Natur entdecken im Herbst

Kinder sind neugierig. So gibt es kein “zu früh” für Natur und Wissenschaft. Entdeckt mit euren Nachwuchsforschern ab KiTa-Alter die Welt und ermöglicht ihnen einen guten “Draht” zu Physik, Chemie & Co.

Den richtigen Zeitpunkt, mit dem Forschen anzufangen, gibt es eigentlich nicht. Ein positives Bild von Chemie und Physik kann man nicht zu früh aufbauen. Denn Chemie ist überall, und Physik ist, wo man (damit) spielt. Im Herbst spüren wir die Kräfte der Natur besonders deutlich. Legt doch gleich los und erforscht sie spielerisch!

Wie ihr das macht? Indem ihr rausgeht und Wind, Wasser und Farben entdeckt. Wo genau ihr ihnen begegnet und was ihr dabei lernen könnt, verrate ich euch und dem Kreis der bloggenden Mamas und Papas in meinem Gastbeitrag am Felicitas-Table. In der illustren Runde werden viele spannende Themen für Eltern und Familien von absoluten Expertinnen und Experten für das Familienleben diskutiert.

Ich bedanke mich herzlich für die Einladung, Natur und Wissenschaft für die ganze Familie in die Runde zu bringen und hoffe sehr, dass ich Lust auf mehr machen kann!

Eure Kathi Keinstein

Und auf welches Forscher-Erlebnis im Herbst freut ihr euch am meisten? Oder was habt ihr schon tolles erlebt?

Experiment: Sicherheitsnadel galvanisieren

Wie beschichtet man ein Metall mit einem anderen? Durch Galvanisieren!

Nicht alles, was glänzt ist Gold! Oder Kupfer, oder… Die Oberflächen vieler Gegenstände sind nur mit einer dünnen Schicht dieser wertvollen Metalle überzogen. Solche Dinge nennt man dann vergoldet, verkupfert, versilbert oder ähnlich. Doch das bedeutet nicht, dass solche Gegenstände minderwertig sind. Vielmehr wird ihre Haltbarkeit durch ihre besonder Metalloberfläche verbessert – und sieht auch noch hübsch aus. Denn eine Edelmetall-Schicht ist reaktionsträge und schützt den Gegenstand unter ihr vor den Kräften von Wind und Wetter. Aber wie bringt man eine dünne Metallschicht auf ein anderes Material?

Dazu wird Wanderlust geladener Metallteilchen (sogenannter Metall-Ionen) ausgenutzt – und das könnt ihr leicht selber machen!

Ihr braucht dazu

  • Eine Sicherheitsnadel
  • Eine Kupfermünze (z.B. 1,2 oder 5 Eurocent)
  • Eine Kleine Schale
  • Haushaltsessig
  • Soda oder Natron (für die Entsorgung)

Sehr dreckige Münzen könnt ihr mit Essig und etwas Kochsalz leicht reinigen – wie genau das geht, zeige ich euch hier.

Essig, Schale, Kupfermünze, Sicherheitsnadel: Das braucht ihr zum Galvanisieren
Da man nicht mit Behältern für Lebensmittel experimentiert: Der Deckel eines leeren Honigglases (das ich nur noch für Versuche, nicht für Lebensmittel verwende!) hat mir als Schale gedient.

So geht’s

Lest in jedem Fall den Abschnitt “Entsorgung” durch, bevor ihr mit dem Experimentieren beginnt! Nach dem Versuch ist nämlich ein besonderer Entsorgungsschritt nötig. Den könnt ihr euch wesentlich leichter machen, wenn ihr von vorneherein sparsam arbeitet.

  • Legt Münze und Nadel nebeneinander in die Schale, sodass sie sich nicht berühren!
  • Gebt so viel Essig dazu, dass beide Teile vollständig bedeckt sind. Verwendet dabei so wenig Essig wie möglich – denn je weniger Essig ihr später entsorgen müsst, desto weniger Soda oder Natron werdet ihr dafür brauchen!
Münze und Sicherheitsnadel in Essig im Deckel des Honigglases: Das Galvanisieren kann beginnen!
Zu Beginn des Experiments: Kupfermünze und silbrig glänzende Sicherheitsnadel liegen im Essig ohne sich zu berühren.
  • Wartet ein paar Tage und schaut ab und zu nach, was sich verändert.
  • Wenn euch der Essiggeruch stört, könnt ihr die Schale einfach abdecken (mit einem Brett, einem Buch oder Ähnlichem)

Das könnt ihr beobachten

Die Nadel färbt sich mit der Zeit kupferrot, während die Münze zunehmend matt wird. Der Essig färbt sich zudem gelbgrün.

Nach einer Woche im Essig: Die vormals stahlglänzende Sicherheitsnadel ist nun ebenso kupferrot wie die Münze!
Nach einer Woche im Essig hat die Oberfläche der Sicherheitsnadel die gleiche Farbe wie die Münze: Kupfer hat sich darauf abgelagert!

Das passiert

Haushaltsessig besteht aus Wasser und Essigsäure. Kommt ein Metall wie Kupfer mit einer Säure in Berührung, geben stets ein paar Metallatome an der Oberfläche ein oder mehrere Elektron(en) ab. Dabei verlassen die Atome – welche zu Ionen werden – die Metalloberfläche und lösen sich im Wasser.

Das “(aq)” in der Gleichung bedeutet “in Wasser gelöst”.

Da Kupfer ein ziemlich edles Metall ist, können zunächst nur sehr wenige seiner Atome auf diese Weise zu Ionen werden. Diese wenigen Ionen können sich jedoch frei im Wasser bewegen – und so irgendwann an die Oberfläche der Sicherheitsnadel, die aus Stahl bestehen mag, gelangen.

Stahl wiederum enthält Eisenatome. Und Eisenatome geben sehr viel leichter Elektronen ab als Kupferatome.

So kommt es, dass die Eisenatome ihre Elektronen liebend gern an Kupferionen abgeben.

Die Eisenatome werden dabei zu Ionen, die sich im Wasser lösen, während die Kupferionen wieder zu Kupfer-Atomen werden, die sich an der Eisenoberfläche niederlassen.

Sobald auf diese Weise Kupfer-Ionen aus der Lösung verschwinden, bleibt darin “Platz” für neue Kupfer-Ionen. Die können sich somit von der Münze lösen und ihre Wanderung in Richtung Sicherheitsnadel antreten. (Alle beteiligten Reaktionen sind sogenannte Gleichgewichtsreaktionen. Le Châtelier erklärt hier am Flughafen, was es damit auf sich hat und wie die Richtung, in der sie ablaufen, von den Mengen der beteiligten Teilchen abhängt!)

Geladene Teilchen, die wandern, sind “Strom”

Geladene Teilchen, die wandern? Ja, ihr denkt richtig: Das ist nichts anderes als elektrischer Strom! Der Versuchsaufbau ist eine Art simple Batterie. Die Ionen wanderen darin so lange von der Münze zur Nadel, bis die ganze Nadeloberfläche mit Kupferatomen bedeckt ist. Dann gibt es dort nämlich keine Eisenatome mehr, die ihre Elektronen an weitere Kupferionen abgeben könnten. Die Batterie ist “leer”.

Galvanisieren im “richtigen Leben”

Wer Gegenstände mit einer edlen Metallschicht verkaufen möchte, mag in der Regel nicht tagelang warten, bis das Galvanisieren weit genug vorangeschritten ist. Deshalb benutzt er zum Einen statt Essig eine Lösung, die bereits reichlich Kupfer-Ionen (oder andere gewünschte Metall-Ionen) enthält. Zum Anderen schliesst er seine Anlage an elektrischen Strom an: Das Kupfermetall an den (physikalischen) Pluspol, das Material, das verkupfert werden soll, an den Minuspol.

Die angeschlossene Stromquelle liefert zusätzliche Elektronen in das zu verkupfernde Material, die die Kupferionen entgegen nehmen können. Zudem ermöglicht die Stromquelle den vom Kupfer abgegebenen Elektronen das Abfliessen, sodass auch leicht neue Kupfer-Ionen in Lösung gehen können.

Und zu guter Letzt leitet Kupfer selbst den Strom sehr gut. Das heisst, die zusätzlichen Elektronen gelangen auch leicht durch die neu entstehende Kupferschicht, sodass diese so lange dicker wird, wie die Stromquelle angeschlossen ist.


Vom Galvanisieren zur nutzbaren Batterie

Wenn ihr euch die oben beschriebenen Reaktionen genau anschaut, werdet ihr feststellen, dass dabei in der Kupfermünze Elektronen “übrig” bleiben, in der Eisennadel aber nicht. Im Kupfer sammeln sich demnach mehr Elektronen als im Eisen. Verbindet man aber mit einem leitfähigen Material eine Elektronenansammlung mit einem Ort mit wenig Elektronen, so fliessen Elektronen von der Ansammlung zum “leeren” Ort ab. Und fliessende geladene Teilchen kennen wir als elektrischen Strom!

Unser Aufbau mit Münze und Sicherheitsnadel, die lose in Essig liegen, ist als Batterie aber ziemlich unpraktisch. Denn auch der Essig ist elektrisch leitfähig und bildet, sobald Münze und Nadel vollständig eingetaucht sind, eine unumgängliche Abkürzung für den Strom.

Die könnt ihr vermeiden, indem ihr eure Metalle nicht in einer Flüssigkeit, sondern in einem festen Material, in dem auch Ionen wandern können, unterbringt. Zum Beispiel in einer Kartoffel. Wie ihr aus Kartoffeln wirklich funktionierende Batterien bauen könnt, zeige ich euch hier!

Entsorgung

Der Essig enthält nach dem Galvanisieren Kupferionen (sie geben der Flüssigkeit die grünliche Farbe), die giftig für Wasserorganismen sind und deshalb nicht ins Abwasser dürfen. Verwendet deshalb so wenig Essig wie möglich. Gebt nach dem Versuch, wenn ihr Nadel und Münze aus der Schale genommen habt, feste Soda oder Natron zu dem Essig darin. (Achtung! Geht langsam vor und rührt zwischendurch um! Die Mischung schäumt kräftig und wird warm: Allein das ist schon ein chemisches Spektakel, das schnell zur Sauerei ausarten kann!)

Mischt so lange Soda oder Natron mit dem Essigrest, bis keine Reaktion mehr sichtbar ist. Dann habt ihr die Säure neutralisiert. Mit noch ein wenig mehr Soda oder Natron wird die Lösung basisch: Das ist euer Ziel. Die Kupferionen bilden nämlich bei basischem pH-Wert ein Gemisch fester Stoffe (in eurer Schale vor allem Kupferacetat, Kupfercarbonat und Kupferhydroxid), das man Grünspan nennt.

Gebt das Gemisch aus festen Stoffen und Flüssigkeit durch ein Filterpapier (z.B. einen Kaffeefilter) und lasst das Papier mitsamt den Feststoffen trocknen, bevor ihr es in den Hausmüll gebt. Die filtrierte Lösung darf dann mit viel Wasser in den Ausguss.

Nun wünsche ich euch viel Spass beim Galvanisieren!

Wie funktioniert Fahrbahnmarkierung?

Dieses Jahr sind all unsere Ferienpläne C-bedingt ins Wasser gefallen. Trotzdem haben wir doch noch ein paar Tage auf der Strasse zugebracht – zwecks Kurz-Roadtrip durch den Alpenraum. Reto, der nicht fährt, kommt dabei oft auf Gedanken, für die ich am Steuer oft gar keine Muddr habe. Zum Beispiel während der Durchfahrt durch die x-te Strassenbaustelle des Tages. Hier in der Schweiz weist dort orange Ersatz-Fahrbahnmarkierung darauf hin, wo es vorübergehend lang geht.

“Aber woraus besteht diese Fahrbahnmarkierung eigentlich”, fragte Reto, “und wie zum Teufel bekommen sie die wieder ab, wenn die Baustelle fertig ist?”

Was da aus dem Mund eines Ingenieurs kommt, hört sich vielleicht nicht wie eine Chemiefrage an. Trotzdem ist es eine – und erst noch eine interessante. Denn immer, wenn es um Materialien, ihre Verarbeitung und Entsorgung geht, sind Chemiker gefragt. Die beschreiben und charakterisieren Stoffe schliesslich nicht nur, sondern erschaffen sie geradewegs nach ihren Wünschen.

Was muss Fahrbahnmarkierung können?

Dies ist die wichtigste Frage, die Chemiker zu beantworten haben, wenn sie einen Stoff für einen bestimmten Zweck auswählen oder erschaffen wollen.

Und gerade an Fahrbahnmarkierungen haben wir ziemlich harte Anforderungen. Sie soll den Autofahrern schliesslich zeigen, wo sie lang sollen – und das zu jeder Tages- und Nachtzeit. Eine Fahrbahnmarkierung muss also stets gut sichtbar sein, im Hellen wie auch bei Dunkelheit, bei trockenen Verhältnissen wie auch bei strömendem Regen.

Ausserdem muss sie für eine lange Zeit sichtbar bleiben – wir wollen ja nicht überall Strassenbaustellen, weil alle paar Wochen alles nachgepinselt werden muss. Und während ihrer langen Lebensdauer fahren abertausende schwere Autos und Lastwagen mit dreckigen Reifen darüber.

Abgenutzte Parkverbot-Markierung in der Schweiz
“Hier ist Parkverbot!” bedeuten gelbe Markierungen in der Schweiz. Diese hier ist hoffentlich schon Jahrzehnte alt – denn eine Erneuerung ist längst fällig.

Eine Fahrbahnmarkierung muss sich somit deutlich von der Strasse abheben. Da der Asphalt meist dunkelgrau bis schwarz ist, sind dauerhafte Markierungen darauf in praktisch allen Ländern weiss. Und dieses Weiss darf weder von den darüberfahrenden Autos abgerieben werden, noch Sonne, Wind und Wetter zu schnell zum Opfer fallen. Folglich ist da ein besonders robustes Material gefragt.

Richtig kniffelig wird es jedoch bei vorübergehenden Markierungen in Baustellen. Für die gilt nämlich im Grossen und Ganzen das Gleiche – und sie sollen nach Abschluss der Bauarbeiten rückstandslos wieder entfernt werden können. Das ist nämlich Vorschrift: Nach dem Entfernen einer temporären Fahrbahnmarkierung dürfen keine Spuren davon zurückbleiben. Einfach überkleben ist – obwohl immer wieder praktiziert – eigentlich nicht erlaubt.

Für Baustellenmarkierungen braucht man also ein Material, das Wind, Wetter und Tausende Autos aushält, sich bei Bedarf aber vollständig wieder entfernen lässt.

Welche Stoffe können das?

Wie so oft haben Chemiker zur Lösung dieses Problems massgeschneiderte Stoffe erschaffen. Mit anderen Worten: Fahrbahnmarkierungen bestehen aus speziell dafür entworfenen Kunststoffen. Die gibt es in mehreren Varianten.

Bei dauerhaften Markierungen steht die Haltbarkeit der Stoffe im Vordergrund. Denn die sollen ja gar nicht von der Strasse verschwinden.

Farbe zum Auftragen

Ganz simple Farbe zum Aufsprühen oder -walzen, im Strassenbau Fahrbahnmarkierung Typ 1 genannt, kommt heutzutage höchstens noch in wenig befahrenen Bereichen, meist innerorts, zum Einsatz oder hat schon etliche Jahre auf dem Buckel. Denn heutzutage kennt man allerlei Tricks und Kniffe, um die Markierungen vor allem bei Regen besser sichtbar zu gestalten.

So streut man für Fahrbahnmarkierung vom Typ 2 Glitzerperlen und Streugut für bessere Griffigkeit (niemand möchte auf Linien und Pfeilen plötzlich ins Rutschen kommen) auf frisch aufgetragene Streifen oder mischt diese Zutaten gleich in die Farbe hinein. Letzteres hat den Vorteil, dass das Streugut nicht einfach von drüberfahrenden Autos von der Oberfläche abgerieben werden kann. Denn das Glitzerzeug ist dann ebenso in den tiefen Schichten wie obenauf.

Eine Maschine spritzt Fahrbahnmarkierung auf und streut Glitzerperlen hinterher. (Summysung / CC BY-SA)

Die Glitzerperlen funkeln deutlich sichtbar in der Sonne oder dem Licht von Strassenlaternen und Autoscheinwerfern. Ausserdem können sie aus einem Wasserfilm herausragen und bleiben so auch bei Regen sichtbar.

Ebenfalls gut bei Regen sichtbar sind Farben, die auf der Fahrbahn ein klumpiges Gitter bilden. Denn diese Gitter ragen nicht nur über der Fahrbahn empor. Die offenen Maschen und Streben erlauben Regenwasser ausserdem, zwischen ihnen hindurch abzufliessen, anstatt sie einfach zu überfluten. Dabei sind die Maschen gerade so dicht, dass sie aus der Sicht der Autofahrer wie eine durchgezogene Linie erscheinen.

Gitterartige Fahrbahnmarkierung
Gitterartige Fahrbahnmarkierung: Hier kann Regen leicht ablaufen (Dantor / CC BY-SA)

Kunststoff-Einlegearbeiten

Die haltbarste Fahrbahnmarkierung erhält man, wenn man Vertiefungen in Form der geplanten Linien und Pfeile in den Asphalt fräst und sie anschliessend mit Kunststoffmasse ausfüllt.

Dazu gibt es Kunststoffe, die “unfertig” verkauft werden: Ihre Zutaten werden in zwei getrennten Portionen geliefert, die jede für sich unfertig aufbewahrt werden können. Mischt man die beiden Portionen (manche muss man zunächst erhitzen, damit sie schmelzen) und lässt sie an der Luft liegen, reagieren sie miteinander zu den Riesenmolekülnetzen, aus denen feste Kunststoffe bestehen. So müssen die Strassenarbeiter nur schnell genug sein und die Mischung in die ausgefrästen Vertiefungen füllen, bevor sie hart wird.

Da Fahrbahnmarkierungen innerhalb eines Landes überall gleich aussehen sollen, kann man Linien, Pfeile und Schriftzeichen aus Kunststoff auch in einer Fabrik fertig herstellen. Dann brauchen die Strassenarbeiter sie nur noch in die vorgesehenen Vertiefungen zu kleben – mit einem superfesten Klebstoff, den Chemiker für genau diesen Zweck geschaffen haben.

Klebefolien

All diese aufwändigen, superhaltbaren Markierungen eignen sich aber schlecht für Baustellen, in denen die Fahrbahnmarkierung nur für eine begrenzte Zeit halten und dann spurlos verschwinden soll. Deshalb gibt es die Pfeile und Linien auch als Aufkleber – komplett mit Farbe und Glitzerperlen beschichtet. So lassen sie sich rasch auf den Asphalt aufkleben, ohne dass viel Zeit fürs Fräsen, Pinseln oder Bestreuen aufgewendet werden muss.

Ausserdem lassen sich Aufkleber relativ leicht wieder von der Strasse abziehen. Das birgt jedoch auch ein Problem, das ich schon oft in Baustellen beobachtet habe: Wenn tausende Autos darüber fahren, lösen sich die Klebestreifen irgendwann ab und werden geknickt oder verschoben wieder auf die Fahrbahn gepresst. Das Ergebnis entspricht sicherlich nicht den gesetzlichen Regeln für Fahrbahnmarkierung, die besonders in Deutschland sehr streng sind. Und im schlimmsten Fall könnte so eine beschädigte Markierung gefährlich werden.

Um der Sicherheit willen gibt es deshalb Fahrbahnmarkierungs-Aufkleber, die mit einem massgeschneiderten Leim zusammen verkauft werden: Ähnlich wie bei den Einlegearbeiten ist auch dieser Klebstoff “unfertig” und in zwei Portionen geteilt. Die eine befindet sich auf der Unterseite des Aufklebers, die andere wird auf den Asphalt aufgetragen. Legt man den Aufkleber auf diese “Grundierung” und drückt ihn fest an, dann mischen sich die beiden Klebstoffe und reagieren zu einem bombenfesten Molekülgefüge.

Damit lösen sich die Baustellenmarkierungen nicht vorzeitig – allerdings bekommt man sie auch nach den Bauarbeiten nicht mehr so einfach von der Strasse. Dementsprechend grobschlächtig muss dazu vorgegangen werden: Entweder fräst man die oberste Asphaltschicht mitsamt der Aufkleber weg, oder man fackelt den Kunststoff mit einer Art Flammenwerfer ab (da Asphalt feuerfest und dunkel ist, leidet er ja nicht darunter).

Schaden diese Kunststoffe der Umwelt?

