Rundgang im Gewächshaus - Woher unser Gemüse kommt

Dieser Beitrag ist mit freundlicher Unterstützung von Gutknecht Gemüse entstanden, die mir im Rahmen einer Betriebsführung für Blogger einen Einblick in ihre Gewächshausproduktion gewährt haben. Ich bedanke mich herzlich bei beim Unternehmen für die Einladung und bei Moana Werschler für die Organisation. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Chemie im Alltag? Die ist auch in der Gemüseabteilung im Supermarkt immer wieder ein Thema. Zumindest lässt mich, was so durch die Sozialen Medien geistert, annehmen, dass ich nicht die einzige bin, die beim Einkauf darüber nachdenkt, welche ebenso beunruhigenden wie unsichtbaren Substanzen an unseren Gemüsen haften mögen: Rückstände von Pestiziden und die noch weniger greifbaren Folgen “nicht-natürlichen” Anbaus.

Aber ganz ehrlich: Bis vor wenigen Wochen hatte ich absolut gar keine Ahnung davon, wie unser Gemüse heutzutage angebaut wird. Wie die meisten von euch vermutlich auch. Ist das eine Grundlage für eine fundierte Einschätzung der Lage im Gemüseregal? Fehlanzeige! Selbst für mich als Chemikerin.

Wie baut man heute Gemüse an?

Richtig bewusst wurde mir das allerdings erst, als ich jemanden traf, der es besser wusste – und mir und anderen Bloggern die Möglichkeit eröffnete, der Sache auf den Grund zu gehen: Ich danke Moana Werschler von “Miss Broccoli” herzlich für die Organisation des spannenden Ausflugs in die Welt des modernen Indoor-Gemüseanbaus bei Familie Gutknecht in Kerzers! Dort habe ich nämlich aus nächster Nähe anschauen – und probieren! – dürfen, wie zeitgemässer Gemüseanbau in der Schweiz funktioniert.

Und das habe ich natürlich für euch getan, damit ich euch einen wirklich spannenden Einblick “aus erster Hand” in die Herkunft unserer liebsten Grundlage gesunder Ernährung geben kann. Und die mutet geradezu futuristisch an: Bei Gutknecht wird nämlich “Hors Sol” praktiziert – eine Anbaumethode, die dem Augenschein nach auch auf dem Mars funktionieren könnte.

Was wächst bei Gutknecht?

An einem heissen Juni-Tag führte mich mein Weg aus dem kleinen Dorf Kerzers (das unter Naturliebhabern und -forschern für sein Schmetterlingshaus “Papiliorama” bekannt ist) hinaus aufs flache Feld und durch ein Industriegebiet voller grosser Logistik-Niederlassungen. Dahinter wartete natürlich kein romantischer Familien-Ferien-Bauernhof. Der hätte auch kaum die Möglichkeit gehabt, das ganze Gebiet um den “Röstigraben” zwischen Deutsch- und Westschweiz mit frischem Gemüse zu versorgen.

Der Gutknecht-Gemüsehof hingegen kann das: Auf einer Gewächshaus-Fläche von 9 Fussballfeldern (das sind 6 bis 7 Hektar) werden das ganze Jahr über zahlreiche Gemüsesorten angebaut, die wir in den Auslagen von Migros, Coop, Spar, Lidl, Denner….eigentlich allen Supermärkten in der Region finden können. Dazu kommen 100 Hektar Anbaufläche an der frischen Luft für Obst und Gemüsesorten, die im Gewächshaus nicht gedeihen. Aber die waren für uns heute nicht von Interesse.

Uns und Pascal Gutknecht – einem der Hofbesitzer, der uns persönlich herumgeführt hat – ging es heute um die Gewächshäuser und das, was darin wächst: 29 (!) verschiedene Sorten Tomaten, dazu Auberginen, Zucchetti (in Deutschland sagt man Zucchini), Gurken, Peperoni (für Nicht-Schweizer: gemeint sind Paprika – die kleineren Scharfen, hierzulande Peperoncini genannt, gibt es bei Gutknechts allerdings auch), verschiedene Sorten frischer Kräuter und wer weiss, was wir noch alles nicht gesehen haben.

Unser Rundgang durch den Anbaubereich beginnt im Versuchsgewächshaus, in welchem in kleinerem Massstab mit Verbesserungen der Anbaumethode und neuen Sorten experimentiert wird. Das muss Pascal Gutknecht uns allerdings erst erklären – denn wir finden uns auf den ersten Blick in einer mächtigen gläsernen Halle mit Reihen um Reihen grüner Pflanzen mit Rispen voller kleiner Tomaten wieder. Die richtig grossen Gewächshäuser haben wir ja noch gar nicht gesehen.

Datteltomaten im Versuchs-Gewächshaus

Und hätte Moana uns nicht so gründlich vorinformiert, hätte der Anblick dieser Reihen vielleicht befremdlich gewirkt. Seit wann sind Tomaten lianenähnliche Schlingpflanzen? Und seit wann wachsen die auf frei hängenden Schwebebalken? Aber Moana hatte mich ja vorgewarnt: Die Gutknechts haben sich dem Hors Sol, einer etwas anderen, aber zukunftsweisenden Anbaumethode verschrieben.

