Rauchen schadet der Gesundheit – das weiss jeder, denn es steht schliesslich auf jeder Tabak-Packung. Dass Zigarettenabfälle ebenso der Umwelt schaden, wird dabei jedoch verschwiegen. Und wer kennt sie nicht, die in Bahngleisen, an Strassenrändern, in Parks und an Stränden herumliegenden Zigarettenkippen, die viele Leute achtlos in die Gegend werfen. Selbst in der deutschsprachigen Schweiz findet man sie noch. Und hier sei das achtlose Wegwerfen von Zigarettenkippen innerhalb Europas noch am meisten verpönt.

 

Wie ein winziger Stummel zum Problem wird

Einze Zigarettenkippe ist doch winzig, oder nicht? Die Weltgesundheitsorganisation WHO schätzt das Gewicht eines Filters, 5x5x15mm, auf 0,17g. Was kann so ein kleines Ding schon stören? Die Menge machts: Von 5 bis 6 Billionen (das ist eine 5 oder 6 mit 12 Nullen!) Zigaretten, die weltweit in einem Jahr geraucht werden, landeten laut WHO im Jahr 2014 bis zu 4 Billionen Filter irgendwo in der Gegend – und nicht im vorgesehenen Aschenbehälter. Das sind bis zu 680’000 Tonnen Zigarettenkippen!

Und wir alle wissen, wie abstossend es aussieht, wenn die überall herumliegen. Dabei ist der äussere Eindruck noch das kleinste Problem.

 

Warum gibt es Zigarettenfilter, wenn die so viel Abfall machen?

Bis in die 1950er Jahre bestanden Zigaretten nur aus Tabak und einer Papierhülse, die weitestgehend verbrannten. Dann fand man heraus, dass der Tabakrauch neben dem Nicotin, auf das man es abgesehen hatte, reihenweise (weitere) gesundheitsschädliche Stoffe enthält: Schwermetalle, Verbrennungsrückstände wie aromatische Kohlenwasserstoffe, Teer und viele mehr… und die alle atmeten die Raucher ungehindert ein – und wurden all zu schnell krank davon.

Nun tragen krankmachende Produkte nicht gerade zum guten Ruf eines Industriezweigs bei. Deshalb ersannen die Hersteller eine Vorrichtung, um die gesundheitsschädlichen Stoffe (zumindest teilweise) vom übrigen Rauch abzutrennen, bevor der Raucher ihn einatmet: Einen Filter.

Wie ein Filter funktioniert

Ein Filter ist ein poröses – also ein von winzigen Öffnungen durchzogenes – Material, durch welches der Rauch hindurchströmt. Dabei bleiben bestimmte Partikel – weil sie zu gross für die Öffnungen sind – in dem Material hängen, während kleine Moleküle ungehindert hindurch gelangen können.

Ein ganz einfacher Filter ist das Spielzeugsieb im Sandkasten: Feiner Sand gelangt hindurch, gröbere Kiesel bleiben in den Maschen hängen. Auch ein Kaffeefilter funktioniert so: Wasser mit darin gelösten Farb- und Aromastoffen gelangt hindurch, während die groben Kaffeesatz-Partikel im Filter zurückbleiben.

Das passende Material, um Billionen handliche, möglichst leichte Filter für Zigarettenrauch herzustellen, war seinerzeit und bis heute ein Kunststoff namens Celluloseacetat.

 

Was ist Celluloseacetat?

Cellulose: Ein Naturstoff

Cellulose ist ein Biopolymer, d.h. ein riesenlanges Kettenmolekül, das von Lebewesen hergestellt wird. Und zwar in diesem Fall von Pflanzen. Die speichern nämlich ihre energiereichen Zucker – speziell Glucose, die sie per Fotosynthese herstellen – indem sie die kleinen Zucker-Moleküle zu langen Ketten aneinander knoten: Cellulose ist damit ein Vielfachzucker, ein Polysaccharid. Die Rohform, in welcher Cellulose in der Industrie aus Pflanzen gewonnen wird, ist besser als “Zellstoff” bekannt. Sie dient unter anderem zur Herstellung von Papier.

Ein Ausschnitt aus einem Cellulose-Molekül - dem Rohstoff für die Herstellung von Zigarettenfiltern

Zellulose – ein Biomolekül. Die Zeichnung zeigt ein sich immer wiederholendes Kettenglied.

Es gibt reichlich Mikroorganismen, die sich von lebenden oder toten Pflanzenteilen ernähren. Die leben entweder eigenständig oder besiedeln den Verdauungstrakt verschiedener pflanzenfressender Tiere (und des Menschen!). Dort übernehmen sie für ihre grossen Wirte die Verarbeitung der Cellulose zu verwertbaren Einfach- oder Zweifachzuckern. Damit ist Cellulose gut biologisch abbaubar.

Essigsäure: Ein weiterer Naturstoff kommt dazu

Wenn man die Cellulose aber mit reiner Essigsäure (und einem passenden Katalysator) zusammenbringt, können die Essigsäure-Moleküle mit den OH-Gruppen der Glucose-Ringe in der Cellulose reagieren. Die Reaktion wird Veresterung genannt: Aus einer Säure (hier Essigsäure) und einem Alkohol (ein Stoff mit OH-Gruppen, hier die Cellulose – ja, Zucker sind chemisch gesehen Alkohole) entsteht ein sogenannter Ester.

Chemiker benennen solche Stoffe als [Säure][Alkohol]-Ester (hier so etwas wie “Essigsäurecellulosyl-Ester”) oder als [Alkohol][Salz/Rest der Säure] (hier: “Celluloseacetat” – denn die Salze und andere Verbindungen der Essigsäure heissen “Acetate”). Da die Cellulose an diesem Molekül den Löwenanteil hat, ist der zweite Name treffender. Deshalb hat sich “Celluloseacetat” als Name für diesen Ester allgemein durchgesetzt.

Celluloseacetat: In dieser Ausführung sind zwei von drei OH-Gruppen der Zucker-Ringe mit Essigsäure verestert.

Celluloseacetat für Zigarettenfilter: Zwei von drei OH-Gruppen der Cellulose sind nun mit je einem Essigsäurerest (CH3COO-) verestert.

Je nachdem, wie viele OH-Gruppen der Cellulose so verestert sind, haben die verschiedenen Celluloseacetate leicht unterschiedliche Eigenschaften. Für die Herstellung von Fasern – auch für Zigarettenfilter – eignet sich die Sorte mit zwei von drei veresterten OH-Gruppen pro Glucose-Ring besonders gut.

Aber: Aus zwei Naturstoffen wird ein Kunststoff

Und da auch Essigsäure ein Naturstoff ist, könnte man meinen, Celluloseacetat trage seine Bezeichnung als “Biokunststoff” zu Recht. Es gibt allerdings ein Problem damit:

Die Essigsäurereste an den Zuckerketten sind so sperrig, dass die massgeschneiderten Enzyme von cellulosefressenden Mikroben die Acetylcellulose kaum mehr spalten können. Und da Acetylcellulose ein Kunststoff ist, hält die Natur dafür keine (bekannten) massgeschneiderten Enzyme bereit. Somit hat Acetylcellulose eine unliebsame Eigenschaft mit den Erdölkunststoffen gemein: Sie ist nur schwerlich biologisch abbaubar (das dauert mindestens 15 Jahre, in Salzwasser angeblich sogar bis 400 Jahre!).

Das mag den Herstellern von Textilfasern vielleicht gefallen: Wer möchte schon Kleidung oder Regenschirme, die sich bei Wind und Wetter langsam auflösen? Wenn es um Wegwerfprodukte wie Zigarettenfilter geht, wird die mangelnde oder fehlender Abbaubarkeit aber zum Problem. Denn einmal weggeworfen bleibt so ein Kunststoff viel zu lange unbehelligt liegen.

 

Kann man Celluloseacetat recyceln?

Mit vielen Kunststoffen kann man das. Auch mit Celluloseacetat dürfte das nicht all zu schwer sein. Ester sind nämlich empfindlich gegenüber basischen Stoffen. Eine Base katalysiert nämlich die sogenannte Ester-Verseifung (mit dieser Reaktion wird auch Seife hergestellt, deshalb heisst sie so!) : Aus einem Ester werden in basischer Umgebung wieder Säure und Alkohol – also Essigsäure und Cellulose. Und die mag man voneinander trennen, um die Cellulose weiter abzubauen oder wiederzuverwerten…

Oder man verwendet zur Herstellung von Zigarettenfiltern statt Acetylcellulose einen anderen, biologisch abbaubaren Stoff. Dann müsste man die Billionen von Kippen nicht einmal wieder einsammeln, um sie zu recyceln…

Schön wäre es, wenn das so einfach wäre. Leider wird dabei nicht berücksichtigt, welchem Sinn und Zweck Zigarettenfilter dienen: Die filtern giftige Stoffe aus dem Rauch. Die dann zwangsläufig im Filter hängen. Und die vor dem Recycling da wieder raus zu bringen wäre aufwändig und teuer – und sie in abbaubaren Filtern liegen zu lassen nicht weniger gefährlich.

 

Das eigentliche Problem mit Zigarettenfiltern

… ist somit nicht der Kunststoff, aus dem sie bestehen. Sondern das, was nach dem Rauchen darin ist. Und in Zigarettenrauch lassen sich bis zu 9600 verschiedene Stoffe nachweisen, von welchen laut WHO mindestens 7000 gefährlich sind.

Im Zigarettenfilter bleiben davon vor allem jene hängen, die zu grösseren Partikeln zusammen klumpen und so nicht mehr durch die Poren passen.

Dazu gehören unter anderem

  • Kohlenwasserstoffe (“Teer”: sowohl langkettige, wie man sie auch als Erdölbestandteile kennt, als auch ringförmige (“cyclische”) und aromatische Kohlenwasserstoff, darunter Benzol, Toluol und die ebenso als krebserregend bekannten PAK bzw. PAH (Polyaromatischen Kohlenwasserstoffe bzw. polyaromatic hydrocarbons)
  • Phenol und damit verwandte Stoffe, die ebenfalls zu den aromatischen Verbindungen zählen und giftig sind
  • Nicotin und andere Giftstoffe aus der Gruppe der Alkaloide
  • Schwermetallionen z.B. von Cadmium, Quecksilber, Kupfer, Arsen, Nickel, Blei
  • Rückstände von Pflanzenschutzmitteln (aus dem Tabak-Anbau)
  • Spuren radioaktiver Isotope wie Polonium 210 (die werden von der Tabakpflanze besonders eifrig aus der Luft gesammelt)

 

Neue Zigarette im Vergleich mit Zigarettenkippe: Rückstände aus dem Zigarettenrauch färben den gebrauchten Filter bräunlich.

Links: Filter einer neuen Zigarette – das saubere Zelluloseacetat ist weiss.
Rechts: Filter einer gerauchten Zigarette: Rückstände aus dem Rauch färben den Filter gelblich braun (By Akroti [CC BY-SA 2.5 ], from Wikimedia Commons)

Achtung! Zigarettenfilter halten nicht was sie versprechen!

All diese Stoffe werden vom Zigarettenfilter höchstens zur Hälfte abgefangen, sodass sie auch im eingeatmeten Rauch enthalten sind! Passivraucher bekommen überdies den ungefiltert aufsteigenden Rauch vom anderen Ende der Zigarette mit!

 

Welcher Schaden durch weggeworfene Zigarettenkipppen entsteht

Das ist eine stattliche Liste als Umweltgifte und als gesundheitsschädlich berüchtigter Stoffe. Und sie alle landen tagtäglich dort, wo wir zur Arbeit gehen, wo unsere Kinder spielen, wo wir unsere Ferien geniessen möchten. Und dort will sie wirklich niemand haben. Denn Wind und Wetter ausgesetzt lösen sich die Schadstoffe mit der Zeit aus den Kippen, gelangen in Böden und Gewässer.

Besonders das Nicotin und andere Stoffe aus der Gruppe der Alkaloide sind akut giftig. Und das nicht nur für Kleinlebewesen (deshalb wurde Nicotin als Pflanzenschutzmittel im Ackerbau verwendet, bis es in den 1970er Jahren als zu giftig verboten wurde!). Ebenso können sich kleine Kinder, die Zigarettenkippen finden und verschlucken, daran vergiften.

Schon ein bis drei Kippen können bei Kleinkindern Vergiftungserscheinungen wie Übelkeit, Durchfall und Erbrechen auslösen. Und das passiert gar nicht so selten. Allein der Giftnotruf Berlin hat im Jahr 2008 921 Fälle von verschluckten Tabakabfällen bei Kleinkindern gezählt. Anfang der 2000er Jahre waren es noch rund 260 Fälle im Jahr.

 

Was wird gegen den Sondermüll auf den Strassen getan?

Kein Wunder, treiben Städte, Gemeinden und Tourismusbetriebe einen Riesenaufwand, um die Kippen zu beseitigen. Allein in der “sauberen” Schweiz legen Städte und Gemeinden Jahr für Jahr 55 Millionen Franken nur für das Beseitigen von Zigarettenkippen hin!

Andere Länder greifen zu wahrhaft drakonischen Massnahmen: In Singapur, das wir bald besuchen werden, gibt es schmerzhaft hohe Bussgelder für das Wegwerfen von Zigarettenkippen (und anderen Abfällen). Sogar mit Stockschlägen oder Gefängnisstrafen muss man laut den Reiseinformationen des Eidgenössischen Departements für auswärtige Angelegenheiten EDA rechnen.

Selbst das hilft jedoch nur so lange, wie konsequent überwacht und bestraft wird. Dass viele Stoffe in Zigarettenkippen eigentlich als Sonderabfall entsorgt gehören, ist zu vielen Menschen rund um den Globus nicht bewusst. Auch in Mitteleuropa.

 

Was ihr gegen die Kippenflut tun könnt

  1. Ihr alle könnt dazu beitragen, dass weniger Zigarettenkippen eure Umwelt verdrecken. Und zwar so:
  2. Nicht (mehr) rauchen: Die wirkungsvollste Methode – und sowieso besser für eure Gesundheit. Auch wenn es oft leichter gesagt als getan ist.
  3. Wenn ihr doch (noch) raucht: Nicht dort rauchen, wo Kinder spielen oder ihr die Natur geniessen möchtet
  4. Ganz wichtig: Wenn ihr raucht, entsorgt Asche und Kippen in einen dafür vorgesehenen Abfallbehälter! Werft sie niemals einfach weg!
  5. Wenn ihr dort rauchen möchtet, wo es keine fest angebrachten Aschenbehälter gibt: Nehmt einen verschliessbaren Aschenbecher mit, damit ihr Asche und Kippen später richtig entsorgen könnt!
  6. Wenn ihr andere beobachtet, die ihre Kippen einfach in die Gegend werfen: Weist sie auf die Gefährlichkeit der Zigarettenabfälle und allenfalls vorhandene Ascheimer hin.
  7. Sprecht mit euren Kindern offen und eindringlich darüber, dass auch Zigarettenkippen “richtig giftig” sind. Dass sie nicht in den Mund genommen werden dürfen oder auch nur herumliegen sollten. Im besten Fall bleibt etwas davon hängen, wenn sie später einmal als Jugendliche unter sich sind.
  8. Nehmt die Säuberung “eures” Spielplatzes, Dorfplatzes, Seeufers oder Lieblings-Naherholungsgebietes selbst in die Hand – am besten mit der ganzen Familie. Sammelt herumliegende Kippen ein, um sie ordnungsgemäss zu entsorgen. Nicht vergessen: Schutzhandschuhe tragen!

 

Sind E-Zigaretten eine Lösung für das Kippenproblem?

Warum steht “Steigt auf E-Zigaretten um” nicht auf der Liste oben? Diese handlichen elektrischen Geräte erzeugen Wärme, welche eine Flüssigkeit mit oder ohne Nikotin aus Tabak oder anderen Erzeugnissen zum Verdampfen bringt. Der Dampf kann dann anstelle von Zigarettenrauch eingeatmet werden.

Sollte das nicht alle Probleme mit giftigem Rauch und Kunststoff-Filtern lösen?

Auch E-Zigaretten bestehen aus Kunststoffen, Metallen, Elektronik, enthalten Batterien und müssen mit Patronen – Behältern für die zu verdampfenden “Liquids” – bestückt werden.

Eine E-Zigarette der vierten Generation: ein hochtechnisches Stück Elektronik

Eine E-Zigarette wie diese ist ein hochtechnisches elektronisches Gerät, das aus einer Vielzahl von Stoffen besteht und alle Umweltprobleme von Elektronik und ihrer Herstellung mit sich bringt. (By Jacek Halicki [CC BY-SA 4.0 ], from Wikimedia Commons)

Laut WHO ist der noch junge E-Zigaretten-Markt weitgehend unreguliert. Das heisst vor allem, er ist in seiner Vielfalt unüberschaubar. Viele Produkte sind für den Einweggebrauch bestimmt oder von beschränkter Lebensdauer. Die Zusammensetzung der Liquids unterscheidet sich zudem stark zwischen verschiedenen Marken und Herkunftsländern.

Darüber, was nun wo genutzt wird und welche Folgen für Umwelt und Gesundheit das haben mag, gibt es noch wenig Daten. Und die Vielfalt der Produkte macht einheitliche Aussagen darüber schwer.

Laut WHO sei jedoch abzusehen, dass das Umsatteln von Tabak auf E-Zigaretten das Abfallproblem nicht löst. Dazu müsste sich nämlich erst etwas an der laxen Einstellung der Raucher bzw. Dampfer zur Umweltverschmutzung ändern. An die Stelle der Zigarettenkippen von heute würden sonst leere Liquid-Behälter und Überreste ausgedienter E-Zigaretten treten – mit Resten der Liquids und aller Stoffe, die in den Geräten verarbeitet sein mögen.

Somit ist das Umsteigen auf E-Zigaretten in meinen Augen kein sicherer Weg, um die Umweltbelastung durch “Zigarettenabfälle” zu vermindern. Zumindest keiner, der nicht auch durch umweltbewussten Umgang mit Rauchwaren begangen werden könnte.

 

Fazit

Weggeworfene Zigarettenkippen verschandeln nicht nur den Anblick unserer Umwelt. Sie enthalten überdies eine bunte Sammlung gefährlicher Stoffe, die aus den Filtern in die Umgebung freigesetzt werden. Eine Kippe mag bedeutungslos klein wirken – weltweit kommen aber bis zu 680’000 Tonnen schadstoffbeladener Kippen pro Jahr zusammen!

Der übliche Zigarettenfilter besteht aus dem biologisch schwer abbaubaren Kunststoff Celluloseacetat. Der ist für sich nicht giftig, kann aber über Jahrzehnte in der Umwelt verbleiben. Ein biologisch abbaubarer Ersatzstoff würde sich zwar schneller auflösen, ändert aber an der “Beladung” des Filters mit Schadstoffen nichts. Deshalb sind biologisch abbaubare Zigarettenfilter keine Lösung.

E-Zigaretten sind ebenfalls keine Lösung, so lange das Bewusstsein für die Gefährlichkeit von Rauch- bzw. Dampf-Abfällen fehlt.

Deshalb mein Aufruf an euch: Lasst das Rauchen wie das Dampfen. Und wenn das keine Option ist, entsorgt eure Abfälle dort, wo sie hingehören: In den Aschenbecher bzw. Ascheimer! Und wenn ihr andere dabei beobachtet, wie sie ihre Kippen (oder Liquid-Behälter) achtlos in die Gegend werfen: Weist sie auf die Gefährlichkeit hin!

Und hier der Bericht “Tobacco and its environmental impact” der WHO, 2017 , aus welchem ich die Weltgesundheitsorganisation im Artikel zitiert habe.

Fliegenpilz hebt Moos ab - Wie Pilze wachsen - das Geheimnis weicher Kraftprotze

Zur Zeit haben sie wieder Hochsaison: Pilze – die nicht nur im Wald aus dem Boden schiessen. Dabei nehmen nicht nur die Pilze selbst zuweilen wunderliche Formen an. Auch ihr Standort erscheint uns manchmal unmöglich. So hat meine Leserin Pia schon Pilze gefunden, wo eigentlich Autos fahren sollten – und damit eine Anregung zu ihrer Leserfrage:

Mich fasziniert immer, dass ein Pilz-Fruchtkörper durch ziemlich harte Oberflächen kommt, obwohl er doch selber weich ist. Ich habe einmal Champignons gesehen, die eine asphaltierte Hofeinfahrt durchbrochen haben. Wie “macht” der Pilz das?

Röhrling wächst zwischen Steinen

Dieser Röhrling (Birkenröhrling? Kiefernsteinpilz? Egal – in jedem Fall lecker) hat seinen Weg zwischen den Steinen hindurch gefunden. Dabei hilfreich: Der Hut wächst erst dann in die Breite, wenn der Stiel ihn über die Hindernisse hinaus gehoben hat. Was aber, wenn es keine Lücken zum Hindurchwachsen gibt?

 

Was sind eigentlich Pilze?

Biologen teilen die Welt der Lebewesen in zwei grosse Gruppen ein: Solche, deren Zellen ohne Zellkern auskommen (diese nennen sie Prokaryonten) und solche, deren Zellen einen Zellkern haben (diese nennen sie Eukaryonten).

Die Prokaryonten sind meist einzellige Lebewesen, wie zum Beispiel Bakterien. Und sie sind erdgeschichtlich die ältere Art von Leben – den Zellkern hat die Evolution nämlich erst nach der lebensfähigen kernlosen Zelle hervorgebracht.

Vielzellige Lebewesen, die wir mit dem blossen Auge überall sehen können, zählen zu den Eukaryonten. Die werden von den meisten Menschen unbedarft in zwei Reiche eingeteilt: Die Pflanzen und die Tiere (zu denen auch wir Menschen zählen). Dabei fällt allerdings eine dritte und um so spannendere Gruppe durchs Raster: Das Reich der Pilze.

Richtig: Pilze sind weder Tiere noch Pflanzen, sondern eine ganz eigene Sorte Lebensform!

Wie sind Pilze aufgebaut?

Ohne Vergrösserungshilfen gesehen besteht ein vielzelliger Pilz hauptsächlich aus einem Fadengeflecht, dem sogenannten Myzel, das meist verborgen im Boden oder in totem Holz wächst (es gibt auch einzellige Pilze wie die Bäckerhefe, mit der ich hier experimentiert habe). Was wir im Wald an der Oberfläche sehen, sind die Fruchtkörper, die aus dem Myzel-Geflecht wachsen, damit der Pilz sich vermehren kann.