Wenn Chemiker Stoffe erschaffen und so nah an die Umwelt bringen wie auf Strassen, die mitten durch die “Natur” verlaufen, ist auch dies eine entscheidende Frage. Denn zum Einen entsteht beim Wegfräsen von Fahrbahnmarkierung feiner Staub, und beim Verbrennen entstehen Abgase und Rauch.

Noch viel wichtiger ist aber, dass all die Autoreifen, die über die Markierungen fahren, winzigkleine Mengen davon abreiben. Und wenn tausende oder gar Millionen Autos vorbei kommen, werden diese winzigkleinen Mengen ganz schnell gross. Und Sand und Staub, die durch das Abschmirgeln von Kunststoffen entstehen, kennen die meisten von euch unter dem Begriff “Mikroplastik”. Das ja niemand haben will – und das trotzdem überall zu finden ist.

Das von der Fahrbahnmarkierung abgeriebene Mikroplastik wird vom Wind davongeweht oder vom Regen in den Boden gespült und gelangt mit dem Wasserkreislauf irgendwann in die Meere. Laut der Ergebnisse einer Studie des Dachverbands von Umweltorganisationen und -behörden IUCN machen abgeriebene Fahrbahnmarkierungen 7% des vom Land in die Meere geratenden Mikroplastiks aus. Ausgehend von geschätzten 1,5 Millionen Tonnen Mikroplastik-Eintrag im Jahr entspricht das rund 105 Tonnen Kunststoff-Staub von Fahrbahnmarkierungen (Klingt viel – der Löwenanteil des Mikroplastiks entsteht aber direkt in den Gewässern aus grösserem Plastikabfall: bis rund 10,5 Millionen Tonnen im Jahr!).

Ist Mikroplastik gefährlich?

Kann Mikroplastik unserer Gesundheit oder der von Lebewesen in den Meeren und anderen Lebensräumen gefährlich werden? Das ist eine wirklich schwierige Frage – denn man weiss die Antwort (noch) nicht. Was den menschlichen Körper angeht, geht man zur Zeit davon aus, dass es uns nicht gross schadet. Denn vornehmlich könnte Mikroplastik über den Verdauungstrakt in unsere Körper gelangen – und auf diesem Weg auch gleich wieder hinaus, da der Körper keinen Grund hat, die Kunststoffpartikel aus dem Nahrungsbrei heraus aufzunehmen. Eine andere Möglichkeit ist das Einatmen von Mikroplastik-Stäuben. Was das für Folgen haben kann, ist jedoch – wie so vieles in dem Bereich, noch nicht erforscht.

Was Meereslebewesen betrifft, gibt es Hinweise darauf, dass einzelne Arten unter Mikroplastik-Belastung leiden, besonders dann, wenn bestimmte Umweltbedingungen erschwerend dazukommen. Andere Arten scheinen sich dagegen gar nicht an den Kunststoffpartikeln zu stören. Wie beim Menschen auch gilt hier: Die Auswirkungen von Mikroplastik auf die Umwelt sind grösstenteils noch nicht erforscht.

Schon allein der erzeugten Mengen an Mikroplastik lohnt es sich, in diesen Bereichen weiter zu forschen. Und während die Forscher daran arbeiten, lohnt es sich ebenso, Vorsicht walten zu lassen und nicht unnötig Mikroplastik in die Umwelt gelangen zu lassen. Das gilt auch für die Gestaltung von Fahrbahnmarkierung, die wie so viele Kunststoff-Materialien laufend weiterentwickelt werden.

Chemie machts möglich: Markierungen der Zukunft

Fahrbahnmarkierung, die als Ganzes haltbar, zu Mikroplastik zerrieben aber biologisch abbaubar wäre (sodass kein Mikroplastik übrig bliebe, das in die Meere gelangen könnte), wäre ein Träumchen. Allerdings sind solche recht widersprüchlichen Eigenschaften meist nicht leicht zu realisieren.

Bereits Wirklichkeit ist dagegen eine Entwicklung hin zu noch besserer Sichtbarkeit bei schlechtem Wetter.

Sicher kennt ihr alle “Glow-in-the-dark”-Farbe oder ebensolche Klebesterne und andere Deko fürs Kinderzimmer. Diese Farben und Kunststoffgegenstände lassen sich mit Licht “aufladen” und leuchten später stundenlang im Dunkeln. (Dieser Vorgang heisst Phosphoreszenz – wie er funktioniert erfahrt ihr hier in Keinsteins Kiste!) Der Niederländer Daan Roosegarde hat Fahrbahnmarkierung aus solch einem phosphoreszierenden Kunststoff gemacht: Tagsüber speichert er Sonnen- bzw. Tageslicht, und nachts leuchten die Streifen aus sich selbst heraus! Das sieht nicht nur cool aus, sondern ist für die Autofahrer unabhängig von den Lichtverhältnissen draussen gut sichtbar.

Die Idee mit den selbstleuchtenden Fahrbahnmarkierungen lässt sich sogar noch weiter spinnen: Mit Kunststoffen, die nur in einem bestimmten Temperaturbereich phosphoreszieren, zum Beispiel bei weniger als 4°C, könnte man Glatteis-Warnungen aufbringen, die nur dann leuchten, wenn es kalt genug für Glatteis ist.

Zusammenfassung

Fahrbahnmarkierung muss viel und lange aushalten – und deshalb aus besonders widerstandsfähigen Stoffen bestehen. Chemiker können Kunststoffe mit genau diesen Eigenschaften entwickeln. Vorübergehende Markierungen in Baustellen müssen sowohl widerstandsfähig als auch leicht zu entfernen sein. Solch widersprüchliche Eigenschaften sind für Kunststoffdesigner besonders herausfordernd und nicht selten unlösbar.

Eine weitere Herausforderung ist der Abrieb von Fahrbahnmarkierungen, der als Mikroplastik in die Umwelt gelangt. Das zu vermeiden ist ein lohnendes Ziel der stetigen Weiterentwicklung von künstlichen Werkstoffen wie Fahrbahnmarkierung. Andere Ziele können ganz neuartige Eigenschaften dieser Stoffe sein, wie Phosphoreszenz, die selbstleuchtende Markierungen ermöglicht.

Ein Kunst- bzw. Werkstoff ist somit kaum ein “fertiges” Material, das unverändert bis in alle Ewigkeit weiter verwendet wird. Stattdessen entwickeln Chemiker die Materialien unserer Alltagswelt ständig weiter, um sie nützlicher, weniger gesundheitsschädlich und umweltverträglicher zu machen.

Und welche Arten Fahrbahnmarkierung sind euch schon begegnet? Habt ihr bestimmte Eigenschaften oder Mängel beobachten können? Seid ihr vielleicht sogar schon einmal auf Roosegardes phosphoreszierender Teststrecke in den Niederlanden unterwegs gewesen? Oder habt ihr beruflich mit Fahrbahnmarkierung zu tun?

Experiment: Kartoffelbatterie bauen

Endlich habe ich mal wieder Zeit zum Experimentieren gefunden. Und mich dabei einem Thema gewidmet, das in Keinsteins Kiste bislang zu kurz gekommen ist: Batterien und Strom. Dazu habe ich mir erst einmal eine Stromquelle selber gebaut: Die Kartoffelbatterie!

Mit der folgenden Experimentieranleitung könnt ihr ganz einfach eure eigenen Kartoffelbatterien bauen und so zusammenschalten, dass ihr damit eine Leuchtdiode zum Leuchten bringen könnt. Alles, was ihr dazu braucht, findet ihr in der Küche, im Werkzeugkasten – und allenfalls für kleines Geld im Fachhandel für elektronische Bauteile.

Experiment: Kartoffelbatterie bauen

Ihr braucht dazu

Das braucht ihr zum Bau einer Kartoffelbatterie samt Stromkreis.
  • 4 Kartoffeln
  • 4 blanke Kupfermünzen (z.B. Eurocents) – hier erfahrt ihr, wie ihr angelaufene Kupfermünzen ganz einfach blank bekommt!
  • Zinkdraht oder 4 Unterlegscheiben aus Zink
  • blanke Büroklammern
  • Schaltlitze oder ähnlich ummantelten Kupferdraht
  • Lüsterklemmen (oder Stecker und Muffen aus dem Modellbau)
  • LED (Leuchtdiode) für den Betrieb bei ca. 3 bis 6 Volt (aus dem Elektronikhandel)
  • Drahtschere, Küchenmesser
  • Optional: Voltmeter bzw. Multimeter
  • Tablett aus Kunststoff, Glas oder Keramik (kein Metall, trocken!)

So geht’s

  • Wenn ihr mit Zinkdraht arbeitet, wickelt etwa 15 Zentimeter Draht zu einer münzgrossen Scheibe auf, von der 2 bis 3 Zentimeter Drahtende abstehen. Fertigt insgesamt vier solcher Scheiben an. Wenn ihr mit Unterlegscheiben experimentiert, könnt ihr diesen Schritt überspringen.
Vier Zinkdraht-Spiralen als Elektroden für die Kartoffelbatterie
Vier Zinkdraht-Spiralen-Elektroden für eine Vierer- Kartoffelbatterie
  • Schneidet eine Seite jeder Kartoffel waagerecht ab, sodass die Kartoffeln nicht wackeln, wenn ihr sie auf eine Unterlage stellt.
  • Schneidet in die beiden gegenüberliegenden Enden jeder Kartoffel je einen Schlitz.
  • Steckt in die Schlitze jeder Kartoffel jeweils eine Kupfermünze und ihr gegenüber eine Zinkscheibe (Drahtspirale oder Unterlegscheibe). Die Metallscheiben dürfen sich nicht berühren! Wenn ihr ein Multimeter habt, könnt ihr es auf einen Messbereich von 1-2V einstellen und mit den beiden Messfühlern die Kupfer- und Zinkscheibe einer Kartoffel berühren. So habe ich an einer Kartoffel eine Spannung von rund 0,85V messen können.
Eine Kartoffelbatterie ohne angeschlossene Drähte
Eine Kartoffelbatterie ohne angeschlossene Drähte: Sie liefert eine Spannung von 0,85V.
  • Klemmt an jede Kupfermünze eine Büroklammer.
  • Schaltet nun die vier Kartoffeln in Reihe: Verbindet mittels Litze und Lüsterklemmen oder Steckern die Zinkscheibe einer Kartoffel mit der Kupfermünze der nächsten, die Zinkscheibe dieser nächsten mit der Kupfermünze der übernächsten Kartoffel und so weiter.
  • Wenn alle Kontakte funktionieren, solltet ihr nun zwischen der Kupfermünze der ersten und der Zinkscheibe der letzten Kartoffel eine Spannung von etwa 3,4V messen können (Messbereich ggfs. anpassen!).
Fertiger Kartoffelbatterie - Stromkreis
Fertig: Ein Kartoffelbatterie -Block aus vier Kartoffeln in Reihe samt angeschlossener LED. Jetzt nur noch das kurze Beinchen an die Zinkscheibe rechts im Bild…
  • Verbindet nun das lange Bein (Wichtig! Dioden, auch Leuchtdioden, leiten den Strom nur in eine Richtung, falschherum angeschlossen gehen sie kaputt!) der LED mit der letzten freien Kupfermünze.
  • Jetzt könnt ihr den Stromkreis schliessen: Berührt mit dem kurzen Bein (aber nicht mit dem Langen!) der LED die letzte freie Zinkscheibe: Die LED leuchtet auf!

Das passiert

Das Multimeter zeigt euch schon beim Aufbau, dass die Kartoffelbatterien funktionieren: Sie liefern eine messbare elektrische Spannung, und wenn man sie in einen Stromkreis einbaut, fliesst ein Strom! Und zwar ein so starker, dass er die LED zum Leuchten bringt.

Kartoffelbatterie betreibt rote LED
Licht aus und es wird sichtbar: Die rote LED leuchtet – dank Kartoffelbatterie!

Wo kommt der Strom her?

Die Metalle Kupfer und Zink bestehen aus elektrisch ungeladenen Atomen. Die Atome beider Metalle können Elektronen abgeben und so zu positiv geladenen Ionen werden. Diese Ionen können sich in Wasser lösen – zum Beispiel in dem Wasser in einer Kartoffel.

Allerdings ist das Bestreben der beiden Metalle, Elektronen abzugeben, sehr unterschiedlich. So gibt Zink ziemlich leicht Elektronen ab (Chemiker nennen es deshalb ein unedles Metall). Kupfer trennt sich dagegen wesentlich weniger leicht von seinen Elektronen (Chemiker nennen es deswegen ein edles Metall oder Edelmetall).

Steckt man also eine Zinkscheibe in eine Kartoffel, lassen einige Zinkatome Elektronen in der Scheibe zurück und lösen sich als Ionen im Kartoffelwasser. Die Zinkscheibe ist damit der (physikalische) Minuspol der Kartoffelbatterie.

Aus einer Kupferscheibe treten dagegen fast keine Ionen aus, sodass auch fast keine Elektronen zurückbleiben. Die Kupfermünze ist damit der (physikalische) Pluspol der Kartoffelbatterie.

Das Multimeter misst den Unterschied zwischen den Elektronenansammlungen im Zink (viele Elektronen) und Kupfer (fast keine Elektronen) und gibt ihn als Zahl mit der Einheit Volt (V) an. Diese Zahl, auch elektrische Spannung genannt, sagt Chemikern, wie unterschiedlich das Bestreben zweier Stoffe (hier Kupfer und Zink), Elektronen abzugeben, ist.

Verbindet man die Elektronenansammlung im Zink nun über elektrisch leitende Drähte mit dem elektronenarmen Kupfer, dann fliessen die Elektronen als Strom vom Zink ins Kupfer – und können auf ihrem Weg elektrische Geräte wie eine LED betreiben. So können immer neue Zink-Ionen entstehen und immer neue Elektronen zurücklassen. Damit fliesst der Strom eine ganze Weile, sodass die LED nicht sofort wieder ausgeht, sondern immer weiter leuchtet.

Und was geschieht an der Kupfermünze?

Wenn Elektronen vom Zink zum Kupfer fliessen, werden sie an ihrem Ziel von anderen, bestenfalls positiv geladenen Teilchen aufgenommen. Da Kartoffeln naturgemäss keine Kupfer-Ionen enthalten, sind das vornehmlich Wasserstoff-Ionen (H+ bzw. H3O+) aus der Kartoffel (In Wasser gibt es immer ein paar davon, und eine Kartoffel mag organische Säuren enthalten, die noch ein paar mehr liefern):

An der Kupfermünze entsteht also Wasserstoff-Gas. Die Münze selbst reagiert dagegen nicht.

Und der Rest des Stromkreises?

Der Name “Stromkreis” verrät es: Damit ein Strom fliessen kann, braucht es einen kompletten Kreislauf. Die Elektronen fliessen aber nur durch die Kabel vom Zink zum Kupfer. Wo ist der Rest des Kreislaufs?

Für den ist die Kartoffel zuständig. Die enthält, wie schon erwähnt, eine Menge flüssiges Wasser, in dem geladene Teilchen sich bewegen können – wenn sie einen Anlass dazu haben. Zudem enthält eine Kartoffel naturgemäss eine Menge verschiedener Ionen, die nur auf einen Anlass zum Wandern warten. Und das Entstehen bzw. Verschwinden von Ionen an den Metallteilen in der Kartoffel ist solch ein Anlass.

So wandern die neu entstehenden Zink-Ionen und andere positiv geladene Ionen durch die Kartoffel in Richtung Kupfermünze, um die Ladung der dort verbrauchten Wasserstoff-Ionen zu ersetzen. Ebenso wandern negativ geladene Ionen durch die Kartoffel in Richtung Zink-Scheibe, um die Ladung der dort entstehenden Zink-Ionen auszugleichen.

Während die Elektronen also durch das Kabel vom Zink zum Kupfer fliessen, fliessen durch die Kartoffel andere Ladungen vom Kupfer zum Zink. Damit ist der Stromkreis ganz und gar geschlossen.

Das Ganze funktioniert daher ebenso gut mit Äpfeln, Zitronen oder anderem Obst. Denn auch diese Früchte enthalten flüssiges Wasser und verschiedene Ionen, die wandern können.

Wann ist eine Kartoffelbatterie leer?

Grundsätzlich ist eine Batterie dann leer, wenn es keinen messbaren Unterschied zwischen den Elektronenansammlungen an Minus- und Pluspol mehr gibt. Denn ohne diesen Unterschied kann kein Strom fliessen.

Wenn aus Zink-Atomen Ionen werden, verlassen diese das Metall und lösen sich im Wasser der Kartoffel. Damit bleiben immer weniger Atome in der Zinkscheibe. Mit anderen Worten: Die Zinkscheibe (oder -spirale) wird immer kleiner, bis – theoretisch – irgendwann nichts mehr davon übrig ist.

Gleichzeitig entsteht an der Kupfermünze Wasserstoff und verschiedene Ionen bewegen sich innerhalb der Kartoffel hin und her. Wird dabei ein Zustand erreicht, in dem es keine Ladungsansammlung mehr auszugleichen gibt, hört der Strom auf zu fliessen und die LED leuchtet nicht länger. Dann, so sagen wir, ist die Batterie “leer”.

Warum brauchen wir mehrere Kartoffeln?

Meine Leuchtdiode, ein typisches Exemplar aus dem Handel für Elektro-Kleinteile, ist für den Betrieb in Stromkreisen mit 6-Volt-Batterieblöcken ausgelegt. Das heisst, um genügend Strom zu erzeugen, dass sie leuchtet, brauchen wir zumindest annähernd eine Spannung dieser Höhe (in jeder Schaltung ist etwas “Schwund”, sodass die LED für den 6-Volt-Antrieb schon mit weniger Strom als aus 6 Volt leuchten). Tatsächlich hat meine LED schon bei einer Spannung von gut 3 Volt zu leuchten begonnen.

Und das ist auch gut so. Denn eine höhere Batterie-Spannung kann erreicht werden, indem man mehrere Batterien hintereinander schaltet. Dann nämlich addieren sich die Spannungen über den einzelnen Batterien zur Gesamtspannung. Das funktioniert bei Kartoffelbatterien genauso wie bei richtigen Batterieblöcken: 4 “AA”-Batterien, die jede für sich 1,5V liefern, liefern in Reihe geschaltet 1,5V+1,5V+1,5V+1,5V = 6V (oder 4*1,5V=6V). Vier Kartoffeln, die jede für sich 0,85V liefern, liefern in Reihe geschaltet dementsprechend 3,4V.

Um einen 6-Volt-Batterieblock zu ersetzen, bräuchte ich also 7 Kartoffeln (7*0,85V = 5,95V), 7 Münzen und 7 Zink-Spiralen oder -scheiben, 9 Kabel und eine Menge Platz. Dazu kommt, dass ihr die Kartoffeln nach dem Experiment nicht mehr essen solltet, denn sie könnten Metallionen enthalten, die ungesund sind (Zink-Ionen sind zwar nicht ungesund und Kupferionen werden nur wenige darin sein, aber man weiss nie so genau, ob in Unterlegscheiben oder Drähten noch andere, ungesündere Metalle als Zink enthalten sind).

Sollte eure LED mit vier Kartoffeln nicht leuchten, obwohl die Kontakte als solche in Ordnung sind, schaltet einfach noch eine fünfte Kartoffelbatterie dazu.


Entsorgung

Die elektrischen Bauteile, Münzen und Kabel könnt ihr für spätere Experimente aufheben (spült die Münzen und Zinkscheiben ggfs. zuvor mit Wasser sauber und trocknet sie ab).

Die Kartoffeln solltet ihr – wie schon erwähnt – nach dem Experiment nicht essen. Wenn euer Bioabfall ähnlich wie unserer verbrannt wird, könnt ihr sie aber in die Biotonne entsorgen. Wegen der Metallionen darin solltet ihr die Kartoffeln aber besser nicht in den Kompost geben (besonders Klein- und Kleinstlebewesen mögen Kupferionen gar nicht!).

Hast du das Experiment nachgemacht: 

Kartoffelbatterie: Hat das Experiment bei dir funktioniert?

View Results

Loading ... Loading ...

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Belebtes Wasser ist unwirksam - kein Gesundbrunnen, sondern Fantasieprodukt

Wenn ihr meine Kanäle verfolgt, habt ihr es wahrscheinlich schon mitbekommen: Ich schreibe an einem Mitmachbuch für Forscherkinder – über Wasser. Das ist schliesslich ein ganz besonderer Stoff und megaspannend. Da bleibt es nicht aus, dass Wasser allerorts, auch in den sozialen Medien, meine besondere Aufmerksamkeit weckt. So ist es mir unlängst in einer Kombination begegnet, die spontanes Chemiker-Augenrollen bewirkte: Als belebtes Wasser. Oder war es energetisiertes Wasser? Vitalisiertes Wasser? Aktiviertes Wasser? Magnetisiertes Wasser? Hexagonales Wasser? Oder sogar Grander-Wasser?