 

Was ist Hors-Sol?

“Hors Sol” ist französisch für “ausserhalb des Erdbodens” – und genau darum geht es auch. Der Erdboden unter dem Gewächshaus wird nicht bepflanzt, sondern mit Platten oder Planen abgedeckt. Stattdessen werden Reihe um Reihe der schon erwähnten “Schwebebalken” an Ketten unter dem Gewächshausdach aufgehängt, sodass sie etwa 30 bis 40cm über dem Boden schweben.

Die Balken werden dann mit prallvollen Kunststoffsäcken bestückt, die an Gartenerde-Säcke aus dem Baumarkt erinnern. Statt Gartenerde enthalten sie jedoch Kokosfasern, die beim Anbau von Kokospalmen (zum Beispiel für das zunehmend populäre Kokosfett) abfallen. In diesen Kokosfaserballen wurzeln die Tomaten (oder andere Pflanzen), während sie dem durch das Glasdach fallenden Licht entgegen wachsen.

Wurzelballen in einer Hors Sol - Kultur

Was sind das für seltsame Lianen-Tomaten?

Und das tun sie mit grösstem Eifer: Alle Windungen zusammengenommen sind die Tomatenpflanzen im Versuchgewächshaus gut und gerne sechs bis sieben Meter lang! Dabei werden sie sorgfältig drapiert und ihre Spitzen an Führungsketten aufgehängt. Zudem herrscht akribische Ordnung: An der Spitze blüht alles, in der Mitte hängen schwer die reifenden Früchte und der untere Teil der Haupttriebe ist vollkommen kahl (Diese Ordnung ist naturgegeben – ihr könnt sie auch an den Tomatenpflanzen in eurem Garten beobachten – wenn ihr im untersten Bereich eurer Pflanzen kräftig “ausgeizt” und alle Blätter wegschneidet).

Dabei ist diese Pflanzung erst in der Mitte ihres Lebens angelangt: Die Tomaten wurden im Januar, also vor einem halben Jahr gesetzt und können bis zu ihrem Lebensende im Dezember eine Länge von 13 Metern erreichen! Das könnten eure Tomaten im Garten übrigens auch, wenn sie so viel Zeit und Platz zum Wachsen hätten.

In diesem Gewächshaus ist Wechselzeit: Die Kokosfaser-Säcke - Basis für die Hors Sol Kultur - warten auf neue Pflanzen

In diesem Produktions-Gewächshaus ist Wechselzeit: Die grossen Kokosfasersäcke bleiben dabei stets am Ort. Im Hintergrund wurden bereits junge Gurkenpflanzen gesetzt, die im Vordergrund folgen in den nächsten beiden Wochen.

Giesswasser und Dünger per Infusion

In jedem Wurzelballen steckt mindestens eine mit einem dünnen Schlauch versehene Sonde, sodass das Ganze untenherum ziemlich verkabelt wirkt. Durch die Schläuche können Giesswasser und darin gelöste Nährstoffe direkt in jeden Wurzelballen gepumpt werden. So erhält jede Pflanze “per Infusion” genau das, was sie gerade braucht.

So brauchen zum Beispiel die mächtigen “Coeur de Boeuf”-Tomaten eine Extraportion Calcium, um nicht an Wurzelfäule zu erkranken, während die kleineren Sorten sehr gut mit geringeren Mengen auskommen. Deshalb gibt es die Extraladung Calcium nur dort ins Giesswasser, wo sie benötigt wird.

Und wenn doch mal etwas überläuft, wird es gleich zur Wiederverwendung in den Giesswasser-Vorrat zurückgeführt.

Wie werden die Pflanzen im Gewächshaus befruchtet?

Damit haben die Pflanzen alles, was sie zum Wachsen brauchen: Licht, Wärme, Wasser, einen Untergrund zum Wurzeln, Nährstoffe… Aber ihr denkt jetzt womöglich: “Und wie soll das unter Glas mit den Bienli und den Blüemli funktionieren?” Richtig: Im Gewächshaus können die Pflanzen blühen – aber ohne Bestäubung werden aus den Blüten keine Früchte. Deshalb haben die Gutknechts ganz besondere Hilfsarbeiter eingestellt:

Pascal holt zwischen den Tomatenreihen einen handlichen Pappkarton mit einem feinmaschigen Gitter vor der oberen Öffnung hervor. Als er den kräftig anstösst, ertönt daraus ein ungehaltenes Summen. In dem Karton hat ein Hummelvolk sein Nest! Damit wir und die Kinder das Ganze in Ruhe betrachten können, hat Pascal das Einflugloch für den Moment verschlossen. Aber wie auf Bestellung nähert sich sogleich eine frei fliegende Hummel, die den Eingang sucht – nun aber für den Moment warten muss.