Pilze sind jedoch weder Tier noch Pflanze, sodass sich Pilzzellen deutlich von Tier und Pflanzenzellen unterscheiden. Pilzmyzel und Fruchtkörper bestehen nämlich aus Bündeln von langen, schlauchartigen Zellen (die die Pilzforscher Hyphen nennen). Die Formgebenden unter diesen Schlauchzellen sind teilweise alles andere als “weich”, sondern haben ein Zell-Aussenskelett aus grossen Proteinen.

Das Zellskelett hält das Innere der Zelle in gewünschter Form zusammen: weiche Zell-Innereien, Proteine, Nährstoffe finden so ihren Platz…und natürlich auch Wasser. Und zwar eine ganze Menge davon. Wer schon einmal Speisepilze im Ofen oder in der Sonne getrocknet und gesehen hat, was dann übrig bleibt, kann erahnen wie viel Wasser in so einem Pilzfruchtkörper steckt.

Die Wassermenge wird über die Menge der wasserlöslichen Stoffe in den Zellen gesteuert: Je mehr solche Salze und Proteine in den Zellen sind, desto mehr Wasser gelangt durch Poren dazu, und desto praller werden die Zellen: Auf die Zellaussenwand wirkt von innen ein zünftiger osmotischer Druck.

Wie wachsen Pilze?

Die Stränge des Myzels wachsen, indem jeweils an der Spitze der Hyphen-Bündel weitere Zellen angebaut werden. Wenn im Wald andauerndes warmes sowie feuchtes Wetter herrscht, wachsen ausserdem neue Hyphen-Bündel in Form von Fruchtkörpern.

Pilze vermehren sich durch Sporen

Viele dieser Fruchtkörper haben die “klassische” Form mit Stiel und Hut. Auf der Hutunterseite befinden sich dann feine Lamellen oder Röhren, in denen die Enden besonderer Hyphen verborgen sind – nämlich solcher, die Sporen produzieren und freisetzen können.

Ständerpilz mit Stiel und Hut, hier seitlich aus einer Steinstufe wachsend

Typische Pilzfruchtkörper aus Stiel und Hut mit Lamellen. Diese hier wachsen seitlich aus einer Stufe aus porösem, steinähnlichem Material – nicht unbedingt dort, wo man Pilze erwarten würde.

Als ich neulich ein paar schöne Maronenpilze mit herrlich hellgelben Röhren gefunden und abgeschnitten habe, waren die Röhren im Handumdrehen dunkelgrau verstaubt: Durch die Bewegung hatten sich Sporen daraus gelöst und in meinem Tragebehälter alles eingestaubt. Dem Geschmack tut das übrigens keinen Abbruch – das Pilzgericht daraus war nachher trotzdem sehr lecker.

Diese Sporen haben die gleiche Aufgabe wie Samen von Pflanzen: Sie gehören eigentlich in den Waldboden, wo jede einzelne von ihnen den Anfang für ein neues Pilzmyzel machen kann.

Das Myzel wird übrigens nicht beschädigt, wenn ihr den Stiel eines Fruchtkörpers sorgfältig mit einem scharfen Messer abschneidet. So können die “Pilze”, die wir sammeln, über Jahre hinweg aus dem gleichen Pilzgeflecht nachwachsen!

Wie Pia schon beobachtet hat, schieben die Fruchtkörper mitunter nicht nur Laub und Tannennadeln, sondern zuweilen erstaunlich schwere Hindernisse auf ihrem Weg an die Erdoberfläche “beiseite”.

Woher nehmen die Pilze diese Kraft?

Wachstum bedeutet, dass in komplexen biochemischen Reaktionen sehr grosse Moleküle aufgebaut und angeordnet werden. Diese Biochemie wird allerdings nicht davon beeinflusst, dass irgendwer vorab eine Raumplanung macht. Aber die Produkte dieser Reaktionen müssen schliesslich irgendwo hin. Und Platz gäbe es in der Regel auch genug – wenn da die Sache mit dem Wasser nicht wäre.

Wenn neue Zellen entstehen, voller Salze und Proteine, ziehen sie das Wasser aus ihrer Umgebung durch Poren geradezu in sich hinein. Den Vorgang habe ich anlässlich der Experimente zur Osmose mit Ei ausführlich erklärt. So entsteht in den Zellen ein beträchtlicher Druck. Der hält nicht nur die Zellen prall, sondern wirkt auch auf ihre direkte Umgebung.

Wenn es dort Schwachstellen oder Schlupflöcher gibt, nimmt der wachsende Pilz den Weg des geringsten Widerstands. So finden die Pilzfruchtkörper leicht einen Weg durch porösen Humus oder Laub und Nadeln auf dem Waldboden.

Wiesenchampignons

Auch diese Champignons haben es nicht leicht auf ihrem Weg durch das Wurzelgeflecht des Rasens. Dafür beherrschen sie einen zusätzlichen Trick: Die Fruchkörper entfalten sich erst, nachdem sie durchgedrungen sind, zu ihrer vollen Grösse.

Ist die Umgebung jedoch von härterer Natur, weil sie zum Beispiel von Asphalt oder Pflaster bedeckt ist, lastet der Druck fortlaufend darauf. Der Fruchtkörper beginnt also im porösen Untergrund zu wachsen. Er hat es leicht, bis er auf die harte Decke stösst. Dann drückt er laufend von unten dagegen. Besonders wenn der Asphalt ähnliches Risse oder Schwachstellen hat (die müssen für uns nicht immer sichtbar sein), geben die der Dauerbelastung langsam aber sicher nach.

Langsamkeit ist Trumpf

Und Langsamkeit ist neben dem osmotischen Druck das Geheimnis der Kraft der Pilze. Denn weil sie (relativ) langsam wachsen, können sie den Asphalt durch ausdauerndes Dagegendrücken zum Nachgeben bringen, ohne selbst dabei Schaden zu nehmen.

Ein Material muss also nicht unermesslich hart sein, um feste Körper aufzubrechen, sondern sich nur ausreichend langsam und ausdauernd ausbreiten!

 

Wo ihr eure Leserfrage stellen könnt

Habt ihr auch eine spannende Frage rund um Naturwissenschaftliches im Alltag? Und möchtet ihr gern eine Antwort darauf in Keinsteins Kiste lesen? Jeden Sonntag könnt ihr eure Fragen auf meiner Facebook-Seite kommentieren. Es ist gerade nicht Sonntag? Dann könnt ihr natürlich jederzeit einen der älteren Fragen-Beiträge nutzen!

Habt ihr auch schon einmal einen seltsamen Pilz oder einen Pilz an einem seltsamen Ort gefunden? Was glaubt ihr, wie er dorthin kam?

Wie funktioniert die Liebe? Terra incognita der Wissenschaft

Einmal mehr ist es soweit: Der Blog-Schreibwettbewerb auf Scienceblogs.de läuft. Und zwar noch bis Ende Oktober. Viele wissenschaftlich begeisterte Schreiber mit und ohne eigenen Blog haben spannende und lesenswerte Beiträge zu einem bunten Strauss aus Themen eingereicht. Und ich bin wieder mit dabei!

Gerade rechtzeitig dazu flatterte auf der Keinsteins-Kiste-Facebook-Seite eine spannende Leserfrage herein, die ich in meinem Wettbewerbs-Beitrag beantworte:

Welche Hormone bewirken, ob und wann wir uns verlieben?

Die Suche nach Antworten führte mich rasch du einem besonders interessanten Ergebnis: Einem weissen Flecken auf der Landkarte der Wissenschaft. Die Biochemie der Liebe ist nämlich ein Gebiet, dass erst ansatzweise wissenschaftlich erforscht ist. So zeige ich in diesem Artikel nicht einfach einige Moleküle, über deren Rolle in Liebesdingen schon einiges bekannt ist, sondern auch die Grenzen dessen, was die Wissenschaft zur Zeit erklären kann.

In einfachen – hoffentlich kindgerechten Worten wecke er die Entdeckerlust der Forscher von morgen, die eines Tages diesen und andere weisse Flecken auf der wissenschaftlichen Landkarte füllen mögen.

Ihr könnt auch etwas gewinnen!

Den ganzen Artikel könnt ihr ab jetzt hier auf Astrodicticum Simplex lesen – und auch ihr könnt in diesem Schreibwettbewerb wieder die Gewinner mitbestimmen. Und dabei auch noch selbst einen Preis gewinnen!

Dazu müsst ihr nur am Leser-Voting teilnehmen und eure Stimme(n) für eure(n) Lieblingsartikel abgeben. Wie das geht, erklärt der Veranstalter Florian Freistätter hier. Einsendeschluss für die Leserstimmen ist der 11. November 2018. Ihr könnt also in Ruhe die Veröffentlichung aller anderen Artikel mitverfolgen und erst am Schluss entscheiden, für wen ihr stimmen möchtet.

Ganz besonders würde es mich natürlich freuen, wenn ihr eine Stimme für meinen Beitrag da lasst. Der Preis unter den Leser-Juroren wird aber unabhängig davon, für wen ihr stimmt, verlost. Deshalb findet ihr eine Übersicht über alle Beiträge hier.

Aber jetzt wünsche ich euch viel Spass beim Stöbern und Schmökern – und beim Verlieben!

Eure Kathi Keinstein

Was ist Krebs? - Zellbiologie erklärt zur Solidaritätskampagne von Kinderkrebs Schweiz

Meine Familie hat Glück gehabt. So weit ich zurückdenken kann oder aus Erzählungen der Älteren weiss, hat bei uns noch kein Kind Krebs bekommen. In Retos Familie ist das anders. Reto hat eine seiner Schwestern nie kennengelernt. Denn sie ist vor seiner Geburt an Leukämie gestorben – der häufigsten Krebs-Sorte, die Kinder bekommen.

Das ist jetzt über 40 Jahre her. Und trotzdem spüre ich bis heute die selischen Narben, die dieses furchtbare Schicksal bei Retos Familie hinterlassen hat. So etwas sollte keine Familie durchmachen müssen.

Heute – 40 Jahre später – kommt es schon weniger oft so weit. Heute werden nämlich vier von fünf Kindern, die Krebs bekommen, wieder gesund. Das heisst – so gesund wie es eben möglich ist. Denn der Kampf gegen den Krebs ist bis heute für den Körper und die Seele schrecklich anstrengend und ermüdend. Und für kleine Kinderkörper und -seelen ist er ganz besonders anstrengend.

Kinderkrebs Schweiz

Deshalb setzt sich der Dachverband Kinderkrebs Schweiz dafür ein, dass fleissig weiter an Mitteln gegen den Krebs geforscht wird, die den Kampf damit erleichtern, und damit aus 4 von 5 eines Tages 5 von 5 wieder gesunden Kindern werden.

Und auch jenen Kindern und Familien, die heute gegen den Krebs kämpfen müssen, möchte der Verein ein Stück Kraft und Zuversicht schenken. So sammelt Kinderkrebs Schweiz noch den ganzen September über eure lieben Wünsche an ein krebskrankes Kind auf dieser Website, um die schönsten darunter zu den Kindern zu bringen, die in den Kinderspitälern wegen Krebs behandelt werden müssen.

Mein Beitrag

Ganz gewiss haben die erkrankten Kinder selbst, ihre Geschwister, Eltern, Freunde und Verwandte ganz gewiss viele Fragen zu dem, was da mit ihnen bzw. ihren Angehörigen geschieht. Darum widme ich meinen heutigen Beitrag allen Kindern und Familien, die dieses schwere Schicksal teilen oder miterleben. Und ich versuche, darin einige Antworten in Worte für Kinder (und Laien) zu kleiden.

Was ist Krebs?

Krebs ist, wenn das Material, aus welchem euer Körper besteht, ungebremst zu wachsen beginnt. Und zwar dort, wo es nicht wachsen soll.

Bestimmt fragt ihr euch nun: Woraus besteht ein menschlicher Körper, und wie wächst er?

Woraus besteht dein Körper?

Der Körper jedes Menschen besteht aus winzigkleinen Zellen. Jede Zelle ist ein winziger Sack aus einer Haut aus Molekülen. Dieser Sack enthält (in der Regel) einen Zellkern und verschiedene winzige Organe, die für verschiedene “Körperfunktionen” der Zelle zuständig sind. Im Zellkern ist das Erbgut der Zelle, die DNA, gelagert. Das ist eine Sammlung von Bauplänen für alle Bestandteile der Zellen und alle Stoffe, die die Zellen herstellen können.

Die Zellen sind so unglaublich klein, dass ihr sie ohne ein Mikroskop nicht sehen könnt. Ein erwachsener Mensch besteht aus 100 Billionen von ihnen – das sind 100’000’000’000’000, also 1000 x 1000 x 1000 x 1000 x 100, oder eine 1 mit vierzehn Nullen!

menschliche Zellen unter dem Fluoreszenzmikroskop: Der Zellkern ist blau, das Zellskelett grün gefärbt

Menschliche Körperzellen unter dem Mikroskop: Die Zellkerne mit der DNA sind mit blauer, das “Skelett” der Zellen, welches zu ihrer Hülle gehört, mit grüner “Leuchtfarbe” eingefärbt. So leuchten sie unter einer UV-Lampe in diesen Farben auf – sie fluoreszieren. Ein Mikroskop mit einer UV-Lampe nennt man deshalb “Fluoreszenz-Mikroskop”. Mit einem solchen wurde dieses Bild gemacht. ( By ZEISS Microscopy from Germany [CC BY 2.0 ], via Wikimedia Commons)

Wie ein Mensch entsteht

Jeder Mensch bestand am Anfang seines Lebens aus einer einzigen Zelle, die durch Verschmelzung von Mamas Eizelle und Papas Spermienzelle entstanden ist (wie das geht, habe ich hier beschrieben). Diese eine Zelle hat ihre ganze Bauplan-Sammlung abgeschrieben, ihre Bestandteile allesamt noch einmal hergestellt und sich schliesslich geteilt. Und die beiden neuen Zellen haben das gleiche getan. Und noch einmal, und noch einmal.

Durch die Auswahl von bestimmten Bauplänen aus der Sammlung wurden einige der neuen Zellen zu Knochen- andere zu Muskel-, zu Haut-, zu Augen-, zu Herz- und Lungen- und Blut- und vielen anderen verschiedenen Zellsorten, aus denen ein vollständiger Körper besteht.

Und sie werden es noch. Damit Kinder immer grösser werden können, müssen ständig neue Zellen her. Selbst in den Körpern von Erwachsenen gibt es Zellen, die sich das ganze Menschenleben lang teilen. Hautzellen und Blutzellen (die ständig durch neue ersetzt werden) gehören dazu, aber auch solche, aus denen Haare und Fingernägel wachsen.

Wenn aus Wachstum Krebs wird

Damit einem Menschen genau zwei gerade Arme und Beine und passende Organe in der richtigen Grösse wachsen, enthalten die Baupläne in den Zellen Angaben und Regeln, wie schnell und wann welche Zellen sich wohin ausbreiten und welche Stoffe sie wann in welcher Menge herstellen sollen.

Molekülmodell eines DNA-Abschnitts

Ein kleines Stück eines DNA-Moleküls: Kohlenstoff-Atome sind grau, Wasserstoff-Atome weiss, Sauerstoff-Atome rot, Stickstoff-Atome violett und Phosphor-Atome gelb. Die Art und Weise, wie diese Atome miteinander verbunden sind, ist eine Art Geheimschrift: Sie kann in die Baupläne für unsere Zellen übersetzt werden!

Empfindliche Baupläne

Nun ist die DNA ist ein chemisches Molekül wie andere auch. Das heisst, sie kann in chemische Reaktionen verwickelt werden: Die Begegnung mit anderen, angriffslustigen Molekülen, oder der Einfluss von Licht oder anderer Strahlung kann dazu führen, dass Atome der DNA augetauscht werden oder verloren gehen. Oder dass Atome dazu kommen, die nicht zum Bauplan gehören. Ausserdem kommt es vor, dass die Zellen beim Abschreiben ihrer Baupläne für die Zellteilung Schreibfehler machen.

Deshalb gibt es in jeder Zelle Proteine, die ständig Korrektur lesen und Fehler oder Schäden an der DNA ausbessern. Und wenn sich etwas gar nicht mehr reparieren lässt, befehlen sie der einzelnen Zelle, lieber Selbstmord zu machen, bevor dem Körper etwas schlimmeres passiert.

Niemand ist perfekt – auch die Korrekturleser in den Zellen nicht

Wenn die “Rechtschreib”-Kontrolleure einer Zelle allerdings einen Fehler übersehen, passieren schlimme Dinge. Besonders dann, wenn der übersehene Fehler eine jener Regeln unlesbar macht, die die Zellteilung und damit das Wachstum von Körperteilen ordnen und begrenzen soll. Dann bleibt eine Zelle übrig, die ihre Grenzen nicht mehr kennt, sich unkontrolliert teilen kann und vielleicht sogar Stoffe von sich gibt, die kein Mensch braucht. Kurzum: Das ist ein furchtbar schlecht erzogener Rabauke – eine Krebszelle.

Und das schlimmste ist: Wenn die Krebszelle sich erneut teilt, schreibt sie den Fehler ganz ungeniert mit ab. So gibt es dann bald zwei von der schlimmen Sorte, dann vier, dann acht…

Im glücklichen Fall kommt ein Spezialagent des Immunsystems, eine “natürliche Killerzelle” (über die und ihre Kollegen vom Immunsystem ihr hier mehr lesen könnt), vorbei und erkennt eine einzelne oder wenige Krebszelle/n von aussen. Dann gibt die natürliche Killerzelle ihnen sofort den Befehl zum Selbstmord – und schafft das Problem so aus der Welt.

Ein Tumor entsteht

Im unglücklichen Fall teilen sich die Krebszellen aber unbemerkt weiter und wuchern da hin, wo es ihnen gerade passt. Und uns nicht. Aus ein paar Zellen wird so ein Haufen, aus dem Haufen ein Gewebeknötchen, aus dem Knötchen eine Geschwulst, die wir spüren und manchmal sogar sehen können.

Manche dieser Zellen begnügen sich damit, ihre eigene Clique zu gründen, gemeinsam abzuhängen und einfach im Weg zu sein. Von solchen spricht man von einem “gutartigen” Tumor. Der lässt sich meist einfach wegoperieren, wenn er stört, und die Sache ist in der Regel erledigt.

Wenn die Zellen aber richtige Rabauken sind, die sich mit “Ellbogen” ihren Weg durch andere Zellgruppen in benachbarte Gewebe bahnen, handelt es sich um wirkliche Krebszellen, die einen “bösartigen” Tumor bilden.

Schema: Krebszellen durchdringen eine Gewebegrenze

nach: Cancer Research UK (Original email from CRUK) [CC BY-SA 4.0 ], via Wikimedia Commons

Die fiesesten unter ihnen verlassen “ihren” Tumor sogar irgendwann und reisen in der Blutbahn oder der Lymphe durch den Körper, um sich anderswo festzusetzen und Rabauken-Kolonien zu gründen. Die werden von den Krebs-Ärzten dann “Metastasen” genannt.

Wie entstehen unerkannte Schreibfehler?

Schreibfehler entstehen dort, wo abgeschrieben wird. Wann und wo genau ein Abschreibfehler passiert und übersehen wird, ist letztenendes reines Pech. Für Pech gilt aber: Je mehr abgeschrieben wird, desto grösser ist die Wahrscheinlichkeit, dass dabei mal ein Fehler passiert und der Korrektur entgeht.

Alles in allem sind schlimme Schreibfehler besonders wahrscheinlich wenn

  • in den Körpern älterer Menschen die Korrekturleser nachlässig werden
  • äussere Einflüsse (z.B. Strahlung) die DNA häufiger beschädigen
  • viele andere Moleküle/Atome mit der DNA reagieren können
  • Fehler schon in der ersten Zelle eines Kindes vorhanden waren und so vererbt wurden
  • bestimmte Viren ihr Erbgut in die DNA von Zellen einbauen und dabei die Teilungsregeln beschädigen (gegen einige dieser Viren, wie das Gebärmutterhalskrebs-Virus HPV oder den Erreger der Leberentzündung Hepatitis kann man sich aber impfen lassen!)
  • und vor allem: Wenn in Zellen, die sich häufig, schnell und fortlaufend teilen, naturgemäss viel abgeschrieben wird
    → dazu gehören nachwachsende Gewebe wie die Haut
    → und die Zellen in Körpern von Kindern – denn Kinderkörper wachsen ja noch

In welchen Körperteilen kann Krebs entstehen?

Grundsätzlich in praktisch allen. Und obwohl man meinen könnte, dass das ganz besonders für Kinder gilt, bekommen Kinder anderswo Krebs als Erwachsene und alte Menschen. Warum das so ist, haben die Forscher noch nicht wirklich herausgefunden.

Besonders häufig – in drei Vierteln aller Fälle – werden bei Kindern nämlich die Zellen des Immunsystems und ihre Vorläufer (45%: 33% Leukämien, 12% (Non-)Hodgkin-Lymphome) oder die Zellen von Gehirn und Nerven (30%: 20% Hirn und Rückenmark, 7% sympathisches Nervensystem, 3% Augenkrebs) zu bösartigen Rabauken.

(Zahlen: Krebsliga Schweiz)

Augenkrebs?! Warum steht der hier unter Hirn und Nerven?

Ja, Augenkrebs gibt es wirklich. Der kommt aber nicht davon, dass ihr zu viel am Bildschirm sitzt oder schrille Farben anschaut, wie gern einmal behauptet wird. Stattdessen entstehen in der Netzhaut im Auge Rabauken-Zellen durch ebensolches Pech, wie bei anderen Krebsarten auch. Und die Netzhaut ist streng genommen ein ausgelagerter Teil des Gehirns – deshalb ordne ich den Augenkrebs bei den Krebsarten der Nerven ein.

Zum Glück lässt sich so ein “Retinoblastom” – so heisst der Augenkrebs in der Ärztesprache – leicht erkennen und gut behandeln. Wie das geht, erklärt Kinderkrebs Schweiz hier. Bei früher Erkennung werden sogar 19 von 20 statt 4 von 5 Kindern mit Augenkrebs wieder gesund!

Weitere Krebsarten bei Kindern

Dazu kommen Weichteilkrebs (also Muskeln, Fett- und Bindegewebe, 7%), Nierenkrebs (5%), Knochenkrebs (4%) und Krebs der zur Fortpflanzung gedachten Keimzellen (3%). Habt ihr mitgerechnet? Da fehlen noch 6% bis zu den runden 100%! Das sind wohl verschiedene, bei Kindern sehr seltene Krebsarten an anderen Körperteilen.