Merkt ihr was? So viele verschiedene und nichtssagende Begriffe für praktisch das gleiche. Und das ist nur eine Auswahl der Existierenden! Allein auf Psiram habe ich eine Liste mit 144 Firmen und Produktlinien rund um “verbessertes” Wasser in vermutlich ebenso vielen Variationen gefunden! Also, worum geht es hier eigentlich? Um Wasser, das in irgendeiner Weise verbessert sein – und folglich positive Wirkungen auf uns haben soll.

Wie sollen wir an belebtes Wasser gelangen?

Die erwähnten Hersteller bieten entweder Gerätschaften und Anlagen zur “Verbesserung” von Leitungswasser im eigenen Haushalt an oder sie verkaufen es fixfertig , zum Beispiel in Getränkeflaschen. Auffällig ist bei praktisch all diesen Produkten der hohe bis überrissene Preis.

Brauchen wir verbessertes bzw. belebtes Wasser?

Nein. In der Schweiz, Deutschland und Österreich geniessen wir das Privileg, einwandfreies Leitungswasser zu haben, das wir ohne Bedenken trinken können. In der Schweiz gilt das überdies für einen Grossteil der öffentlichen Brunnen.  Ausserdem können wir jederzeit ebenso einwandfreies Mineralwasser in Supermärkten kaufen. Und Leitungs- wie Mineralwasser bieten alles, was wir vom Wasser zum Gesundbleiben brauchen.

Was kann belebtes Wasser dann besser?

Ihr ahnt es sicher schon: Nichts. Zumindest nicht über einen Placeboeffekt hinaus. Und den könnt ihr wesentlich billiger haben.

Ist belebtes Wasser dann womöglich gefährlich?

Nicht direkt. Ausser für euren Geldbeutel. Denn Produkte rund um belebtes Wasser sind in der Regel mächtig teuer. Und bewirken, wie erwähnt, nichts.

Indirekt können sie aber zum Problem werden. Nämlich dann, wenn sie ein falsches Gefühl von Sicherheit vermitteln (“das Wasser hält mich schon gesund”). Wenn aus diesem Sicherheitsgefühl heraus Arztbesuche verzögert, Medikamente nicht genommen oder andere wichtige Massnahmen vernachlässigt werden (Infektionsschutz ist zur Zeit ja ein ganz grosses Thema!), kann das schwerwiegende oder im schlimmsten Fall tödliche Folgen haben.

Aus diesem Anlass schreibe ich den Artikel: Nicht nur um eurer Geldbeutel willen, sondern vor allem, um euch dabei zu helfen, wirklich Gutes für die Gesundheit eurer Familie zu tun.

Um euch zu zeigen, warum belebtes Wasser nicht wirken kann, habe ich zunächst eine kleine Einführung in die Chemie des Wassers für euch.

Kleine Wasserkunde

1. Wasser ist eine Verbindung

Wasser ist einer von vielen Stoffen, aus denen unsere Welt aufgebaut ist. Dabei ist es zweifellos einer der wichtigsten Stoffe unserer Alltagswelt. Nahezu jeder von euch wird die chemische Formel, genauer die Summenformel, von Wasser schon einmal gesehen haben: H2O.

Diese Formel verrät uns schon eine ganze Menge über diesen Stoff. Sie sagt uns: Wasser besteht aus Molekülen. Ein Wassermolekül besteht wiederum aus zwei Wasserstoffatomen und einem Sauerstoffatom. Das bedeutet, Wasser ist kein Element, wie antike Philosophen annahmen, sondern eine chemische Verbindung. Ein chemisches Element besteht nämlich nur aus einer Sorte von Atomen – Wasser aber aus zwei Atomsorten.

2. Wassermoleküle sind gewinkelt

Die Atome in einem Molekül sind über Elektronenpaarbindungen miteinander verknüpft. Zwei Elektronen bilden eine solche Bindung. Die Regeln der Chemie besagen, dass ein Sauerstoffatom zwei Bindungen bilden kann und überdies noch zwei weitere, nichtbindende Elektronenpaare hat. Ein Wasserstoffatom kann dagegen nur eine Bindung bilden. Daraus ergibt sich die Strukturformel für Wasser:

Wassermolekül: Lewisformel und Modell
Links: Strukturformel für Wasser, rechts ein Kugel-Stab-Modell des Wassermoleküls

Warum stehen die drei Atome nicht einfach in einer Reihe? Jedes Elektron trägt eine negative elektrische Ladung. Und gleiche elektrische Ladungen stossen einander ab. So gehen die vier äusseren Elektronenpaare – zwei Bindungen und zwei nichtbindende Paare – des Sauerstoffs auf grösstmöglichen Abstand zueinander. Und der entspricht annähernd der Nachbildung eines Tetraeders (einer regelmässigen dreieckigen Pyramide). Das Sauerstoffatom befindet sich im Zentrum dieser Pyramide, die beiden Wasserstoffatome und die Enden der nichtbindenden Elektronenpaare an den Ecken. Zeichnet man nun einen Längsschnitt, auf dem alle drei Atome liegen, durch das Gebilde, erhält man die gewinkelte Strukturformel des Wassermoleküls.

Wassermolekül mit nichtbindenden Elektronenpaaren - die Struktur erinnert an einen Tetraeder
Die gelben Kugeln stellen die nichtbindenden Elektronenpaare dieses Wassermoleküls dar. In dieser Anordnung sind die vier gelben und weissen Kugeln weitestmöglich voneinander entfernt!

3. Wassermoleküle sind elektrische Dipole

Nun verhält es sich so, dass Sauerstoffatome die Elektronen, auch jene in den Bindungen, viel stärker zu sich hinziehen als Wasserstoffatome. Deshalb ist in der Nähe des Sauerstoff-Atoms im Wassermolekül sehr viel mehr von den bindenden Elektronen anzutreffen als in der Nähe der Wasserstoffatome. Da jedes Elektron eine negative elektrische Ladung trägt, heisst das, dass am Sauerstoffatom mehr negative Ladung zu finden ist, als dort sein sollte, während an den Wasserstoffatomen zu wenig negative Ladung zu finden ist. “Mehr” und “zu wenig” stehen dabei für Ladungsmengen, die kleiner als die Gesamtladung eines Elektrons sind. 

Nicht desto trotz bedeutet das, dass der Scheitel des Wassermoleküls (mit dem Sauerstoffatom) ein wenig negativ geladen ist, während sein “breites” Ende mit den Wasserstoffatomen ein wenig positiv geladen ist (denn die positive Ladung der Atomkerne macht sich wegen des Elektronenmangels bemerkbar). Ein Wassermolekül hat also zwei elektrische Pole – deshalb nennt man es einen elektrischen Dipol.

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Ein Wassermolekül trägt zwei elektrische Ladungen: Die negative Seite (-) ist rot, die positive Seite (+) ist blau schattiert.

Verschiedene elektrische Ladungen aber ziehen einander an. So zieht der negativ geladene Scheitel eines Wassermoleküls unweigerlich die Breitseite seines nächsten Nachbarn an. Ebenso werden Wassermoleküle von anderen elektrischen Polen angezogen. Das könnt ihr mit diesem Experiment ganz leicht zu Hause zeigen!

Wasserteilchen: Entgegengesetzte Ladungen ziehen sich an.

4. Wasser ist sowohl eine Säure als auch eine Base

Die sehr “schiefe” Verteilung der Elektronen im Wassermolekül führt aber nicht nur zu zwei elektrischen Polen, sondern auch dazu, dass die Bindungen zwischen Sauerstoff- und Wasserstoffatomen sehr brüchig sind. Ein Wassermolekül kann also sehr leicht einen Wasserstoffatomkern (ein H+-Ion) verlieren. Damit ist Wasser eine Säure. Ebensogut kann ein Sauerstoffatom eines seiner nichtbindenden Elektronenpaare verwenden, um solch ein verlorenes H+-Ion zu binden.  Damit ist Wasser eine Base.

Von einem Wassermolekül, das ein H+-Ion verloren hat, bleibt ein Hydroxid-Ion (OH):

Ein Wassermolekül, das ein verlorenes H+-Ion aufnimmt, wird damit zum Hydronium-Ion (H3O+):

Tatsächlich kommt es ständig vor, dass ein Wassermolekül ein H+-Ion verliert, welches in einem anderen Wassermolekül Unterschlupf findet:

Ebenso kann das H3O+-Ion das zusätzliche H+-Ion wieder zurückgeben. So gibt es in einer Menge Wasser ein ständiges Herumgereiche von H+-Ionen zwischen den Wassermolekülen. Insgesamt findet man in einem Liter reinem Wasser zu jedem Zeitpunkt 0,0000001 mol oder 10-7 H3O+ – und ebenso viele OH -Ionen. Der Exponent der Zahl der H+-Ionen (als Zehnerpotenz) in einem Liter Flüssigkeit mit umgekehrtem Vorzeichen ist nichts anderes als der pH-Wert. Reines Wasser hat also stets einen pH-Wert von 7.

5. Wassermoleküle können Wasserstoffbrücken bilden

Allerdings wäre das Ganze viel zu einfach, wenn man so strikt zwischen Bindung und keiner Bindung unterscheiden könnte. Das kann man nämlich nicht. Die Elektronen einer Bindung zwischen Sauerstoff- und Wasserstoff-Atom im Wassermolekül sind nämlich so ungleich verteilt, dass ein entblösster Wasserstoffkern sich in die dichte Elektronenhülle eines Sauerstoffatoms im Nachbarmolekül “einkuscheln” kann, ohne sich dazu von “seinem” Wassermolekül lösen zu müssen. Das nennen die Chemiker eine Wasserstoffbrücken-Bindung.

Das Resultat ist eine Anziehung zwischen Wassermolekülen, die noch stärker ist als die Anziehung zwischen ihren unterschiedlichen Ladungen (aber viel weniger stark als eine echte Elektronenpaarbindung). Sie zeigt sich zum Beispiel in dem enorm hohen Siedepunkt (100°C) von Wasser – da diese starke Anziehung überwunden werden muss, wenn das Wasser gasförmig werden will. Zum Vergleich: Der sehr eng verwandte Schwefelwasserstoff, H2S, der keine Wasserstoffbrücken bildet, siedet schon bei -60°C!

6. Wasserstoffbrücken entstehen zufällig und sind extrem kurzlebig

Die Darstellung von flüssigem Wasser als H2O ist somit im Grunde genommen eine Vereinfachung. Tatsächlich besteht flüssiges Wasser aus einem wilden Gemisch von Atomen, die sich mal als H2O, mal als H3O+ bzw. OH gruppieren und sich noch viel öfter zu irgendetwas dazwischen zusammenkuscheln. Dabei kann es passieren, dass einige wenige Atome sich zu gut strukturierten Gruppen, sogenannten Clustern, zusammenrotten.

Aber dieser Austausch findet an jedem Ort im Wasser gleichzeitig und im Picosekundentakt statt. Das heisst, würde man ein Foto von den Bindungen zwischen Atomen in flüssigem Wasser machen, dann sähe ein zweites Bild davon, nur 0,000 000 000 001 Sekunden später aufgenommen, völlig anders aus – einschliesslich komplett anderer Molekül-Cluster.

Und das geschieht ganz spontan und zufällig. Die Triebkraft dafür ist zum Einen Wärmeenergie. Mit über 273°C über dem absoluten Nullpunkt (bei Atmosphärendruck) ist flüssiges Wasser nämlich immer ziemlich warm, auch wenn unsere Körper oft anderer Meinung sind. Und zum Anderen hilft das absolute Chaos, das der ständige Umbau mit sich bringt. Die Natur liebt nämlich Chaos – von Physikern und Chemikern “Entropie” genannt – so sehr, dass sie ohne Energie von aussen ganz von selbst nach grösstmöglicher Unordnung strebt.

Warum man Wasser nicht beleben kann

Die meisten Anbieter in der “Belebtes-Wasser”-Branche behaupten, sie könnten flüssiges Wasser “besser” machen, indem sie ihm irgendwie eine geordnetere Struktur geben. Einige fügen dem Wasser dafür Energie zu, andere berufen sich darauf, genau das nicht zu tun. Eines haben jedoch alle gemeinsam: Es kommt nichts dabei herum. Denn:

Wasser kann man nicht mit Energieeinsatz “beleben”, indem

  • Man man es über eine eingelegte Antenne mit elektromagnetischen Wellen berieselt. Würde man das mit Mikrowellen (der richtigen Frequenz bzw. Wellenlänge) machen, würde das Wasser allenfalls warm (so funktioniert ein Mikrowellenherd). Denn Mikrowellen der passenden Länge können elektrische Dipole wie Wassermoleküle in Drehung versetzen. Und die nehmen wir, wie jede andere ungerichtete Bewegung von Teilchen, als Wärme wahr. Infrarotwellen, die energiereicher als Mikrowellen sind, können ebenfalls wärmen – indem sie die Bindungen in Molekülen zum Schwingen bringen. Elektromagnetische Wellen mit weniger Energie bewirken hingegen nichts.
  • Man es mittels Elektrolyse ionisiert. Das mag zwar vorstellbar sein (wenn man vermeiden kann, dass statt irgendwelcher Ionen Moleküle von Wasserstoff- und Sauerstoff-Gas entstehen). Allerdings sorgt der stetige Austausch zwischen den Wasserteilchen dafür, dass sich nach dem Ausstellen der Elektrolysevorrichtung innert Picosekunden das oben erwähnte Gleichgewicht zwischen Wasser, H3O+– und OH-Ionen wieder einstellt. Mit anderen Worten: So schnell, wie der pH-Wert von Wasser – sollte es ionisiert worden sein – wieder 7 ist, kann man es unmöglich trinken – geschweige denn anschauen.
  • Man es ebenfalls durch Elektrolyse mit Wasserstoff anreichert. “Wasserstoffwasser” ist besonders in Japan als Fertigprodukt im Supermarkt beliebt. Grundsätzlich lässt sich Wasserstoff durch Elektrolyse von Wasser herstellen. Allerdings löst der sich nicht besonders gut in Wasser und kann in die allermeisten Festkörper (z.B Getränkeflaschen) problemlos ein- und durch sie hindurch wandern. So lässt sich Wasser nicht nur kaum mit Wasserstoff anreichern, sondern überdies auch kaum lagern. Dazu kommt, dass der menschliche Körper elementaren Wasserstoff (H2) gar nicht verwerten kann.
  • Man Wasser in ein (unveränderliches) Magnetfeld einbringt. Richtig ist: Elektrisch geladene Teilchen in Bewegung ändern im Magnetfeld ihre Bewegungsrichtung. Das gilt aber nur für Teilchen, die als Ganzes eine merkliche Ladung tragen. Wassermoleküle tragen zwar Ladungen, aber jedes von ihnen hat zwei gleich grosse, aber entgegengesetzte Ladungen, die einander aufheben. Von aussen gesehen bleibt so keine Ladung, auf die das Magnetfeld einen Einfluss haben könnte. Überdies ist Wasser ausschliesslich diamagnetisch und lässt sich daher nicht magnetisieren (Was hinter Dia-, Para- und Ferro-Magnetismus steckt erfahrt hier hier).
  • Man Edelsteine hineinlegt, die irgendwelche “Schwingungen” oder “Informationen” in das Wasser übertragen sollen. Die einzigen Schwingungen, die so übertragen werden können, sind jene Bewegungen, die wir als Wärme wahrnehmen. Würde man die Steine vorher erhitzen, könnte man so allenfalls das Wasser erwärmen (so funktionieren ein Tauchsieder oder der “heisse Stein” im Restaurant).

Wasser kann man erst recht nicht ohne Energiezufuhr beleben, indem

  • Man in irgendeiner anderen Weise “Informationen”, “Schwingungen” oder “Energie” auf das Wasser überträgt (belebtes Wasser ‘im eigentlichen Sinn’). Wie ihr in der kleinen Wasserkunde gelernt habt, hat flüssiges Wasser eine äusserst unstete Struktur: Seine Atome gruppieren sich in allerkürzesten Zeitabständen laufend neu. Das macht es zur Speicherung von Information für länger als 0,000 000 000 001 Sekunden vollkommen ungeeignet.

Kommt dazu – wie so oft – der ausdrückliche Verzicht auf Energie von aussen, gibt es zudem ein unlösbares Problem mit der Thermodynamik. Deren zweiter Hauptsatz besagt nämlich, dass die Schaffung von Ordnung in einem geschlossenen System ohne das Einbringen von Energie einfach nicht möglich ist. Und eine Struktur (z.B. in Form gespeicherter “Information”) in vormals chaotischem Wasser zu erzeugen, heisst Ordnung schaffen.

Das gilt gleichermassen für alle Spielarten belebten Wassers, ob sie nun belebtes Wasser, aktiviertes, vitalisiertes, levitiertes Wasser, “Grander-Wasser” oder sonstwie heissen.

Aber der “Stand der Wissenschaft” ist doch nicht unumstösslich?

Stimmt. Aber ein Grossteil dessen, was wir über Wasser wissen, ist so deutlich belegt, dass dort keine grossen Anpassungen des heutigen “Lehrbuchwissens” mehr zu erwarten sind. Das gilt insbesondere für das unstete Betragen der Teilchen in flüssigem Wasser. Wir mögen zwar noch längst nicht alles über die erwähnten Wassercluster wissen. Doch das liegt eben gerade daran, dass diese Strukturen so kurzlebig sind, dass Wissenschaftler sie selbst mit hochtechnischen Apparaturen kaum vermessen können. Und ebendiese Kurzlebigkeit macht das Speichern von jedweder “Information” in Wasser unmöglich.

Auch die Gesetze der Thermodynamik sind heute derart gut belegt, dass wir sie in unserer Welt getrost als unumstösslich annehmen können. Sollten Physiker dennoch jemals einen Weg finden, der am 2. Hauptsatz vorbei führt, dann nicht in der Welt, wie wir sie kennen, sondern unter höchst exotischen Bedingungen, die weit ausserhalb unserer persönlichen Reichweite liegen. Also nicht in unserem eigenen Keller oder einer mystischen Getränkefabrik.

Ausserdem haben sich die Wissenschaftler, die so gerne auf belastbare Studien pochen, sich nicht lumpen lassen. So gibt es auch Untersuchungen zur Wirksamkeit von belebtem Wasser auf Mensch, Tier und Pflanze – unabhängig von der Frage, ob sie mit heutigem Wissen theoretisch erklärbar wäre. Und hat man – unter belastbaren (also methodisch einwandfreien und wiederholbaren) Versuchsbedingungen – eine Wirkung gefunden? Nein.

Es gibt also weder eine nachweisliche Wirkung noch eine schlüssige Theorie, wie sie zustandekommen könnte. Mit anderen Worten: Belebtes Wasser ist demnach mit höchster Wahrscheinlichkeit ein reines Fantasieprodukt.

Wie ihr derartige Fantasieprodukte oder -angebote erkennen könnt

Einige auffällige Merkmale hat belebtes Wasser mit vielen anderen fragwürdigen Produkten und Angeboten im Gesundheitsbereich gemein: Es wird ihm eine so vielfältige Heilkraft nachgesagt, dass es leicht als Wundermittel durchgehen könnte.

  • Was gleichermassen gegen alles von Hauterkrankungen über Magenbeschwerden, Migräne, Depressionen u.v.a.m. bis hin zu Krebs hilft, kann nicht wirklich nützen. Verschiedene Krankheiten haben verschiedene Ursachen, die verschiedene Behandlungen erfordern. Darüber hinaus ist in der Schweiz und Deutschland die Werbung für Wasser mit Heilversprechen gesetztlich verboten, was eine solche um so unseriöser macht.
  • Ähnliches gilt für Angaben wie ‘hilft bei der “Entgiftung” (Entschlackung,…). Die Notwendigkeit, Giftstoffe oder “Schlacken” aus unserem Körper zu entfernen, ist ebenfalls ein Fantasieprodukt entsprechender Anbieter (denn das besorgen gesunde Leber und Nieren ganz allein).
  • Beliebte “Buzzwörter” aus dem Alternativheilkunde-Bereich in Beschreibungen können ein Hinweis sein, dass dem Produkt das wissenschaftliche Fundament fehlt: Neben den genannten Synonymen für belebtes Wasser bzw. Wasserbelebung sind das z.B. “Schwingungen“, “Energien” (Naturwissenschaftler verwenden “Energie” nie in der Plural!), oder “feinstofflich“, die allesamt bedeutungslose Worthülsen sind. Dazu kommen die Namen Nicola Tesla, wenn es um mysteriöse Technik geht, oder – speziell im Wasserbereich – Gerald H. Pollack oder Masaru Emoto, auf deren nicht haltbare Theorien sich viele “Wasserbeleber” beziehen, sowie Johann Grander.