Hummelnest im Pappkarton zum Einsatz im Hors Sol Gewächshaus

Ein Hummelnest im Pappkarton: Durch das Gitter ist die Luftzufuhr garantiert. Die violette Scheibe ist drehbar und verschliesst in dieser Position das Einflugloch.

 

Im ganzen Gewächshausbetrieb gibt es 140 solcher Hummelnester und jedes davon wird von rund 250 Hummeln bewohnt. Das macht nach Adam Riese 35’000 Hummeln, deren Job es ist, auf Nektarsuche von Gemüseblüte zu Gemüseblüte zu fliegen und dabei Pollen von der einen zum Stempel der nächsten Blüte zu tragen.

Dabei sind Hummeln übrigens genügsamer als Bienen: Sie fliegen auch bei deutlich weniger Licht und Wärme (in Mutters Garten konnte ich das Mitte Juli selbst beobachten: Gegen 20:30 waren immer noch Hummeln am Sommerflieder zugange, während die Bienen schon längst verschwunden waren). Dazu kommt, dass Hummeln wesentlich friedfertiger als ihre kleineren Verwandten sind, sodass die 80 menschlichen Mitarbeiter bei Gutknecht Gemüse um vieles seltener von ihnen behelligt oder gar gestochen werden.

Hat die Hors-Sol-Methode Einfluss auf die Qualität des Gemüses?

Während wir die futuristisch anmutenden Pflanzungen näher in Augenschein nehmen, greift Pascal Gutknecht tief ins Grün und pflückt eine Rispe mit reifen Tomaten. Die verteilt er sogleich an uns und die Kinder – und sobald wir probieren, sind wir uns einig: Die sind megafein! Richtig süss und tomatig…

Hors Sol kommt ohne Pestizide aus!

Aber halt! Wir essen Tomaten aus solch einer Umgebung direkt vom Strauch? Denkt denn hier niemand über Pflanzenschutzmittel nach? Keine Sorge, sagt Pascal, in den Gutknecht-Gewächshäusern kommen überhaupt keine Pestizide zum Einsatz. Das wäre allein schon der Hummelvölker wegen schwierig. Das einzige, was an diesen Tomaten dran sein könnte, ist also allenfalls, was die Mitarbeiter an den Händen haben. Davon ausgehend, dass Pascal seine gewaschen hat, können wir die Kinder also bedenkenlos das Gemüse vertilgen lassen.

Und wie sie das tun! Neben Tomaten gibt es hier die als Naschwerk gezüchteten, besonders süssen Spitzpeperoni – auch unheimlich lecker.

Zweifarbige Spitzpeperoni (Spitzpaprika)

Zweifarbige Spitzpeperoni (Spitzpaprika): Absolut unbedenklich direkt ab Strauch und heiss begehrt bei den Kindern

 

Da kommt Pascal gar nicht so schnell mit dem Aufschneiden hinterher, wie die Kleinen ihm die Leckereien aus den Händen schnappen (heisst es nicht oft, dass Kinder kein Gemüse mögen würden? Hier wurde uns eindrücklich das Gegenteil bewiesen!). Selbst eine äusserlich eigenwillige Sorte im reifen Zustand grüner Zebratomaten mindert die Begeisterung nicht, sodass das Ganze schnell buchstäblich einer Raubtierfütterung gleicht.

Reife Zebratomaten in Rot und Grün

Eine besondere Rarität: Zebratomaten – beide Früchte in Pascals Händen sind reif!

Wie wird dann gegen Schädlinge vorgegangen?

Schon bald ist uns eine Merkwürdigkeit in der Tomatenpflanzung aufgefallen: Am Anfang jeder vielleicht fünften Pflanzreihe wächst am äussersten Ende des Schwebebalkens eine einzelne Auberginen-Pflanze. Das ist auch in den richtig grossen Tomatenhäusern so, sodass das nichts mit der Versuchsanlage zu tun haben kann. Jedenfalls nicht direkt.

Indikator-Aubergine

Diese Aubergine steht vor den Tomaten, um Schädlingsbefall frühzeitig sichtbar zu machen.

 

Stattdessen dient die Aubergine als Indikator für Schädlingsbefall. Sie hat nämlich unter allen Gemüsepflanzen im Gewächshaus die weichsten, empfindlichsten Blätter. Wenn Schädlinge ins Gewächshaus einfallen, lassen sie sich daher zu allererst auf der Aubergine nieder, wo sie von den Mitarbeitern schnell gesehen werden. Und dann wird in die biologische Trickkiste gegriffen:

Es werden Eier und Larven von nützlichen Krabbeltieren – natürlichen Feinden der Schädlinge, die in kleinen Briefchen beim Züchter eingekauft und wie Saatgut gelagert werden können, im Gewächshaus ausgesetzt.

Eine Ladung Nützlinge zur Schädlingsbekämpfung

Eine Ladung biologisches Schädlingsbekämpfungsmittel: Die winzigen aber nützlichen Bewohner des holzwolleähnlichen Substrats aus einem frisch geöffneten Briefchen machen sich eiligst davon (rote Kringel).