Warum bekommen Kinder gerade dort Krebs?

Während Nervengewebe tatsächlich besonders im Kindesalter wachsen, werden Blut- und Immunzellen das ganze Leben lang neu gebildet. Allein daran wie häufig sich Zellen teilen, lässt sich also nicht festmachen, wo Krebs entsteht. Warum Kinder an ganz bestimmten Stellen – und an anderen als Erwachsene – Krebs bekommen, müssen die Forscher erst noch herausfinden.

Wie kann man Krebs behandeln?

Der simpelste Weg, Rabaukenzellen loszuwerden ist, sie in einer Operation aus dem Körper heraus zu schneiden. Das geht bei gutartigen Geschwulsten (meistens) recht einfach. Bei Krebszellen, die wild in anderes Gewebe eindringen, ist es aber schwer bis unmöglich, sie wirklich alle wegzuschneiden. Und bei Krebsarten der Blutzellen ist das ganz unmöglich, weil die Rabauken dabei nicht an einem festen Ort versammelt, sondern im Körper verteilt und oft beweglich sind. Deshalb müssen sie auf andere Weise getötet werden.

Dazu verwenden kann man

Zellgifte = Chemotherapie

Diese Medikamente (sogenannte Zytostatika, d.h. “Zellbremsen”) stören Zellen bei der Teilung, in dem sie sich Beispiel an die DNA heften und so das Abschreiben der Baupläne verhindern. So entstehen keine neuen Krebszellen, während die alten Krebszellen an den Schreibblockaden sterben.

Cisplatin, ein nach wie vor häufig genutztes Medikament zur Chemotherapie, lagert sich an DNA an.

Moleküle des Chemotherapie-Medikaments “Cisplatin” (in dessen Mitte befindet sich tatsächlich ein Platin-Atom) verbinden sich mit einem Strang der DNA-Doppelspirale. Die Abschreibe-Proteine der Zelle laufen die DNA-Stränge entlang und bleiben an einem solchen Hindernis hängen. So kann die DNA nicht weiter abgeschrieben werden. Das funktioniert bei den allermeisten Krebsarten – aber leider auch bei gesunden Zellen. (By AlchemistOfJoy [CC BY-SA 3.0 ], from Wikimedia Commons)

Solche Gifte wirken auf sich schnell teilenden Zellen besonders stark – also auf Krebszellen, aber auch auf solche, aus denen Haare wachsen oder Blutzellen entstehen. Deswegen fallen vielen Krebspatienten, die eine Chemotherapie erhalten, die Haare aus. Ausserdem werden auch viele andere Zellen bei ihrer Arbeit gestört – deshalb wird den Patienten von der Chemotherapie nicht selten furchtbar schlecht.

Damit all das nicht (oder weniger) geschieht, versuchen Forscher, die Zellgifte gut verpackt direkt zu den Krebszellen zu bringen und erst dort loszulassen. Oder sie erfinden neue Zellgifte, die Krebszellen (besser) von normalen Zellen unterscheiden können.

(Be-)Strahlung

Dass Strahlung die DNA-Baupläne beschädigen kann, hatte ich weiter oben schon erwähnt. Und wenn die Beschädigungen gross genug sind, sterben die Zellen daran. Auch die Krebszellen. Zudem kann man Strahlung genau auf bestimmte Stellen bündeln. Dazu können die Krebs-Ärzte Röntgenstrahlen (also sehr energiereiches, unsichtbares Licht) oder Elektronen bzw. Protonen (das sind winzige Teilchen, die auf Zellen wie Kanonenkugeln wirken) verwenden.

Auch wenn man solch einen Beschuss ziemlich genau auf ein Krebsgeschwulst richten kann, leiden darunter auch die gesunden Zellen in der Umgebung. So kann einem leider auch von der “Bestrahlung” ziemlich schlecht werden.

Antikörper

Das sind ganz besondere Proteine, die normalerweise von Zellen des Immunsystems hergestellt werden, um Krankheitserreger zu erkennen und zur Bekämpfung zu markieren (wie das im Einzelnen vor sich geht, könnt ihr hier bei mir nachlesen). Krebsforscher versuchen nun, passende Antikörper zu den jeweiligen Krebszellen eines Patienten zu basteln. Wenn die ihr Ziel – die Krebszellen – finden und sich daran heften, rufen sie die Zellen des Immunsystems auf den Plan. Die können nun die Krebszellen (und bestenfalls nur die) gezielt angreifen und vernichten.

 

Zum Töten von Krebszellen NICHT verwenden kann man

Methoden und Mittel aus der “alternativen Medizin”

Wer gesagt bekommt, dass er Krebs hat, hat Angst. Angst um sein Leben und vor den unangenehmen Behandlungen, die auf ihn zukommen mögen. Das ist ganz natürlich. Genauso natürlich ist auch die Verlockung, die davon ausgeht, wenn jemand einen “einfacheren”, “sanften” oder gar “natürlichen” Weg verspricht, die fiesen Krebszellen wieder los zu werden.

Homöopathische “Medikamente”, Wunder- und Geistheiler, eine besondere Ernährungsweise oder das unsinnige Verwenden teils gefährlicher Chemikalien sind nur eine kleine Auswahl dessen, was den Menschen (auch) “gegen Krebs” verkauft wird. Häufig deshalb, weil jemand damit viel Geld verdienen möchte.

Wo “alternative” Methoden dennoch helfen können

Manche Vorgehensweisen aus dem Bereich “neben” der Medizin können dennoch ihren Nutzen haben. Nämlich dann, wenn sie zur Begleitung der Behandlung durch den Krebs-Arzt (den “Onkologen”) angewendet werden. Dazu zählen besonders solche Dinge, bewirken, dass ein Patient mit Krebs sich besser fühlt, weniger Angst hat und weniger unter den Nebenwirkungen seiner Behandlung leidet.

Es ist aber ganz wichtig, solche Massnahmen immer mit dem Krebsarzt/den Krebsärzten zu besprechen. Viele solche Mittel und Methoden – auch solche, die ganz harmlos erscheinen – können nämlich mit den eigentlichen Krebsmedikamenten “in Streit” geraten und deren Wirkung stören. NIE solltet ihr die eigentlichen Krebsmedikamente ohne Besprechung mit eurem Krebsarzt einfach weglassen, um “etwas anderes” zu probieren!

Dazu, wie ihr hilfreiche Angebote für Krebskranke von den “Geldverdienern” unterscheiden und sie gut mit eurem Krebs-Arzt besprechen könnt, hat die Krebsliga Schweiz eine tolle Broschüre herausgegeben, die ihr hier als .pdf-Datei herunterladen könnt.

Besondere Hochachtung habe ich übrigens vor den ehrenamtlichen Klinik- bzw. Spitalclowns, welche die (nicht nur krebs-)kranken Kinder im Spital besuchen und Freude in ihren schweren Alltag bringen. Lachen soll schliesslich sehr gesund sein! Die Clowns – wie meine treue Leserin Claudia alias “Clownine Kunst” in Leipzig, Deutschland – kosten die jungen Patienten und ihre Familien in Regel gar nichts und haben gewiss eine grössere Wirkung als manch überteuertes “Mittelchen”.

Kann man die Krankheit Krebs ganz und gar besiegen?

DAS wirksame und nebenwirkungsarme Mittel gegen alle Krebsarten hat man leider noch nicht gefunden. Dazu kommt, dass die meisten Krebsbehandlungen zuerst für Erwachsene erfunden werden. Kinder funktionieren aber in vielen Dingen anders als Erwachsene. Denn Kinder müssen schliesslich noch wachsen. So muss für jedes neue Mittel noch einmal neu untersucht werden, ob und wie es auch bei Kindern eingesetzt werden kann.

Denn Kinder sollen schliesslich nicht nur gesund, sondern auch gross werden und ein möglichst normales Leben führen können.

Dazu wird immer wieder der Erfolg neuer Behandlungsweisen bei Kindern an mutigen jungen Patienten untersucht. Bei so einer “Frühen Klinischen Studie” (Early Clinical Trial, ECT) werden Methoden und Medikamente, die z.B. bei Erwachsenen schon funktionieren, versuchsweise bei Kindern eingesetzt. Dabei passen die Ärzte ganz besonders genau auf ihre Schützlinge auf. Denn sie wollen schliesslich nicht nur “ihre” Kinder gesund machen, sondern möglichst nützliche Ergebnisse sammeln, um später noch mehr Kinder gesund machen zu können.

Mein Wunsch an krebskranke Kinder

Deshalb lautet mein Wunsch für ein – eigentlich für alle krebskranken Kinder: Behaltet eure Zuversicht. Freut euch an den kleinen Dingen und geniesst es, euren schweren Alltag für ein paar Augenblicke zu vergessen. Immer wieder. Und ich wünsche euch, dass aus 4 von 5 schnell 5 von 5 werden: Dass bald ein Weg für euch erforscht wird, der leichter zu gehen und für euch alle zu schaffen ist!

Eure Kathi Keinstein

Experiment: Gärung - die Superkraft von Hefe

Vor ein paar Tagen war es einmal wieder soweit: Ich hatte Geburtstag. Zur Feier des Tages habe ich mich in die Küche gestellt und der Biochemie gewidmet….ähm, Kuchen gebacken. Und zwar mit Hefe! Und damit wird das Kuchenbacken tatsächlich echte Küchen-Biochemie.

Was ist eigentlich Hefe?

Unsere Backhefe besteht aus richtigen Lebewesen! Aber nicht aus Pflanzen oder Tieren, sondern aus Pilzen mit dem komplizierten Namen “Saccharomyces cervisiae”.

Wenn ihr euch jetzt an Asterix und Obelix erinnert fühlt…richtig: Das Lieblingsgetränk der beiden Comic-Gallier ist lauwarme Cervisia – ein Bier. Tatsächlich ist die Backhefe der gleiche Pilz, der auch zum Bierbrauen verwendet wird.

Der erste Teil des Namens bedeutet übrigens so viel wie “Zuckerpilz”, womit der ganze Name sich etwa mit “Bier-Zuckerpilz” übersetzen lässt. Damit ist auch geklärt, wovon diese Pilze sich ernähren.

Hefen bilden übrigens keine Schirme und Hüte im Wald, wie ihr sie von anderen Pilzen kennt. Sie gehören nämlich zu den Einzellern und vermehren sich durch Zellteilung oder die Bildung von Ablegern. Deswegen sehen wir von ihnen ohne Mikroskop auch nicht mehr als eine gelblich-graue Masse. Mit einem Mikroskop hingegen kann man die einzelnen Hefezellen sehen:

Backhefe unter dem Mikroskop: Die Einzelzellen sind jetzt gut erkennbar.

Backhefe unter dem Mikroskop: Die Teilstriche der Skala sind jeweils 11 Mikrometer (Millionstel Meter!) voneinander entfernt. By Bob Blaylock [CC BY-SA 3.0 or GFDL], from Wikimedia Commons

Was macht ein Pilz in Brot und Kuchen?

Er lebt! Zumindest vor dem Backen. Und zwar wie alle Lebewesen von Zuckern. Nur ist Hefe dabei nicht zwingend auf Sauerstoff zum Atmen angewiesen. Während Menschen Sauerstoff als Oxidationsmittel brauchen, um aus den Zuckern chemische Energie zu gewinnen, können Hefen dazu auch andere chemische Reaktionen nutzen, die ohne Sauerstoff auskommen.

Solche Reaktionen werden zusammengefasst “Gärung” genannt. Bei der Gärung durch Hefe entsteht als “Abfall” der Trink-Alkohol “Ethanol” (auf den es die Bierbrauer abgesehen haben), und… findet es selbst heraus!

 

Experiment 1: Hefegärung sichtbar machen

Ihr braucht dazu

Eine Glasflasche mit engem Hals (ca. 0,5l),
Einen Luftballon, nicht aufgeblasen
Backhefe (1 Päckchen Trockenhefe)
Wasser (lauwarm)
Einen Teelöffel Haushaltszucker

Das braucht ihr für das Experiment

So geht es

Blast den Luftballon mehrmals hintereinander auf und lasst die Luft immer wieder heraus. So wird die Ballonhülle schon einmal gedehnt und lässt sich später leichter aufblasen.

Füllt die Flasche halb mit lauwarmem Wasser und löst den Zucker darin auf. Gebt die Hefe dazu und schwenkt die Flasche kurz, sodass sich alles gut mischt.

Stülpt dann die Öffnung des Luftballons über die Flaschenöffnung und stellt das Ganze an einen warmen Ort (ideal sind 28-32°C).

Wartet ab und beobachtet, was geschieht: In der Flasche geht es sichtlich geschäftig zu, und: Der Ballon bläht sich auf!

Im Laufe von 45 Minuten bläht der Ballon sich immer weiter auf!

Ein Gas entsteht: Links der Aufbau zu Beginn des Experiments, dann von links nach rechts: nach 15min, 30min, 45min

Was geschieht da?

Die Hefe verdaut den Zucker. Dabei entsteht ein Gas, das den Ballon füllt!

Was für ein Gas ist das?

Ihr könnt es selbst nachweisen!

Experiment 2: Gas-Nachweis

Ihr braucht dazu

Die Hefemischung in der Flasche aus Experiment 1
Ein Streichholz, etwas zum Anzünden
Eine Pinzette

So geht es

Entfernt den Luftballon von der Flasche. Entzündet das Streichholz und führt es mit Hilfe der Pinzette in die Flasche mit der Hefemischung (nicht eintauchen!). Beobachtet: Das Streichholz geht aus!

Was passiert da?

Das Gas, welches die Hefe produziert, ist Kohlenstoffdioxid (CO2)! Es ist schwerer als Luft und verdrängt so den Sauerstoff nach oben aus der Flasche. Ohne Sauerstoff kann Feuer nicht brennen – und geht aus.

 

Was in den Hefezellen passiert

Der wichtigste Zucker, von dem Hefe sich ernährt, ist Traubenzucker (Glucose). Das ist ein “Einfachzucker” (ein Monosaccharid), besteht also aus überschaubar kleinen, einzelnen Zuckermolekülen.

alpha-D-Glucose in 6-Ringform: Haworth-Strukturformel

Ein Glucose-Molekül

Aus Traubenzucker- bzw. Glucose-Molekülen können alle Lebewesen schnell Energie gewinnen. Die Hefe verwendet dazu eine Folge von Reaktionen, die die Biochemiker als “anaerobe Glykolyse” bezeichnen.

Dabei wird aus einem Molekül Glucose in mehreren Schritten ein Molekül “Pyruvat” hergestellt. Im Zuge dieser Schritte werden zwei Energieträger-Moleküle, die die Biochemiker abgekürzt “ADP” nennen, “aufgeladen”, indem je ein Phosphorsäure-Anion an jedes dieser Moleküle gehängt wird (die aufgeladenen Energieträger-Moleküle heissen dann “ATP”).

Für das Aufladen sind jedoch weitere Reaktionspartner (Moleküle namens NAD+) nötig, die ihrerseits recycelt werden müssen.

Gärung: Aus Pyruvat wird Ethanol. Dabei wird ein Molekül CO2 frei und ein Molekül NAD+ rezykliert.

Alkoholische Gärung By Arne “Norro” Nordmann. [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5 ], via Wikimedia Commons

Deswegen haben die Hefepilze ein weiteres Enzym (die Pyruvatdecarboxylase), das von den Pyruvat-Molekülen je ein Molekül Kohlenstoffdioxid (CO2) abspaltet.

Das Kohlenstoffdioxid wird danach aus den Zellen entsorgt und füllt euren Luftballon!

Übrig bleibt ein Molekül Acetaldehyd. Das ist für Zellen giftig und wird deshalb schnell zu Ethanol weiterverarbeitet, wobei die Abfall-Moleküle NADH aus der Glykolyse zu NAD+ recycelt werden.

Der Trink-Alkohol “Ethanol” ist übrigens für uns Menschen giftig, weil es in unseren Zellen das Enzym Alkoholdehydrogenase auch gibt – nur fördert es da die Reaktion in umgekehrter Richtung: Aus Ethanol wird Acetaldehyd. Und das beschert und einen mächtigen Kater (über diesen biochemischen Katzenjammer könnt ihr hier mehr lesen).

Wie wird dann Haushaltszucker vergoren?

Die Moleküle des Haushaltszuckers (Saccharose) bestehen aus je zwei verbundenen Einfachzuckern: dem Traubenzucker Glucose und dem Fruchtzucker Fructose.

Saccharose, unser Haushaltszucker dargestellt in der Haworth-Strukturformel

Ein Saccharose-Molekül

In den Hefepilz-Zellen gibt es deshalb ein Enzym, das diese Paare spalten kann, bevor die Einzelteile wie oben gezeigt “verdaut” werden.

Diese Fähigkeit – Haushaltszucker zu spalten und zu verwerten – hat der Backhefe schliesslich ihren wissenschaftlichen Namen (Saccharomyces…) eingebracht.

Wie “geht” Hefe in Milch?

Normale Vollmilch besteht zu ca. 5% aus Milchzucker (Laktose) – das sollte ja genug Futter für die Hefe sein, oder? Weil Reto laktoseintolerant ist, habe ich allerdings laktosefreie Milch für den Kuchen benutzt…und hatte schon Sorge, die Hefe würde damit nicht aufgehen. Stattdessen ging meine Hefe aber schon nach dem Mischen mit der Milch ab wie Schmitz’ Katze!

Hefe in laktosefreier Milch

Laktose ist auch ein Zweifachzucker, sie besteht aus je einem Molekül Glucose und Galactose.

Ein Laktose-Molekül: Haworth-Strukturformel

Auch Laktose ist ein Zweifach-Zucker, der vor der Verwertung gespalten werden muss

Unglücklicherweise hat die Back-Hefe aber kein Enzym, um Laktose zu spalten und so an die Glucose zu gelangen (sie ist also “laktoseintolerant”, wenngleich Hefepilze keinen Darm haben, der deswegen verstimmt sein könnte). Zum Glück für die Hefe enthält normale Vollmilch jedoch immer auch freie Glucose.

Laktosefreie Milch wird nun hergestellt, indem man das Enzym Laktase dazugibt, welches die Laktose in Glucose und Galactose spaltet (deshalb ist laktosefreie Milch ein wenig süsser als normale). So findet die Hefe in laktosefreier Milch sogar mehr zu fressen als in normaler Vollmilch und geht dementsprechend eifrig auf!

Was im Ofen mit der Hefe passiert

Und bevor euch nun bei all den lebendigen Pilzen der Appetit auf Brot und Kuchen vergeht: Wie alle Lebewesen sind Hefepilze auf gemässigte Temperaturen angewiesen. Wenn ihr euren Hefeteig also in den Ofen schiebt und erhitzt, sterben alle Pilze ab.

Das Kohlenstoffdioxid, das sie vorher im Teig freigesetzt haben, dehnt sich jedoch in der Hitze aus und lässt so Kuchen und Brot aufgehen und so wunderbar fluffig werden. Wenn indessen Stärke, Proteine, Fett und Zucker im Teig zu einem festen Molekülgerüst reagieren (zum Beispiel im Zuge der Maillard-Reaktion, zu der ihr hier lesen könnt), fällt das Ganze nach dem Abkühlen auch nicht mehr zusammen.

 

Entsorgung

Das Hefe-Wasser-Gemisch könnt ihr in den Ausguss entsorgen – oder vielleicht ein Brot damit backen? Den Luftballon könnt ihr nach Belieben weiter benutzen.

 

Ich wünsche euch viel Spass beim Ausprobieren und Beobachten! Was macht ihr sonst am liebsten mit Hefe bzw. Hefeteig?

Ausflugstipp: Sea Life Center Konstanz - mit Gewinnspiel

Reto und ich haben vom Sea Life Center Konstanz für die Begehung vor Ort kostenfreien Eintritt und eine Zusage für den Versand weiterer Freikarten für eine Familie plus Plüsch-Schildkröte als Souvenir für die Kinder als Gewinn erhalten. Ich bedanke mich sehr für die Zusammenarbeit! Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Was ist Sea Life?

Bestimmt habt ihr schon mal von “Sea Life” gehört. Schliesslich steht dieser Name für die grösste Besucher-Aquarienkette der Welt. In 47 Städten rund um die Welt (32 davon in Europa) gibt es ein Sea Life Center, in welchem kleinen und grossen Besuchern die Bewohner von Meeren, Flüssen, Seen und anderen Gewässern in aufwändig gestalteten Aquarien ganz nahe gebracht werden.

Die Sea Life Center werden von der Merlin Entertainment Group betrieben, dem grössten Anbieter von Unterhaltungseinrichtungen und Freizeitparks in Europa und dem zweitgrössten solchen Unternehmen weltweit. So gehören neben den Sea Life Aquarien zum Beispiel auch die Legoland-Freizeitparks und die “Madame Tussaud’s”-Wachsfiguren-Kabinette (die man längst nicht mehr nur in London findet) zum Konzern.

Wie kommt nun Unterhaltungsindustrie in Keinsteins Kiste?

Die Sea Life Center möchten mehr als bloss unterhalten. Sie möchten informieren, eine geheimnisvolle und gefährdete Welt erlebbar machen und so kleinen und grossen Besuchern nahe bringen, wie wichtig es ist, die Gewässer der Erde und ihre Bewohner zu schützen.

So haben Sea Life und ich etwas gemeinsam: Wir möchten euch spannende Geheimnisse der Natur und ihre Erforschung näher bringen. Um euch zu zeigen, wie viel Spass Natur und Wissenschaft machen können, aber auch um Grundlagen für verantwortungsvolles Tun in allen Lebenslagen schaffen. Denn was Menschen kennen und schätzen, werden sie auch respektieren und schützen.

Heute darf ich euch auf Einladung des Sea Life Centers in Konstanz eine Entdeckungsreise durch die Unterwasserwelt vorstellen, im Rahmen derer ihr euch selbst als Meeresforscher versuchen könnt. Und das Beste daran: Das Sea Life Center hat seine Einladung auf euch erweitert: Ich darf Eintrittskarten für eure ganze Familie in das Sea Life Aquarium in Konstanz verlosen! Wie das vor sich geht, erfahrt ihr am Ende dieses Beitrags.