Dazu kommen einige eigene Merkmale von Produkten rund um “verbessertes” Wasser.

  • Das Verbot von Werbung für Wasser und Wasseraufbereitungsgeräte mit Heilversprechen in einem Grossteil des D-A-CH-Raums umgehen viele Anbieter, indem sie angebliche Wirkungen ihres Produkts nur über Kundenaussagen “kommunizieren”. Das geht über Kundenbewertungen und Testimonials oder Mund-zu-Mund-Propaganda. Hat euch “nur” jemand von einem tollen Gerät/Produkt/Angebot erzählt? Findet ihr Aussagen zu gesundheitlichen Wirkungen nur von anderen Kunden und nicht vom Hersteller selbst? Dann ist Vorsicht angesagt!
  • Wirkungslose Anlagen und Geräte zur “Verbesserung” von Wasser wie auch fixfertig belebtes Wasser werden häufig zu horrenden Preisen angeboten. Wenn ihr ein fragwürdiges Angebot unter die Lupe nehmen möchtet, vergleicht es einmal mit ähnlichen Produkten ohne “Esoterik”-Label. Fixfertig belebtes Wasser also mit Mineralwasser, als besonders wirksam oder geeignet deklarierte Edelsteine mit den gleichen Steinen ohne solche Attribute beim Mineralienhändler, Elektrokleingeräte mit Haushaltsgeräten aus ähnlichen Bestandteilen, Geräte zum Einbau ins Eigenheim mit “herkömmlichen” Wasserfiltern für die Trinkwasserzuleitung. Beträgt der Unterschied ein Vielfaches, ist da in der Regel etwas faul.

Wenn euch ein Angebot mit solchen Merkmalen über den Weg läuft, verzichtet guten Gewissens darauf. Dann könnt ihr das Geld für andere Dinge einsetzen, die wirklich gesundheitsfördernd sind: Für einen schönen Familienurlaub zum Beispiel, Mitgliedschaften im Sportverein, Musikstunden, oder einfach für abwechslungsreiches Essen.

Und wenn es dazu schon zu spät ist?

Ihr habt bereits eine Anlage zur Wasserbelebung im Keller? Oder ist der bereits in ein Lager für fixfertig belebtes Wasser umgewandelt?

Zunächst einmal: Ihr seid damit nicht allein. Selbst Betreiber von Schwimmbädern, Spitäler oder eine österreichische Gewerkschaft haben sich schon von solchen Angeboten ködern lassen und eine Menge Geld verbraten. Die können nämlich – ganz offensichtlich – ziemlich verlockend sein und auf den ersten Blick sehr seriös wirken. Bloss zeigt das nicht, wie nützlich die Produkte sind, sondern die Geschäftstüchtigkeit ihrer Anbieter. Und die mag nicht zuletzt daher rühren, dass die Hersteller und Vertreiber selbst an die Wirksamkeit ihrer Produkte glauben (zumindest konnten selbst Anwälte vor Gericht ihnen bislang nichts Gegenteiliges nachweisen).

Besonders wenn Mund-zu-Mund-Propaganda ins Spiel kommt – im schlimmsten Fall innerhalb einer eingeschworenen Community rund um Hersteller und Produkt oder im eigenen Freundeskreis – kann der Einfluss bzw. Druck von “aussen” auf eure Entscheidungen immens werden. Und wer will es sich schon mit der besten Freundin oder dem netten Forum verscherzen, weil er ein ja soo nützliches Ding kategorisch ablehnt?

Wirksames von Fantasieprodukten zu unterscheiden ist manchmal schwierig

Dazu kommt, dass viele Produkte, Angebote und auch Literatur so seriös und “medizinisch” aussehen, dass es für Laien echt schwierig sein kann, wirklich Sinnvolles von Fantasieprodukten zu unterscheiden.

Selbst ich als Chemikerin habe einmal mit grossem Interesse in einem populärwissenschaftlichen Buch von Gerald H. Pollack gelesen. Das fiel mir in der Stadtbibliothek auf der Suche nach Literatur über Wasser in die Hände. Das las sich spannend und erst einmal schlüssig – davon abgesehen, dass ich von den dargestellten Theorien und Phänomenen weder in der Schule noch im Studium gehört hatte. Doch was wäre ich für eine Chemikerin, würde ich, ein paar Jahre aus dem Uniumfeld draussen, neue Forschungsergebnisse von vorneherein als unmöglich abstempeln? So fühlte ich mich selbst mit Chemie-Diplom nicht in der Lage, das Buch aus dem Stand sicher einzuordnen. Dabei haben mir erst weitere Recherchen geholfen.

Was tun, wenn das Geld weg ist?

Ist das belebte Wasser erst einmal im Haus und das Geld weg, wenn eure Zweifel überhand nehmen, verbucht das Ganze am besten als Gelegenheit zum Lernen. Wie mein Vater immer sagt: Geld ist den grossen Kummer nicht wert. Und ein Grund, sich zu schämen oder hämische Bemerkungen anhören zu müssen, ist das Ganze meines achtens auch nicht (dahingehend können Anhänger der Skeptiker-Szene im Umgang mit Anhängern solcher Fantasien oft noch eine Menge lernen).

Wichtig ist: Selbstreflexion

Stattdessen fragt euch, was euch wirklich dazu gebracht hat, euch auf belebtes Wasser einzulassen und allenfalls viel Geld dafür auszugeben? Hattet ihr wirklich ein eigenes Bedürfnis danach (z.B. um eine Krankheit zu lindern)? Da belebtes Wasser nachweislich nicht wirkt: Überlegt euch – was fehlt euch wirklich (oder hat gefehlt)? Welche andere(n) Massnahme(n) könnte(n) für eine scheinbare Wirkung des Wassers verantwortlich sein?

Oder habt ihr euch unter dem Einfluss anderer entschieden – Familie, Freunde, (Online-)Community? Wie könnt ihr euch solchen Einflüssen künftig entziehen? Und was bedeuten euch die betreffenden Personen oder Gruppen wirklich? Denn im schlimmsten Fall, wenn ein Druck sich nicht abwehren lässt, kann eine Trennung von ihnen der beste Ausweg sein.

Was ihr in jedem Fall tun könnt

Ob ihr nun selbst in die Falle hineingetappt seid oder nicht, ihr könnt eure Mitmenschen davor bewahren, auf solche sinnlosen Angebote einzugehen.

Dabei erachte ich dies als ganz besonders wichtig:

Nehmt euer Gegenüber ernst. Hinter der Entwicklung unsinniger Glaubensvorstellungen stecken praktisch immer Bedürfnisse oder Ängste, die befriedigt oder gelöst werden wollen, und oft ein erheblicher Einfluss eines äusseren Umfelds (Familie, Freundeskreis, Onlinecommunity,…), der eben diese Bedürfnisse bedient.

Ermuntert eure Mitmenschen, diese Bedürfnisse zu ergründen und sich die unter “Selbstreflexion” vorgeschlagenen Fragen zu stellen.

Verkneift euch, wenn ihr euch zu den “Skeptikern” zählt, hämische Bemerkungen oder Bezeichnungen. Zeigt den Betroffenen stattdessen, dass ihr sie als Menschen wertschätzt und gebt ihnen so einen Anreiz, die vermeintliche Zuflucht fragwürdiger Glaubenssätze oder Umfelder zu verlassen.

Und tut das vor allem von Anfang an. Denn je früher Anhänger von Glaubenssätzen, wie jenen um belebtes Wasser, Alternativen zu ihren “Alternativen” aufgezeigt bekommen, desto höher ist die Chance, sie noch zu erreichen.

Auch wichtig ist: Weitere Verbreitung verhindern

Erinnert euch daran, wie diese fragwürdigen Produkte verbreitet werden. Nämlich über Mund-zu-Mund-Propaganda.

Wenn ihr eure Mitmenschen davor bewahren wollt, auf den Hype um belebtes Wasser (oder andere Fantasie-Produkte) hereinzufallen, dann hört, falls ihr das je getan habt, in jedem Fall auf, sie weiter zu verbreiten und schön zu reden. Oder fangt erst gar nicht damit an. Entfernt oder ändert allfällige positive Bewertungen im Internet, sofern ihr das selbst könnt (Testimonials, die Firmen selbst auf ihren Seiten einfügen, werden diese kaum wieder löschen).

Denn was andere auch behaupten: Belebtes Wasser wirkt nicht über einen Placeboeffekt hinaus.

Besonders lobenswert ist natürlich, wenn ihr euch aktiv für die Aufklärung rund um belebtes Wasser und Co. einsetzt. Erst recht, wenn ihr eine Entscheidungsposition bezüglich der Weiterverbreitung fragwürdiger (und nicht fragwürdiger) Angebote innehabt – sei es auf eurer eigenen Website, in den “grossen” Medien, einschliesslich Magazinen von Krankenversichereren, Grossverteilern und anderen Branchen, oder gar in der Politik.

Dazu könnt ihr gerne diesen Artikel weiterverbreiten und findet weiteres Material in den Links darin. Zum Beispiel diesen Artikel, in dem Dr. Erich Eder, ein grosser Kritiker des “Grander-Wassers”, beschreibt, wie ihr eure Kritik so formulieren könnt, dass ihr möglichst kein juristisches Vorgehen der Anbieter belebten Wassers riskiert (und wie ihr damit umgehen könnt, falls es doch dazu kommt).

Scheut euch dabei nicht, euren eigenen Fehlentscheid einzugestehen, falls euch einer unterlaufen ist. Hört oder lest darüber hinweg, solltet ihr anfangs abfällige Bemerkungen und Kommentare kassieren. Und trennt euch rigoros von jenen, die sie nicht lassen können. Denn (nicht nur) in meinen Augen zeugt es von wahrer Grösse, seine Ansicht aufgrund neuer Erkenntnisse zu ändern und das auch kundzutun. Und letztendlich kann ein “ich habe das selbst durch, ich weiss, wovon ich rede” eure Position nur stärken.

Seid ihr belebtem oder sonstwie “verbessertem” Wasser auch schon begegnet? Wie geht ihr mit Leuten um, die darauf schwören oder/und zu seiner Verbreitung beitragen?

Silikone - Pro und Kontra - Nützlich oder gefährlich?

Der letzte Teil der Kunststoff-Serie in Keinsteins-Kiste ist einer ganz besonderen Familie von Kunststoffen gewidmet: Es geht um Silikone. Vor vielen Jahren ist mir diese Stoff-Gruppe im Studium zum ersten Mal begegnet, als ich vor den versammelten Kommilitonen und Dozenten einen Vortrag darüber halten durfte.

So war ich nun besonders neugierig, wie sich der Wissensstand rund um Silikone in den letzten eineinhalb Jahrzehnten verändert hat. Das ist nämlich eine wesentliche Eigenschaft von “Wissen” im Sinne der Wissenschaft: Es ist nicht unverrückbar festgelegt, sondern kann durch neue Forschungsergebnisse ständig verändert – z.B. verbessert oder überholt – werden.

Deshalb konnte ich nicht einfach mein altes Vortrags-Skript als Grundlage für diesen Artikel hernehmen. Stattdessen habe ich dessen Kernaussagen neu recherchiert, um sie dem heutigen Stand entsprechen anzupassen. Und wie sich dabei zeigte, hat sich bezüglich der Eigenschaften der Silikone gar nicht so viel getan. Einzig in Punkto Abbaubarkeit ist man heute spürbar weniger optimistisch als vor 15 Jahren.

Die anderen Beiträge rund um Kunststoffe findet ihr übrigens hier:

Was sind Silikone?

Silikone sind ganz besondere Kunststoffe. Wie die anderen Materialien, die wir landläufig gern als “Plastik” bezeichnen, bestehen auch sie aus Polymeren – also langen Molekülketten.  Doch die Molekülketten der Silikon-Ketten bestehen nicht wie die des üblichen “Plastiks” aus Kohlenstoffatomen. Die sind nämlich nicht die einzigen Atome, die bis zu vier kovalente Bindungen eingehen und damit vielfältige Möglichkeiten zur Vernetzung und Verkettung bieten können.

Der Kohlenstoff hat nämlich einen nahen chemischen Verwandten: Das Element Silizium (Si). Ihr findet es im Periodensystem der Elemente direkt unter dem Kohlenstoff in der vierten Hauptgruppe (wer sich mit Chemie auskennt, weiss, dass verwandte Elemente in dieser Weise untereinander stehen). In Reinform glänzt Silizium wie ein Metall und findet als Rohstoff für Halbleiter und Solarzellen Verwendung. Daneben kann es jedoch wie Kohlenstoff vier kovalente Bindungen eingehen. Oder sogar etwas mehr.

Zum Beispiel in Silikonen (der Name verrät das enthaltene Element). So haben die Ketten der Silikone ein Rückgrat aus Silizium- und Sauerstoff-Atomen, die sich immer abwechseln. Das erinnert Mineralienfans nicht von ungefähr an Quarz (SiO2) und die verschiedenen Silikat-Minerale, die meistens ziemlich harte Steine sind.

Silizium-Sauerstoff-Bindungen sind nämlich ausserordentlich stabil. In ihnen ist nämlich mehr Elektronendichte versammelt, als für eine normale kovalente Bindung üblich ist. Damit hat eine Si-O-Bindung, die der Einfachheit und der Edelgasregel wegen als Einfachbindung dargestellt wird, tatsächlich etwas von einer Doppelbindung! Anders als die Doppelbindungen zwischen Sauerstoff- und Kohlenstoffatomen sind diese Bindungen in natürlicher Umgebung aber kaum reaktiv.

Brustimplantate aus Silikon
So sind Silikone legendär geworden: Als Brustimplantate! Die Aussenhülle besteht aus Silikonkautschuk, gefüllt sind sie mit Silikonöl. Moderne Implantate haben sogar zwei Hüllen, zwischen denen sich Kochsalzlösung befindet. So soll bestmöglich verhindert werden, dass Silikonöl durch einen Riss in den Körper laufen kann.

Sind Silikone organisch oder anorganisch?

Während jedes Siliziumatom im Silikon also zwei Bindungen zu den benachbarten Sauerstoffatomen hat, bleiben zwei weitere Bindungsstellen frei, um daran Kohlenwasserstoffgruppen zu binden, wie wir sie aus organischen Verbindungen kennen. Chemiker nennen die Silikone deshalb auch Poly(organo)siloxane. Der einfachste Vertreter dieser Gattung ist Poly(dimethyl)siloxan, in welchem jedes Siliziumatom zwei Methyl-, also CH3-Gruppen trägt.

Strukturformel für Polydimethylsiloxan
Poly(dimethyl)siloxan : Zwischen den beiden Enden befinden sich n gleichartige Glieder.

Damit sind Silikone sowohl anorganischer als auch organischer Natur – oder weder noch. Ihr Rückgrat enthält schliesslich keinen Kohlenstoff (und organische Verbindungen sind als alle Kohlenstoffverbindungen abzüglich einiger Ausnahmen definiert). Stattdessen ist es an (Halb-)Metalloxide angelehnt, die klassische anorganische Verbindungen sind. Die Seitenketten sind wiederum organisch, sodass Silikone auch nicht einfach als anorganisch bzw. mineralisch gelten können.

Silikone sind ein Kunstprodukt

So etwas gibt es in der Natur (meineswissens) nicht. Silikone sind denn auch vollkommen künstliche Produkte – und tragen die Bezeichnung “Kunststoff” damit völlig zu Recht. Diese Künstlichkeit verleiht ihnen jedoch einzigartige und nützliche Eigenschaften, die dazu führen, dass Silikone in unserem Alltag heute nicht mehr wegzudenken sind.

Silikone haben Vor- und Nachteile

Wie jeder Stoff bzw. jede Stoffgruppe, den/die wir für irgendetwas verwenden, bringen auch die Eigenschaften von Silikonen sowohl Vor- als auch Nachteile mit sich. In meinen Augen wiegen die vorteilhaften Eigenschaften der Silikone gegenüber ihren Nachteilen jedoch viel schwerer als bei anderen Kunststoffen.

Vorteile von Silikonen

  • Sie sind chemisch und physiologisch inert, d.h. sehr reaktionsträge. Für etwas, das es in der Natur nicht gibt, kennt die (belebte) Natur auch keine Prozesse zur Verstoffwechselung oder Abwehr. Deshalb sind Silikone nach heutigem Stand ungiftig für Lebewesen!
  • Sie sind schwer entflammbar: Auch gegenüber Reaktionen in der unbelebten Umwelt sind Silikone widerstandsfähig – selbst bei Einfluss grosser Mengen Energie, die zum Entstehen von Feuer nötig sind.
  • Temperaturbeständigkeit: Silikone sind von etwa -40 bis 250°C stabil. Das sind wesentlich höhere Temperaturen, als praktisch alle anderen Alltagskunststoffe vertragen!
  • Silikone sind hydrophob: Sie bilden wasserabweisende Beschichtungen.

Nachteile

  • Silikone sind nur schwerlich biologisch abbaubar: Was die Natur nicht kennt, kann auch nicht von Lebewesen abgebaut werden. So bleiben Silikone, die in die Umwelt gelangen, dort lange Zeit erhalten. Auch die gute Witterungsbeständigkeit trägt zu diesem Umstand bei.
  • Silikone lassen sich nur schwerlich in Flüssigkeiten lösen: Sie sind weder wasser- noch fettliebend. Das heisst, sie lösen sich weder in Wasser noch in unpolaren organischen Lösungsmitteln wie Benzin wirklich gut. So lassen sie sich ohne besondere Hilfsmittel (Tenside mit auf sie abgestimmter Superwaschkraft) kaum abwaschen oder mit anderen Stoffen mischen und reichern sich dementsprechend leicht an.

Erscheinungsformen und Verwendung der Silikone

Silikonöle

Silikonöle bestehen in der Regel aus Ketten von Poly(dimethyl)siloxan, dem einfachsten Vertreter der Silikone. Sie sind bei Temperaturen von -60 / -35°C bis 250°C flüssig. Zum Vergleich: Wasser erstarrt bei 0°C und verdampft bei 100°C, Pflanzenöle verdampfen oft schon zwischen 100 und 150°C, wenn sie sich nicht zuvor zersetzen, und werden oft noch über dem Gefrierpunkt von Wasser zunehmend fest. Nicht so Silikonöle: Die sind immer gleich flüssig, ob bei Frost oder auf über 200°C erhitzt. Dazu kommen eine niedrige Oberflächenspannung und gute Durchlässigkeit für Gase.

Anwendungen für Silikonöle

  • Wärmeüberträger (Heizbad im Labor)
  • Gleit- und Schmiermittel
  • Hydraulikflüssigkeit, z.B. im frostkalten Sibirien
  • Antihaftbeschichtungen (Sektkorken, Aufkleberuntergrund, Garne,…)
  • Füllstoff für Implantate
  • Bestandteil von Kosmetik und Pflegeprodukten wie Haar-Conditionern

Silikone in Pflegeprodukten? Sind die nicht furchtbar böse?

In letzterem Bereich, Kosmetik und Haarpflegeprodukte, sind Silikone in den Medien sehr umstritten. Das rührt letztlich von ihrer Funktionsweise her. In Pflegeprodukten werden die unlöslichen Silikone durch aufwändige und genau abgestimmte ‘Formulierungen’ mit den anderen Bestandteilen mischbar gemacht. So können wir sie z.B. mit einer Pflegespülung in die Haare einmassieren.

Beim Auswaschen mit Wasser geht diese Feinabstimmung allerdings verloren. Die Silikone verlassen folglich das Gemisch (Chemiker sagen “sie fallen aus”) und bleiben auf den Oberflächen, die sie gerade antreffen: Unseren Haaren. Und genau das ist ihr Sinn und Zweck: Die glatte, andere Stoffe abweisende Silikonschicht lässt die Haare glatt und glänzend wirkend. Da Silikone aber schlecht löslich sind, besteht die Gefahr, dass sie sich in immer dickeren Schichten ansammeln (Haarpflege-Experten nennen das “Build-up”). Den Haaren schadet das nicht direkt, aber sie werden dadurch immer dicker und schwerer.

Gleiches gilt auch für die Hautoberfläche: Ein sich dort bildender Silikonfilm kann allerdings auch den Stoffaustausch über die Haut und ihre Poren beeinträchtigen. So kann er die Entstehung bzw. Verschlimmerung von Hautunreinheiten fördern. Überdies gelangen ab- und ausgewaschene Silikonöle mit dem Abwasser in die Klärwerke, wo sie mangels Abbaubarkeit im unlöslichen Klärschlamm landen.