Schmeckt Hors Sol-Gemüse fad oder ist es weniger nahrhaft?

Was Pascal Gutknecht uns nun erklärt, könnt ihr auch hier in Keinsteins Kiste nachlesen (und erfahren, wie ihr Tomaten nachreifen lassen könnt): Der angenehme Geschmack reifer Tomaten oder anderer Gemüse kommt nicht aus dem “richtigen” Boden. Dafür ist einzig und allein Wärme verantwortlich. Und die gibt es hier im Gewächshaus reichlich (wir schwitzen schon ordentlich und mein Kamera-Handy läuft immer wieder heiss).

Dass die Tomaten im Supermarkt trotzdem oft kaum Geschmack haben, rührt daher, dass die Früchte auf ihrem Weg bis in die Supermarkt-Auslagen bzw. auf unseren Esstisch nicht warm bleiben. Damit sie schön prall und fest bei uns ankommen, werden sie nämlich beim Transport in die Märkte oft gekühlt – und wenn nicht dort, dann legen wir sie zu Hause nur all zu gerne in den Kühlschrank.

Das Problem dabei: Die Kälte führt zum Abbau von Aromastoffen, die von der Pflanze als Lockmittel für hungrige Pflanzenfresser geschaffen werden, welche die Samen verbreiten können. Und bei kalter Witterung macht die Verbreitung von Samen keinen Sinn (es würde schwerlich etwas daraus wachsen).

Da die Hors-Sol-Pflanzen über ihre “Infusion” alles erhalten, was sie zum Aufbau von Nähr- und Aromastoffen brauchen, fehlt ihnen aufgrund der Anbauweise nichts, um sowohl schmackhaft als auch gesund zu sein.

Frische Kräuter aus Hors Sol - Kultur

Pascal erklärts: Auch die frischen Kräuter erhalten hier alles, was sie brauchen, um würzig zu sein.

Wie ihr zu Hause an schmackhafte Tomaten kommt

Wenn ihr euch geschmackvolle Tomaten wünscht, kauft sie nach Möglichkeit ungekühlt, bringt sie in der kalten Jahreszeit raumwarm heim und legt sie dort nicht in den Kühlschrank! Lagert sie stattdessen bei Raumtemperatur (nicht unbedingt neben Äpfeln, es sei denn, die Tomaten wären unreif). Dann müsst ihr sie wohl schneller aufbrauchen, aber dafür schmecken sie um so mehr nach Tomate.

Und noch ein Tipp am Rande: Kleine Tomatensorten enthalten naturgemäss mehr Zucker als grosse und schmecken daher grundsätzlich süsser. Auch deswegen sind Kirschtomaten und andere “Winzlinge” als Nascherei besonders beliebt.

 

Warum wird dieses Gemüse nicht als “bio” verkauft?

Meine persönliche Vorstellung von bio-Anbau beläuft sich auf “frei von Pflanzenschutzmitteln ‘aus dem Labor’ und von umweltbedenklichen Düngemitteln. Damit wäre die pestizidfreie Hors-Sol-Methode mit ihrem wohldosierten wie geschlossenen Düngemittelkreislauf in meinen Augen des bio-Labels würdig. Das würde vor allem dem zu unrecht schlechten Image dieser Anbauweise gehörigen Auftrieb verleihen.

Leider sehen die Erfinder des bio-Labels das anders. Eine ihrer Bedingungen, die irgendwann in den 1980er Jahren für die Vergabe des Labels festgelegt wurde, ist nämlich der Anbau in “richtigem Erdboden”. Und die erfüllt die Hors-Sol-Methode mit ihren Kokosfasern auf Schwebebalken nunmal nicht.

Warum Pflanzen “ohne Boden” ganz natürlich sind

Dabei bestehen Kokosfasern und Humusboden aus der gleichen Sorte Rohstoff: Abgestorbenen Pflanzenresten. Im Humusboden sind die bloss etwas gründlicher zerkleinert und verdaut.

Freigelegter Wurzelballen in Hors Sol - Kultur

Ein freigelegter Wurzelballen in Kokosfasern: Sieht moosigem, durchwurzeltem Waldboden ziemlich ähnlich, gell?

 

Und überhaupt: An Pflanzen, die auf Überresten anderer Pflanzen wurzeln, ist überhaupt nichts unnatürliches. Haltet beim Spaziergang im Wald einfach einmal die Augen nach alten umgestürzten Baumstämmen und Wurzelstrünken auf. Die sind nämlich eine wahre Fundgrube – nicht nur für Pilze, Moose und Farne, sondern auch für viele “höhere” Pflanzen. Im Wald der Riesen-Sequoias an der Westküste Nordamerikas gibt solches Totholz sogar die besten “Baumkindergärten” für junge Mammutbäumchen ab!

Es wird Zeit für zeitgemässe Regeln

In einer Zeit, in welcher der Ruf nach nachhaltiger Ernährung einer wachsenden Weltbevölkerung ebenso immer lauter wird wie der nach Natur- und Umweltschutz, ist es dringend nötig, über 30 Jahre alte Regelungen neu zu überdenken.