Jetzt geht es aber los auf Tauchgang

Reto und ich haben uns einen regnerischen Samstag Anfang September für unseren Besuch im Sea Life Konstanz ausgesucht. Das trübe Wetter scheint perfekt dafür, um “indoor” in fremde Welten abzutauchen. Die Sommerferien in Baden-Würtemberg und Bayern sind allerdings noch nicht zu Ende. So müssen wir damit rechnen, dass wir längst nicht die einzigen sind, die heute hier auf Tauchgang gehen.

So laufen wir bereits auf der mächtigen Rampe zum Eingang des Sea Life Centers auf eine Warteschlange auf. Die allerdings könnte grösser sein – es finden sogar alle Wartenden unter dem Vordach im Trockenen Platz. Direkt am Bodensee, am Konstanzer Hafen gelegen wirkt das Gebäude von aussen eher schlicht, ist durch den markanten Schriftzug an der Fassade aber unverkennbar.

Sea Life Center Konstanz - Aussenansicht

Freundlicher Empfang

Dank der freundlichen und fleissigen Mitarbeiter an der Kasse erreichen wir nach einigen Minuten den Eingangsbereich, der schon erahnen lässt, wie das Innere dieses Grossaquariums geschnitten ist: Eng und lauschig.

Deshalb meine Empfehlung an Familien mit kleinen Kindern: Vor dem Eingang gibt es einen überdachten Kinderwagen-Parkplatz. Nutzt den und lasst Kinderwagen und allfällige andere Fahrzeuge unbedingt draussen! Ihr tut euch selbst und allen anderen Gästen damit einen grossen Gefallen!

An der Tageskasse erhalten wir unsere Freikarten und ein Informationsblatt mit den Schau-Fütterungszeiten. Am Samstag werden allerdings nur die Pinguine gefüttert (die Fische in den anderen Becken brauchen nicht jeden Tag etwas zu fressen, lernen wir später), sodass wir diesen Fixpunkt gleich auf unsere gedankliche Agenda setzen.

Für unsere Kinder könnten wir jetzt Material für zusätzliche interaktive Stationen und Forscher-Aufgaben in der Ausstellung zubuchen. Unser Hauptaugenmerk liegt heute aber auf dem neuesten Angebot hier in Konstanz, das im Eintrittspreis enthalten ist: Wir dürfen uns selbst am Traumberuf “Meeresforscher” versuchen und eine in Not geratene Meeresschildkröte retten.

 

Im Sea Life durch die Welt der Gewässer und Meere

Das Sea Life Konstanz zeigt die Wasserbewohner entlang einer Reise den Rhein hinunter, durch den Bodensee und weiter bis nach Rotterdam, von dort ins offene Meer, in tropische Ozeane, den Amazonas hinauf und schliesslich an den Rand der Antarktis am fernen Südpol der Erde.

So beginnt unser Tauchgang in einer künstlichen Gletscherhöhle, wie sie in den Höhen der Alpen an der Quelle des Rheins zu finden sein mag. Ein Willkommensvideo soll vornehmlich die kleinen Besucher in grundlegende Hausregeln und den Gebrauch der Zusatzmaterialien einführen. Eine automatisch öffnende Tür am Ende des Raumes, die die Besucher für den Rundgang dosieren soll, sorgt für ein gewisses Freizeitpark-Gefühl. Da wir aber im Aquarium sind, zieht es die meisten Besucher, die die Tür von Hand aufschieben, gleich weiter. Wir lassen uns ebenfalls vom Strom treiben.

Umweltschutz für Kinder aufbereitet

Unser Weg führt durch aufwändig ausgestaltete Räume an den Bewohnern des Rheins und des Bodensees in offenen Becken vorbei. Kindgerechte und humorvolle Beschreibungstafeln und -bildschirme geben den gezeigten Tieren Namen – sind aber weniger ausführlich als die klassischen Gehege-Tafeln im Zoo. Das bedeutet zwar weniger Informationen für die Grossen, ermöglicht jedoch auch weniger lesesicheren Primarschulkindern, die Ausstellung selbstständig zu entdecken.

Dabei wird stets grosses Gewicht auf den Natur- und Umweltschutz gelegt: Es werden in jedem Bereich Projekte vorgestellt, mit welchen sich der Sea Life Trust für den Schutz der Wasserbewohner und ihrer Lebensräume engagiert. Ausserdem werden Tipps gegeben, wie wir alle dazu beitragen können, indem wir unseren Lebenswandel auf den Schutz von Meeren und Gewässer ausrichten können.

Für die Kleinsten gibt es zudem reichlich Hocker, die auf den Weg durch die Ausstellung mitgenommen werden können und – vor allem später – den Blick in etwas höher gelagerte Becken ermöglichen.

Im Raum mit dem Bodensee-Becken fällt mir dann erstmals die Hintergrund-Musik auf, die uns durch die ganze Ausstellung begleitet. Dezent gibt sie der Unterwasser-Erlebniswelt einen kinowürdigen Soundtrack.

 

Unser Hauptziel: Die interaktive Schildkröten-Rettung

Gleich hinter Konstanz am Bodensee finden wir uns – einem Unterbruch der Reiseroute gleich – am interaktiven Schildkrötenstrand wieder. In diesem Raum ist mächtig etwas los, möchten sich doch alle Kinder einmal als Meeresschützer versuchen. Und es gibt hier reichlich zu tun:

Hier am "Strand" gibt es viele Schildkröten zu retten!

Am “Strand” haben wir auch am regnerischen Feriensamstag reichlich Auswahl an Plüsch-Schildkröten in Not. Ich entscheide mich für ein Exemplar und trage es gleich zur Waage. Ein Mikrochip im Innern des Plüschtiers kommuniziert mit dieser Station. Auf dem Bildschirm können wir die Art auswählen, der unsere Schildkröte angehört, und ihr einen Namen geben. Unser Schützling soll “Keinstein” heissen. Die Waage teilt uns ausserdem mit: Keinstein, die Unechte Karettschildkröte, wiegt viel zu wenig. Er muss dringend aufgepäppelt werden!

Plüsch-Schildkröte "Keinstein" auf der Waage

Meine Wahl fiel auf “Keinstein”, die unechte Karettschildkröte.

 

Technik mit Kinderkrankheiten…

So geht es weiter zur Schildkrötentränke. Hier zeigt sich eine Kinderkrankheit der empfindlichen Technik: Die Fortschritts-Daten in Keinsteins Chip werden nicht erkannt: Der Bildschirm schickt uns zurück zur Waage. Eine aufmerksame und sehr hilfsbereite Sea Life-Mitarbeiterin bietet uns gleich eine Ersatz-Schildkröte an. Wir geben jedoch nicht so schnell kleinbei – wir wollen schliesslich Keinstein retten. Also noch einmal zurück auf Anfang.

Und dann klappt alles reibungslos.

Keinstein hat sich satt gefressen!

Alles richtig gemerkt – und Keinstein ist satt!

An der Fütterungsstation zeige ich, dass ich mir gut gemerkt habe, was Unechte Karettschildkröten am liebsten fressen. An der Röntgenstation werde ich selbst zur Tierärztin, denn Keinstein ist ganz schön ramponiert: Pflaster, Verband und Salbe sorgen dafür, dass alle Blessuren rasch heilen können.

Keinstein in der Röntgenkammer: Floss gebrochen!

Oh weh, Flosse gebrochen! Da hilft wohl nur ein Pflaster…oder doch ein stabiler Gipsverband?

Bis es soweit ist, gibt es endlich etwas zu trinken. Wir messen die gewünschte Menge Wasser ab und pumpen sie durch die abenteuerliche Installation gleich in Keinsteins Maul.

Keinsteins hat Durst!

Keinstein hat Durst! Nur noch abmessen, dann gibt es was zu trinken.

Dann heisst es Abschied nehmen: Das Display zeigt an, dass wir alle Meeresschützer-Aufgaben erfolgreich erledigt haben. Keinstein ist gesund und munter und darf ins Meer zurück. Also setzen wir ihn am “Strand” aus und sehen ihm nach, während er wieder ins Meer zurück kriecht – um bald aufs neue von einem Kind gerettet zu werden.

Wir setzen Keinstein am "Strand" wieder aus.

Tschüss, Keinstein! Auf dass noch viele Kinder dich retten mögen!

 

… ist dank hervorragender Betreuung kein Problem

Die moderne Technik ist scheinbar noch recht empfindlich und mit “Kinderkrankheiten” behaftet. Dank der sorgfältigen Betreuung durch die Mitarbeiter “strandet” aber niemand bei diesem Abenteuer. Ein Bisschen Geduld zahlt sich dabei wie so oft aus: Im zweiten Anlauf klappt alles prima.

Und das obwohl die Anlage recht störanfällig zu sein scheint. Zum Glück ist jede Station in vierfacher Ausführung eingerichtet. So stört selbst an diesem betriebsamen Samstag kaum, dass ein bis zwei Ausgaben je Station gerade defekt sind.

Alles in allem ist die Schildkrötenrettung besonders für Jungforscher ein herziger wie lehrreicher Spass für zwischendurch, bevor es weiter auf die Reise durch die Meere geht.

 

Meeresbewohner zum Staunen

Besondere Freude macht mir in Einrichtungen wie dem Sea Life, die jungen Besucher zu beobachten und ihnen zuzuhören.

Zum Beispiel dem kleinen Jungen, der mit grossen Augen in das (für meine recht verwöhnten Erwachsenensinne nur mässig spektakuläre) Quallenbecken schaut: “Mama, sind das auch Tiere?” (Ja, antwortet die Mutter.) “Wo (bzw. wie) fühlen die sich wohl?”

Ohrenqualle im Aquarium

Ja, das ist auch ein Tier: Die Ohrenqualle – eine völlig harmlose Bewohnerin der Ostsee

Oder den beiden Mädchen am Rotterdamer Hafenbecken: “Papa, da ist ein langer Fisch! Was ist das für einer?” (Sie müssen etwas warten, bis sie Papas Aufmerksamkeit auf die rechte vordere Ecke des Beckens lenken können, bleiben aber hartnäckig.) “Ein Aal”, erklärt der Vater. “Ist das ein Zitteraal?”

Ist er nicht – es handelt sich um den europäischen Aal. Rund 30 Jahre älter als diese Kinder verbinde ich diesen Aal noch mit einem geräucherten Leckerbissen auf der Weihnachtstafel. Heute sind die Bestände so überfischt, dass der Räucheraal rar geworden ist. So rar, dass diese Kinder ihn nicht mehr kennen. Um so wichtiger ist es, ihnen solche Tiere nahe zu bringen.

Tierwelt für alle Sinne

In der kleinen Halle mit dem grossen, offenen Rochenbecken finden wir ein weiteres kleines Highlight: Am Berührbecken dürfen wir und die mutigen Jungforscher die bizarrren Eihüllen der Rochen und Haie in die Hand nehmen und uns von durchsichtigen Garnelen anknabbern lassen. Einige Seesterne und andere Tiere in weiteren Becken machen gerade Berühr-Pause. Animateurin Melanie, die wir bereits von der Pinguinfütterung kennen, hat ein wachsames Auge und spannende Erklärungen dazu parat.

Physik-Tricks im Aquarium

Der Übergang in wirklich tropische Gefilde beginnt mir einer weiteren rar gewordenen Gattung: Den Seepferdchen. Eine besonders grosse und eindrückliche Art wird hier sogar nachgezüchtet! Auf weniger augenscheinliche Expemplare gewähren nach aussen gewölbte Halbkugel-Becken einen besonders guten Blick. Die gläserne Wölbung hat nämlich die gleiche Wirkung wie eine Lupe: Sie bricht das Licht auf eine Weise, die das Innere des Aquariums grösser aussehen lässt, als es wirklich ist!

Seepferdchen im hinter kugelrundem Glas

Seepferdchen vergrössert: Die Glas-Halbkugel wirkt wie eine Lupe!

Dahingegen wirken nach innen gewölbte Glasscheiben wie ein Weitwinkelobjektiv: Das Innere des Aquariums wirkt zwar kleiner, aber wir haben da hindurch einen besonders grossen Teil des weitläufigen Beckens im Blick.

“Findet Nemo” im tropischen Meer

Im tropischen Meer gelangen wir schliesslich zu der Art Becken, für das die Sea Life-Center bekannt sind: Ein Plexiglas-Tunnel, durch den wir “unter Wasser” hindurchgehen – und einen Hai von unten in Augenschein nehmen – können. Besonders spannend an der Konstanzer Ausführung ist, dass wir dieses Becken während des Rundgangs aus verschiedenen Richtungen einsehen und immer neues entdecken können.

Reto mit Fotomodell im Plexiglastunnel

“Fische sind Freunde – und Reto auch”, denkt sich wohl dieser Hai, der auf der Tunnelwölbung posiert.

So erwische ich nicht nur Reto beim Foto-Shooting mit einem besonders bequemen Hai, sondern auch einen sehr lebendigen Kollegen von unserem “Keinstein”. Und wer besonders aufmerksam ist, findet in diesem und den umliegenden Becken praktisch alle wichtigen Charaktere aus “Findet Nemo”, dem Animationsfilm um den kleinen Clownfisch aus dem Indischen Ozean.

Wer findet Nemo im Korallenbecken?

Wer findet Nemo im Korallenbecken?

 

Spektakel im Süsswasser: Tropischer Regenwald

Auch im Tropenwald gibt es viel Wasser – das berühmteste Gewässer ist wohl der Amazonas-Fluss. Diesem ist der vorletzte Ausstellungsraum gewidmet. Zwei besonders populäre Bewohner sind hier vertreten: Eine Art der vielfältigen giftigen Pfeilgiftfrösche und die berüchtigten Piranhas. Letztere lösten vor allem deshalb Staunen aus, weil sie sich fernab ihrer Fütterungszeit (nur Montags um 15 Uhr) in ihrem schillernden Schuppenkleid ausnehmend schön präsentierten.

Doch auch weniger bekannte und um so spektakulärere Arten wie Diskusfische finden hier Platz.

Ein Diskusfisch im Amazonas-Becken

Diskusfische wie dieser spucken Wasser, um Insekten über der Wasseroberfläche “abzuschiessen” und nach dem Absturz in den Fluss zu fressen.

 

Fütterung bei den Eselspinguinen

Unsere Tauchfahrt führt uns zu guter Letzt in die eisige Antarktis – genauer gesagt an deren erfrischend kühlen Rand. Dort – genauer gesagt auf den Falkland-Inseln – leben nämlich die im Sea Life Konstanz präsentierten Eselspinguine.

In den meisten Zoos und Aquarien, die ich kenne, werden die ebenfalls in milderem Klima heimischen Humboldt-Pinguine gehalten. So sind die zehn Vögel hier für Reto und mich eine willkommene Abwechslung – und sehen im Übrigen der Schweizer Fernseh-Knetfigur “Pingu” richtig ähnlich.

Der Eselspinguin betrachtet uns Besucher genauso neugierig wie wir ihn.

Wer ist hier nun im Zoo? Irgendwie fühlen wir uns beobachtet…

Um die Fütterung nicht zu verpassen, sind wir zwischenzeitlich von unserem Rundgang fort ans Ende der Ausstellung geeilt und haben uns zur lebhaften Besucherschar in den recht begrenzten Raum geschoben. So kommt es, dass uns Melanie, die Moderatorin, später am Berührbecken schon bekannt ist.

Hier erklärt Melanie kindgerecht spannend und humorvoll, warum wir nicht mit Blitz fotografieren, an die Scheiben klopfen oder durch das Glas mit den Tieren spielen sollen (die Pinguine stossen sich dabei den Schnabel und können sich so verletzen). Während ein Tierpfleger die Vögel hinter dem Glas mit Fisch versorgt, erzählt unsere Moderatorin Wissenswertes zu den Pinguinen. So lernen selbst wir noch etwas neues:

Warum gibt es schwule Pinguine?

Das Sea Life Konstanz hat einst fünf Pinguin-Pärchen, also fünf Männchen und fünf Weibchen anschaffen wollen. Wie sich bald zeigte, sind jedoch sechs der erhaltenen Tiere männlich und vier weiblich. So gibt es nun vier Pärchen, die Nachwuchs bekommen können – und zwei Männchen bilden ein schwules Paar. Aber warum macht die Natur sowas?

In der freien Natur muss stets ein Elternteil das gemeinsame Ei auf den Füssen hüten, während der andere Elternteil auf Nahrrungssuche geht. Später werden dann die Rollen getauscht. Wenn nun der jagende Elternteil von einer Robbe oder einem anderen Feind gefressen wird und nicht zurückkehrt, muss der andere Elternteil irgendwann das Ei allein zurücklassen, um nicht zu verhungern. Schwule (oder lesbische) Pinguin-Paare adoptieren solche verwaisten Eier und ziehen gemeinsam das Junge gross. So können die homosexuellen Vögel zur Erhaltung ihrer Art beitragen, obwohl sie keinen eigenen Nachwuchs zeugen.

 

Der Tauchgang ist fast ein wenig zu schnell vorbei

Als wir das Pinguinbecken abseits der Fütterungszeit ein zweites Mal erreichen, finden wir auch die angekündigten Unterschriftenbögen von Greenpeace zur Unterstützung des Antarctic Trust, der sich für die Erhaltung von Arten und Lebensräumen rund um den Südpol einsetzt. Von den Eindrücken unserer Unterwasser-Reise beflügelt ist der Bogen schnell unterschrieben.

Dann heisst es zu unserem Bedauern auch schon wieder auftauchen. Am Ende der Ausstellung erwartet uns der unvermeidliche Souvenirshop mit den ebenso unvermeidlichen Plüschschildkröten und vielem mehr.

Zugabe! Zugabe!

Aber ganz zuende ist unsere Reise doch noch nicht: Von hier aus gelangt man nämlich direkt in das Naturmuseum Bodensee im Obergeschoss, das im Eintritt zum Sea Life enthalten ist! Hier erfahren wir viel Interessantes zur Natur und Naturgeschichte der Bodenseeregion und lernen viele ihrer tierischen Bewohner anhand von sehr lebendig wirkenden ausgestopften Exemplaren kennen. Es lohnt sich wirklich, diesen Abstecher an Land zu machen.

Ausserdem: Wir haben anfangs an der Kasse Stempel auf die Hand erhalten. Mit diesen könnten wir unseren Tauchgang noch einmal von vorne beginnen, um noch mehr zu entdecken, eine weitere Fütterung zu erleben, oder… Und das den ganzen Tag lang beliebig oft.

Aber nach unserer ausführlichen Reise zieht uns nun der Hunger in eines der Restaurants am Hafen.

 

Öffnungszeiten und Eintrittspreise

Das Sea Life Center Konstanz hat jeden Tag von 10 bis 17 Uhr – im August von 10 bis 18 Uhr – geöffnet. Einzig am heiligen Abend (24.12.) bleibt das Aquarium geschlossen.

Ein Tagesticket für Erwachsene kostet an der Kasse derzeit EUR 18,75, für Kinder von 3 bis 15 Jahren rund EUR 12,86 (Kleinkinder unter 3 Jahren sind frei). Das macht den Sea Life – Besuch für Familien zu einem teuren Unterfangen. Daher zwei Spar-Tipps:

1. Bucht eure Tickets vorab online – so sind sie 30% günstiger (EUR 13,10 für Erwachsene, EUR 9,00 für Kinder, Stand September 2018).

2. Tut euch für euren Besuch mit zwei bis drei Familien zusammen, sodass ihr mindestens 10 Leute über 3 Jahren seid, und meldet euch als Gruppe an. Dann zahlt jede Person über 3 Jahren EUR 8,00.

 

Wie kommt man zum Sea Life Center?

Aus der Schweiz kommt man denkbar einfach mit dem Zug nach Konstanz: Der Hauptbahnhof Konstanz gehört – obgleich in Deutschland gelegen – quasi zum Schweizer Schienennetz. Das heisst, Billetts/Fahrkarten gibt es an den Billett-Automaten der SBB. Ausserdem bieten die SBB vorläufig bis zum 31.10.18 einen ermässigten Fahr- und Eintrittspreis als “RailAway-Kombi” an. Und mit dem GA fahrt ihr sogar gratis bis nach Konstanz (und solltet die Eintrittskarten online direkt beim Sea Life buchen – das kommt am günstigsten).

Da ihr von der Schweiz (oder von Österreich) aus nichts desto trotz die Landesgrenze überquert: ID/Personalausweis nicht vergessen! Normalerweise bekommt ihr von der Grenzüberquerung aber gar nichts mit: Es gibt in der Regel keinerlei Grenzkontrollen – Schengenraum sei Dank.

Auch von Deutschland aus empfehle ich die Anreise mit der Bahn – das erspart euch Stadtverkehr und Parkplatzsuche. Mit dem Baden-Württemberg-Ticket für Familien könnt ihr günstig im Nahverkehr aus dem ganzen Bundesland an- und abreisen.

Vom Bahnhof sind es ca. 400m Fussweg am Hafen entlang nach Süden: Das Aquarium steht direkt am Bodensee.

Und noch einmal mein dringender Rat an alle Eltern mit Kleinkindern und Babys: Lasst den Kinderwagen wirklich draussen auf dem Kinderwagenparkplatz stehen, denn drinnen wird es eng!

 

Gesamteindruck vom Sea Life Konstanz

Das Sea Life Konstanz bietet eine aufwändig gestaltete, farbenfrohe Aquarien-Ausstellung, die uns zuweilen das Gefühl gab, durch einen Freizeitpark zu spazieren. Das reichhaltige “Drumherum” nimmt – im Vergleich zu anderen Grossaquarien, die ich kenne, etwas den Fokus von den Tieren selbst.

Trotzdem gibt es in den Becken viele spannende und bizarre Lebewesen zu entdecken und zu bestaunen. Wie für jeden Aquarien-Besuch lohnt es sich auch hier, sich Zeit zu nehmen und aufmerksam zu beobachten, was in den Becken kreucht und….schwimmt.

Die Ausstellung ist speziell auf Primarschul- (Grundschul-) und Kindergartenkinder zugeschnitten. Dennoch kommen auch Grössere und Erwachsene auf ihre Kosten, wenn sie sich auf die bunte Tauchfahrt einlassen und gemeinsam mit den Nachwuchs-Forschern auf Entdeckung gehen. Wer detaillierte und weiterführende zoologische Informationen zu den Aquarienbewohnern schätzt, findet davon in anderen Aquarien allerdings einiges mehr.