“Böse” ist sehr relativ

ABER: Bei all dem sind Silikone nicht giftig. Anders als viele andere Stoffe stellen sie somit keine direkte Gefahr für uns und die Lebewesen in unserer Umwelt dar. Überdies sind sie laut meiner Kollegin Mai die am besten wirkenden Haar-Conditioner, die wir kennen. Hier ist das spannende Mailab-Video, in dem es auch um Silikone geht:

Deshalb haben sich die Hersteller von Haarpflegemitteln auch darum gekümmert, uns das Abwaschen von Silikonölen leichter zu machen.  Mit Hilfe von passenden Tensiden können Silikone nämlich durchaus mit Wasser gemischt werden (wenn auch nicht wirklich gelöst: “wasserlösliche Silikone” sind Werbesprech für ebendiese Kombination von Silikonen mit “ihrem” Tensid!). Es macht also durchaus Sinn, Conditioner (mit dem Silikonöl) und Shampoo (mit dem passenden Tensid) der gleichen Produktreihe zu verwenden, sodass etwaige Silikonreste von der letzten Behandlung vor dem Eintreffen der nächsten Ladung beseitigt werden können.

Polyquaternium: (K)Eine Alternative

Eine verbreitete Alternative zu Silikonen in Kosmetik sind Polyquaterniumverbindungen. Das sind Polymere, die z.B. Zellulose ähneln, aber zusätzlich Stickstoffatome mit vier Bindungen enthalten. Da Stickstoffatome aber auf nur drei Bindungen ausgelegt sind, sind solche “quartären Amine” positiv geladen. Die funktionieren als Conditioner nicht ganz so gut wie Silikone, machen aber die gleichen Schwierigkeiten.

Zudem können Polyquaterniumverbindungen (wie z.B. Polyquaternium-7) Pigmentpartikel binden und so zu hartnäckigen Flecken auf Textilien (Handtüchern!), mit denen sie in Berührung kommen, führen. Und das lässt sich, nachdem sich die Verbindungen beim Duschen auf Haut und Haaren abgelagert haben, beim Abtrocknen kaum vermeiden.

Dahingegen ist die Angst vor Verunreingigungen von Polyquaternium-Verbindungen mit Acrylamid, unbegründet: Heute weiss man, dass wir mit der Nahrung wesentlich mehr (und immer noch zu wenig, um uns zu schaden) davon aufnehmen, als dass Spuren in Pflegeprodukten eine Rolle spielen würden.

Verwenden oder nicht?

Wie oft ist eine pauschale Aussage dazu schwierig, da Menschen so verschieden sind. Ich halte es da mit Mai: Sie hat lange, asiatisch-dicke Haare, bei denen ein Conditioner viel bewirken kann. Deshalb zieht Mai die wirksamen Silikone den Alternativen vor. Um eine Belagerung der Kopfhaut zu vermeiden, trägt sie den Conditioner allerdings nicht auf die Kopfhaut, sondern nur auf die unteren Enden der Haarsträhnen auf.

Menschen wie ich mit feinen Haaren, die zum Fetten neigen, haben allerdings weniger von der Wirkung eines Conditioners und mehr von seinen unerwünschten Eigenheiten. Deshalb benutze ich in der Regel auch keinen. Nichts desto trotz hat ein professioneller Conditioner vom Coiffeur (Friseur) mit Silikonöl (den habe ich für “Notfälle”) auch bei mir neulich Wunder in Sachen Kämmbarkeit gewirkt, nachdem sich meine Mähne nach einem Ausflug vollkommen verzottelt hatte.

Auch meine Sonnencreme enthält übrigens Silikonöl – das würde erklären, warum ich das Gefühl habe, dass der Wärmeaustausch über die beschmierte Haut beeinträchtigt ist. Aber ich vertrage das Produkt sonst sehr gut und sein Nutzen ist unumstritten, sodass ich es weiter verwenden werde.

Wer allerdings zu Hautunreinheiten neigt, sollte von Silikonen (und Polyquaternium) auf der Haut besonders Abstand nehmen.

Woran ihr Silikone in Produkten erkennt

Auf der Verpackung jedes Kosmetik- und Pflegeprodukts findet ihr eine Liste mit seinen Inhaltsstoffen gemäss der Internationalen Nomenklatur für Kosmetik-Inhaltsstoffe (INCI). Auch wenn diese Bandwurmnamen Nicht-Chemikern oft kryptisch erscheinen, sind Silikone doch leicht zu erkennen, da sie auf -cone oder -xane enden. Ein verbreitetes Beispiel ist Dimethicone – eine INCI-Bezeichnung für Poly(dimethyl)siloxan.

Polyquaternium-Verbindungen erscheinen in der Liste übrigens als “Polyquaternium” in Verbindung mit einer Zahl, z.B. “Polyquaternium-7”.

Silikonkautschuk

Flexible Backform aus Silikonkautschuk im Vergleich mit klassischer Backform aus Metall
Links: Flexible Kuchenform aus Silikonkautschuk: Dieser Kunststoff hält locker eine Stunde im Backofen aus! (EvaK / CC BY-SA)

Silikonkautschuk hat mit echtem Kautschuk, einem Naturprodukt, nichts gemein ausser der gummiartigen Konsistenz. Die bewahrt Silikonkautschuk dafür in dem grossen Temperaturbereich von -75 bis 250°C. Und das ganz ohne Weichmacher! Diese Konsistenz, die ihn zu einem praktischen Ersatz für echten Kautschuk macht, hat dem Silikonkautschuk seinen Namen gegeben. Er besteht aus miteinander vernetzten Silikonketten. Die sind allerdings auch unvernetzt als Paste oder Gussmasse lagerbar, sodass die Vernetzung zum “Gummi” an der Luft binnen Stunden oder Minuten herbeigeführt werden kann. Zudem ist Silikonkautschuk nicht nur wie alle Silikone sehr reaktionsträge, sondern man kann – anders als bei Naturprodukten – leicht nachvollziehen, was genau darin ist.

Silikonkautschuk...aber was ist das?
Was ist das wohl? (Tatsuo Yamashita / CC BY)

Anwendungen für Silikonkautschuk

  • Elastische Back- und Eiswürfelformen
  • Nuggis (Schnuller) und Sauger für Babyflaschen
  • Dichtungsmasse für Fugen (zum Aushärten an der Luft)
  • Implantate
  • Technische Bauteile, Kabelummantelungen, elektrisches Isoliermaterial
Faltbarer Becher aus Silikonkautschuk
Ein faltbarer Becher aus Silikonkautschuk! Platzsparend für die Handtasche… Den Symbolen auf der Packung nach nehmen Japaner mit dessen Hilfe wohl ihre Tabletten. (Tatsuo Yamashita / CC BY)

Silikonharze

Noch stärker vernetzt als im Silikonkautschuk sind die Ketten in Silikonharzen. Dementsprechend sind diese Stoffe hart oder thermoplastisch (d.h.. nur bei höheren Temperaturen formbar). Sie können in flüssiger bzw. plastischer, also wenig vernetzter Form vertrieben und nach dem Auftragen durch Hitzeeinwirkung zum Aushärten gebracht werden. Die gehärteten Silikonharze sind dann sehr beständig gegenüber Wettereinflüssen.

Strukturformel für ein Silikonharz
Dicht vernetzt: Struktur eines Silikonharzes

Anwendungen für Silikonharze

  • Temperatur- und witterungsbeständige Lacke und Beschichtungen
  • Gebäude-Schutzüberzüge (wasserabweisend)
  • Isolierlacke
  • Giessharz für Isoliermaterial

Zusammenfassung

Silikone sind reine Kunstprodukte, die einzigartige Vorteile für viele Anwendungen bieten. Vor allem in Bereichen, in welchen sie mit dem Körper in Kontakt kommen oder hohe Temperaturen herrschen, denen andere Kunststoffe nicht standhalten, sind sie sehr beliebt. Nachteilig ist die schwierige Abbaubarkeit in der Umwelt – die aber dadurch relativiert wird, dass Silikone für Organismen nicht giftig sind!

Wie rund um alle Kunststoffe wird auch zu Silikonen laufend geforscht und Materialien weiterentwickelt, sodass von früher bekannte Nachteile heute immer weniger von Bedeutung sind. So ordne ich die Silikone heute mehr denn je als “sauberste”, also ungiftigste und risikoärmste Vertreter der grossen Familie die Kunststoffe ein.

Und wie steht ihr zu Silikonen? Achtet ihr darauf, wo ihr ihnen begegnet? Verwendet ihr gezielt silikonfreie Pflegeprodukte? Wenn ja, zu welchen Alternativen greift ihr? Oder seht ihr den Silikonen ähnlich gelassen entgegen wie Mai und ich?

Additive : Böse Stoffe in Plastik - Was ist wirklich drin?

Welch ein Zufall: Da plane ich diesen Artikel über über Zusatzstoffe, sogenannte Additive, in Kunststoffen und Gefahren für uns, die davon ausgehen sollen. Und auf Facebook stolpere ich heute morgen über einen Artikellink mit dem Titel “Kinder in Deutschland haben zu viele Chemikalien im Blut” und eindeutigem (wenn auch nicht korrektem) Bezug im Bild auf Plastik-Spielzeug.

Die Reaktionen sind mustergültig: “Zuviel Plastikspielzeug”, “Zuviel made in China”, “Wir werden von unseren Lebensmitteln vergiftet…”, “Wasser in Plastikflaschen…”, “gespritztes Obst…”, “Impfungen…” (WTF? Was in Impfstoffen drin ist, erfahrt ihr anbei hier!),…

Zur Aufklärung: Es geht in besagtem Artikel um PFAS-Chemikalien, eine Gruppe von Verbindungen, die vor allem bei der Herstellung von Teflon zum Einsatz kommt. Diesen besonderen Kunststoff kennen wir nicht nur als Beschichtung von Bratpfannen. Er ist auch als Bestandteil wasserabweisender Textilien, zum Beispiel im Outdoor-Bereich (“GoreTex”). Dabei sind PFAS gar keine Additive im eigentlichen Sinne, sondern Hilfsstoffe, die bei der Produktion verwendet werden und nachher entsorgt werden müssen.

Die zitierten Kommentare wiederum sind ebenso weit hergeholt wie auf den Aufschrei übertragbar, der auf die Erwähnung eigentlicher Kunststoff-Zusätze folgt. Und um die – beziehungsweise um die beliebtesten Zankäpfel unter ihnen – soll es hier und heute gehen.

Was sind Kunststoff-Additive und warum können sie zum Problem werden?

Wie ich im 1×1 der Kunststoffe genauer erkläre, bestehen Kunststoffe aus riesenlangen Kettenmolekülen (sogenannten Polymeren). Die wiederum stellt man her, indem man kleine Gliedmoleküle in chemischen Reaktionen fest miteinander verbindet. Die Ergebnisse kennen wir meist als mehr oder minder flexible, leichte und robuste Feststoffe (“Plastik”), deren Eigenschaften die Hersteller genau nach ihren Wünschen designen können.

Und dabei kommen die Additive zum Einsatz. Vieles, was Polymerketten und -netze nicht alleine können, erreichen die Kunststoff-Designer, indem sie die Polymere mit anderen, kleinen Molekülen vermischen. Die bleiben zwischen den Polymerfäden und -maschen hängen und machen die Kunstoffe weicher, feuerfest, farbig, widerstandsfähig gegenüber Verwitterung und vieles mehr.

Das Problem dabei: Die Moleküle, die im Fadengewirr hängen bleiben, sind sehr viel weniger fest im Kunststoff gebunden als die Kettenglieder der Polymere selbst. Die Additive können also mehr oder weniger leicht aus dem Kunststoff herauskommen und in dessen Umgebung, zum Beispiel den Inhalt von Behältern, einwandern. Und nicht alle davon sind gesundheitlich unbedenklich.

Aus der unüberschaubaren Vielfalt der Plastik-Zusatzstoffe habe ich mir ein paar Bereiche herausgegriffen, dir mir besonders populär und damit vieldiskutiert erscheinen:

  • Weichmacher
  • Bisphenol A (und Verwandte)
  • PET-Getränkeflaschen

Weichmacher

Viele unserer Alltagskunststoffe sind bei uns angenehmen Temperaturen hart und spröde. Dabei benötigen wir in einer Vielzahl von Situationen weiche und flexible Stoffe. Deshalb haben die Kunststoffhersteller verschiedene Kniffe entwickelt, um solche Stoffe schaffen:

Passende Struktur aus Polymerfäden

Die Kunststoffe Polyethylen (PE) und Polypropylen (PP) kennen wir in zwei Erscheinungsformen: Als festes, steifes Material (z.B. für “Tupper”-Dosen) und als durchsichtige, flexible Folie (z.B. für Gefrierbeutel). Beide Varianten bestehen jeweils aus der gleichen Sorte Polymer – Ketten aus Ethylen- bzw. Propylen-Gliedern. Der Unterschied besteht in der Verknüpfung dieser Ketten.

Festes Polyethylen (oder -propylen), oft gekennzeichet als PE-HD bzw. HDPE (oder PP-HD bzw. HDPP) besteht aus einfachen, unverzweigten Polymerketten. Die lassen sich säuberlich und dicht nebeneinander anordnen, etwa wie Spaghetti in einer Packung, sodass der Kunststoff eine kristallähnliche Struktur erhält. Das “HD” in der Kennzeichnung steht deshalb für “high density”, also “hohe Dichte”.

In den folienartigen weichen Spielarten dieser Kunststoffe sind die Ketten dagegen verzweigt: Von einigen Kettengliedern zweigen mehr oder weniger lange Seitenketten ab. Ein Kunststoff aus solchem Molekülen gleicht eher einem Haufen Daunen, deren Kiele ebenfalls Fasern tragen. Daunen lassen sich kaum säuberlich aufschichten, gleiten aneinander vorbei und sind als Haufen leicht und fluffig. So verhält es sich auch mit weichem PE oder PP, die deshalb als PE-LD bzw. LDPE (oder PP-LD bzw. LDPP), also mit “low density” – “niedriger Dichte” – bezeichnet werden.

Polyethylen und Polypropylen enthalten deshalb keine Weichmacher – die sind gar nicht nötig!

Innere Weichmachung durch Copolymere

Eine all zu dichte Anordnung von Polymerketten können Hersteller auch vermeiden, indem sie Ketten aus verschiedenen Gliedern zusammensetzen. Solche Ketten aus sich mehr oder minder regelmässig abwechselnden Gliedern nennen die Kunststoffchemiker Copolymere. Durch die Auswahl (un-)passender Zwischenglieder können solche Copolymere weicher als die ursprünglichen Kunststoffe gestaltet werden. Die als “Weichmacher” verwendeten Zwischenglieder werden dabei ebenso fest wie die übrigen Glieder in die Ketten gebunden. Man nennt das Verfahren deshalb “innere Weichmachung”.

Innere Weichmacher können “ihren” Kunststoff ebenso wie die anderen Kettenglieder im Normalfall praktisch nicht verlassen!

Äussere Weichmachung durch Additive

Wenn die beiden oberen Verfahren nicht in Frage kommen, können Polymere mit kleineren Molekülen gemischt werden, die wie ein Lösungsmittel wirken. Im Gemisch mit solchen Weichmachern sind die Polymerketten leichter gegeneinander beweglich und ein wenig auf Abstand zueinander. Die Struktur des Kunststoffs ist damit “fluffiger” als eine kristallähnliche Packung Spaghetti.

Unter den Alltagskunststoffen ist diese “äussere Weichmachung” vor allem für Polyvinylchlorid (PVC) von Bedeutung. Neben Kabeln und Folien ist Weich-PVC auch als Material für Spielzeuge, zum Beispiel Badeenten, beliebt – und kontrovers diskutiert.

Lieblings-Weichmacher für PVC: Phthalate

Die mit am weitesten verbreiteten Weichmacher für PVC sind Ester der Phthalsäure (gesprochen Ftálsäure, die unsägliche Rechtschreibung kommt von der Übertragung von griechisch “ναφθα” (naphtha) = Erdöl in die lateinische Schrift), genannt Phthalate.

Allgemeine Strukturformel für Phthalate mit Benzolring
Grundstruktur aller Phthalate: Die Reste R1 und R2 stehen für Kohlenwasserstoffketten mit 4 bis 15 Kohlenstoff-Atomen. Im DEHP-Molekül bestehen beide Reste aus je 8 Kohlenstoff-Atomen und haben je eine Verzweigung.

In der Vergangenheit meistgebraucht und entsprechend berüchtig ist das Diethylhexylphthalat (DEHP), das auch asl Dioctylphthalat (DOP) bekannt ist.

Warum Weichmacher problematisch sind

Das Problem dabei: Es hat sich herausgestellt, dass dieses Molekül im menschlichen Körper ähnliche Wirkungen wie Geschlechtshormone entfalten kann. Durch die Aufnahme von DEHP kann also der Hormonhaushalt im Körper durcheinandergebracht werden, was unter anderem die Fortpflanzungsfähigkeit beeinträchtigen, Leber und Nieren schädigen und möglicherweise sogar Krebs verursachen kann. Es ist also gar nicht erstrebenswert, dass dieser Zusatzstoff aus “seinem” Kunststoff aus- und in dessen Benutzer einwandert.

Deshalb ist DEHP in der EU schon lange als Bestandteil von Kleinkinderspielzeug verboten. Seit 2015 gibt es die Zulassung dafür überdies nur noch für medizinische Verpackungen. Firmen aus Übersee (vor allem aus Fernost) unterliegen diesem Verbot jedoch nicht unbedingt. So fährt letztlich am sichersten, wer seine Kunststoffprodukte von europäischen Herstellern bezieht.

Dort kommen nämlich Ersatzstoffe für DEHP zum Einsatz, die anders als Phthalate als unbedenklich gelten. Ein Beispiel ist “Hexamoll DINCH”. Die Moleküle dieses Stoffgemischs sind unübersehbar mit den Phthalaten verwandt, weisen aber einen in Sachen Hormonwirkung entscheidenden Unterschied auf:

Allgemeine Strukturformel für Bestandteile von Hexamoll-DINCH ohne Benzolring
Grundstruktur der Bestandteile von Hexamoll-DINCH: Im Unterschied zu den Phthalaten enthalten diese Moleküle keinen Benzolring, sondern einen einfachen Kohlenstoffring. Was in dieser Skelettformel nicht zu sehen ist: Im einfachen Kohlenstoffring kommen auf jede freie Ecke zwei Wasserstoffatome, die nach vorn und hinten ragen. Ausserdem sind solche Ringe naturgemäss geknickt. Im Benzolring gibt es hingegen nur ein Wasserstoffatom je freie Ecke, das jeweils in der Ebene des flachen Ringes liegt. Damit unterscheiden sich die Formen von Phthalaten und diesen Molekülen ganz erheblich.

Tatsächlich geht der Einsatz von Phthalaten in Kunststoffprodukten laut Testergebnissen der Stiftung Warentest in den letzten Jahren merklich zurück.

Bisphenol A

Bisphenol A und andere mit ihm verwandte Bisphenole werden zuweilen im Zusammenhang mit Weichmachern genannt. Dabei sind sie selbst gar keine Weichmacher, sondern Antioxidantien. Sie werden einem Kunststoff zugegeben, damit sie verhindern, dass Weichmacher darin durch Oxidation zersetzt werden.

Ausserdem dienen sie als Kettenglieder für die Herstellung von Polycarbonaten, einer weiteren Sorte Kunststoffe, und sind als Bestandteile von Thermopapier (z.B. für Kassenbons) und Epoxidharzen (Kunststoffe z.B. zur Beschichtung von Behältern) bekannt.

Das Problem mit den Bisphenolen ist das gleiche wie mit den Phthalat-Weichmachern: Sie können “ihre” Kunststoffe verlassen und haben eine hormonähnliche Wirkung. Da sie uns in der Vergangenheit in vielen Bereichen besonders nahe kamen, haben sie deshalb einen ziemlich schlechten Ruf.

Bisphenole verschwinden aus unserer Umgebung

“Vergangenheit” ist jedoch das entscheidende Stichwort: Bisphenole verschwinden zunehmen aus den Kunststoffen im Lebensmittelbereich und unserer direkten Umgebung.

So waren Polycarbonate bis vor knapp 10 Jahren ein beliebtes Material für Babyflaschen. Aufgrund der Sorge, aus den Polycarbonaten könnten Bisphenole in Milch&Co einwandern, werden Babyflaschen jedoch schon seit 2011 in Europa aus anderen, unbedenklichen Kunststoffen wie PE oder PP hergestellt. Wenn eure Flaschen also jünger als 9 Jahre sind, braucht ihr euch um Bisphenole keine Sorgen zu machen.