Denn eine Möglichkeit, in einem kleinen Land mit extremen Jahreszeiten ganzjährig Gemüse anzubauen, ohne dabei auf chemische Pflanzenschutzmittel zurückzugreifen oder die Umwelt mit Düngemitteln zu belasten, sollte nicht das Schattendasein fristen, das ihr bislang bestimmt ist.

Die Nähe der Anbaustätten zu den jeweiligen Endkunden (also uns), die dank kurzer Transportwege schon zu einem deutlich kleineren CO2-Fussabdruck führt als Import-Gemüse ihn hat, ist zudem nur ein weiterer Punkt, der für die Nachhaltigkeit des Hors-Sol-Anbaus a la Gutknecht spricht.

CO2-Neutralität wird grossgeschrieben

Auch in Sachen Energieversorgung setzt man hier auf bestmögliche CO2-Neutralität. So sind alle Dächer der Anlage, die nicht aus Glas sind (das sind zum Beispiel Verarbeitungs- und Lagerbereiche, in welchen das Gemüse auf Europaletten verpackt und für den Abtransport bereitgehalten wird), mit Photovoltaik-Anlagen – also Solarzellen zur Stromerzeugung (wie die funktionieren, könnt ihr hier nachlesen) – bestückt. Diese Anlagen liefern mehr als genug Strom, um den ganzen Betrieb zu versorgen.

Für 2020 ist zudem der Bau einer eigenen Heizanlage für die kalte Jahreszeit geplant, welche mit Abfallholz befeuert werden soll. Zugegeben, das ist naturgemäss nicht ganz CO2-neutral (es sei denn, die Holzabfälle müssten so oder so zur Entsorgung verbrannt werden – dann würde die darin enthaltene Energie wenigstens sinnvoll genutzt). Allerdings ist offen, was die Gutknechts mit dem Abgas letztendlich anfangen (auch dafür gibt es nämlich Verwendungsmöglichkeiten).

Fazit

Wir haben nicht nur einen inspirierenden Vormittag in einer Welt verbracht, die uns normalerweise nicht zugänglich ist (es bei Gutknechts aber auch für euch sein kann – man kann die Führung über die Website für private Gruppen, Schul-, oder Betriebsausflüge buchen!). Wir haben auch jede Menge Spannendes gelernt – über überraschend natürlichen Gemüseanbau in futuristischer Umgebung.

Die Quintessenz dessen ist: Der Hors-Sol-Gemüseanbau hat sein verbreitet schlechtes Image nicht verdient. Denn die Gemüse aus dem Hors-Sol-Gewächshaus stehen solchen aus dem Garten an sich in nichts nach – und sind, bezogen auf die benötigten grossen Mengen, erst noch nachhaltiger produziert. So trägt das Gutknecht-Gemüse immerhin das “Suisse-Garantie”-Label, das nicht zuletzt für nachhaltige Produktion, Natürlichkeit und Frische steht.

Deshalb ist es an der Zeit, überholte Regelungen anzupassen, um diesem effizienten und umweltverträglichen Anbau ein besseres Image zu verleihen.

Und bis es soweit ist: Wenn Gemüse als “Hors Sol” ausgezeichnet seht (das ist in der Schweiz nicht Pflicht, aber erst heute habe ich die Kennzeichnung für Fleischtomaten im COOP entdeckt (und ratet einmal, was es heute zu essen gab)), kauft sie und freut euch, ein nachhaltiges Produkt ohne Pestizid-Belastung geniessen zu können.

Ich habe genau das jedenfalls im Hofladen auf dem Gutknecht-Gelände getan und mich für ein Ratatouille mit allem Nötigen eingedeckt. Mmmmhh, lecker!

Und welches Gemüse – aus welcher Anbauform – bevorzugt ihr? Warum?

Ein lebenswichtiges Element - wie es uns wirklich nützt

Ein chemisches Element wird in der Ernährungsbranche immer wieder heiss diskutiert: Das Jod – oder Iod, wie die Wissenschaftler es schreiben. Ist Jod nun gesund oder für die Gesundheit schädlich? Wie kann dieses vielseitige Element uns nützen? Wie können wir die richtige Menge davon zu uns nehmen?

Eines vorweg: Jod ist für uns alle – insbesondere für die gesunde Entwicklung von Kindern – unverzichtbar. Deshalb habe ich für euch Antworten auf wichtige Fragen zu diesem wichtigen Stoff zusammengestellt. Aber fangen wir von vorn an:

 

Was ist eigentlich Jod?

Jod ist eines der wenigen Nichtmetalle unter den chemischen Elementen. Das Elementsymbol ist “I” (in älteren Periodensystemen findet man auch noch ein “J”). Es gehört zur Gruppe der Halogene, die man im Periodensystem in der siebten Hauptgruppe (= Spalte) findet. Damit ist es chemisch mit den sehr aggressiven Gasen Fluor und Chlor und mit dem ebenfalls aggressiven aber flüssigen Brom verwandt: Wie diese besteht Jod aus Molekülen aus je zwei Atomen: I2.