Die Ausstellung im Sea Life Konstanz ist im Vergleich zu anderen Aquarien ziemlich eng gestaltet! An unserem gut besuchten Tag war zum Überholen auf dem linearen Weg durch die Ausstellung (um zur Pinguinfütterung zu gelangen) vielfach Geduld und Umsicht erforderlich. Trotzdem konnten wir an allen Becken beobachten ohne uns bedrängt zu fühlen. Ich zumindest habe das Aquarium nicht als überlaufen empfunden.

Grösster Wehmutstropfen sind die stolzen Eintrittspreise, die den Besuch im Sea Life für Familien schnell zur Grossinvestition werden lassen. Wenn euch die bunte Unterwasser-Expedition trotz der oben genannten Tipps zu teuer ist, könnt ihr euer Glück ja beim

 

Gewinnspiel

versuchen!

Zu gewinnen gibt es einen freien Eintritt in das Sea Life Konstanz für eure ganze Familie – inklusive einer Plüsch-Schildkröte als Andenken für eure Nachwuchs-Schildkrötenretter!

Wie ihr am Gewinnspiel teilnehmen könnt

Kommentiert dazu einfach bis zum 25. September 2018 unter diesem Beitrag und verratet uns: Was war eure bislang spannend Tier-Beobachtung im, auf oder unter Wasser (im Aquarium oder sogar draussen in der Natur)? Gebt dabei eine gültige Email-Adresse im entsprechenden Feld an, damit ich euch im Fall eines Gewinns erreichen kann!

Anschliessend werde ich den Gewinner unter allen gültigen Kommentaren auslosen.

Teilnahmebedingungen

  • Das Gewinnspiel wird von Keinsteins Kiste in Zusammenarbeit mit dem Sea Life Center Konstanz veranstaltet. Vielen Dank für die Bereitstellung und den Versand des Preises!
  • Das Gewinnspiel startet am 11. September 2018 und endet am 25. September 2018 um 24.00 Uhr.
  • Die Teilnahme am Gewinnspiel ist kostenlos.
  • Ihr müsst mindestens 18 Jahre alt sein (Liebe Kinder: Tut euch mit euren Eltern, Grosseltern oder anderen Erwachsenen zusammen!).
  • Ihr müsst eine Post-Adresse in der Schweiz, Deutschland oder Österreich haben, an welche der Gewinnpreis versandt werden kann.
  • Gewinnpreis sind Tageskarten für den Besuch des Sea Life Centers Konstanz für eine Familie plus je eine Plüsch-Schildkröte für die Kinder der Gewinner-Familie.
  • Es gibt 1 Los für einen Kommentar mit gewünschtem Inhalt (s.o.).
  • Eine Auszahlung des Gewinns in bar ist nicht möglich. Der Rechtsweg ist ausgeschlossen.
  • Der Gewinner wird ausgelost und per eMail benachrichtigt. Dabei wird er darum gebeten, der Weitergabe seiner Postadresse an das Sea Life Center Konstanz zuzustimmen, damit der Gewinn direkt vom Verlag versandt werden kann.
  • Die Gewinne gelten auf den Namen der teilnehmenden Person und sind nicht auf Drittpersonen übertragbar. Sofern die Ausschüttung eines Gewinns an einen in der Ziehung ermittelten Gewinner nicht möglich ist, weil eine Gewinnbenachrichtigung und/oder Gewinnzustellung scheitern und nicht binnen eines Monats nach der Ziehung nachgeholt werden können, verfällt der Gewinnanspruch.
  • Der Veranstalter behält sich das Recht vor, das Gewinnspiel aus sachlichen Gründen jederzeit ohne Vorankündigung zu modifizieren, abzubrechen oder zu beenden.

Ich wünsche euch viel Erfolg und viel Spass beim Lesen, Stöbern, Beobachten und Staunen!

Rundgang im Gewächshaus - Woher unser Gemüse kommt

Dieser Beitrag ist mit freundlicher Unterstützung von Gutknecht Gemüse entstanden, die mir im Rahmen einer Betriebsführung für Blogger einen Einblick in ihre Gewächshausproduktion gewährt haben. Ich bedanke mich herzlich bei beim Unternehmen für die Einladung und bei Moana Werschler für die Organisation. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Chemie im Alltag? Die ist auch in der Gemüseabteilung im Supermarkt immer wieder ein Thema. Zumindest lässt mich, was so durch die Sozialen Medien geistert, annehmen, dass ich nicht die einzige bin, die beim Einkauf darüber nachdenkt, welche ebenso beunruhigenden wie unsichtbaren Substanzen an unseren Gemüsen haften mögen: Rückstände von Pestiziden und die noch weniger greifbaren Folgen “nicht-natürlichen” Anbaus.

Aber ganz ehrlich: Bis vor wenigen Wochen hatte ich absolut gar keine Ahnung davon, wie unser Gemüse heutzutage angebaut wird. Wie die meisten von euch vermutlich auch. Ist das eine Grundlage für eine fundierte Einschätzung der Lage im Gemüseregal? Fehlanzeige! Selbst für mich als Chemikerin.

Wie baut man heute Gemüse an?

Richtig bewusst wurde mir das allerdings erst, als ich jemanden traf, der es besser wusste – und mir und anderen Bloggern die Möglichkeit eröffnete, der Sache auf den Grund zu gehen: Ich danke Moana Werschler von “Miss Broccoli” herzlich für die Organisation des spannenden Ausflugs in die Welt des modernen Indoor-Gemüseanbaus bei Familie Gutknecht in Kerzers! Dort habe ich nämlich aus nächster Nähe anschauen – und probieren! – dürfen, wie zeitgemässer Gemüseanbau in der Schweiz funktioniert.

Und das habe ich natürlich für euch getan, damit ich euch einen wirklich spannenden Einblick “aus erster Hand” in die Herkunft unserer liebsten Grundlage gesunder Ernährung geben kann. Und die mutet geradezu futuristisch an: Bei Gutknecht wird nämlich “Hors Sol” praktiziert – eine Anbaumethode, die dem Augenschein nach auch auf dem Mars funktionieren könnte.

Was wächst bei Gutknecht?

An einem heissen Juni-Tag führte mich mein Weg aus dem kleinen Dorf Kerzers (das unter Naturliebhabern und -forschern für sein Schmetterlingshaus “Papiliorama” bekannt ist) hinaus aufs flache Feld und durch ein Industriegebiet voller grosser Logistik-Niederlassungen. Dahinter wartete natürlich kein romantischer Familien-Ferien-Bauernhof. Der hätte auch kaum die Möglichkeit gehabt, das ganze Gebiet um den “Röstigraben” zwischen Deutsch- und Westschweiz mit frischem Gemüse zu versorgen.

Der Gutknecht-Gemüsehof hingegen kann das: Auf einer Gewächshaus-Fläche von 9 Fussballfeldern (das sind 6 bis 7 Hektar) werden das ganze Jahr über zahlreiche Gemüsesorten angebaut, die wir in den Auslagen von Migros, Coop, Spar, Lidl, Denner….eigentlich allen Supermärkten in der Region finden können. Dazu kommen 100 Hektar Anbaufläche an der frischen Luft für Obst und Gemüsesorten, die im Gewächshaus nicht gedeihen. Aber die waren für uns heute nicht von Interesse.

Uns und Pascal Gutknecht – einem der Hofbesitzer, der uns persönlich herumgeführt hat – ging es heute um die Gewächshäuser und das, was darin wächst: 29 (!) verschiedene Sorten Tomaten, dazu Auberginen, Zucchetti (in Deutschland sagt man Zucchini), Gurken, Peperoni (für Nicht-Schweizer: gemeint sind Paprika – die kleineren Scharfen, hierzulande Peperoncini genannt, gibt es bei Gutknechts allerdings auch), verschiedene Sorten frischer Kräuter und wer weiss, was wir noch alles nicht gesehen haben.

Unser Rundgang durch den Anbaubereich beginnt im Versuchsgewächshaus, in welchem in kleinerem Massstab mit Verbesserungen der Anbaumethode und neuen Sorten experimentiert wird. Das muss Pascal Gutknecht uns allerdings erst erklären – denn wir finden uns auf den ersten Blick in einer mächtigen gläsernen Halle mit Reihen um Reihen grüner Pflanzen mit Rispen voller kleiner Tomaten wieder. Die richtig grossen Gewächshäuser haben wir ja noch gar nicht gesehen.

Datteltomaten im Versuchs-Gewächshaus

Und hätte Moana uns nicht so gründlich vorinformiert, hätte der Anblick dieser Reihen vielleicht befremdlich gewirkt. Seit wann sind Tomaten lianenähnliche Schlingpflanzen? Und seit wann wachsen die auf frei hängenden Schwebebalken? Aber Moana hatte mich ja vorgewarnt: Die Gutknechts haben sich dem Hors Sol, einer etwas anderen, aber zukunftsweisenden Anbaumethode verschrieben.

 

Was ist Hors-Sol?

“Hors Sol” ist französisch für “ausserhalb des Erdbodens” – und genau darum geht es auch. Der Erdboden unter dem Gewächshaus wird nicht bepflanzt, sondern mit Platten oder Planen abgedeckt. Stattdessen werden Reihe um Reihe der schon erwähnten “Schwebebalken” an Ketten unter dem Gewächshausdach aufgehängt, sodass sie etwa 30 bis 40cm über dem Boden schweben.

Die Balken werden dann mit prallvollen Kunststoffsäcken bestückt, die an Gartenerde-Säcke aus dem Baumarkt erinnern. Statt Gartenerde enthalten sie jedoch Kokosfasern, die beim Anbau von Kokospalmen (zum Beispiel für das zunehmend populäre Kokosfett) abfallen. In diesen Kokosfaserballen wurzeln die Tomaten (oder andere Pflanzen), während sie dem durch das Glasdach fallenden Licht entgegen wachsen.

Wurzelballen in einer Hors Sol - Kultur

Was sind das für seltsame Lianen-Tomaten?

Und das tun sie mit grösstem Eifer: Alle Windungen zusammengenommen sind die Tomatenpflanzen im Versuchgewächshaus gut und gerne sechs bis sieben Meter lang! Dabei werden sie sorgfältig drapiert und ihre Spitzen an Führungsketten aufgehängt. Zudem herrscht akribische Ordnung: An der Spitze blüht alles, in der Mitte hängen schwer die reifenden Früchte und der untere Teil der Haupttriebe ist vollkommen kahl (Diese Ordnung ist naturgegeben – ihr könnt sie auch an den Tomatenpflanzen in eurem Garten beobachten – wenn ihr im untersten Bereich eurer Pflanzen kräftig “ausgeizt” und alle Blätter wegschneidet).

Dabei ist diese Pflanzung erst in der Mitte ihres Lebens angelangt: Die Tomaten wurden im Januar, also vor einem halben Jahr gesetzt und können bis zu ihrem Lebensende im Dezember eine Länge von 13 Metern erreichen! Das könnten eure Tomaten im Garten übrigens auch, wenn sie so viel Zeit und Platz zum Wachsen hätten.

In diesem Gewächshaus ist Wechselzeit: Die Kokosfaser-Säcke - Basis für die Hors Sol Kultur - warten auf neue Pflanzen

In diesem Produktions-Gewächshaus ist Wechselzeit: Die grossen Kokosfasersäcke bleiben dabei stets am Ort. Im Hintergrund wurden bereits junge Gurkenpflanzen gesetzt, die im Vordergrund folgen in den nächsten beiden Wochen.

Giesswasser und Dünger per Infusion

In jedem Wurzelballen steckt mindestens eine mit einem dünnen Schlauch versehene Sonde, sodass das Ganze untenherum ziemlich verkabelt wirkt. Durch die Schläuche können Giesswasser und darin gelöste Nährstoffe direkt in jeden Wurzelballen gepumpt werden. So erhält jede Pflanze “per Infusion” genau das, was sie gerade braucht.

So brauchen zum Beispiel die mächtigen “Coeur de Boeuf”-Tomaten eine Extraportion Calcium, um nicht an Wurzelfäule zu erkranken, während die kleineren Sorten sehr gut mit geringeren Mengen auskommen. Deshalb gibt es die Extraladung Calcium nur dort ins Giesswasser, wo sie benötigt wird.

Und wenn doch mal etwas überläuft, wird es gleich zur Wiederverwendung in den Giesswasser-Vorrat zurückgeführt.

Wie werden die Pflanzen im Gewächshaus befruchtet?

Damit haben die Pflanzen alles, was sie zum Wachsen brauchen: Licht, Wärme, Wasser, einen Untergrund zum Wurzeln, Nährstoffe… Aber ihr denkt jetzt womöglich: “Und wie soll das unter Glas mit den Bienli und den Blüemli funktionieren?” Richtig: Im Gewächshaus können die Pflanzen blühen – aber ohne Bestäubung werden aus den Blüten keine Früchte. Deshalb haben die Gutknechts ganz besondere Hilfsarbeiter eingestellt:

Pascal holt zwischen den Tomatenreihen einen handlichen Pappkarton mit einem feinmaschigen Gitter vor der oberen Öffnung hervor. Als er den kräftig anstösst, ertönt daraus ein ungehaltenes Summen. In dem Karton hat ein Hummelvolk sein Nest! Damit wir und die Kinder das Ganze in Ruhe betrachten können, hat Pascal das Einflugloch für den Moment verschlossen. Aber wie auf Bestellung nähert sich sogleich eine frei fliegende Hummel, die den Eingang sucht – nun aber für den Moment warten muss.

Hummelnest im Pappkarton zum Einsatz im Hors Sol Gewächshaus

Ein Hummelnest im Pappkarton: Durch das Gitter ist die Luftzufuhr garantiert. Die violette Scheibe ist drehbar und verschliesst in dieser Position das Einflugloch.

 

Im ganzen Gewächshausbetrieb gibt es 140 solcher Hummelnester und jedes davon wird von rund 250 Hummeln bewohnt. Das macht nach Adam Riese 35’000 Hummeln, deren Job es ist, auf Nektarsuche von Gemüseblüte zu Gemüseblüte zu fliegen und dabei Pollen von der einen zum Stempel der nächsten Blüte zu tragen.

Dabei sind Hummeln übrigens genügsamer als Bienen: Sie fliegen auch bei deutlich weniger Licht und Wärme (in Mutters Garten konnte ich das Mitte Juli selbst beobachten: Gegen 20:30 waren immer noch Hummeln am Sommerflieder zugange, während die Bienen schon längst verschwunden waren). Dazu kommt, dass Hummeln wesentlich friedfertiger als ihre kleineren Verwandten sind, sodass die 80 menschlichen Mitarbeiter bei Gutknecht Gemüse um vieles seltener von ihnen behelligt oder gar gestochen werden.

Hat die Hors-Sol-Methode Einfluss auf die Qualität des Gemüses?

Während wir die futuristisch anmutenden Pflanzungen näher in Augenschein nehmen, greift Pascal Gutknecht tief ins Grün und pflückt eine Rispe mit reifen Tomaten. Die verteilt er sogleich an uns und die Kinder – und sobald wir probieren, sind wir uns einig: Die sind megafein! Richtig süss und tomatig…

Hors Sol kommt ohne Pestizide aus!

Aber halt! Wir essen Tomaten aus solch einer Umgebung direkt vom Strauch? Denkt denn hier niemand über Pflanzenschutzmittel nach? Keine Sorge, sagt Pascal, in den Gutknecht-Gewächshäusern kommen überhaupt keine Pestizide zum Einsatz. Das wäre allein schon der Hummelvölker wegen schwierig. Das einzige, was an diesen Tomaten dran sein könnte, ist also allenfalls, was die Mitarbeiter an den Händen haben. Davon ausgehend, dass Pascal seine gewaschen hat, können wir die Kinder also bedenkenlos das Gemüse vertilgen lassen.

Und wie sie das tun! Neben Tomaten gibt es hier die als Naschwerk gezüchteten, besonders süssen Spitzpeperoni – auch unheimlich lecker.

Zweifarbige Spitzpeperoni (Spitzpaprika)

Zweifarbige Spitzpeperoni (Spitzpaprika): Absolut unbedenklich direkt ab Strauch und heiss begehrt bei den Kindern

 

Da kommt Pascal gar nicht so schnell mit dem Aufschneiden hinterher, wie die Kleinen ihm die Leckereien aus den Händen schnappen (heisst es nicht oft, dass Kinder kein Gemüse mögen würden? Hier wurde uns eindrücklich das Gegenteil bewiesen!). Selbst eine äusserlich eigenwillige Sorte im reifen Zustand grüner Zebratomaten mindert die Begeisterung nicht, sodass das Ganze schnell buchstäblich einer Raubtierfütterung gleicht.

Reife Zebratomaten in Rot und Grün

Eine besondere Rarität: Zebratomaten – beide Früchte in Pascals Händen sind reif!

Wie wird dann gegen Schädlinge vorgegangen?

Schon bald ist uns eine Merkwürdigkeit in der Tomatenpflanzung aufgefallen: Am Anfang jeder vielleicht fünften Pflanzreihe wächst am äussersten Ende des Schwebebalkens eine einzelne Auberginen-Pflanze. Das ist auch in den richtig grossen Tomatenhäusern so, sodass das nichts mit der Versuchsanlage zu tun haben kann. Jedenfalls nicht direkt.

Indikator-Aubergine

Diese Aubergine steht vor den Tomaten, um Schädlingsbefall frühzeitig sichtbar zu machen.

 

Stattdessen dient die Aubergine als Indikator für Schädlingsbefall. Sie hat nämlich unter allen Gemüsepflanzen im Gewächshaus die weichsten, empfindlichsten Blätter. Wenn Schädlinge ins Gewächshaus einfallen, lassen sie sich daher zu allererst auf der Aubergine nieder, wo sie von den Mitarbeitern schnell gesehen werden. Und dann wird in die biologische Trickkiste gegriffen:

Es werden Eier und Larven von nützlichen Krabbeltieren – natürlichen Feinden der Schädlinge, die in kleinen Briefchen beim Züchter eingekauft und wie Saatgut gelagert werden können, im Gewächshaus ausgesetzt.

Eine Ladung Nützlinge zur Schädlingsbekämpfung

Eine Ladung biologisches Schädlingsbekämpfungsmittel: Die winzigen aber nützlichen Bewohner des holzwolleähnlichen Substrats aus einem frisch geöffneten Briefchen machen sich eiligst davon (rote Kringel).

Schmeckt Hors Sol-Gemüse fad oder ist es weniger nahrhaft?

Was Pascal Gutknecht uns nun erklärt, könnt ihr auch hier in Keinsteins Kiste nachlesen (und erfahren, wie ihr Tomaten nachreifen lassen könnt): Der angenehme Geschmack reifer Tomaten oder anderer Gemüse kommt nicht aus dem “richtigen” Boden. Dafür ist einzig und allein Wärme verantwortlich. Und die gibt es hier im Gewächshaus reichlich (wir schwitzen schon ordentlich und mein Kamera-Handy läuft immer wieder heiss).

Dass die Tomaten im Supermarkt trotzdem oft kaum Geschmack haben, rührt daher, dass die Früchte auf ihrem Weg bis in die Supermarkt-Auslagen bzw. auf unseren Esstisch nicht warm bleiben. Damit sie schön prall und fest bei uns ankommen, werden sie nämlich beim Transport in die Märkte oft gekühlt – und wenn nicht dort, dann legen wir sie zu Hause nur all zu gerne in den Kühlschrank.

Das Problem dabei: Die Kälte führt zum Abbau von Aromastoffen, die von der Pflanze als Lockmittel für hungrige Pflanzenfresser geschaffen werden, welche die Samen verbreiten können. Und bei kalter Witterung macht die Verbreitung von Samen keinen Sinn (es würde schwerlich etwas daraus wachsen).

Da die Hors-Sol-Pflanzen über ihre “Infusion” alles erhalten, was sie zum Aufbau von Nähr- und Aromastoffen brauchen, fehlt ihnen aufgrund der Anbauweise nichts, um sowohl schmackhaft als auch gesund zu sein.

Frische Kräuter aus Hors Sol - Kultur

Pascal erklärts: Auch die frischen Kräuter erhalten hier alles, was sie brauchen, um würzig zu sein.

Wie ihr zu Hause an schmackhafte Tomaten kommt

Wenn ihr euch geschmackvolle Tomaten wünscht, kauft sie nach Möglichkeit ungekühlt, bringt sie in der kalten Jahreszeit raumwarm heim und legt sie dort nicht in den Kühlschrank! Lagert sie stattdessen bei Raumtemperatur (nicht unbedingt neben Äpfeln, es sei denn, die Tomaten wären unreif). Dann müsst ihr sie wohl schneller aufbrauchen, aber dafür schmecken sie um so mehr nach Tomate.

Und noch ein Tipp am Rande: Kleine Tomatensorten enthalten naturgemäss mehr Zucker als grosse und schmecken daher grundsätzlich süsser. Auch deswegen sind Kirschtomaten und andere “Winzlinge” als Nascherei besonders beliebt.

 

Warum wird dieses Gemüse nicht als “bio” verkauft?

Meine persönliche Vorstellung von bio-Anbau beläuft sich auf “frei von Pflanzenschutzmitteln ‘aus dem Labor’ und von umweltbedenklichen Düngemitteln. Damit wäre die pestizidfreie Hors-Sol-Methode mit ihrem wohldosierten wie geschlossenen Düngemittelkreislauf in meinen Augen des bio-Labels würdig. Das würde vor allem dem zu unrecht schlechten Image dieser Anbauweise gehörigen Auftrieb verleihen.

Leider sehen die Erfinder des bio-Labels das anders. Eine ihrer Bedingungen, die irgendwann in den 1980er Jahren für die Vergabe des Labels festgelegt wurde, ist nämlich der Anbau in “richtigem Erdboden”. Und die erfüllt die Hors-Sol-Methode mit ihren Kokosfasern auf Schwebebalken nunmal nicht.

Warum Pflanzen “ohne Boden” ganz natürlich sind

Dabei bestehen Kokosfasern und Humusboden aus der gleichen Sorte Rohstoff: Abgestorbenen Pflanzenresten. Im Humusboden sind die bloss etwas gründlicher zerkleinert und verdaut.

Freigelegter Wurzelballen in Hors Sol - Kultur

Ein freigelegter Wurzelballen in Kokosfasern: Sieht moosigem, durchwurzeltem Waldboden ziemlich ähnlich, gell?