Auch als Bestandteil von Thermopapieren sind Bisphenole seit diesem Jahr (2020) sowohl in der EU als auch in der Schweiz verboten. Viele Supermärkte haben allerdings schon vor Jahren auf bisphenolfreie Kassenzettel umgestellt.

Was ist gefährlicher? Bekanntes oder Unbekanntes?

Nicht nur viele Forscher, sondern auch Regierungen beschäftigen sich mit Bisphenol A und seinen Verwandten hinsichtlich unerwünschter Wirkungen in verschiedenen Bereichen. Während die EU die Verwendung schon in den vergangenen Jahren immer stärker eingeschränkt hat, hat sich die Schweizer Regierung bislang auf den Wissensstand von 2009 berufen. Dem gemäss seien die unerwünschten Wirkungen von Bisphenol A zwar gegeben, aber erst ab einer Dosis, mit der wir Endverbraucher gar nicht in Berührung kämen. Deshalb haben die Schweizer mit Verboten zunächst gezögert und damit einem weiteren Problem Rechenschaft getragen:

Das Verbot von in der Industrie weit verbreiteten Stoffen macht die Verwendung von Ersatzstoffen nötig. Und die sind oft viel weniger erforscht als lang verwendete und oft untersuchte Stoffe. So ist stets abzuwägen, was letztendlich schädlicher ist: Die ‘Katze im Sack’ in Folge eines vorschnellen Verbots oder ein Übel, das dank seiner Bekanntheit klein gehalten werden kann.

Wichtig ist, eine Entscheidung für das kleingehaltene Übel regelmässig zu überprüfen. Denn der Stand der Wissenschaft ist glücklichlicherweise einem steten Wandel unterzogen. So können nicht nur die möglichen Gefahren des kleingehaltenen Übels immer näher bestimmt, sondern auch die Katzen aus dem Sack geholt und untersucht werden, bevor man sie auf die Allgemeinheit loslässt.

Bisphenole werden, in der EU schneller als in der Schweiz, zunehmend aus den Kunststoffen in unserer Umgebung verbannt. Inwieweit Ersatzstoffe einen Vorteil bringen, wird sich erst noch erweisen.

Additive in PET-Getränkeflaschen?

Ebenfalls heiss diskutiert werden Meldungen um Stoffe, die aus PET-Flaschen in Getränke gelangen sollen, nicht zuletzt unter dem Einfluss von Wärme, Sonne, säurehaltigem Inhalt und ähnlichen Faktoren. Tatsächlich gibt es Studien, die eine hormonähnliche Wirkung von Getränken in solchen Flaschen nach Lagerung unter solchen Bedingungen aufzeigen.

Darin liegen aber gleich zwei Hunde begraben:

Der erste wird schon im vorangehenden Satz ersichtlich: Die Studienersteller messen eine hormonähnliche Wirkung, stellen aber nicht fest, von welchem Stoff bzw. welchen Stoffen sie ausgeht.

Der zweite bezieht sich auf die gemessenen Mengen. Da die Forscher nicht wissen, nach welchem Stoff sie suchen, messen sie die Hormonwirkung als ‘entsprechend der Wirkung des Geschlechtshormons Östradiol’. Zunächst war, laut DLG, von Werten bis zur Entsprechung von 75 Nanogramm, das sind 75 Milliardstel oder 0,000000075g Östradiol pro Liter die Rede. Gefunden hat das deutsche Bundesamt für Risikobewertung schliesslich die Entsprechung von 5 Picogramm, also 5 Billionstel oder 0,000000000005g Östradiol pro Liter Mineralwasser.

Das heisst, selbst wenn nun jemand misst, die Hormonwirkung sei in Limonade, oder nach drei Tagen in der Sonne, oder… um 100% höher – also doppelt so hoch – handelt es sich immernoch um Werte im Bereich von Billionsteln Gramm pro Liter. Solche Zahlen wecken meine Hochachtung vor der unglaublichen Genauigkeit der Spurenanalytik, sind aber für eine spürbare Wirkung im “richtigen Leben” nicht relevant.

Nichts desto trotz wird heiss diskutiert, was für diese hormonähnliche Wirkung verantwortlich sein mag.

Wo könnten hormonähnlich wirkende Stoffe herkommen?

Additive wie Phthalat-Weichmacher

Der Fund von hormonähnlich wirkenden Stoffen im Inhalt von PET-Flaschen legt den Gedanken an Weichmacher, die genau dafür bekannt sind, nahe. Allerdings sollen PET-Getränkeflaschen ja steif sein und ihre Form bewahren können. Die bekannte Flexibilität beruht nämlich auf der enormen Dünne des Materials, die die Festigkeit gerade notwendig macht. Allein deshalb enthält Getränkeflaschen-PET gar keine Weichmacher.

Dazu kommt, dass Zusatzstoffe das Recycling von Kunststoffen erheblich erschweren können. Deshalb sind sie in PET-Flaschen allgemein um so weniger zu erwarten, je ausgefeilter der PET-Recyclingkreislauf des Herkunftslandes ist.

Das Material PET als solches

PET steht für Polyethylenterephthalat. In diesem Wort fällt schnell einmal die unsägliche Schreibweise mit ph und th hintereinander auf und verleitet dazu, an eine Verwandschaft mit Phthalaten zu denken. Tatsächlich sehen die namensgebenden Kettenglieder dieses Polymers so aus:

Strukturformeln von Terepthalsäure und Ethandiol
Die beiden Gliedmoleküle, aus denen PET-Ketten bestehen: Links Terephthalsäure, rechts Ethandiol

Gemeinsam haben Phthalsäure und Terephthalsäure den Benzolring mit zwei Carbonsäuregruppen. Der entscheidende Unterschied besteht aber darin, dass die Säuregruppen der Terephthalsäure an gegenüberliegenden Ecken des Benzolrings stehen. Währenddessen befinden sich jene der Phthalsäure in den Weichmachern an benachbarten Ecken. Die Form der Moleküle ist damit vollkommen unterschiedlich.

Da Hormone im Körper nun ihre Botschaften überbringen, indem sie in massgeschneiderten Taschen von Proteinen binden, ist die Form ihrer Moleküle aber entscheidend für die Wirkung. So kann davon ausgegangen werden, dass Terephthalsäure und ihre Ester die Hormonwirkung von Pththalaten nicht nachahmen kann.

Frühere Inhalte von recycelten PET-Behältern

Kosmetik- und Hygieneartikel, zum Beispiel Shampoo, können hormonähnlich wirksame Stoffe enthalten, die in ihre Behälter aus- und nach deren Recycling in den neuen Inhalt einwandern mögen. So zumindest die Vorstellung. Auch deshalb wohl werden Shampoo- und ähnliche Flaschen meist gar nicht aus PET hergestellt. Zudem sind sie, wenn es sie doch gibt, – vor allem in der Schweiz – gar nicht Teil des Recyclingkreislaufs für PET-Getränkeflaschen.

Rückstände von Antimontrioxid

Antimontrioxid (Sb2O3) wird bei der Herstellung von PET als Katalysator eingesetzt. Da ist kaum vermeidbar, dass ein winziger Rest davon im Kunststoff zurückbleibt. Anders in Glas: Für dessen Herstellung der Katalysator nicht gebraucht, deshalb ist in Glas gar kein Antimontrioxid drin.

Auch dieses Salz ist, wenn es in zu grossen Mengen auftritt, für eine hormonähnliche Wirkung bekannt. Deshalb hat die WHO einen Grenzwert für den Gehalt von 5 Mikrogramm (0,000005g) Antimontrioxid pro Liter Trinkwasser festgelegt (und der ist in der EU Gesetz). Untersuchungen zeigten jedoch, dass dieser Grenzwert selbst bei jahrelanger Lagerung von Getränken in PET-Flaschen oder unter ungünstigen Bedingungen gar nicht überschritten werden kann. Eine bedenkliche Hormonwirkung seitens Antimontrioxid in PET-Flaschen gibt es folglich nicht.

Der eigentliche Inhalt der PET-Flaschen

Aufgrund ihrer weiten Verbreitung in (nicht all zu viel) früheren Zeiten sind Phthalate in unserer Umwelt heute allgegenwärtig. Da würde ich nicht ausschliessen wollen, dass sie auf anderen Wegen als aus den PET-Flaschen in die Getränke geraten. Auch wenn es auch diesbezüglich strenge Grenzwerte gibt.

Ausserdem sind Wärme und vor allem Sonnenstrahlung mächtige Triebkräfte für chemische Reaktionen. Was dabei aus den verschiedenen Inhaltsstoffen von Softdrinks entstehen mag (etwas mit hormonähnlicher Wirkung?), kann ich keinesfalls überblicken (und wäre vermutlich auch für Wissenschaftlerteams in Labor sehr aufwändig).

Obwohl diese beiden Punkte ziemlich spekulativ sind, würde ich spontan in diesem Bereich nach Ursachen für die gefundene hormonähnliche Wirkung suchen – sofern sich das bei deren geringem Umfang überhaupt lohnt.

Woher rührt dann der oft monierte “Plastik”-Geschmack?

Eine PET-Flaschenwand kommt keineswegs einer hermetischen Abriegelung gleich. Stattdessen ist sie vor allem für kleine Gasmoleküle durchlässig. So können Stoffe wie CO2 zwischen Inhalt und Aussenraum ausgetauscht werden. Das kann wiederum dazu führen, dass kohlensäurehaltige Getränke in einer geschlossenen PET-Flasche mit der Zeit ein wenig “schal” werden (da sich durch das Entweichen von CO2 wiederum Kohlensäure im Getränk zersetzt). Mit der Kohlensäure geht dem Getränk, selbst Wasser, auch eine säuerliche Geschmacksnote verloren.

Ausserdem gibt es tatsächlich einen Stoff, der aus PET in dessen Inhalt einwandern kann: Acetaldehyd. In grossen Mengen giftig (z.B. verursacht es den “Kater” bei starkem Alkoholkonsum) kommt dieses Molekül in Spuren praktisch überall vor, wo Leben ist. Kleine Mengen davon kommen also nicht nur in unserem Körper, sondern auch in Säften und Softdrinks naturgemäss vor. So schaden sie uns nicht.

Allerdings hat Acetaldehyd einen süsslichen Geschmack, den wir schon bei ziemlich kleinen Mengen (20 Mikrogramm pro Liter) wahrnehmen. In Süssgetränken fällt der gar nicht auf. Den Geschmack von Wasser kann er allerdings spürbar verändern. Deshalb achten Getränkehersteller darauf, das Auswandern von Acetaldehyd aus ihren Wasserflaschen zu verhindern (bzw. den Gehalt daran niedrig zu halten).

Dazu kann wiederum ein Additiv namens Anthranilamid eingesetzt werden, das das Acetaldehyd im Kunststoff bindet, seinerseits aber (in wesentlich geringeren Mengen) in den Inhalt einwandern kann. Dort verursacht es aber weder einen Geschmack noch eine hormonähnliche Wirkung.

Eine schnelle Geschmacksveränderung in PET-Flaschen-Wasser mag also ein Hinweis darauf sein, dass Acetaldehyd, aber kein Anthranilamid im Material ist. In Flaschen für Süssgetränke und Säfte ist dagegen niemals Anthranilamid.

Die in PET-Flaschen gefundene hormonähnliche Wirkung ist marginal und das Material sehr wahrscheinlich nicht die Ursache. Geschmacksveränderungen rühren von Gasaustausch und harmlosem Acetaldehyd her.

Fazit

Bezüglich bedenklichen Zusatzstoffen in Kunststoff hat sich in den letzten Jahren und Jahrzehnten vieles getan. Was vor zehn oder mehr Jahren problematisch war, ist heute oft Geschichte oder auf dem besten Weg, dazu zu werden.

Zudem wird in den Medien so manches in Bezug auf Additive in Kunststoffen heisser gekocht als ihm gebührt.

Was ihr selbst tun könnt, um schädlichen Additiven aus dem Weg zu gehen

  • Frei nach meinem persönlichen Paretoprinzip: Meidet Kinderspielzeug und andere Kunststoffgegenstände für körpernahe Anwendungen zweifelhafter Herkunft. Zieht solche namhafter europäischer Hersteller vor.
  • Informiert euch bei der Stiftung Warentest bzw. dem Schweizer K-Tipp über die gefundene Belastung in einzelnen Produktgruppen. Tests mit schwerwiegendem Ergebnis werden im Laufe der Zeit oft wiederholt. So lohnt es sich, von Zeit zu Zeit nach Veränderungen bei den einzelnen Herstellern zu schauen.
  • Ersetzt Gegenstände wie Babyflaschen, die aus Zeiten vor der jeweiligen Ausmusterung kritischer Materialien stammen, durch neue.
  • Behaltet angesichts reisserischer Meldungen oder heisser Online-Diskussionen zu Plastik und Zusatzstoffen die Nerven. Informiert euch, bevor ihr unnötig Panik schiebt. Ich stehe immer gerne für Fragen zur Verfügung.

Und wie steht ihr Zusatzstoffen in Plastik gegenüber? Bereiten sie euch Sorgen? Oder geht ihr damit gelassen um?

Mehr rund um Kunststoffe findet ihr hier in Keinsteins Kiste:

Kunststoff - Recycling : So funktionierts

Ruhrpott, Deutschland, 2006: Reto, ein waschechter Schweizer und mein damals neuer Liebster, ist zu Besuch an meinem Studienort. Was mir traurig, wenn auch alltäglich erscheint, schockiert ihn zutiefst: Den überall herumliegenden Abfall ist er aus der Schweiz nicht gewohnt – zumindest nicht in solchen Mengen. Besonders Kunststoff-Verpackungen fallen uns vielerorts ins Auge. Dabei gibt es schon seit meiner Kindheit die “gelbe Tonne” und dahinter ein ausgefeiltes Recycling-System. Ganz zu schweigen von all den Abfalleimern im öffentlichen Raum.

Wenige Jahre später habe ich die Seiten gewechselt und musste Reto bald recht geben: Was die Abfall-Entsorgung betrifft, sind die Schweizer generell ordentlicher als meine Landsleute. Nach 10 Jahren unter den Eidgenossen wird allerdings deutlich: Auch hier wird Littering zunehmend zum Problem.

Da braucht es gar keine Horrorbilder und -meldungen von verschmutzten Stränden und Plastik in Tiermägen und dem Marianengraben, um zu begreifen, dass wir ein Problem haben.

Recycling – das Thema ist ein Dauerbrenner

Eigentlich haben wir gleich zwei Probleme:

  1. Klassische Kunststoffe sind Erdölprodukte. Sie werden also aus einem fossilen Rohstoff hergestellt, der irgendwann zur Neige geht.
  2. Klassische Kunststoffe werden kaum bis gar nicht biologisch oder von den Naturkräften abgebaut.

Beide sind nichts neues, sondern uns seit Jahrzehnten bewusst. Deshalb tüfteln Forscher und Ingenieure ebenso lang schon an Methoden, “verbrauchtes” Plastik wieder zu verwerten. Sie entwickeln Verfahren und bauen Recycling-Kreisläufe immer weiter aus. Die Schweizer bezeichnen sich gar als Weltmeister im Recycling von Abfällen – auch von Kunststoffen.

Aber welche Kunststoffe können wirklich recycelt werden? Wie funktioniert das? Wie könnt ihr zum nachhaltigen Umgang mit Plastik beitragen?

Welche Kunststoffe sind recycelbar?

Am einfachsten wiederverwendbar sind möglichst reine Stoffe. Ein Material, das aus nur einem Stoff besteht, hat nämlich durchgehend die gleichen Eigenschaften und kann mit einem einzigen, daran angepassten Verfahren behandelt werden. Das gilt auch für Verbundmaterialien, deren einzelne Bestandteile sich leicht voneinander trennen lassen.

Nicht trennbare Verbundmaterialien und Kunststoffe, die mit vielen Zusatzstoffen, sogenannten Additiven (z.B. für Farbeffekte, Weichmacher, Brandschutz,…), vermischt sind, lassen sich nur schlecht oder gar nicht wiederverwenden.

Thermoplaste als Recycling-Favoriten

Besonders für eine Wiederverwertung geeignet sind jene Kunststoffe, die bei hohen Temperaturen weich und formbar werden – die sogenannten Thermoplaste. Die kann man nämlich schreddern, erhitzen und zu neuen Gegenständen formen, ohne dass sich ihre Moleküle dabei verändern (zumindest im Optimalfall).

Zu den Thermoplasten gehören auch die verbreitetsten Alltagskunststoffe Polyethylenterephthalat (PET), Polyethylen (PE) und Polypropylen (PP) (Einzelheiten zu diesen Stoffen erfahrt ihr im Plastik-1×1 hier in Keinsteins Kiste). Da verwundert es nicht, dass gerade diese Kandidaten die grösste Rolle beim Recycling von Alltagsabfällen spielen. Allerdings gelingt auch das nur dann wirklich gut, wenn die Hersteller schon bei der Erstverarbeitung dieser Kunststoffe auf die Recyclingfähigkeit achten. Wie das geht, verraten Guidelines für die Industrie, verfasst von den Recycling-Verantwortlichen.

Auch Polyvinylchlorid (PVC) ist ein Thermoplast. Bei diesem Kunststoff gestaltet sich das Recycling (wie auch die Verwendung im Lebensmittelbereich) schon kniffeliger, weil er in vielfältiger Form verwendet wird und (besonders als Weich-PVC) kaum ohne Additive auskommt. Trotzdem wird auch PVC recycelt, wenn auch vornehmlich im Bauwesen, wo grössere Mengen gleichartigen PVC-Materials anfallen.

Und was ist mit kompostierbaren Biokunststoffen?

Was nach der ultimativen Verwertbarkeit bzw. Entsorgung klingt, hat oft einen beachtlichen Haken. Biopolymere sind aus Kettengliedern zusammengesetzt, die Lebewesen entlehnt sind, wie die Milchsäure-Glieder des Polylactids (PLA). Damit sind sie grundsätzlich für den Abbau durch Lebewesen oder deren Bestandteile geeignet.

In der Praxis sind dafür aber oft Bedingungen nötig, die ein Komposthaufen oder die freie Natur nicht bieten. PLA ist beispielsweise nur in speziellen Anlagen bei unnatürlichen Temperaturen abbaubar. So macht PLA zur Abfallvermeidung bislang nur dann Sinn, wenn der Anbieter – zum Beispiel ein Park mit Imbissbetrieb – direkt mit einem PLA-Entsorger (und bestenfalls -Wiederverwerter) zusammenarbeitet.

Wie wird recycelt?

Kunststoffe kann man grundsätzlich auf zwei Arten wiederverwerten:

  1. Werkstoffliche Verwertung: Das Material (die Polymer-Ketten als solche bleiben (weitestgehend) intakt und werden nur zu neuen Gegenständen geformt. Das ist der wohl wünschenswerteste Weg, da so der grösste Teil des zur Herstellung des Kunststoffs getätigten Aufwands nicht noch einmal nötig ist. Für diesen Weg geeignet sind im Besonderen die Thermoplasten unter den Kunststoffen. In der Praxis sind solche Verfahren leider meist nicht unendlich wiederholbar: Die Polymere überstehen das Erhitzen oft nicht gänzlich unbeschadet, sodass das Recycling-Material oft eine weniger gute Qualität als der Kunststoff bei der Erstverwendung hat. Fachleute nennen diesen Effekt deshalb “Downcycling”.
  2. Rohstoffliche Verwertung: Die Polymerketten werden dabei gezielt zerlegt. Die entstehenden Kleinmoleküle sind nach wie vor wichtige Energieträger und können als Brennstoffe oder Rohmaterial für andere Erdölprodukte verwendet werden.

So werden einzelne Kunststoffe recycelt

PET (Polyethylenterephthalat)

In der Schweiz gibt einen einzigartigen, geschlossenen PET-Recycling-Kreislauf: Überall in der Öffentlichkeit findet man hier blau-gelbe Sammelbehälter für PET-Getränkeflaschen – in Geschäften, an Bahnhöfen, bei Veranstaltungen, in Parkanlagen, an Abfall-Sammelstellen und anderswo. Die darin gesammelten Flaschen können farblich sortiert und nach Abtrennung von Fremdstoffen zu Pressballen verarbeitet werden, die rund 98% reines PET ihrer jeweiligen Farbe enthalten. Infrarot-Technik und Laser machen es möglich.

Diese PET-Abfälle werden weiter gereinigt, zu Flocken geschreddert und von den Flaschendeckeln getrennt. Letztere bestehen nämlich aus PE, welches – anders als PET – weniger dicht als Wasser ist und folglich darauf schwimmt. Die PET-Flocken sinken derweil auf den Grund (Chemiker und Physiker nennen dieses Trennverfahren Sedimentation), sodassman die PE-Deckel einfach abgiessen oder abschöpfen kann.