Das Element Jod ist aus Chemikersicht etwas friedlicher als seine sehr aggressiven Verwandten. In unserer normalen Umgebung (Atmosphärendruck und Raumtemperatur) ist es zudem ein Feststoff: Jod bildet so dunkelviolette Kristalle, dass sie praktisch grauschwarz aussehen und zudem metallisch glänzen.

Eine bei Chemielehrern beliebte Besonderheit des Jods ist, dass es, wenn man es vorsichtig erwärmt, nicht schmilzt, sondern sofort verdampft (das direkte Verdampfen von Feststoffen nennen Chemiker und Physiker “Sublimieren”) – und der violette Dampf beim Abkühlen wieder zu Kristallen wird, ohne vorher zu kondensieren (das wird entsprechend “Resublimieren” genannt).

Wenn Lehrer im Schulunterricht Jod sublimieren, dann tun sie das in der Regel in weitgehend geschlossenen Gefässen. Denn wenngleich weniger stark als seine Verwandten reagiert auch dieses Halogen rege mit seiner Umgebung, reizt die Haut, die Augen und kann die Atemwege schädigen. Deshalb gilt es als gesundheits- und umweltschädlich und muss mit den entsprechenden Gefahrensymbolen beschriftet werden.

Wie kann das ein Nährstoff sein?

In der Natur kommt Jod nicht als Element – dafür ist es zu reaktionsfreudig – sondern in chemischen Verbindungen vor. Wie Chlor und die anderen Halogene bildet es leicht einfach negativ geladene Ionen (I, genannt Iodid) oder verbindet sich zum Beispiel mit Sauerstoff zu Ionen wie dem Iodat (IO3), die Bestandteile verschiedener Salze sind. Oder Jod-Atome bilden eine Atombindung zu einem benachbarten Atom – zum Beispiel Kohlenstoff – das Ergebnis sind jodhaltige organische Verbindungen.

Und sowohl die Salze als auch die organischen Verbindungen des Jods haben ganz andere – für uns lebenswichtige – Eigenschaften als das Element!

Jod und Kaliumiodid

Oben: Das Element Iod, bestehend aus I2-Molekülen. Die Dämpfe färben Kunststoffbehälter und -löffel braunviolett.
Unten: Das Salz Kaliumiodid , das I-Ionen enthält, besteht aus farblosen Kristallen.

 

Jod für unsere Ernährung

Wofür braucht der menschliche Körper Jod?

Viele Funktionen des Energiestoffwechsels und Wachstumsvorgänge werden von Hormonen geregelt, die in der Schilddrüse – die vorn in unserem Hals zu finden ist – hergestellt werden. Und diese Schilddrüsenhormone sind organische Moleküle, die Jod enthalten. Damit die Schilddrüse solche Hormone herstellen kann, braucht sie natürlich Jod – und zwar in Form von Iodid-Ionen I.

Triiodthyronin und Thyroxin – die Schilddrüsenhormone

Die beiden wichtigsten Schilddrüsenhormone, deren Konzentration im Blut der Arzt misst, um die Schilddrüsenfunktion zu überprüfen, sind das Triiodthyronin, kurz T3, und das Thyroxin, kurz T4.

Schilddrüsenhormone: Strukturformel Triiodthyronin und Thyroxin

Die beiden wichtigsten Schilddrüsenhormone: Der Index am T steht für die Anzahl Jod-Atome im Molekül. T4 unterscheidet sich von T3 nur durch ein zusätzliches Jod-Atom am linken “Benzol-Ring”. Von beiden Molekülen gibt es übrigens je zwei Ausführungen, die einander gleichen wie Bild und Spiegelbild (solche Paare nennen Chemiker “Enantiomere”). Als Hormon wirksam ist aber jeweils nur eine Ausführung – die Chemiker mit dem Buchstaben L kennzeichnen (das gilt übrigens für praktisch alle Spiegelbild-Moleküle in der Biochemie: Nur mit der L-Ausführung kann der Organismus etwas anfangen!). Deshalb enthalten Tabletten zur Behandlung einer Schilddrüsenunterfunktion “L-Thyroxin” (und nicht dessen wirkungsloses Spiegelbild D-Thyroxin).

 

Tatsächlich entsteht in der Schilddrüse hauptsächlich T4, das an Proteine angehängt seine Reise durch die Blutbahn antritt. Wenn es irgendwo im Körper gebraucht wird, kann das Hormon vom Protein abgekoppelt werden, sodass Zellen es aufnehmen können. Erst im Zellinneren wird dann ein Jod-Atom entfernt (genau: es wird gegen ein Wasserstoffatom (H) getauscht, welches in der Formel nicht mehr sichtbar ist) und so T3 erzeugt. Deshalb genügt es oft, bei einer Schilddrüsenunterfunktion nur T4 (“L-Tyroxin”) einzunehmen, um beide Hormone zu ersetzen.