 

Und überhaupt: An Pflanzen, die auf Überresten anderer Pflanzen wurzeln, ist überhaupt nichts unnatürliches. Haltet beim Spaziergang im Wald einfach einmal die Augen nach alten umgestürzten Baumstämmen und Wurzelstrünken auf. Die sind nämlich eine wahre Fundgrube – nicht nur für Pilze, Moose und Farne, sondern auch für viele “höhere” Pflanzen. Im Wald der Riesen-Sequoias an der Westküste Nordamerikas gibt solches Totholz sogar die besten “Baumkindergärten” für junge Mammutbäumchen ab!

Es wird Zeit für zeitgemässe Regeln

In einer Zeit, in welcher der Ruf nach nachhaltiger Ernährung einer wachsenden Weltbevölkerung ebenso immer lauter wird wie der nach Natur- und Umweltschutz, ist es dringend nötig, über 30 Jahre alte Regelungen neu zu überdenken.

Denn eine Möglichkeit, in einem kleinen Land mit extremen Jahreszeiten ganzjährig Gemüse anzubauen, ohne dabei auf chemische Pflanzenschutzmittel zurückzugreifen oder die Umwelt mit Düngemitteln zu belasten, sollte nicht das Schattendasein fristen, das ihr bislang bestimmt ist.

Die Nähe der Anbaustätten zu den jeweiligen Endkunden (also uns), die dank kurzer Transportwege schon zu einem deutlich kleineren CO2-Fussabdruck führt als Import-Gemüse ihn hat, ist zudem nur ein weiterer Punkt, der für die Nachhaltigkeit des Hors-Sol-Anbaus a la Gutknecht spricht.

CO2-Neutralität wird grossgeschrieben

Auch in Sachen Energieversorgung setzt man hier auf bestmögliche CO2-Neutralität. So sind alle Dächer der Anlage, die nicht aus Glas sind (das sind zum Beispiel Verarbeitungs- und Lagerbereiche, in welchen das Gemüse auf Europaletten verpackt und für den Abtransport bereitgehalten wird), mit Photovoltaik-Anlagen – also Solarzellen zur Stromerzeugung (wie die funktionieren, könnt ihr hier nachlesen) – bestückt. Diese Anlagen liefern mehr als genug Strom, um den ganzen Betrieb zu versorgen.

Für 2020 ist zudem der Bau einer eigenen Heizanlage für die kalte Jahreszeit geplant, welche mit Abfallholz befeuert werden soll. Zugegeben, das ist naturgemäss nicht ganz CO2-neutral (es sei denn, die Holzabfälle müssten so oder so zur Entsorgung verbrannt werden – dann würde die darin enthaltene Energie wenigstens sinnvoll genutzt). Allerdings ist offen, was die Gutknechts mit dem Abgas letztendlich anfangen (auch dafür gibt es nämlich Verwendungsmöglichkeiten).

Fazit

Wir haben nicht nur einen inspirierenden Vormittag in einer Welt verbracht, die uns normalerweise nicht zugänglich ist (es bei Gutknechts aber auch für euch sein kann – man kann die Führung über die Website für private Gruppen, Schul-, oder Betriebsausflüge buchen!). Wir haben auch jede Menge Spannendes gelernt – über überraschend natürlichen Gemüseanbau in futuristischer Umgebung.

Die Quintessenz dessen ist: Der Hors-Sol-Gemüseanbau hat sein verbreitet schlechtes Image nicht verdient. Denn die Gemüse aus dem Hors-Sol-Gewächshaus stehen solchen aus dem Garten an sich in nichts nach – und sind, bezogen auf die benötigten grossen Mengen, erst noch nachhaltiger produziert. So trägt das Gutknecht-Gemüse immerhin das “Suisse-Garantie”-Label, das nicht zuletzt für nachhaltige Produktion, Natürlichkeit und Frische steht.

Deshalb ist es an der Zeit, überholte Regelungen anzupassen, um diesem effizienten und umweltverträglichen Anbau ein besseres Image zu verleihen.

Und bis es soweit ist: Wenn Gemüse als “Hors Sol” ausgezeichnet seht (das ist in der Schweiz nicht Pflicht, aber erst heute habe ich die Kennzeichnung für Fleischtomaten im COOP entdeckt (und ratet einmal, was es heute zu essen gab)), kauft sie und freut euch, ein nachhaltiges Produkt ohne Pestizid-Belastung geniessen zu können.

Ich habe genau das jedenfalls im Hofladen auf dem Gutknecht-Gelände getan und mich für ein Ratatouille mit allem Nötigen eingedeckt. Mmmmhh, lecker!

Und welches Gemüse – aus welcher Anbauform – bevorzugt ihr? Warum?

Ein lebenswichtiges Element - wie es uns wirklich nützt

Ein chemisches Element wird in der Ernährungsbranche immer wieder heiss diskutiert: Das Jod – oder Iod, wie die Wissenschaftler es schreiben. Ist Jod nun gesund oder für die Gesundheit schädlich? Wie kann dieses vielseitige Element uns nützen? Wie können wir die richtige Menge davon zu uns nehmen?

Eines vorweg: Jod ist für uns alle – insbesondere für die gesunde Entwicklung von Kindern – unverzichtbar. Deshalb habe ich für euch Antworten auf wichtige Fragen zu diesem wichtigen Stoff zusammengestellt. Aber fangen wir von vorn an:

 

Was ist eigentlich Jod?

Jod ist eines der wenigen Nichtmetalle unter den chemischen Elementen. Das Elementsymbol ist “I” (in älteren Periodensystemen findet man auch noch ein “J”). Es gehört zur Gruppe der Halogene, die man im Periodensystem in der siebten Hauptgruppe (= Spalte) findet. Damit ist es chemisch mit den sehr aggressiven Gasen Fluor und Chlor und mit dem ebenfalls aggressiven aber flüssigen Brom verwandt: Wie diese besteht Jod aus Molekülen aus je zwei Atomen: I2.

Das Element Jod ist aus Chemikersicht etwas friedlicher als seine sehr aggressiven Verwandten. In unserer normalen Umgebung (Atmosphärendruck und Raumtemperatur) ist es zudem ein Feststoff: Jod bildet so dunkelviolette Kristalle, dass sie praktisch grauschwarz aussehen und zudem metallisch glänzen.

Eine bei Chemielehrern beliebte Besonderheit des Jods ist, dass es, wenn man es vorsichtig erwärmt, nicht schmilzt, sondern sofort verdampft (das direkte Verdampfen von Feststoffen nennen Chemiker und Physiker “Sublimieren”) – und der violette Dampf beim Abkühlen wieder zu Kristallen wird, ohne vorher zu kondensieren (das wird entsprechend “Resublimieren” genannt).

Wenn Lehrer im Schulunterricht Jod sublimieren, dann tun sie das in der Regel in weitgehend geschlossenen Gefässen. Denn wenngleich weniger stark als seine Verwandten reagiert auch dieses Halogen rege mit seiner Umgebung, reizt die Haut, die Augen und kann die Atemwege schädigen. Deshalb gilt es als gesundheits- und umweltschädlich und muss mit den entsprechenden Gefahrensymbolen beschriftet werden.

Wie kann das ein Nährstoff sein?

In der Natur kommt Jod nicht als Element – dafür ist es zu reaktionsfreudig – sondern in chemischen Verbindungen vor. Wie Chlor und die anderen Halogene bildet es leicht einfach negativ geladene Ionen (I, genannt Iodid) oder verbindet sich zum Beispiel mit Sauerstoff zu Ionen wie dem Iodat (IO3), die Bestandteile verschiedener Salze sind. Oder Jod-Atome bilden eine Atombindung zu einem benachbarten Atom – zum Beispiel Kohlenstoff – das Ergebnis sind jodhaltige organische Verbindungen.

Und sowohl die Salze als auch die organischen Verbindungen des Jods haben ganz andere – für uns lebenswichtige – Eigenschaften als das Element!

Jod und Kaliumiodid

Oben: Das Element Iod, bestehend aus I2-Molekülen. Die Dämpfe färben Kunststoffbehälter und -löffel braunviolett.
Unten: Das Salz Kaliumiodid , das I-Ionen enthält, besteht aus farblosen Kristallen.

 

Jod für unsere Ernährung

Wofür braucht der menschliche Körper Jod?

Viele Funktionen des Energiestoffwechsels und Wachstumsvorgänge werden von Hormonen geregelt, die in der Schilddrüse – die vorn in unserem Hals zu finden ist – hergestellt werden. Und diese Schilddrüsenhormone sind organische Moleküle, die Jod enthalten. Damit die Schilddrüse solche Hormone herstellen kann, braucht sie natürlich Jod – und zwar in Form von Iodid-Ionen I.

Triiodthyronin und Thyroxin – die Schilddrüsenhormone

Die beiden wichtigsten Schilddrüsenhormone, deren Konzentration im Blut der Arzt misst, um die Schilddrüsenfunktion zu überprüfen, sind das Triiodthyronin, kurz T3, und das Thyroxin, kurz T4.

Schilddrüsenhormone: Strukturformel Triiodthyronin und Thyroxin

Die beiden wichtigsten Schilddrüsenhormone: Der Index am T steht für die Anzahl Jod-Atome im Molekül. T4 unterscheidet sich von T3 nur durch ein zusätzliches Jod-Atom am linken “Benzol-Ring”. Von beiden Molekülen gibt es übrigens je zwei Ausführungen, die einander gleichen wie Bild und Spiegelbild (solche Paare nennen Chemiker “Enantiomere”). Als Hormon wirksam ist aber jeweils nur eine Ausführung – die Chemiker mit dem Buchstaben L kennzeichnen (das gilt übrigens für praktisch alle Spiegelbild-Moleküle in der Biochemie: Nur mit der L-Ausführung kann der Organismus etwas anfangen!). Deshalb enthalten Tabletten zur Behandlung einer Schilddrüsenunterfunktion “L-Thyroxin” (und nicht dessen wirkungsloses Spiegelbild D-Thyroxin).

 

Tatsächlich entsteht in der Schilddrüse hauptsächlich T4, das an Proteine angehängt seine Reise durch die Blutbahn antritt. Wenn es irgendwo im Körper gebraucht wird, kann das Hormon vom Protein abgekoppelt werden, sodass Zellen es aufnehmen können. Erst im Zellinneren wird dann ein Jod-Atom entfernt (genau: es wird gegen ein Wasserstoffatom (H) getauscht, welches in der Formel nicht mehr sichtbar ist) und so T3 erzeugt. Deshalb genügt es oft, bei einer Schilddrüsenunterfunktion nur T4 (“L-Tyroxin”) einzunehmen, um beide Hormone zu ersetzen.

Der Jod-Haushalt und sein Manager

Damit die Schilddrüse bei Bedarf Hormone nachliefern kann, kann sie einen gewissen Vorrat an Iodid-Ionen aufnehmen. Allerdings kann sie nicht feststellen, wann der Körper Bedarf an T4 und T3 hat. Dafür ist die Hirnanhangdrüse zuständig. Der geben die im Blut vorhandenen Schilddrüsenhormone nämlich das Signal “Wir sind da, es braucht nicht mehr”. Wenn dieses Signal zu schwach wird oder gar ausbleibt, schickt die Hirnanhangdrüse das Hormon TSH (Thyroidea stimulierendes Hormon) auf die Reise, welches wiederum der Schilddrüse (auf medizinisch Thyroidea) sagt, dass sie Jod aufnehmen soll (sodass T4 (und T3) hergestellt werden kann).

Deshalb lässt der Arzt bei einer Schilddrüsenuntersuchung auch die Konzentration des TSH im Blut bestimmen: Ist die nämlich niedrig, obwohl es zu wenig Schilddrüsenhormone hat (oder hoch, obwohl es mehr als genug T4/T3 hat), dann ist das Problem bei der Hirnanhangdrüse zu suchen, anstatt bei der Schilddrüse selbst.

Jod als Spurenelement

Damit die Schilddrüse auf Anweisung durch TSH Iodid aufnehmen kann, muss in ihrer Umgebung natürlich welches vorhanden sein. Deshalb müssen Menschen (und andere Tiere) Jod-Verbindungen mit der Nahrung aufnehmen. Jod ist also ein echtes Spurenelement!

Jodmangel und seine Folgen

Fehlt uns das Jod, werden bald die Schilddrüsenhormone knapp. Die Folgen dessen sind Antriebslosigkeit, Neigung zur Gewichtszunahme, ein langsamer Herzschlag und andere Anzeichen fehlender Energie. Dazu kommt, dass der Körper aus dauerhaft fehlenden Schilddrüsenhormonen folgert: Wir brauchen mehr Schilddrüsengewebe (das solche Hormone herstellen kann)! So fängt die Schilddrüse bei lang anhaltendem Jodmangel mitunter zu wachsen an, was zu einer im Extremfall gewaltigen, “Kropf” (medizinisch: “Struma”) genannten Schwellung am Hals führen kann.

Um ein beginnendes Kropf-Wachstum frühzeitig mitzubekommen und zu stoppen, vermisst der Arzt bei Patienten mit Schilddrüsenproblemen ab und zu die Schilddrüse mit dem Ultraschall-Gerät und vergleicht die Masse mit früheren Ergebnissen.

Besonders wichtig sind die Schilddrüsenhormone und damit das Jod jedoch für Ungeborene und kleine Kinder: Bei Jodmangel (oder nicht richtig arbeitender Schilddrüse) werden sowohl das Körperwachstum als auch die Entwicklung des Gehirns massiv behindert. Die Kinder bleiben kleinwüchsig, ihre Intelligenz und geistigen Fähigkeiten sind vermindert und sie leiden am Kropf und anderen körperlichen Auffälligkeiten.

Die extremsten Folgen von Jodmangel seit der frühen Kindheit – auf medizinisch “Kretinismus” genannt – waren bis vor rund 100 Jahren hierzulande weit verbreitet. Besonders in den Bergregionen in der Schweiz und Österreichs traf man regelmässig auf Betroffene – so auch im zweisprachigen Kanton Wallis, in welchem diese tragischen Gestalten auf französisch als “Crétins des Alpes” – in etwa “Idioten der Alpen” – bezeichnet wurden (das französische Schimpfwort “crétin” für “Dumpfbacke” gibt es noch heute – hier hat es seinen Ursprung).

Warum litten so viele Bergbewohner an Jodmangel?

Jod kommt in der Natur meist in wasserlöslichen Verbindungen – genau: Salzen – vor. So kommt es, dass solche Jodverbindungen in Gegenden, in welchen es oft regnet, alsbald ausgewaschen und fortgespült wird. Und wenn kein Jod im Boden ist, können darauf wachsende Pflanzen keines aufnehmen, ebenso wenig wie die Tiere, die davon fressen. Und wir Menschen, die sich von den Pflanzen und Tieren ernähren, bekommen so erst recht wenig Jod ab.

An den Hängen grosser Gebirge regnet (und schneit) es nun besonders rege, sodass in Bergregionen besonders viel Jod ausgewaschen wird und den Bewohnern fehlt. Doch auch im Flachland und an den Meeresküsten Mitteleuropas gibt es reichlich Niederschlag, sodass selbst dort der Boden nicht genug Jod hergibt, um seine Bewohner ausreichend zu versorgen.

Wie beugt man dem Jodmangel heute vor?

Als man vor rund 100 Jahren dahinter kam, wie Kretinismus entsteht und warum so vielen Menschen an Jodmangel litten, hat man damit begonnen, Nahrungsmitteln bei der Herstellung gezielt Jod zuzufügen. Heute verwendet man dazu Salze, die das Iodat-Ion IO3 enthalten, wie das Natriumiodat NaIO3. Im Körper reagieren die Iodat-Ionen dann weiter zum benötigten Iodid (I).

Die Iodate vermischt man entweder mit Speisesalz, welches entweder direkt an die Endkunden verkauft oder bei der Herstellung anderer Produkte wie Würsten, Kartoffelchips oder Fertiggerichten verwendet wird.

Oder man gibt die Iodate in das Kraftfutter für Kühe und Hühner, sodass sich das Jod in ihrer Milch und ihren Eiern wiederfindet.

In der Schweiz tut man seit 1922 von der Regierung angeleitet beides (ebenso wie in Deutschland und Österreich) – und 100 Jahre später sind die Folgen eindrücklich: Die durchschnittliche Jod-Versorgung der Bevölkerung in der Schweiz wie auch in Deutschland liegt heute im unteren Bereich dessen, was die WHO als wünschenswert ansieht. Die “Crétins des Alpes” und entstellende Kropfleiden gibt es nicht mehr.

Zu letzterem trägt übrigens auch bei, dass Neugeborene heute in den ersten Lebenstagen auf angeborene Schilddrüsendefekte untersucht werden, sodass ein erblich bedingter Hormonmangel sofort behandelt werden kann. Da im Mittel aber nur eines von 5000 Babys mit so einem Defekt zur Welt kommt, können solche Fälle allein nicht für die einst weite Verbreitung des Kretinismus in den Alpen verantwortlich sein.

 

So könnt ihr euch selbst und eure Kinder mit genügend Jod versorgen

  • Verwendet beim Kochen jodiertes Speisesalz – in der Menge, die einen gesunden Salzhaushalt fördert (wieviel Salz gesund ist, könnt ihr hier nachlesen)
  • Wenn ihr euch vegan ernährt, achtet besonders sorgfältig auf eure Jodversorgung, da euch der wichtige Anteil der Jodzufuhr aus dem Tierfutter entgeht! Die Ovo-Lacto-Vegetarier und Fischesser unter euch haben es da einmal mehr einfacher. Denn neben Milch und Eiern ist auch Fisch aus dem Meer eine gute Jod-Quelle (ratet mal, wo das aus dem Boden ausgewaschene Jod hingespült wird…).
  • Beachtet: Als Schwangere und stillende Mütter habt einen erhöhten Jodbedarf – ihr versorgt eure Kinder schliesslich mit!
  • Lasst bei einem Verdacht auf Jodmangel die Jodversorgung bzw. Schilddrüsenwerte vom Arzt prüfen und sprecht mit ihm ab, was ihr an Nahrungsergänzungsmitteln oder Hormonen einnehmt. Der Jod- bzw. Schilddrüsenstoffwechsel ist eine sehr empfindliche Angelegenheit, sodass eine nicht genau angepasste Dosierung oder falsche Auswahl unliebsame bis fatale Folgen haben kann.

 

Jod als Notfallmittel für Atomunfälle

Natürliches versus radioaktives Jod

Es gibt eine ganze Reihe verschiedener Jod-Atomkerne (man nennt solche Kerne “Isotope”: Sie haben bei gleicher Protonenzahl eine unterschiedliche Anzahl Neutronen, sodass sie alle dem gleichen Element angehören und die gleiche Chemie zeigen, obwohl sie aus unterschiedlich vielen Kernteilchen bestehen). Jedoch ist nur einer davon nicht radioaktiv, nämlich das Jod-Isotop mit 127 Kernteilchen (53 Protonen und 74 Neutronen), kurz “Jod-127”.

Deshalb kommt in der Natur auch nur dieses eine Jod-Isotop vor (alle anderen, die früh in der Geschichte des Sonnensystems entstanden sein mögen, sind längst zerfallen). In Atomreaktoren, wo fleissig Atomkerne zertrümmert und umgeformt werden, entstehen jedoch auch radioaktive Jod-Atome. Und wenn die bei einem Reaktorunfall nach draussen gelangen, kann ein menschlicher Körper die radioaktiven Isotope nicht von natürlichem Jod unterscheiden – und lagert sie in die Schilddrüse ein, sobald er ihrer habhaft wird.

Die Strahlung, die von den radioaktiven Jod-Atomen direkt in der Schilddrüse ausgeht, kann das sie umgebende Gewebe schädigen und – so nimmt man an – Erkrankungen bis zum Schilddrüsenkrebs auslösen. Tatsächlich wurde eine Zunahme an Schilddrüsenkrebs-Erkrankungen unter Kindern und Jugendlichen in naher Umgebung des verunfallten Reaktors von Tschernobyl beobachtet (mehr zu diesem schrecklichen Unfall zu meinen Lebzeiten erfahrt ihr hier).

Wie man sich vor radioaktivem Jod schützen kann

Ein Weg die eigene Schilddrüse vor radioaktivem Jod aus einem Reaktorunfall zu schützen besteht darin, im Falle eines solchen Zwischenfalls den Körper mit natürlichem Jod regelrecht zu überschwemmen – und ihn so dazu zu veranlassen, den Jod-Speicher in der Schilddrüse bis unter die Decke aufzufüllen. Wenn ihm dann radioaktives Jod unterkommt, passt dort einfach nichts mehr hinein.

Deshalb werden in der Schweiz an alle Haushalte und Arbeitsorte im Umkreis von 50km um Kernkraftwerke Jodtabletten (sie enthalten Kaliumiodid, also I-Ionen, die der Körper ohne Umwege einlagern kann) ausgegeben, die die Bewohner und Arbeitgeber vor Ort lagern und im Falle eines Unfalls sofort einnehmen können. Denn nur dafür sind sie gedacht: Die allermeisten radioaktiven Jodisotope zerfallen innerhalb von Tagen oder wenigen Wochen, sodass eine einmalige Überschwemmung mit nicht strahlendem Jod rechtzeitig nach dem Unfall in der Regel genügend Schutz bietet.

Ich habe übrigens keine Jodtabletten daheim – offenbar sind alle Atomkraftwerke weit genug entfernt, dass man uns genügend Zeit zubilligt, um im Ernstfall erst zur Apotheke zu gehen und welche zu holen. An meinem einstigen Arbeitsplatz in Uster im südöstlichen Kanton Zürich habe ich hingegen (auf der Suche nach einem Erste-Hilfe-Kasten) einige Packungen entdeckt.

 

Jod als Kontrastmittel

Einige organische Moleküle, die Jod-Atome enthalten, haben die für Mediziner nützliche Eigenschaft, dass sie Röntgenstrahlen schlucken können. Auch Körpergewebe – vor allem Knochen – besitzen solche Eigenschaften: Ein Röntgenbild entsteht, indem Röntgenstrahlen (eine energiereiche Form von Licht) durch den Körper auf einen lichtempfindlichen Film (bzw. einen entsprechenden digitalen Sensor) geschickt werden. Wenn etwas die Röntgenstrahlen auf ihrem Weg verschluckt (“absorbiert”), wirft es einen weissen Schatten auf den Film.