Nach weiterer Reinigung sind die Flocken schliesslich so sauber, dass sie als Lebensmittel-Verpackungsmaterial zulässig sind. Dann werden sie eingeschmolzen und zu sogenanntem Re-Granulat, einem groben Kunststoff-Gries, verarbeitet. Als Thermoplast kann dieser PET-Gries schliesslich bei 250°C zu neuen Gegenständen zusammengesinter werden – zum Beispiel zu dickwandigen “PET-Rohlingen”, die, bereits mit Gewinde und Deckel versehen, eine Flasche erahnen lassen.

PET-Rohling: Nach Erst-Herstellung oder Recycling kann PET in dieser Form platzsparend zum Getränkehersteller transportiert werden.
Pet-Rohling oder “Petling” mit Deckel: Daraus wird einmal eine Flasche.

In dieser platzsparenden Form werden die Rohlinge oder “Preforms” an die Getränkeabfüller (oder auch an Geocaching-Begeisterte, die darin ihre Schätze verstecken) geliefert. In der Abfüll-Anlage werden die Rohlinge erneut erhitzt und zu fertigen Getränkeflaschen aufgeblasen.

So effektiv geht PET-Recycling

Der Betreiber des PET-Kreislaufs – im Übrigen ein Verein, also nicht-staatlich und nicht gewinnorientiert – behauptet, bei der Wiederverwertung von PET-Getränkeflaschen finde kein Downcycling statt. Zudem betrage die Recyclingquote für PET in der Schweiz mittlerweile 82%! Bei freiwilliger Beteiligung der Getränkehersteller und Abfallsammler wohlgemerkt. Das hält die Regierung, die ein Minimum von 75% zum Ziel erklärt hat, bis dato davon ab, ein Pfandsystem einzuführen.

Polyethylen und Polypropylen (PE bzw. PP)

Auch PE und PP sind Thermoplaste. So kann man sie in ähnlicher Weise wie PET-Flaschen verwerten. Allerdings erweichen sie bei wesentlich niedrigeren Temperaturen (PE schon ab 80°C, PP bleibt noch etwas weiter fest) und würden sich bei 250°C längst zersetzen. Deshalb sind für das Recycling von PE und PP jeweils eigene Kreisläufe und Anlagen nötig, um diese Kunststoffe gemäss ihren Eigenschaften zu behandeln.

Ausserdem kommen nur dafür geschaffene PE- und PP-Produkte für die Wiederverwertung in Frage. Und selbst dann geht das Einschmelzen in der Regel mit einem Downcycling einher. So kann beim Recycling von PE oder PP meist kein Material mit Lebensmittelqualität gewonnen werden. R-PE und R-PP kommen daher vornehmlich im Bauwesen, in Nicht-Lebensmittelverpackungen, der Landwirtschaft, in Fahrzeugen oder Elektronik zum Einsatz.

EPS/Styropor = “Quietschpapier”

Diese Form von Polystyrol (EPS steht für “Expandiertes Polystyrol”) birgt ein ganz besonderes Problem: Das Material, das wir als massgeschneiderte, stosssichere Verpackung oder Wärmedämmstoff kennen, besteht zu 98% aus eingeschlossener Luft und nur zu 2% aus dem eigentlichen Kunststoff und seinen Additiven. Das Ganze ist also ein enormer Platzfresser!

Der Transport zu einer Mühle, in der Styropor zermahlen und anschliessend zu Re-Granulat eingeschmolzen werden kann, braucht daher ein enormes Volumen für reichlich wenig Kunststoff-Masse. Trotzdem wird das gemacht und das Granulat kommt vornehmlich für Einsätze im Bauwesen zur Verwendung.

Um dem Transportproblem zu begegnen, hat das Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV ein neues Recycling-Verfahren für EPS entwickelt (und CreaSolv® getauft). Die Abfälle sollen dabei noch an der Sammelstelle in ein Lösungsmittel, das möglichst nur Polystyrol auflöst, eingebracht werden. Dabei entweicht die ganze Luft und Beistoffe können später leicht abgetrennt werden. In der Lösung nimmt die Kunststoffmasse nur 1/50 des Raumes ein, den das ursprüngliche EPS bräuchte, was den Transport erheblich erleichtert.

Getränkekartons

Das ist auch mir neu: In der Schweiz können auch Getränkekartons (“Tetrapak”) recycelt werden. Tatsächlich tragen solche, die man in den grossen Supermärkten bekommt, das Kennzeichen “für den Restmüll”. Erst bei der Recherche für diesen Artikel bin ich bei Swiss-Recycling zufällig auf den – einmal mehr privaten – Anbieter für die Wiederverwertung von Getränkekartons gestossen. Bislang gibt es nur 100 Sammelstellen, aber die nächste ist nur wenige Dörfer weiter. Da führe ich die Tetrapak-Trennung doch gleich bei uns im Haushalt ein. Anbei: Ja, es stimmt: Abfalltrennung ist hier in der Schweiz eine besondere Spezialität.

Warum ist das Tetrapak-Recycling nicht weiter verbreitet?

Getränkekartons sind ein typisches Verbundmaterial: Pappe, Kunststoff- und Aluminiumschichten sind darin fest miteinander verklebt. Das schützt den Inhalt und ist für feuchtfröhliche Experimente nützlich, aber ganz kniffelig zu recyceln.

Immerhin können die Pappfasern aus den alten Kartons herausgelöst und zu Wellpappe verarbeitet werden. Kunststoff und Aluminium werden dann als Brennstoff für die Erzeugung von Fernwärme oder Strom eingesetzt – wie übrigens auch der Restmüll oder -kehricht hierzulande.

So könnt ihr zum Recycling beitragen

In Deutschland und Österreich werden wiederverwertbare Kunststoffe gemischt gesammelt. Verpackungen, die als rezyklierbar gelten, tragen als Kennzeichen den “grünen Punkt”. Ihr könnt sie – möglichst sauber – in die gelbe Tonne bzw. den gelben Sack entsorgen, deren Inhalt die Müllabfuhr regelmässig abholt.

In der Schweiz ist, wie bereits erwähnt, viel Eigeninitiative gefragt. PET-Getränkeflaschen könnt ihr in die blau-gelben-Behälter an öffentlichen Sammelstellen werfen, um sie in den PET-Kreislauf zurückfliessen zu lassen. PE- und PP-Flaschen werden häufig von den Supermärkten zurückgenommen (haltet die Augen nach der Entsorgungswand innerhalb des Marktes offen!). Wenn ihr eine der Sammelstellen für Getränkekartons in eurer Nähe habt, könnt ihr eure Tetrapaks auch dorthin bringen. Und neu führt auch die Migros – eine der beiden grössten Supermarktketten – eine Gemischtsammlung für rezyklierbare Kunststoffe ein.

Was bringt euch der ganze Aufwand? Nicht nur ein reines Gewissen: Was immer ihr an diesen für euch kostenfreien Sammelstellen entsorgt, landet nicht im Hauskehricht (Restmüll), für den hierzulande deftige Gebühren pro Abfallsack zu entrichten sind. Bedingung für ein effektives Recycling ist allerdings, dass nur die gewünschten Abfälle in den jeweiligen Sammelstellen landen!

Warum gibt es keine zentrale Gemischtsammlung in der Schweiz?

Das Recycling aus einer Gemischtsammlung liefere eine verminderte Ausbeute und Qualität, sagen die Recyclingverantwortlichen in der Schweiz. Laut einem Beitrag des Verbrauchermagazins “Kassensturz” beim Schweizer Fernsehen (Moderation und Interviews in Mundart, Kommentar in Hochdeutsch) liege die Ausbeute oft unterhalb dessen, was private Anbieter einer Gemischtsammlung behaupten. Ausserdem ist die nachträgliche Sortiererei teuer. So teuer, dass das Geld sinnvoller für die Umwelt eingesetzt werden könne. Viele private Anbieter von Gemischtsammlungen in der Schweiz verkaufen deshalb die gesammelten Abfälle in die Nachbarländer – und können dann nicht mehr kontrollieren, was damit geschieht.

Das Paretoprinzip und die Müllvermeidung

Das lässt mich persönlich an das Paretoprinzip denken: Wenn 100% aller Bemühungen 100% der Ergebnisse bringen, seien demnach nur 20% der Bemühungen nötig, um 80% der Ergebnisse zu erzielen (und umgekehrt brächten die übrigen 80% der Bemühungen nur 20% der Ergebnisse. Ob die Zahlenverhältnisse genau so überall anwendbar sind, sei dahingestellt. Kern der Sache ist in meinen Augen, dass Perfektionismus unglaubliche Ressourcen verschlingen und dabei vergleichsweise wenig bringen kann.

Das ist besonders dann spannend, wenn man mit begrenzten Ressourcen zurechtkommen muss. Wie auch im Umweltschutz: Wie in vielen Bereichen ist die begrenzteste Ressource hier wohl das Geld. Und das mag an anderer Stelle (sei es zum Ausbau funktionierender Kreisläufe, zur Förderung der Verwendung rezyklierbarer oder zur Entwicklung völlig neuer Materialien) effektiver eingesetzt werden können, als zum Aussondern weniger wiederverwertbarer Stoffe aus einem grossen Rest, der am Ende in der Müllverbrennungsanlage landet.

Der Kassensturz-Beitrag kommt für den Kunststoffsammelsack der Migros (bislang nur im Raum Luzern erhältlich) noch zum besten Testergebnis: Der “orange Riese” sammelt nur ausgewählte Kunststoffe und lässt tatsächlich recyceln – noch dazu in einer Anlage in der Schweiz. Ich bin gespannt, ob das auch funktioniert, wenn die Sammlung bis zum Frühling 2021 auf das ganze Land ausgeweitet wird.

Grundsätzlich gilt: Je ausgewähltere und sauberere Abfälle ein Anbieter sammelt, desto besser ist die zu erwartende Ausbeute. Wenn ihr Säcke für die Sammlung gemischter Kunststoffe verwendet, beachtet daher unbedingt die Gebrauchsanweisung!

Wirklich effektiv gegen Plastikmüll geht so

Hier folge ich meinem persönlichen Paretoprinzip: Mit überschaubarem Aufwand möglichst viel erreichen! Klar sollte man nach Möglichkeit keinen Abfall produzieren. Aber nicht jeder hat einen Unverpackt-Laden in seiner Nähe, und eine weite Anfahrt kostet nicht nur Zeit und Geld, sondern auch Kraftstoff in irgendeiner Form, der wieder zu Lasten der Umwelt geht.

Sehr einfach sind aber folgende Massnahmen:

  • Verwendet Mehrweg-Einkaufssäcke /- behälter – nicht nur im Supermarkt, sondern auch im Kaufhaus und anderen Geschäften
  • Nutzt die Mehrweg-Gemüse-Netzbeutel, die hier in der Schweiz in beiden Grossverteiler-Ketten angeboten werden (gibt es die in D und Ö auch? Falls nicht, sind die ein tolles Andenken an euren nächsten Schweiz-Urlaub 😉 )
  • Achtet, wenn ihr Produkte in Kunststoff-Verpackungen, insbesondere Flaschen, kauft, auf ein rezyklierbares Design. Das könnt ihr an folgenden Eigenschaften (gemäss den Richtlinien für Verpackungs-Hersteller) erkennen:
    • Das Material: Das Recyclings-Symbol mit der Ziffer im Pfeil-Dreieck, oft auf dem Flaschenboden, verrät es euch: PE (Ziffer 02 bzw. 04), PP (Ziffer 05) oder PET (Ziffer 01) sind leicht wiederverwertbar.
    • Die Farbe: PE und PP sind von Natur aus matt weiss und undurchsichtig. PET ist dagegen von Natur aus durchsichtig. Oberflächeneffekte wie Fluoreszenz (“grelle” Farben!) oder “metallic”-Schimmer entstehen durch Zusatzstoffe und verhindern die Wiederverwertung!
    • Etiketten: Sollten nicht mehr als 80% (vier Fünftel) der Flaschenoberfläche bedecken.
  • Vermeidet Produkte, die übermässig verpackt sind. Ein Klassiker ist unnötig vorgeschnittenes Obst: Die meisten Früchte sind von Natur aus mit einer Schale ausgestattet, die besten Schutz vor äusseren Einflüssen bietet. Die braucht ihr nur selber aufzuschneiden.
  • Kauft Getränke in Mehrweg- oder PET-Flaschen (letztere insbesondere, wenn ihr in der Schweiz seid) und entsorgt sie wie vom Anbieter vorgesehen.
  • Achtet beim Kauf von Kunststoff-Gegenständen auf gute Qualität und nutzt sie lange bzw. “vererbt” sie weiter, wenn ihr sie nicht mehr braucht.
  • Versucht euch im Upcycling: Viele gebrauchte Kunststoff-Verpackungen und -gegenstände könnt ihr auf neue Art verwenden oder geben prima Bastelmaterial ab – oder Rohstoffe zum Experimentieren!

Was haltet ihr von den Recycling-Bestrebungen in eurem Land? Habt ihr noch mehr Ideen zur Vermeidung von Kunststoff-Abfällen? Wie geht ihr mit euren Abfällen um?

Grosse Jubiläums-Blogparade: Mein Lieblings-Experiment

Ganze 5 Jahre ist es nun her, dass Keinsteins Kiste das Licht der Welt erblickt hat. Fünf Jahre! Das ist ein halbes Jahrzehnt! Dieses “kleine” Jubiläum möchte ich mit euch allen feiern – und mit euren Experimenten in einer Blogparade.

Da dieses Jubiläums-Jahr auch hinsichtlich des Weltgeschehens ein ganz besonderes ist (C. sei’s gedankt…), ist “Mein Lieblings-Experiment” dieses Jahr das perfekte Motto. Denn nachdem mir genau diese Blogparade letztes Jahr aufgrund bombiger Auftragslage im Job und eigenen Ferienplänen völlig versandet ist, ist die Lage dieses Jahr eine völlig andere:

In kaum einem Jahr hatten wir so viel Gelegenheit – und werden sie noch haben – zu Hause zu experimentieren, zu lernen und zu entdecken. Monate des Heimlernens liegen hinter uns, Sommerferien mit eingeschränkten Reisemöglichkeiten vor uns. Das ist die Gelegenheit, euer Lieblings-Experiment zu finden – oder uns zu zeigen, was ihr schon gefunden habt!

Letztes Jahr hat es trotz allem einen Beitrag zur Parade von Anne Nühm alias “breakpoint” gegeben. Der soll nun hier seine Würdigung als erster Beitrag zur Neuauflage finden.

Und da auch mein Sommer vor allem zu Hause stattfinden wird, lasse ich diese Auflage der Blogparade auch ganz bestimmt nicht mehr versanden. Versprochen.

Fünf Jahre Keinsteins Kiste

Bis in die erste Hälfte 2015 waren “Blogger” in meinen Augen Werbegesichter für Mode, Kosmetik und allerlei Lifestyle-Produkte – kurzum das, was man heute vielleicht eher mit dem Begriff “Influencer” in Verbindung bringt. Und damit so ganz und gar nicht meine Welt.

Erst als ein Neuzugang in einer völlig themenfremden Facebook-Gruppe am Rande ihren Mama-Blog erwähnte, öffnete sich mir die Tür zur ganzen Welt der Blogger – und mir war sofort klar: Davon möchte ich auch ein Teil sein! So habe ich binnen weniger Wochen diesen Blog ins Leben gerufen.

Seitdem hat sich so vieles getan und verändert. Von Anfang an war Keinsteins Kiste als Sammlung naturwissenschaftlicher Inhalte gedacht – zunächst reichlich unspezifisch in Form von “Geschichten aus Natur und Alltag”. Naturwissenschaft besteht nun in grossen Teilen aus Beobachtung…und dazu sind aufmerksame Sinne unabdingbar. So kam ich zu der Umwidmung des Blogs zu “Natur und Wissenschaft für alle Sinne”.

Doch auf Dauer erschien mir auch dies zu ungenau. Zumal ich mit meinem in der deutschsprachigen Blogsphäre nach wie vor exotischen Genre lange nach meinem Platz in deren unendlichen Weiten gesucht habe. Schlussendlich führte diese Suche an den Anfang des Blogs zurück. Mit einem Mama-Blog fing die Geschichte der Kiste an, und mit Familienblogs und ihren Autoren kann ich mich nun wahrhaftig identifizieren. Und das, obwohl ich selbst gar keine Kinder habe.

Wozu Keinsteins Kiste? Um Chemie und anderen Naturwissenschaften ein positives Gesicht zu geben!

Nichts desto trotz arbeite ich mit Kindern, und habe dabei schnell festgestellt, dass es nichts wunderbareres gibt als die kindliche Neugier. Physik (und Chemie und…) ist schliesslich, wo man spielt.

Und diese Neugier ist ein grossartiger Ansatzpunkt, um mein grosses Ziel zu verfolgen: Der Naturwissenschaft im Allgemeinen und der Chemie in Besonderen in euren Köpfen ein besseres Ansehen zu verschaffen!

Die Welt ist nämlich voll von “Fake-News”, Fehlinformationen und teils gefährlichen Irrlehren, die viel zu oft auf fruchtbaren Boden stossen. Und solch “fruchtbarer Boden” entsteht, wenn junge Menschen die Fächer, in welchen sie lernen können, wie die Welt funktioniert und wie sie selbst diese Funktionsweisen ergründen können, als “zu schwierig”, “abstrakt”, “realitätsfern” oder gar “unwichtig” erleben. Dann nämlich verlassen sie ihre Schulen oft ohne ein grundlegendes Verständnis für die Natur der Dinge – und sind entsprechend anfällig für jeglichen Unsinn, der darüber verbreitet wird.

Je früher jedoch Neugier und Freude an der Erforschung der Welt geweckt werden, desto grösser sehe ich auch die Chance, dass die Aufmerksamkeit für und die Freude an naturwissenschaftlichen Zusammenhängen erhalten bleibt und Chemie und Co in den Augen einstmaliger Jungforscher ihr gutartiges Gesicht behalten.

Chemie ist nämlich überall und alles ist Chemie. So tut ihr gut daran im Gedächtnis zu behalten, dass sie eben nur manchmal gefährlich, aber immer spannend ist!

Experimente wecken Spass und Neugier – nicht nur bei kleinen Forschern

Die eindrücklichste und zugleich spassigste Art und Weise, Naturwissenschaften zu lernen, ist, selbst zu experimentieren und zu forschen. So habe ich – besonders in den letzten drei Jahren – mehr und mehr Experimente in Keinsteins Kiste einfliessen lassen, die ihr zu Hause oder in jedem beliebigen Klassenzimmer selbst machen könnt.

Und damit auch naturwissenschaftlich nicht “vorbelastete” Eltern und Lehrer ihren Kindern die unvermeidlichen Fragen junger Forscher beantworten können (allen voran “Wie funktioniert das bloss?”), liefere ich zu jeder Anleitung auch eine ausführliche Erklärung dessen, was hinter den spannenden Beobachtungen steckt.

So können Klein und Gross beim Experimentieren etwas lernen. Aber damit nicht genug: Ihr Grossen könnt euer naturwissenschaftliches Wissen auch direkt in eurem Alltag gebrauchen! Wie? Das könnt ihr in den gesammelten Haushalts– und Gesundheitstipps in der Keinsteins Kiste lernen.

So ist der Blog nun schon seit zwei Jahren offiziell gefüllt mit “Natur und Wissenschaft für die ganze Familie”.

Grosse Sommer-Blogparade zum Geburtstag

Doch nun könnt ihr in der Blogparade selbst mitfeiern und -forschen!

Thema der Blogparade: Mein Lieblings-Experiment!

Experimente mit Aha-Effekt

Denn die Freude an Naturwissenschaft beginnt oft mit einem besonders eindrücklichen Experiment, das einen regelrechten Aha-Effekt auslöst.

So war es zumindest bei mir: In der siebten Klasse bin ich erstmals der Schmelzwärme begegnet – einem Konzept, das mir bis dahin völlig unbekannt war. Und mit dieser einschneidenden Veränderung meines Weltbildes hatte ich mein Herz unrettbar an die Chemie verloren (und das, obwohl sich die Physiker mit den Chemiker um die Einordnung dieses Konzeptes streiten könnten!).

Die ganze Geschichte von diesem Aha-Erlebnis erfahrt ihr hier, und natürlich gibt es auch eine Anleitung für das Experiment zum Nachmachen!

Vielleicht kehrt eure Leidenschaft auch immer wieder zu dem einen Experiment zurück?