Der Jod-Haushalt und sein Manager

Damit die Schilddrüse bei Bedarf Hormone nachliefern kann, kann sie einen gewissen Vorrat an Iodid-Ionen aufnehmen. Allerdings kann sie nicht feststellen, wann der Körper Bedarf an T4 und T3 hat. Dafür ist die Hirnanhangdrüse zuständig. Der geben die im Blut vorhandenen Schilddrüsenhormone nämlich das Signal “Wir sind da, es braucht nicht mehr”. Wenn dieses Signal zu schwach wird oder gar ausbleibt, schickt die Hirnanhangdrüse das Hormon TSH (Thyroidea stimulierendes Hormon) auf die Reise, welches wiederum der Schilddrüse (auf medizinisch Thyroidea) sagt, dass sie Jod aufnehmen soll (sodass T4 (und T3) hergestellt werden kann).

Deshalb lässt der Arzt bei einer Schilddrüsenuntersuchung auch die Konzentration des TSH im Blut bestimmen: Ist die nämlich niedrig, obwohl es zu wenig Schilddrüsenhormone hat (oder hoch, obwohl es mehr als genug T4/T3 hat), dann ist das Problem bei der Hirnanhangdrüse zu suchen, anstatt bei der Schilddrüse selbst.

Jod als Spurenelement

Damit die Schilddrüse auf Anweisung durch TSH Iodid aufnehmen kann, muss in ihrer Umgebung natürlich welches vorhanden sein. Deshalb müssen Menschen (und andere Tiere) Jod-Verbindungen mit der Nahrung aufnehmen. Jod ist also ein echtes Spurenelement!

Jodmangel und seine Folgen

Fehlt uns das Jod, werden bald die Schilddrüsenhormone knapp. Die Folgen dessen sind Antriebslosigkeit, Neigung zur Gewichtszunahme, ein langsamer Herzschlag und andere Anzeichen fehlender Energie. Dazu kommt, dass der Körper aus dauerhaft fehlenden Schilddrüsenhormonen folgert: Wir brauchen mehr Schilddrüsengewebe (das solche Hormone herstellen kann)! So fängt die Schilddrüse bei lang anhaltendem Jodmangel mitunter zu wachsen an, was zu einer im Extremfall gewaltigen, “Kropf” (medizinisch: “Struma”) genannten Schwellung am Hals führen kann.

Um ein beginnendes Kropf-Wachstum frühzeitig mitzubekommen und zu stoppen, vermisst der Arzt bei Patienten mit Schilddrüsenproblemen ab und zu die Schilddrüse mit dem Ultraschall-Gerät und vergleicht die Masse mit früheren Ergebnissen.

Besonders wichtig sind die Schilddrüsenhormone und damit das Jod jedoch für Ungeborene und kleine Kinder: Bei Jodmangel (oder nicht richtig arbeitender Schilddrüse) werden sowohl das Körperwachstum als auch die Entwicklung des Gehirns massiv behindert. Die Kinder bleiben kleinwüchsig, ihre Intelligenz und geistigen Fähigkeiten sind vermindert und sie leiden am Kropf und anderen körperlichen Auffälligkeiten.

Die extremsten Folgen von Jodmangel seit der frühen Kindheit – auf medizinisch “Kretinismus” genannt – waren bis vor rund 100 Jahren hierzulande weit verbreitet. Besonders in den Bergregionen in der Schweiz und Österreichs traf man regelmässig auf Betroffene – so auch im zweisprachigen Kanton Wallis, in welchem diese tragischen Gestalten auf französisch als “Crétins des Alpes” – in etwa “Idioten der Alpen” – bezeichnet wurden (das französische Schimpfwort “crétin” für “Dumpfbacke” gibt es noch heute – hier hat es seinen Ursprung).

Warum litten so viele Bergbewohner an Jodmangel?

Jod kommt in der Natur meist in wasserlöslichen Verbindungen – genau: Salzen – vor. So kommt es, dass solche Jodverbindungen in Gegenden, in welchen es oft regnet, alsbald ausgewaschen und fortgespült wird. Und wenn kein Jod im Boden ist, können darauf wachsende Pflanzen keines aufnehmen, ebenso wenig wie die Tiere, die davon fressen. Und wir Menschen, die sich von den Pflanzen und Tieren ernähren, bekommen so erst recht wenig Jod ab.

An den Hängen grosser Gebirge regnet (und schneit) es nun besonders rege, sodass in Bergregionen besonders viel Jod ausgewaschen wird und den Bewohnern fehlt. Doch auch im Flachland und an den Meeresküsten Mitteleuropas gibt es reichlich Niederschlag, sodass selbst dort der Boden nicht genug Jod hergibt, um seine Bewohner ausreichend zu versorgen.

Wie beugt man dem Jodmangel heute vor?

Als man vor rund 100 Jahren dahinter kam, wie Kretinismus entsteht und warum so vielen Menschen an Jodmangel litten, hat man damit begonnen, Nahrungsmitteln bei der Herstellung gezielt Jod zuzufügen. Heute verwendet man dazu Salze, die das Iodat-Ion IO3 enthalten, wie das Natriumiodat NaIO3. Im Körper reagieren die Iodat-Ionen dann weiter zum benötigten Iodid (I).