Wenn ein Patient ein Kontrastmittel – zum Beispiel eine jodhaltige organische Verbindung – gespritzt bekommt, gelangt sie in das Gewebe von Verdauungsorganen oder anderen Weichteilen im Körper. Dort schluckt es bei der anschliessenden Röntgenaufnahme oder einer Computertomographie (die auch mit Röntgenstrahlen gemacht wird) Strahlen, sodass die normalerweise kaum sichtbaren Organe nun deutliche Schatten werfen. Später werden die Kontrastmittel-Moleküle vom Körper selbst aufgeräumt und grösstenteils über die Niere wieder ausgeschieden.

jodhaltige Kontrastmittel

Zwei Beispiele für jodhaltige Kontrastmittel: Ähnlich wie in den Schilddrüsenhormonen sind Jod-Atome an ein Kohlenstoffgerüst gebunden (die Kohlenstoff(C-)-Atome zeichnet man der Übersicht halber nicht: jeder Winkel ohne Buchstabe steht für ein C-Atom). Und so, wie Jod-Atome von Schilddrüsenhormonen “abmontiert” werden können, können in den Prozessen im menschlichen Körper auch diese Jod-Atome abmontiert werden – und bei entsprechender Vorerkrankung zu einer regelrechten Vergiftung führen.

Nebenwirkungen jodhaltiger Kontrastmittel

Eine typische Kontrastmitteldosis kann rund 15 bis 30 Gramm Jod enthalten. Das ist im Massstab für medizinische Wirkstoffe, die der Körper zu verarbeiten hat, eine gewaltige Menge! Der eigentliche Haken daran ist aber: Die Jodatome, die an die “Benzol”-Ringe solcher Moleküle gebunden sind, können im menschlichen Körper davon abgelöst (ich vermute: durch Austausch (“Substitution”) gegen andere Atome oder Atomgruppen) werden. Das so freigesetzte Jod kann dann von der Schilddrüse aufgenommen werden – was dann zu einer gefährlichen Überladung mit Schilddrüsenhormonen führen kann, wenn der Patient eine Schilddrüsenüberfunktion hat oder sich in der Ausgangslage befindet, eine solche zu entwickeln. Deshalb sind jodhaltige Kontrastmittel für Patienten mit solchen Erkrankungen nicht – oder nur nach vorübergehender Blockade der Jodaufnahme durch die Schilddrüse – geeignet.

Ausserdem können jodhaltige Kontrastmittel – wie alle anderen grösseren körperfremden Moleküle auch – allergische Reaktionen auslösen. Wer solch eine Allergie hat, darf diese Art Kontrastmittel natürlich auch nicht verabreicht bekommen (Risikokandidaten mit anderen Allergien können vor einer unumgänglichen Kontrastmittel-Untersuchung vorsorglich allergiehemmende Mittel bekommen).

Jod als Desinfektionsmittel

Während jodhaltige Ionen in Salzen ein lebenswichtiger Nährstoff ist, hat elementares Jod, also solches, das aus I2-Molekülen besteht, geradezu gegenteilige Eigenschaften: Es ist sehr reaktionsfreudig und greift Körpergewebe und -zellen an. Aber nicht nur unsere, sondern auch die von Bakterien und anderen Krankheitserregern. Deshalb ist elementares Jod ein beliebtes Desinfektionsmittel.

Warum wirkt Jod desinfizierend?

Jod-Moleküle können im Zuge einer Redox-Reaktion einzelne Sauerstoff-Atome aus Wassermolekülen -die in Körpergewebe allgegenwärtig sind – herauslösen:

Diese Sauerstoff-Atome sind im Augenblick ihrer Freisetzung äusserst reaktionsfreudig (schliesslich fehlen ihnen je zwei Elektronen zu einem zufriedenstellenden (Edelgas-)Zustand) und greifen alles an, was ihnen in die Quere kommt, um sich irgendwie damit zu verbinden. Wenn das Kleinstlebewesen wie Bakterien sind, gehen die rasch daran zugrunde – wenn das menschliches Gewebe ist, reagiert das auf den Angriff mit Entzündungszeichen: Das Desinfizieren von Wunden mit Jod tut weh!

Was genau ist in jodhaltigen Desinfektionsmitteln drin?

Elementares Jod – ein fast schwarzer Feststoff – ist unlöslich in Wasser. Es gibt allerdings Tricks, mit deren Hilfe man Jod trotzdem mit Wasser mischen kann:

Entweder man mischt das Jod mit einer Kaliumiodid-Lösung. Die darin enthaltenen I-Ionen lagern sich mit den I2-Molekülen zusammen und bilden spezielle und wasserlösliche Ionen aus je drei Jod-Atomen (I3). Solche Lösungen werden deshalb auch “Kaliumtriiodid-Lösung” genannt und sind im Schullabor sehr beliebt.

Oder man verwendet wasserlösliche organische Kettenmoleküle, die mit Triiodid-Ionen Komplexverbindungen eingehen können. Bei Bedarf (d.h. wenn ein attraktiverer Reaktionspartner zugegen ist) können sich die I2-Moleküle aus dem Komplex bzw. dem Triiodid lösen und ihrer desinfizierenden Aufgabe nachgehen. Solche organischen Komplexe findet ihr in jodhaltigen Medikamenten: Das “Polyvidon-Jod” (kurz “Povidon-Jod”) in “Betaisodona”-Lösung oder -salbe ist einer davon.

Strukturformel Polyvidoniod

Das ist “Polyvidon-Iod” – Rechts: Der Kunststoff Polyvidon (Polyvinylpyrrolidon, PVP) besteht aus langen Kohlenwasserstoff-Ketten, die mit ringförmigen Atomgruppen besetzt sind (n und m stehen für beliebige Anzahlen solcher Kettenglieder). Links: Die Sauerstoff-Atome von je zwei benachbarten Ringen können ein positiv geladenes Wasserstoff-Ion (H+) “tragen”, an welches ein negativ geladenes I3-Ion bindet (denn entgegengesetzte Ladungen ziehen sich stets an).

 

Seiner aggressiven Wirkung auf Gewebe – vor allem auf Schleimhäute wegen – sind jodhaltige Desinfektionsmittel nur für die Anwendung “aussen”, d.h. auf der Haut bzw. zur Wundversorgung gedacht!

 

Jod als Reagenz zum Experimentieren

Im Schullabor ist der Nachweis von Stärke mit Jod (oder umgekehrt von Jod mit Stärke) sehr beliebt: Wenn man diese beiden zusammenbringt, bleiben die Jod-Moleküle nämlich in den langen Stärkeketten hängen und bilden mit ihnen eine tief blauschwarze Verbindung (Stärke ist dagegen weiss und jodhaltige Lösungen bräunlich).

Wie ihr die Stärke in Kartoffeln oder Pflanzenteilen zu Hause selbst nachweisen könnt – und zwar mit “Betaisodona” oder einem ähnlichen Desinfektionsmittel! – zeige ich euch hier in meiner Sammlung spannender Experimente mit Pflanzen.

Jod als Reagenz zum Stärkenachweis

Mit Jodlösung – zum Beispiel aus einem Desinfektionsmittel – könnt ihr Stärke in Pflanzenteilen nachweisen!

Achtung! Jod als Element ist ein Gefahrstoff!

Achtet beim Experimentieren oder Aufbewahren von Jodlösungen stets darauf, dass ihr sie nicht mit Ammoniak (Ammoniakwasser, ammoniakhaltige Reinigungsmittel, Salmiak, Salmiakgeist…) zusammenbringt! Dabei können nämlich explosive Verbindungen aus Jod und Stickstoff entstehen, die ihr sicher nicht in eurer Wohnung oder im Schulzimmer haben wollt.

Bedenkt zudem immer: Elementares Jod wirkt auf nützliche Wasserlebewesen genauso wie auf schädliche Keime und unsere Schleimhäute. Deswegen darf es nicht ins Abwasser gelangen! Bringt Reste von Experimenten mit Jod ebenso wie abgelaufene jodhaltige Desinfektionsmittel immer zur Sonderabfall-Entsorgungsstelle!

Wenn ihr im Schullabor das Salz Natriumthiosulfat (oder ein anderes passendes Reduktionsmittel) zur Hand habt, könnt ihr Reste von Jodlösungen auch damit mischen: Die I2-Moleküle reagieren damit zu I-Ionen (die braune Farbe der Lösung verschwindet dabei), die ins (Labor-)Abwasser entsorgt werden können.

 

Jod als umstrittener Stoff

Jod und Schilddrüsenüberfunktion

Bei bestimmten Schilddrüsenerkrankungen, speziell bei einer Überfunktion durch unkontrolliert hormonproduzierendes Gewebe, führt die Zufuhr von Jod zu einer Überproduktion von Hormonen, die in regelrechten Vergiftungserscheinungen münden kann: Auch deswegen ist es wichtig, die Behandlung von Schilddrüsenproblemen mit dem Arzt zu besprechen – denn der klärt die Art der Probleme ab und kann allenfalls vor solchen Schwierigkeiten warnen.

Gerne wird übrigens ein Zusammenhang zwischen entzündlichen Autoimmunerkrankungen der Schilddrüse wie Morbus Hashimoto ins Feld geführt. Ob es einen solchen gibt, konnte jedoch in klinischen Studien bislang nicht einwandfrei geklärt werden.

Gibt es eine Jodallergie?

Eine Überdosierung(!) von Jod kann generell die Bildung von Schilddrüsenhormonen beeinflussen bzw. zu allergieähnlichen Symptomen führen. Dann spricht man von einer Jod-Unverträglichkeit. Auch das ist ein Grund, weshalb eine Nahrungsergänzung mit zusätzlichen jodhaltigen Mitteln (über das Würzen mit Jodsalz und gewöhnliche Lebensmittel hinaus) sorgfältig auf den jeweiligen Körper und seinen Bedarf eingestellt werden sollte.

Aus diesem Grund wird der Zusatz von Jodsalzen zu Speisesalz und Futtermitteln nämlich so begrenzt, dass die Versorgung der Bevölkerung auf diesem Weg in der Schweiz wie auch in Deutschland bei “normaler” Ernährung im unteren Soll-Bereich liegt – sodass eine Überversorgung durch jodierte Lebensmittel praktisch nicht möglich ist.

Eine “echte” Jod-Allergie auf Kleinstmengen gibt es jedoch nicht (wie Allergien entstehen könnt ihr hier nachlesen): Sowohl I2-Moleküle als auch IO3 oder I -Ionen sind zu klein für die Wechselwirkung mit Antikörpern, die jeder Allergie zu Grunde liegt.

Allergien gegen jodhaltige organische Moleküle – wie sie zum Beispiel als Kontrastmittel eingesetzt werden – sind dagegen möglich (weil solche Moleküle wesentlich grösser sind als die der anorganischen Jodverbindungen) und bekannt.

 

Mein Fazit

Jod ist ein vielseitiges Element und in seinen Verbindungen ein für den menschlichen Körper unverzichtbares Spurenelement. Mit der Jodversorgung steht und fällt der Schilddrüsenstoffwechsel, der von grösster Bedeutung für unseren Energiehaushalt und die gesunde Entwicklung von Kindern ist.

Deshalb tun die Verantwortlichen in Ländern mit jodarmen Böden – wie der Schweiz und Deutschland – gut daran, für den Zusatz von Jod zu Speisesalz und Nahrungsmitteln zu sorgen. So kommen wir nämlich zu unserem Jod, ohne zusätzliche Kosten und Mühe mit speziellen Nahrungsergänzungsmitteln auf uns nehmen zu müssen. Zudem wird der Zusatz von Jod zu Lebensmitteln so gesteuert, dass eine Überdosierung, die zu Symptomen einer Jodunverträglichkeit führen kann, auf diesem Wege höchst unwahrscheinlich ist.

Elementares Jod hat dagegen ganz andere – aggressivere – Eigenschaften und findet deshalb als Desinfektionsmittel Verwendung, während es zur Einnahme nicht geeignet ist!

Pressetermin: Umweltschutz in der Schule - das neue Pandamobil stellt sich vor

Dieser Beitrag ist anlässlich eines Presse-Events von WWF und Migros zur Vorstellung des neuen Pandamobils entstanden, bei welchem ich dabei sein durfte. Ich bedanke mich herzlich bei beiden Unternehmen für die Einladung und den Einblick in ihre Jugend- und Umweltarbeit! Darüber hinaus habe ich keine Zuwendungen für diesen Beitrag erhalten. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Liebe LeserInnen,

Ich mag es selbst kaum glauben: 3 Jahre ist Keinsteins Kiste nun alt und mittlerweile üppig gefüllt mit spannendem Wissen, Experimenten und Anregungen rund um Natur und Wissenschaft. Drei Jahre, so sagt man, kann es auch dauern, bis man als Blogger oder Unternehmer seinen wirklichen Platz gefunden, seine Ziele, für die man brennt, klar vor Augen hat.

Mein klares Ziel für Keinsteins Kiste

Ich habe von Anfang an spannendes Wissen rund um Chemie und Co weitergeben und Lust auf mehr machen, zu weiterer Beschäftigung mit den oft zu Unrecht verrufenen Naturwissenschaften anregen wollen. Dabei bin ich in den unendlichen Online-Weiten immer wieder auf die seltsamsten Ansichten und Irrlehren gestossen – und auf die Verzweiflung angesichts vergeblicher Versuche, solchen etwas entgegen zu stellen. Eine einmal festgefahrene Einstellung lässt sich erfahrungsgemäss kaum wieder umstossen.

So ist mir in den letzten Jahren immer klarer geworden, dass es nur einen wirksamen Weg gibt, die Herzen für die Naturwissenschaft zu öffnen: Nämlich möglichst früh damit anzufangen – bevor sich Vorurteile und Falschinformationen festsetzen können. Also habe ich zunehmend an Kinder gedacht, wenn ich die Inhalte für Keinsteins Kiste ausgewählt habe – ohne dabei die Grossen – Eltern, Lehrpersonen, Interessierte – ganz und gar ausser Acht lassen zu wollen. Schliesslich macht es doch am meisten Spass, gemeinsam zu forschen und zu entdecken. So ergibt sich das endlich vollkommen passende neue Motto für die Kiste wie von selbst:

Natur und Wissenschaft für die ganze Familie

Und wozu ist Wissen um Chemie, Physik, Biologie und Co, wozu sind das Forschen und Entdecken gut? Natürlich um daran Freude zu haben und die Welt zu verstehen. Das Ganze kann euch aber noch mehr nützen:

Zum Einen, damit ihr selbst euch und eure Kinder in Zukunft auch sich selbst schützen können: Vor dem teilweise gefährlichen Unsinn, der vielerorts verbreitet wird.

Zum Anderen aber auch, damit unsere Kinder, die Erwachsenen von morgen, mit dem nötigen Wissen und Fertigkeiten gross werden, um unsere Welt zu schützen. Denn: Nur was das Herz liebt und versteht, wird als schützenswert empfunden!

Ein Mitstreiter teilt mein Ziel

Zum Glück bin ich mit solchen – zugegebenermassen verdammt grossen – Zielen nicht alleine. Pünktlich zum dritten Blog-Geburtstag ist mir nämlich ein ganz grosser Mitstreiter mit dem gleichen Ziel begegnet, der sich rege darin betätigt, den Schweizer Kindern die Natur, Tiere und Probleme ihrer Welt näher zu bringen. Und das schon seit 40 Jahren!

So lange tourt nämlich die Umweltorganisation WWF schon mit dem Pandamobil durch die Schweiz und ermöglicht Schul- und Kindergartenkindern, in einer rollenden Wanderaustellung auf dem eigenen Schulhof “ihre” Natur hautnah zu erleben. Dazu haben die umweltbewussten Verantwortlichen beim WWF dem Pandamobil zum 40sten ein ganz neues, nachhaltigeres Gewand gegeben, das ich bereits jetzt mit der lieben Rita Angelone vom Schweizer Familienblog “Die Angelones” besichtigen durfte. Und zwar beim Pressetermin auf dem Schulhof des Schulhauses Hohl mitten in Zürich.

Rita Angelone und Kathi Keinstein vor dem Pandamobil

Lieben Dank auch an Rita für die Einladung zum tollen Event! Es hat mir grossen Spass gemacht!

Was ist das Pandamobil?

Eigentlich bringt der WWF schon seit 43 Jahren Natur- und Umweltwissen auf Rädern unter die Schweizer Bevölkerung – und zwar anfangs mit einem zum “Quizmobil” umgerüsteten alten Saurer-Postauto, einem Omnibus Baujahr 1950, der auf Stadtplätzen vor allem den Grossen zum Mitraten beim Umwelt-Quiz offenstand. Ab 1978 rückten auf Schüler zugeschnittene, von einem Animateur begleitete Ausstellungen, die auf Schulhöfen zu bestaunen waren, an die Stelle des Quiz – das erste Pandamobil (und damit das weltweit erste rollende Umweltprojekt dieser Art!) war geboren.

Diesen Namen erhielt es allerdings erst 1995, als der lang veraltete Name “Quizmobil” endlich abgeschafft wurde. Im Jahre 2001 ging dann schliesslich das alte Postauto “in Rente” und die Migros, eine der grössten Supermarktketten in der Schweiz, kam als Sponsor des Pandamobils ins Boot.

Als Deutsche mutet mir besonders ein Teil der Geschichte der Migros speziell an: Da es lange Zeit nicht möglich war, alle kleinen Dörfer in der Schweiz mit Filialen auszustatten, rollten noch bis in die 1990er Jahre Autobusse voller Waren durch die Schweiz, die als “Pop-Up-Store” auf Rädern den Schweizern eine Einkaufsmöglichkeit in ihrer Nähe boten.

Ein solcher Migros-Verkaufsbus bekam schliesslich zum Pandamobil umgerüstet ab 2001 ein zweites Leben, das bis letztes Jahr angedauert hat. Doch inzwischen passt ein solches Dieselfahrzeug, das über die Strassen schnauft, nicht mehr zum Image einer auf Nachhaltigkeit bedachten Umweltorganisation.

Deshalb hat der WWF für das neue Pandamobil 2018 eine ganz neue Transportmöglichkeit ersonnen: Die Ausstellung befindet sich in einem farbenfroh lackierten Frachtcontainer, der nur ein kurzes Stück per LKW zum nächsten Bahnhof gefahren und dort auf einen Güterzug verladen werden kann. So legt er die wirklich grossen Strecken mit der Bahn zurück – die in der Schweiz übrigens zu grossen Teilen mit Strom aus Wasserkraft betrieben wird.

Das neue Pandamobil 2018

Ab dem August 2018 führen die Animatorinnen des WWF Primarschul- und Kindergartenkinder in der Ausstellung “Wer wacht in der Nacht? Was funkelt im Dunkeln?” in die geheimnisvolle Welt der nachtaktiven Tiere ihrer heimischen Umgebung ein. Dazu können Klassenlehrer oder Schulleitung das Pandamobil für ein Gastspiel von einem oder mehreren Tagen auf dem eigenen Schulhof anfragen. Während dieser Zeit können die Kinder den Container halbklassenweise erkunden. Und damit das nicht vollkommen unvorbereitet geschieht, hält der WWF zudem Lehrmaterial für die Einführung des Themas im Unterricht bereit.

Was gibt es im Pandamobil zu entdecken?

Das kann natürlich niemand besser herausfinden als die Kinder selbst. Deshalb durften einige Fünft- oder Sechstklässler (richtig: In der Schweiz gehen die Kinder sechs Jahre lang zur Primarschule – nicht vier Jahre wie in Deutschland!) unseres Gastgebers, der Primarschule Aussersihl, beim Pressetermin dabei sein und mit uns den Container erkunden.

Die Kinder sind neugierig auf das Innere des Containers

Neugier pur an der Pforte in die Nacht: Gleich werden sicher alle Fragen beantwortet.

 

Erkundungsgang durch die Tierwelt

Im Innern des Pandamobils werden wir sogleich in in eine typische Landschaft an einem Ortsrand irgendwo in der Schweiz versetzt. Dank raffinierter Lichtinstallationen können wir auf Knopfdruck der Animateurin per sofort verschiedene Grade der Dunkelheit erleben.

Zur Einstimmung starten wir mit den letzten Sonnenstrahlen des Abends, in welchen die Kinder aufgeregt den Waldrand und den Vorgarten erkunden. Schnell sind überall Tiere entdeckt – der Fuchsschwanz hinter der Baumwurzel, der Plüsch-Uhu in seiner Baumhöhle, aber auch Kleinere, wie das Modell der fetten Raupe am Baumstamm oder des Froschs, den ich zu meinen Füssen gar nicht bemerkt hatte. Dabei verläuft die Begegnung mit den sonst selten anzutreffenden Geschöpfen und dämmrige Ecken nicht immer ohne Scheu.

Käuzchen im Pandamobil

Nicht der Uhu, aber nahe verwandt: Der Kauz ist nur eine von vielen einheimischen Eulenarten, die Mensch in freier Wildbahn nur sehr selten zu Gesicht bekommt.

 

Per Knopfdruck wird der Tag zur Nacht

Dann heisst es “Licht aus” – und schon stehen wir inmitten einer mondhellen Nacht. Schnell stellen wir fest, dass uns Menschen nun nicht nur das Erkennen von Einzelheiten, sondern auch von Farben ziemlich schwer fällt. Doch nun bringt die Animateurin die sorgfältiger verborgenen Geschöpfe der Nacht zum Vorschein – wie den Feuersalamander und das Grosse Langohr, eine Fledermausart, die auch in Hohlräumen in Gebäuden einen Schlafplatz für den Tag findet. Die anfängliche Scheu ist endgültig staunender Neugier gewichen, während wir spannende Einzelheiten zur Fledermaus-Anatomie und Lebensweise gezeigt bekommen.

Im Pandamobil hören alle gespannt zu.

Alle hören gespannt zu, als die Animatorin die Besonderheiten der Fledermaus-Anatomie beschreibt.

 

Auch der Plüsch-Uhu im Wald hat seinen besonderen Auftritt – denn dessen Kopf ist mit einem Gelenk auf dem Rumpf befestigt, sodass er – ganz wie ein richtiger Uhu – seinen Kopf um 270 Grad – das ist ein Dreiviertelkreis! – auf den Schultern herumdrehen kann. Dem entgeht damit wirklich nichts!

Hier hat der Uhu sich versteckt!

Hier hat der Uhu sich versteckt!

 

Dass anfängliche Gefühle von Scheu und Ekel inzwischen vollständig vergessen sind, zeigt sich, als unsere Animateurin den in durchsichtigen Kunststoff eingegossenen Inhalt eines “Gewölles” – des unverdaulichen Anteils seiner Nahrung, den ein Uhu nach dem Fressen wieder auswürgt (der verschluckt seine Beute nämlich buchstäblich mit Haut und Haar – und Knochen) – herum zeigt. Das darin enthaltene winzige Mäuseskelett hat nämlich einen deutlich hörbaren “Jööh-Effekt”*.

