person und sind nicht auf Drittpersonen übertragbar. Sofern die Ausschüttung eines Gewinns an einen in der Ziehung ermittelten Gewinner nicht möglich ist, weil eine Gewinnbenachrichtigung und/oder Gewinnzustellung scheitern und nicht binnen eines Monats nach der Ziehung nachgeholt werden können, verfällt der Gewinnanspruch.
  • Der Veranstalter behält sich das Recht vor, das Gewinnspiel aus sachlichen Gründen jederzeit ohne Vorankündigung zu modifizieren, abzubrechen oder zu beenden.

Ich wünsche euch viel Erfolg und viel Spass beim Lesen, Stöbern, Beobachten und Staunen!