Experimente, die euch nicht loslassen

Ich habe zum Beispiel bei jeder sich bietenden Gelegenheit Eisensulfid aus den Elementen Eisen und Schwefel hergestellt (das Teufelchen in mir spielt immer wieder gern mit Schwefel herum…). Da das eine ziemlich stinkige Angelegenheit ist, müssen dafür besondere Anforderungen an die Umgebung erfüllt sein, weshalb es das Experiment (noch) nicht in Keinsteins Kiste gibt.

Experimente, bei welchen ihr (bislang?) nur zugeschaut habt

Oder habt ihr euch bislang noch nicht selbst getraut, zu experimentieren, aber andere dabei beobachtet? Sei es der Lehrer in der Schule, der Dozent in der Uni, oder ein Show-Experimentator auf der Bühne? Welches Schau-Experiment hat euch besonders beeindruckt – vielleicht gar so sehr, dass ihr es gerne einmal selbst versuchen würdet – oder eben gerade nicht?

Im Rahmen der Lehrerausbildung hat uns unser Dozent ein wahrhaft beeindruckendes Demonstrations-Experiment gezeigt: Die Thermit-Reaktion!

Thermit-Versuch für die Schule: Die Reaktion findet im Blumentopf statt, glühendes flüssiges Eisen tropft unten heraus!

Hier bei wird Eisen(III)oxid mit Aluminium-Pulver zur Reaktion gebracht, wobei Temperaturen bis gut 2000°C entstehen! Mit grossem Getöse und Leuchtspektakel entsteht dabei flüssiges(!) metallisches Eisen. Deshalb nutzen Eisenbahner diese Reaktion, um frisch verlegte Schienen zusammen zu “schweissen”. Der sehr grossen Brandgefahr wegen sollte ein solches Experiment immer ausserhalb des Schulhauses (z.B. auf dem asphaltierten Schulhof) gemacht werden.

Später habe ich dann für einige Zeit an der Berufsschule in Arth-Goldau unterrichtet und dort in der Chemikaliensammlung eine fertige Thermit-Mischung gefunden. Natürlich habe ich die ausprobieren müssen – aber leider habe ich es nicht fertig gebracht, das Ganze zu zünden (das ist nämlich – zum Glück – ohne einen speziellen Thermit-Zünder kaum zu bewerkstelligen). Die Enttäuschung bei mir und den extra auf den Hof geführten Schülern war entsprechend gross.

Aber wenn ich noch einmal die Gelegenheit bekäme, Thermit zu zünden, wäre ich sofort dabei.

Experimente in der Forschung

Oder seid ihr sogar selber Forscher (gewesen)?

In der Forschung müssen Wissenschaftler ihre Experimente immer wieder und wieder durchführen und immer das Gleiche beobachten, bevor sie ein belastbares (weil wiederholt beobachtbares) Ergebnis veröffentlichen können. Auch ich kann ein Lied davon singen.

Besonders aufregend wird das Ganze dann, wenn ein Experiment tatsächlich immer das gleiche Ergebnis liefert – und wenn andere Forscher, die den Versuch nachmachen, dieses Ergebnis ebenfalls beobachten. Dann hat man nämlich etwas gefunden, was den allgemeinen Wissenstand wirklich erweitern könnte!

Habt ihr als Forscher selbst einmal so ein eindrückliches Experiment gemacht?

Was ihr zur Blogparade wissen müsst:

Experimentiert ihr gerne – zu Hause, in der Schule oder sogar an eurem eigenen Forscher-Arbeitsplatz? Schaut ihr euch spannende Experimente lieber an? Oder würdet ihr gerne auch selbst experimentieren?

Mit dieser Blogparade möchte ich euch alle – ganz gleich welchen Bezug ihr zum Experimentieren habt – zum Mitmachen einladen:

Beschreibt in einem Blogartikel euer Lieblings-Experiment!

Erzählt, schreibt, fotografiert, filmt oder wie auch immer ihr euch ausdrückt von eurem Erlebnis beim Experimentieren oder Zusehen: Was beeindruckt euch besonders, und warum ist dies euer Lieblings-Experiment?

Und wenn ihr selbst experimentiert, habt ihr vielleicht auch eine Anleitung dazu? Und wenn ihr ganz versiert seid und die Beobachtung sogar erklären könnt, wäre das natürlich Spitzenklasse – aber nicht notwendig.

Bei Bedarf helfe ich beim Erklären auch gerne aus.

Veröffentlicht den Artikel bis zum 13. September 2020 auf eurem Blog bzw. Kanal, verlinkt darin auf diesen Artikel und postet den Link dazu hier in die Kommentare. So kann ich sie über meine Kanäle teilen und zum Abschluss in einer Zusammenfassung würdigen.

Ihr möchtet gerne ein Experiment vorstellen und habt keinen eigenen Blog? Dann könnt ihr euren Beitrag gerne als Gastbeitrag in Keinsteins Kiste einreichen!

Ganz besonders würde ich mich freuen, wenn ihr anderen von dieser Blogparade “erzählt”, sodass möglichst viele die Chance haben, mit zu forschen!

Nun wünsche ich euch viel Spass beim Forschen, Experimentieren und Verbloggen,

Eure Kathi Keinstein

Experiment: Recycling selbst gemacht - HDPE

In Deutschland wurden in meinen Kindertagen die “gelbe Tonne” und der “grüne Punkt” auf Kunststoff-Verpackungen eingeführt. Das Ziel: Plastikabfälle sollen vom Restmüll getrennt gesammelt werden, damit man sie recyceln kann. Hier in der Schweiz ist man leider bis heute nicht so weit – wenn wir von dem flächendeckenden Recycling-Kreislauf für PET*-Getränkeflaschen einmal absehen. HDPE und andere landen hierzlande dagegen in der Müllverbrennungsanlage.

*Eine Übersicht über die gängigsten Kunststoff-Arten und der gebräuchlichen Abkürzungen findet ihr hier!

Aber wie funktioniert Kunststoff-Recycling eigentlich? Wie kann man aus alten Plastik-Gegenständen neue herstellen?

Leicht recycelbar: Thermoplaste

Einige Kunststoffe, darunter die im Alltag am weitesten Verbreiteten, haben eine spannende Eigenschaft, die das Wiederverwenden einfach macht: Wenn man sie erhitzt, werden sie formbar – und kühlen sie ab, werden sie erneut fest! Solche Kunststoffe werden von den Fachleuten “Thermoplaste” genannt. Und nicht nur das – einzelne Kunststoffteile lassen sich in ihrem formbaren Zustand sogar mit anderen verschmelzen!

Wenn die Temperatur, ab welcher ein Kunststoff formbar (“plastisch”) wird, ausreichend weit unterhalb jener Temperatur liegt, bei welcher die Riesen-Kettenmoleküle im Kunststoff zerstört werden, lässt sich diese Eigenschaft für das Recycling nutzen. Nicht mehr benötigte Kunststoff-Gegenstände können erhitzt, neu geformt und zu neuen Gegenständen verschmolzen werden.

Experiment: Recycelt euren eigenen Thermoplast

Das könnt ihr sogar selbst ausprobieren! Sehr gut eignet sich dafür Polyethylen (PE), genauer gesagt HDPE, die Polyethylen-Spielart mit Hoher Dichte. Aus diesem Material bestehen die meisten Flaschen für Shampoo und andere Hygieneprodukte. Das Recycling-Dreieck aus drei Pfeilen mit der Ziffer 2 und dem Kürzel “HDPE” oder “PE-HD” verraten euch, dass eine Flasche wirklich aus diesem Material besteht.

Recycling-Symbol für HDPE (via Wikimedia Commons, User : Tomia / CC BY-2.5 )

Ihr könnt also aus leeren Shampoo-Flaschen ganz einfach neue Gegenstände herstellen – zum Beispiel Deko-Anhänger für den Weihnachtsbaum, Osterstrauch oder sonstige Anlässe.

Ihr braucht dazu

  • Leere Flasche(n) aus HDPE (eine Shampoo-Flasche reicht für bis zu vier Anhänger)
  • Ausstechformen für Plätzchen aus Metall (einfache Formen, sonst wird es sehr kniffelig)
  • Alufolie
  • Etwas Pflanzenöl
  • Küchenschere
  • Elektro-Herdplatte (KEIN Induktionsherd! Dunstabzug empfohlen!)
  • Einen Kochtopf
  • Greifzange (vom Grill, Tiegelzange o.Ä.)
Material zum Umschmelzen von HDPE
Die linke, feinstrukturierte Ausstechform habe ich schnell aufgegeben: Die kleinen Nischen lassen sich kaum mit Folie auskleiden, ohne dass diese reisst. Die rechte hat dafür gute Dienste geleistet.

So geht’s

  • Säubert die leere Flasche sorgfältig. Schneidet das obere und unter Ende – am besten über einem Waschbecken – ab. Wenn sich dabei weitere Reste des Inhalts zeigen, reinigt die Teile noch einmal gründlich.
  • Schneidet die Flasche in möglichst feine Schnitzel. Ich habe dazu die Seitenwände in grössere Stücke zerteilt und diese zunächst streifenartig eingeschnitten. Dann habe ich senkrecht zu den Einschnitten schmale “Streifen” abgetrennt (wie ein Coiffeur beim Haareschneiden). Das Ergebnis: HDPE-Flocken von etwa 2x2mm Grösse.
Schritt für Schritt von der HDPE-Flasche zu kleinen Flocken
Von der leeren Shampoo-Flasche zu kleinen Flocken
  • Kleidet eine Ausstechform mit Alufolie aus. Achtet darauf, dass die Folie die Form innen vollständig und bis zum Boden bedeckt. So kann euer Werkstück die Form des Ausstechers ganz übernehmen. Achtet aber darauf, dass keine Risse oder Löcher entstehen! (Dieser Schritt kann bei zu filigranen Ausstechformen sehr kniffelig werden.)
Ausstechform mit Alufolie von oben und unten
  • Bestreicht die Innenseite dieser selbstgemachten Aluschale mit etwas Öl, so als wolltet ihr darin einen Kuchen backen.
  • Füllt eine dichte Schicht eurer PE-Flocken in die Form. Achtet darauf, dass die Flocken jeden Winkel der Form dicht ausfüllen.
Ausstechform als Aluschale, gefüllt mit HDPE-Flocken
So ist die Form gut gefüllt: Der Boden ist nicht mehr zu sehen, die Flockenschicht ca. 3mm dick.
  • Stellt die Form in den leeren Kochtopf und stellt diesen leer (bis auf die Alu-Form(en)) auf den Herd.
  • Schaltet die Herdplatte für 8 bis 10 Minuten auf niedrige bis mittlere Stufe. Behaltet das Experiment unbedingt im Auge und schaltet wenn möglich den Dunstabzug ein! Sollte sich Geruch nach schmorendem Plastik oder gar Rauch zeigen, nehmt den Topf sofort vom Herd!
  • Nach gegebener Zeit, bzw. wenn die Flocken aneinanderbacken, nehmt den Topf vom Herd und lasst die Formen abkühlen. Vorsicht, heiss: Wenn ihr sie dazu aus dem Topf nehmen wollt, benutzt dazu die Zange!
  • Nehmt das abgekühle Werkstück samit Aluminium aus der Form. Die Folie sollte sich ganz leicht abschälen lassen. Dann könnt ihr mit Wasser und Seife das Öl abwaschen.
Fertige HDPE-Blume noch in der Alu-Form
Oops! Die braune Färbung zeigt: Das ist wohl etwas zu heiss geworden. Ausserdem ist bei diesem ersten Versuch Rauch entstanden und Reto hat sich über den Geruch nach schmorendem Plastik beschwert. Die Notkühlung mit Wasser hat dieses Stück aber noch retten können.

Notfall-Tipp: Wenn das Experiment zu stinken oder gar zu rauchen beginnt, droht der Kunststoff zu verschmoren. Um das Schlimmste zu verhindern, könnt ihr die Temperatur der Werkstücke sehr schnell senken, indem ihr kaltes Wasser einige Millimeter hoch in den Topf laufen lasst. Zischen und Dampfen ist dabei ein Zeichen für Energieverbrauch – und damit für die sinkende Temperatur.

Rückseite der gebräunten HDPE-Blume mit Alu-Resten
Die Rückseite des überhitzten Stücks, nachdem ich die Aluminiumfolie (ohne Öl!) mühsam mit einem Küchenmesser abgekratzt habe: Trotz Überhitzung hält der Kunststoff so fest zusammen, dass diese Blume nicht einmal bei der Kratzerei kaputt ging!

Was ihr beobachten könnt

Beim Erhitzen werden die Kunststofffocken dicker, beginnen zu glänzen und ihre Kanten werden weicher. Sie sehen aus wie Käse, der im Begriff ist zu schmelzen. Die dicht übereinander geschichteten Flocken verschmelzen dabei sogar miteinander. Wenn ihr die Flocken nun mit der Greifzange antippt, könnt ihr feststellen: Sie sind weich und nachgiebig – ganz wie schmelzender Käse.

Nachdem das Werkstück abgekühlt ist, ist der Kunststoff so hart wie zuvor, aber: Die Flocken haben sich zu einem einzigen Werkstück verbunden. Und zwar so fest, dass dieses sich problemlos mit einer Bürste reinigen lässt!

HDPE-Blume ohne Bräunung
Es geht auch ohne Bräunung! An der geölten Alufolie beim zweiten Versuch hat nichts mehr geklebt – nur ein paar Flocken mehr hätten es sein dürfen – für einen saubereren Rand.

Wenn euch das Ganze jetzt bekannt vorkommt: Genau, Bügelperlen funktionieren auf die gleiche Weise!  Die bestehen in der Regel auch aus Polyethylen, wenn auch aus LDPE.


Was passiert da?

Wie sind Thermoplaste aufgebaut?

Was wir im Alltag allgemein “Kunststoff” oder “Plastik” nennen, sind in aller Regel Stoffe, die aus langen Molekülketten aus sich wiederholenden Gliedern bestehen. Die Chemiker nennen diese Stoffe deshalb “Polymere”. Die Moleküle von thermoplastischen Kunststoffen sind tatsächlich ganz einfache Ketten oder “Fäden” ohne Verzweigungen, die mehr oder weniger wirr miteinander verknäuelt sind.

Ausschnitt aus einer Polyethylen-Kette als Kalottenmodell: Dieser Molekül-“Faden” besteht aus Kohlenstoff- (schwarz) und Wasserstoff- (weiss) Atomen.

Amorphe Thermoplaste

Ähnlich wie ein Haufen verworrene Wolle bildet dieses Gewirr einen einzigen Körper, den wir sehen und anfassen können. Denn so wie die rauhen Oberflächen der Wollfäden diese aneinander haften lassen, wirken auch zwischen den Molekülfäden schwache Kräfte, die für Haftung aneinander sorgen.

Wie ein Haufen wirrer Wolle sind auch solche Kunststoffe selbst bei Raumtemperatur sehr biegsam. Dazu gehört zum Beispiel Polyethylen “geringer Dichte” (Low Density – oder LDPE). Die Chemiker nennen solche Kunststoffe auch “amorph” – eben “ohne geordneten Aufbau”.

Teilkristalline Thermoplaste wie HDPE

Das HDPE, Polyethylen “hoher Dichte” ist dagegen hart und nur wenig flexibel. Das rührt daher, dass in dieser Variante des Kunststoff ein Teil der Ketten oder “Fäden” sorgfältig parallel zueinander aufgereiht sind. Als enthielte der Haufen verworrener Wolle zwischendurch Abschnitte, die sorgfältig zu kleinen Knäueln aufgewickelt sind. Und ein streng gewickeltes Wollknäuel ist bekannt ziemlich fest.

Beim realen Wollknäuel ist die straffe Wicklung dafür verantwortlich. In einem Polymerknäuel können sich zwischen ordentlich parallel laufenden Ketten wesentlich stärkere zwischenmolekulare Kräfte ausbilden, die die Ketten fester beieinander halten.

Weil ein so geordneter Aufbau Chemiker leicht an Kristalle erinnert, nennen die solche Kunststoffe “kristallin” bzw., wenn durch Teile des Gewirrs geordnet sind, “teilkristallin”.

Was beim Erhitzen passiert

Je wärmer ein Stoff ist, desto mehr Bewegungsdrang haben seine Moleküle. Im festen Kunststoff schwingen die Atome der Ketten hin und her. Mit steigender Temperatur führen sie einen immer wilderen Tanz auf. Irgendwann wird dieses Treiben so toll, dass die zwischenmolekularen Kräfte das Gezappel nicht mehr aufwiegen können. Die Moleküle lösen sich voneinander – und können nun aneinander vorbei gleiten.

Wären die rauhen Wollfäden mit einem Mal völlig glatt und geölt, könnte man den wirren Haufen auch ganz einfach entwirren oder umformen.

Das Gleiche wird nun mit dem Kunststoff möglich: Die voneinander gelösten Ketten lassen sich durcheinander schieben – und Kettenenden aus verschiedenen Haufen können sich sogar miteinander mischen! Der wärmebedingte wilde Tanz der Atome sorgt für die dazu nötige spontane Bewegung. So kann aus zwei wirren Molekülhaufen (oder Kunststoff-Flocken) schliesslich ein einziges Gewirr werden, ohne dass wir sie verrühren oder drücken müssten.

Nach dem Abkühlen ist der Spuk vorbei – vorerst

Sobald die Temperatur wieder sinkt, werden die Atome wieder ruhiger und die zwischenmolekularen Kräfte – jetzt mitunter zwischen neuen Nachbarn – gewinnen wieder die Oberhand. Der Kunststoff wird erneut hart.

Das Geniale daran: Das Spiel lässt sich praktisch beliebig oft wiederholen – so lange man den Kunststoff nicht zu heiss werden lässt und die Kettenmoleküle selbst zerstört werden.

Warum ich kein Wasserbad verwende, um das zu verhindern

Da viele organische Verbindungen kaputt gehen, wenn sie zu heiss werden, erhitzen Chemiker ihre Stoffe gerne in einem Wasserbad (oder einem aus Silikonöl, wenn die Temperatur noch etwas höher sein soll). So können sie sicherstellen, dass der Versuch nicht heisser als 100°C wird (denn da verdampft das Wasser, bevor es heisser wird).

HDPE wird allerdings erst ab 135°C richtig weich, sodass ein Wasserbad bei Atmosphärendruck einfach nicht heiss genug werden kann, um die PE-Flocken miteinander zu verschmelzen. Speiseöl kann dagegen so heiss werden (das nutzen wir ja beim Braten). Aber viele Pflanzenöle rauchen in diesem Bereich schon beträchtlich, was die Sicht auf den eigentlichen Versuch trüben und nachher zu viel Reinigungsarbeit führen kann.

Deshalb habe ich nur ein wenig Öl zum Einfetten der Form verwendet, da sonst der wieder erkaltete Kunststoff an der Aluminiumfolie kleben bleibt (und das Abkratzen ist überaus mühsam).


Entsorgung

Der Kunststoff als solcher verändert sich durch das Erhitzen nicht. Er kann also ganz normal in den Hausmüll entsorgt werden. Aber viel schöner ist doch, eure Versuchsergebnisse als Deko zu verwenden, oder?

Unverbrauchte Reste der Shampoo-Flaschen könnt ihr auch in die gelbe Tonne/den gelben Sack (Deutschland, Österreich) geben. Aluminium gehört in Deutschland ebenfalls in die gelbe Tonne. In der Schweiz gibt es dafür eigene Sammelbehälter an den Entsorgungsstellen.

Die Ausstechformen könnt ihr nach dem Experiment getrost weiter zum Backen verwenden.

Fazit

Leere PE-Flaschen lassen sich mit einfacher Küchenausrüstung leicht zu neuen Gegenständen umarbeiten. Durch das Zerschneiden des kalten Kunststoffs in kleine Flocken könnt ihr die neue Form dabei sehr frei vorherbestimmen (Recyclingprofis machen das übrigens auch so und zerkleinern die Kunststoffabfälle, bevor sie sie erhitzen und neu verarbeiten).

Die Bewegung der Kunststoff-Moleküle (bzw. ihrer Atome) bei hohen Temperaturen hebelt zwischenmolekulare Anziehungskräfte aus, sodass die Moleküle bei genügend hoher Temperatur (bei HDPE rund 135°C) gegeneinander beweglich werden und ihr sie in neue Form(en) bringen könnt.

Beim Ausprobieren wünsche ich euch viel Spass und freue mich über Berichte von euren Ergebnissen in den Kommentaren. Was habt ihr bei eurem Recycling-Experiment hergestellt?

Mehr zum Thema Kunststoffe in Keinsteins Kiste

Hast du das Experiment nachgemacht: 

PE-Recycling selbst gemacht: Hat das Experiment bei dir funktioniert?

View Results

Loading ... Loading ...

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!