*Für Nicht-Schweizer: Mit dem Ausruf “Jööh!” bringt man hierzulande etwa “Oh, wie niedlich!” zum Ausdruck.

Wenn Licht zu “Schmutz” wird

Schliesslich erleben wir die fast vollkommene Dunkelheit einer mondlosen Nacht in der Wildnis – wie sie in unserer direkten Umgebung nur noch selten zu finden ist. Denn das Aufleuchten der Fenster im Dorf an der Containerwand macht die grösste Schwierigkeit der tierischen Nachtschwärmer in der Nachbarschaft von Menschen deutlich: Die sogenannte Lichtverschmutzung! Denn während wir uns nun wieder recht gut im Container orientieren können, werden z.B. die Motten und andere Insekten zum Licht hingezogen und von ihren lebenswichtigen Aufgaben – wie der Nahrungssuche – abgelenkt. Und diese Insekten sind für das Gleichgewicht in der Lebensgemeinschaft der Wildnis zu wichtig, als dass sie beim Umkreisen von Lampen verhungern oder an der heissen Oberfläche zugrunde gehen sollten.

Pressetermine und die Tücken der Technik

Neben all dem spannenden Wissen über die nächtliche Natur lerne ich übrigens auch noch einen weiteren Nutzen von Presseterminen kennen, der besonders im Zeitalter der modernen Informationstechnologie zum Tragen kommt: Wo erstmals viele Menschen in der Öffentlichkeit um eine technische Einrichtung zusammen kommen, finden sich heute automatisch auch viele Handys und andere Mobilfunkgeräte ein. Und die sind mit der Lautsprecher-Anlage im Container, die eigentlich dezente Nachtgeräusche produzieren sollte, auf unangenehm laute Weise ins Gehege geraten.

Gut also, dass wir alle da waren – denn so wissen die Schöpfer des Pandamobils nun bescheid und haben noch zwei Monate, um das Problem zu beheben oder ein weiträumiges Handyverbot um den Container anzuordnen. Und ich bin sicher, dass sie das ohne weiteres hinbekommen.

Attrappe zur Anschauung: Fussabdruck eines Dachses

Fussabdruck des Dachses: Fussspuren-Attrappen wie diese sind nur eines von vielen liebevollen Details und Anschauungsmaterialien, die es im Pandamobil zu finden gibt. Die lebensecht wirkende Weinbergschnecke im Hintergrund ist übrigens auch eins!

 

Umweltbewusstsein geht auch interdisziplinär

Nachdem wir, erfüllt von all den Eindrücken und neuem Wissen, zurück auf dem sonnigen Schulhof sind, geht es für die Kinder sogleich daran, das Gelernte zu vertiefen und fachübergreifend weiter zu verwerten – Nachhaltigkeit wird an der Primarschule Aussersihl offensichtlich ganz gross geschrieben: Die Tiere, welchen wir begegnet sind, kann man nämlich auch auf französisch benennen, sodass die Französischlehrerin die begeisterte Gruppe sogleich mit neuen Vokabeln ausstattet.

Ich klinke mich an dieser Stelle allerdings aus dem Unterricht aus – obwohl ich da auch noch eine Menge lernen könnte – denn mir gehen bereits der Blog-Geburtstag und ihr – meine Leser – durch den Kopf.

Wie kommt das Pandamobil zu euren Kindern?

Wenn ihr und eure Kinder nun Lust bekommen habt, die Natur in eurer Nachbarschaft bei Nacht zu erkunden, bietet das Pandamobil eine spannende Möglichkeit dazu, die gleich noch aufregende wie lehrreiche Abwechslung in den Schulalltag bringt.

Mit der Ausstellung “Wer wacht in der Nacht? Was funkelt im Dunkeln?” wird der Container drei Schuljahre lang in der ganzen Schweiz auf Tour sein. Dann wird es eine neue Ausstellung geben. Wie ihr das Pandamobil zu euch holen könnt?

Ihr seid LehrerIn oder SchulleiterIn an einer Primarschule oder einem Kindergarten in der Schweiz? Dann könnt ihr das Pandamobil hier auf der Website des WWF Schweiz anfragen.

Ihr seid Eltern oder Verwandte von naturbegeisterten Schulkindern? Dann wisst ihr bestimmt, wann ihr den Lehrern eurer Kinder einen Wink mit dem Zaunpfahl geben und das Pandamobil (oder/und Keinsteins Kiste) empfehlen könnt – Elternabend und Sprechstunde sind sicher nur zwei Beispiele dafür.

Ihr wohnt nicht in der Schweiz? Das Pandamobil tourt leider nur innerhalb der Eidgenossenschaft. Doch der WWF hält auch in Deutschland und Österreich spannende Inhalte und Lehrmittel für die Schule bereit.

Die Tiere der Nacht im Familienkreis erleben

Gleich in welchem Land ihr wohnt: Wenn ihr nicht das Glück habt, das Pandamobil in eurer Schule erleben zu können, könnt ihr die nächtliche Welt der Tiere auch selbst erforschen! Entweder macht ihr euch im Familienkreis während oder nach Einbruch der Dunkelheit zu einer Nachtwanderung auf, oder ihr stattet dem Papiliorama in Kerzers einen Besuch ab. Dort wird nämlich in einer eigenen Ausstellungskuppel der Tag zur Nacht gemacht, sodass ihr die Tierwelt des nächtlichen südamerikanischen Dschungels erleben könnt. Fledermäuse sind natürlich inbegriffen!

Fazit

Auch wir “Grossen” haben rund um das Pandamobil viel Spannendes entdecken können und einen trotz nächtlicher Dunkelheit erhellenden Einblick in die liebevolle Arbeit für und mit unsere/n Nachwuchs-Forscher/n erhalten. Und das Staunen und die Freude unserer jungen “Probandinnen” und “Probanden” zeigt deutlich: Diese Arbeit kommt an! Da sollte die Kritik, welche NGOs (“Non-Government-” bzw. Nicht-Regierungs- Organisationen) – insbesondere Umweltschutzorganisationen wie dem WWF, immer wieder (aber nicht immer berechtigt) zuteil wird, ein so wunderbares Erlebnis nicht trüben. Denn was auch immer im schwer durchschaubaren Netz von Politik und Wirtschaft krumm laufen sollte: Die Sensibilisierung von Kindern für Natur und Umwelt mitsamt der Vermittlung des Wissens darüber ist in jedem Fall unterstützenswert. Schliesslich werden diese Kinder in ein paar Jahren diejenigen sein, die so vieles im Sinne unserer Umwelt so vieles besser machen können – wenn sie wissen wie und wofür.

Somit wünsche ich dem Pandamobil und seinen Schöpfern und Betreuern viel Erfolg auf dieser und künftigen Touren!

Und kennt ihr das Pandamobil bereits – vielleicht aus eurer eigenen Kindheit? Wenn nicht – welche anderen Aktionen oder Organisationen haben euch zum ersten Mal mit Umweltschutz-Themen in Berührung gebracht?

Forscher-Abenteuer Raiffeisen-Skywalk

Dieser Beitrag stellt meine persönliche Empfehlung dar – keine der genannten Firmen, Institutionen oder Sponsoren ist an der Entstehung beteiligt!

Naturforschen ist immer auch ein Abenteuer – sei es, weil man dabei immer wieder Spannendes entdeckt, oder weil es schon abenteuerlich ist dorthin zu gelangen, wo es etwas zu entdecken gibt. So zum Beispiel in den für Menschen schwer zugänglichen Kronen der Bäume! Während Dschungelwissenschaftler Klettergerät brauchen oder gleich einen ganzen Baukran aufstellen, um das Dach des Waldes erkunden zu können, ist der Weg zu den Baumkronen für Nachwuchs- und Hobbyforscher in den letzten Jahren sehr einfach geworden: An vielen Orten gibt es einen Baumwipfelpfad oder eine Hängebrücke, auf denen ihr bequem über das Blätterdach spazieren könnt!

Man liebt sie oder man hasst sie: Baumwipfelpfade und Hängebrücken. Eigentlich gibt es nur zwei Optionen. Entweder dir läuft bereits beim Anblick ein Schauer über den Rücken und du bist bereit zu flüchten oder du freust dich bereits auf den Ausblick aus schwindelerregender Höhe.

Ein Bisschen Mut erfordert es in der Tat, in luftiger Höhe zu wandeln. Aber ohne ein kleines Abenteuer wäre das Forschen ja langweilig. Und wenn man sich nach oben traut, gibt es viel Spannendes zu entdecken: Wie sieht die Spitze einer 50-Meter-Fichte aus? Wie wachsen Tannenzapfen? Welche Tiere leben im obersten Stockwerk des Wald?

Baumwipfel von oben

Doch wo könnt ihr euren Mut beweisen und auf Entdeckungsreise in luftige Höhen gehen? Die Reiseeule hat eine tolle Blogparade ins Leben gerufen, um der Vielfalt der Baumwipfelpfade und Hängebrücken gerecht zu werden. Und da steuere ich für euch gerne meine Lieblings-Baumwipfelpfad-Hängebrücke bei mir daheim in der Schweiz bei:

Der Raiffeisen-Skywalk

Oberhalb von Sattel-Aegeri im Kanton Schwyz spannt sich eine atemberaubende Hängebrücke über das Lauitobel, eine mit riesigen Nadelbäumen bestandene Wildbach-Schlucht. Auf der Stahlgitterkonstruktion könnt ihr bis zu 58 Meter über dem Grund des Tobels wandeln – ohne dazu eine Leiter erklimmen zu müssen. Dafür erfordert der Weg Durchhaltevermögen: Mit 374 Metern Länge ist der Raiffeisen-Skywalk eine der längsten Fussgänger-Hängebrücken Europas!

Blick von der Hängebrücke ins Lauitobel

Blick von der Hängebrücke ins Lauitobel

Belohnt werden mutige Forscher, die sich auf die Brücke wagen, mit direktem Blick ebenso auf die Spitzen rund 60 Meter hoher Nadelbäume als auch auf die Wipfel verschiedener Laubbäume an den Enden des Skywalks. Damit ist diese Hängebrücke gleichzeitig ein richtiger Baumwipfelpfad! Ausserdem könnt ihr von dort eine herrliche Aussicht über die Schwyzer Voralpen bis zum Aegerisee und zum Rigi-Massiv geniessen.

Blick auf die Rigi

Blick auf die Rigi von oberhalb des Skywalks

Eine Hängebrücke im Kinderparadies

Obwohl auf 1200 Metern über dem Meer gelegen ist der Raiffeisen-Skywalk ein perfektes Ausflugsziel mit Kindern. Auf den Mostelberg kommt man nämlich ganz bequem mit einer Seilbahn, die geräumig genug ist, um auch Kinderwagen Platz zu bieten. Die Hängebrücke beginnt gleich an der Bergstation praktisch ebenerdig. Auf actionhungrigen Nachwuchs warten dort ausserdem eine Sommerrodelbahn und ein Hüpfburgenparadies. Mit Berggasthäusern, öffentlichen WCs, und einem Trinkwasserbrunnen ist auch für das leibliche Wohl gesorgt. Und im Winter kann man hier Ski fahren.

Mostelberg von oben

Der Brückenkopf und die Spielanlagen an der Bergstation

Wandern in wilder Natur

Trotzdem müsst ihr nicht fürchten, in eine künstliche Touristenwelt zu geraten. Denn nur wenige Schritte genügen, und schon ist man in einem herrlichen Naturparadies, das sich auf vielen Wegen aller Schwierigkeitsgrade bewandern lässt. Asphaltierte, Strässchen führen fast ohne Höhenunterschied durch üppige Bergwiesen, auf denen jetzt im Frühsommer wilde Orchideen blühen, und können mit Kinderwagen begangen werden. Wer trittsicherer und nicht auf Fahrzeuge angewiesen ist, kann auf einfachen Bergwanderwegen (rot-weisse Markierung der Schweizer Wanderwege) in die Bergwildnis vordringen und sogar den Gipfel des Hochstuckli (1566 Meter ü.M.) bezwingen.

Und als ob das noch nicht genug wäre, gibt es noch einen Bonus für Schatzsucher: Fast alle Wanderwege rund um Mostelberg sind dicht mit Geocaches bestückt, sodass Geocacher hier fleissig suchen können (ich gehöre selbst zu dieser Sorte und habe bei meinem jüngsten, mindestens dritten Besuch hier oben noch so manchen Schatz finden können).

Wie ihr zum Skywalk kommt

Wenn ihr bereits in der Schweiz seid, empfehle ich euch die Anfahrt mit dem öffentlichen Verkehr. Zwischen Biberbrugg und Arth-Goldau verkehrt einmal in der Stunde die S31 mit Halt in Sattel-Aegeri. Vom Bahnhof dort seid ihr in 10 bis 15 Minuten zu Fuss an der Talstation der Seilbahn “Stuckli-Rondo” (dort können Autoreisende auch ihren fahrbaren Untersatz auf einem geräumigen Parkplatz abstellen (aktuell 2 Stunden gratis, darüber hinaus CHF 5.- für den Rest des Tages)). Und die hat es in sich:

Einstimmung in der Drehgondelbahn

Die geschlossenen Gondeln dieser Luftseilbahn drehen sich nämlich um sich selbst, sodass ihr das herrliche Bergpanorama rundum geniessen könnt! Ausserdem ist die Drehgondelfahrt eine perfekte Vorübung für den luftigen Gang über die Hängebrücke. Die aktuellen Fahrpreise findet ihr hier auf der Website zum Ausflugsgebiet. Wer ein Halbtax- oder Generalabo von der Schweizer Bahn (SBB) besitzt, bekommt übrigens bis zu 50% Preisnachlass.

Anfahrt auf die Bergstation der Stuckli-Rondo

Anfahrt auf die Bergstation der Stuckli Rondo – Drehgondelbahn

Auch Kinderwagen sind kein Problem

Die Gondeln sind ebenerdig zugänglich, sodass sie problemlos mit Kinderwagen oder Rollstühlen benutzt werden können. Und wer ein Gondelbahn-Billet hat oder zu Fuss von Sattel-Aegeri hinaufgestiegen ist (unter der Seilbahn verläuft ein Gebirgswanderweg), kann den Raiffeisen-Skywalk kostenlos benutzen.

Gondel der Stuckli Rondo

Eine Gondel der Stuckli Rondo : Genug Platz für Kinderwagen ohne Rollstuhl

Der ist übrigens in seinem engsten Bereich 90cm breit und darf mit Kinderwagen oder Rollstuhl benutzt werden – allerdings nur in eine Richtung, nämlich von der Bergstation weg auf die andere Seite des Tobels! Fussgänger ohne Gefährt können hingegen in beide Richtungen laufen.

Es ist ausserdem möglich, mit dem Auto bis nach Mostelberg zu fahren. Allerdings sind die Parkmöglichkeiten hier oben begrenzt – und für den Skywalk wird ein zusätzlicher Eintritt fällig.

Die beste Reisezeit

Der Raiffeisen-Skywalk liegt auf 1200 Meter ü.M., das Wandergebiet erstreckt sich bis auf über 1500 Meter Höhe. Da ist im Frühling und Herbst noch mit Schnee zu rechnen! Die Drehgondelbahn verkehrt von Mitte April bis Anfang November – die Attraktionen am Mostelberg haben dann auch geöffnet. Wenn ihr das Wandergebiet in seiner Gänze geniessen wollt, achtet darauf, dass auf der gewünschten Höhe kein Schnee mehr liegt. Denn bei Schnee sind einige der Gebirgswege kaum oder gar nicht begehbar.

Ich habe für meinen jüngsten Gang über den Skywalk Ende Mai die erstbeste Gelegenheit genutzt, an der ich auch das Hochstuckli komplett schneefrei umrunden konnte.

Die Hängebrücke wird über Nacht übrigens zugesperrt – genauer gesagt ist sie bis eine Viertelstunde vor Betriebsschluss der Gondelbahn geöffnet. Ihr tut also gut daran, euch die Öffnungszeiten des Tages zu merken und rechtzeitig am richtigen Ende der Brücke zu sein – sonst wird ein beträchtlicher Umweg fällig.

Raiffeisen-Skywalk: Brückenkopf an der Bergstation

Der Brückenkopf an der Bergstation: 15 Minuten vor Betriebsschluss der Gondelbahn werden die Tore geschlossen.

Natur am Mostelberg: Baumwipfelpfad und mehr

Selten ist mir die atemberaubende Höhe unserer einheimischen Fichten so bewusst geworden wie beim Blick vom Skywalk an diesen Bäumen hinunter (anstatt wie üblich hinauf). Jetzt im Frühsommer scheinen die an den Spitzen wachsenden Zapfen zudem zum Greifen nah zu sein.

Fichtenspitze zum Greifen nah

Fichtenspitze zum Greifen nah

Wildpflanzen und -tiere der Schweizer Voralpen

Und jenseits der Hängebrücke gibt es noch viel mehr zu entdecken. Wildrosen und Kabenkräuter – dies sind die wilden Orchideen, die ich bereits erwähnt habe, sind nur zwei Beispiele für aussergewöhnliche Bergpflanzen, die es hier zu entdecken gibt.

Knabenkraut - wilde Orchidee

Ein Knabenkraut – eine wilde Orchidee auf den Wiesen nahe der Hängebrücke

Und wer sich in die Höhe wagt, begibt sich zudem auf eine kleine Zeitreise: Farne und Schachtelhalme, wie sie am Rand der Bergwiesen wachsen, gehören nämlich zu den ältesten noch lebenden Pflanzengattungen der Welt: Schon die Dinosaurier haben sie gekannt und vermutlich auch als Futter geschätzt.

Farn und Schachtelhalm

Aus der Zeit der Dinosaurier: Farn und Schachtelhalm

Wer nach Tieren Ausschau hält, findet allerorts Vögel, Schmetterlinge und andere Insekten (hier oben sind die noch richtig zahlreich). Und vielleicht habt ihr ja so viel Glück wie ich während einer früheren Wandertour, als ich am späten Nachmittag auf der Krete zwischen Mostelberg und Hochstuckli eine kleine Herde Rotwild beim Überqueren des Wanderwegs beobachten konnte!

Rotkehlchen

Überraschend zutrauliches Fotomodell: Das Rotkehlchen auf dem Wanderweg

Der Geomantik-Lehrpfad

Wenn ihr in der Umgebung der Hängebrücke wandert, werden euch wahrscheinlich Infotafeln auffallen, die nach einem Naturlehrpfad aussehen. Warum ich den weiter oben nicht erwähnt habe? Als Naturforscher-Bloggerin tue ich mich mit diesem Pfad ein wenig schwer. Das Leitthema der Tafeln ist nämlich Geomantik bzw. Radiästhesie, die beide mit Naturwissenschaft nicht viel zu tun haben.

Was ist Geomantie?

Die heutige Geomantie bzw. Geomantik ist eine esoterische Lehre über energetische Eigenschaften bzw. “Gitternetzlinien” der Erde und die daraus folgende “sinnvolle” Gestaltung von Lebensräumen (gerne wird die Geomantik mit dem chinesischen Feng Shui verglichen). Die Existenz der von Geomantikern angenommenen Energien konnte jedoch nicht wissenschaftlich belegt werden, obwohl entsprechende Versuche unternommen wurden.

Das ist aber nicht der Grund für meine Schwierigkeiten mit den Infotafeln. Im Gegenteil: Eine Erfahrungslehre, welche Art Gestaltung unserer Umgebung uns guttut, möchte ich nicht pauschal als ‘schlecht’ abstempeln, auch wenn die ihr zugrundeliegenden Modelle fragwürdig sein mögen.

Der besteht vielmehr darin, dass auf den Tafeln naturkundliche Inhalte mit den esoterischen Lehren vermengt werden, sodass beide als gleichwertige Fakten dargestellt sind. Naturkundlichen Laien dürfte die Unterscheidung zwischen dem einen und dem anderen oftmals schwerfallen – was meinem persönlichen Bestreben entgegen steht: Naturwissenschaftliches Wissen zu vermitteln, um der Entstehung von mitunter gefährlichem Irrglauben vorzubeugen.

Denn das Vermengen von nicht belegbaren Inhalten mit als belegt geltendem Wissen führt leicht dazu, dass das Nichtbelegbare ebenfalls als anerkannt “richtig” wahrgenommen und gelernt wird. Und wie schwer es ist, einen einmal angenommenen Irrglauben zu “erschüttern”, zeigen die vielen fruchtlosen Anläufe genau dazu von Wissenschaftler-Kollegen und meiner selbst.

Das Ganze soll aber das atemberaubende Erlebnis des Raiffeisen-Skywalks und seiner Umgebung nicht trüben.

Blick über den Raiffeisen-Skywalk

Der Raiffeisen-Skywalk: Der Blick über die Baumwipfelpfad-Hängebrücke

Weitere Baumwipfelpfade und Hängebrücken in der Schweiz

Wer nach dem Gang über die Hängebrücke am Mostelberg noch nicht genug von schwindelnden Höhen hat, findet in der Schweiz übrigens noch weitere Baumwipfelpfade.

Ein weiterer meiner Favoriten entführt euch gar auf Schweiter Boden (oder eben nicht Boden) in den Dschungel Madagaskars: Denn im Zoo Zürich hält die Masoala-Regenwaldhalle einen echten Indoor-Baumwipfelpfad bereit – ein tolles Ausflugsziel im Winter und bei “gruusigem” Wetter. Was ihr dort an spannender Physik und Chemie entdecken könnt, habe ich übrigens in einem eigenen Beitrag beschrieben.

Der erste “offizielle” Baumwipfelpfad der Schweiz ist übrigens kaum mehr als drei Wochen alt und liegt im Neckertal bei Mogelsberg im Kanton St. Gallen. Der ist hiermit auf meine Liste für die Expeditionskiste gesetzt!

Hängebrücken gibt es in der Schweiz hingegen eine ganze Reihe – darunter die mit über 3000 Meter ü.M. höchstgelegene Hängebrücke Europas! Eine Liste der schönsten Schweizer Hängebrücken findet ihr hier.

Nun wünsche ich euch aber ordentlich Mut zum Ausflug in die Höhe und viel Spass beim Erkunden aus der Vogelperspektive! Und wenn ihr schon eine Hängebrücke oder einen Baumwipfelpfad besucht habt: Wie ist es euch da oben ergangen? Was habt ihr erlebt und erforscht?