Die Iodate vermischt man entweder mit Speisesalz, welches entweder direkt an die Endkunden verkauft oder bei der Herstellung anderer Produkte wie Würsten, Kartoffelchips oder Fertiggerichten verwendet wird.

Oder man gibt die Iodate in das Kraftfutter für Kühe und Hühner, sodass sich das Jod in ihrer Milch und ihren Eiern wiederfindet.

In der Schweiz tut man seit 1922 von der Regierung angeleitet beides (ebenso wie in Deutschland und Österreich) – und 100 Jahre später sind die Folgen eindrücklich: Die durchschnittliche Jod-Versorgung der Bevölkerung in der Schweiz wie auch in Deutschland liegt heute im unteren Bereich dessen, was die WHO als wünschenswert ansieht. Die “Crétins des Alpes” und entstellende Kropfleiden gibt es nicht mehr.

Zu letzterem trägt übrigens auch bei, dass Neugeborene heute in den ersten Lebenstagen auf angeborene Schilddrüsendefekte untersucht werden, sodass ein erblich bedingter Hormonmangel sofort behandelt werden kann. Da im Mittel aber nur eines von 5000 Babys mit so einem Defekt zur Welt kommt, können solche Fälle allein nicht für die einst weite Verbreitung des Kretinismus in den Alpen verantwortlich sein.

 

So könnt ihr euch selbst und eure Kinder mit genügend Jod versorgen

  • Verwendet beim Kochen jodiertes Speisesalz – in der Menge, die einen gesunden Salzhaushalt fördert (wieviel Salz gesund ist, könnt ihr hier nachlesen)
  • Wenn ihr euch vegan ernährt, achtet besonders sorgfältig auf eure Jodversorgung, da euch der wichtige Anteil der Jodzufuhr aus dem Tierfutter entgeht! Die Ovo-Lacto-Vegetarier und Fischesser unter euch haben es da einmal mehr einfacher. Denn neben Milch und Eiern ist auch Fisch aus dem Meer eine gute Jod-Quelle (ratet mal, wo das aus dem Boden ausgewaschene Jod hingespült wird…).
  • Beachtet: Als Schwangere und stillende Mütter habt einen erhöhten Jodbedarf – ihr versorgt eure Kinder schliesslich mit!
  • Lasst bei einem Verdacht auf Jodmangel die Jodversorgung bzw. Schilddrüsenwerte vom Arzt prüfen und sprecht mit ihm ab, was ihr an Nahrungsergänzungsmitteln oder Hormonen einnehmt. Der Jod- bzw. Schilddrüsenstoffwechsel ist eine sehr empfindliche Angelegenheit, sodass eine nicht genau angepasste Dosierung oder falsche Auswahl unliebsame bis fatale Folgen haben kann.

 

Jod als Notfallmittel für Atomunfälle

Natürliches versus radioaktives Jod

Es gibt eine ganze Reihe verschiedener Jod-Atomkerne (man nennt solche Kerne “Isotope”: Sie haben bei gleicher Protonenzahl eine unterschiedliche Anzahl Neutronen, sodass sie alle dem gleichen Element angehören und die gleiche Chemie zeigen, obwohl sie aus unterschiedlich vielen Kernteilchen bestehen). Jedoch ist nur einer davon nicht radioaktiv, nämlich das Jod-Isotop mit 127 Kernteilchen (53 Protonen und 74 Neutronen), kurz “Jod-127”.

Deshalb kommt in der Natur auch nur dieses eine Jod-Isotop vor (alle anderen, die früh in der Geschichte des Sonnensystems entstanden sein mögen, sind längst zerfallen). In Atomreaktoren, wo fleissig Atomkerne zertrümmert und umgeformt werden, entstehen jedoch auch radioaktive Jod-Atome. Und wenn die bei einem Reaktorunfall nach draussen gelangen, kann ein menschlicher Körper die radioaktiven Isotope nicht von natürlichem Jod unterscheiden – und lagert sie in die Schilddrüse ein, sobald er ihrer habhaft wird.

Die Strahlung, die von den radioaktiven Jod-Atomen direkt in der Schilddrüse ausgeht, kann das sie umgebende Gewebe schädigen und – so nimmt man an – Erkrankungen bis zum Schilddrüsenkrebs auslösen. Tatsächlich wurde eine Zunahme an Schilddrüsenkrebs-Erkrankungen unter Kindern und Jugendlichen in naher Umgebung des verunfallten Reaktors von Tschernobyl beobachtet (mehr zu diesem schrecklichen Unfall zu meinen Lebzeiten erfahrt ihr hier).

Wie man sich vor radioaktivem Jod schützen kann

Ein Weg die eigene Schilddrüse vor radioaktivem Jod aus einem Reaktorunfall zu schützen besteht darin, im Falle eines solchen Zwischenfalls den Körper mit natürlichem Jod regelrecht zu überschwemmen – und ihn so dazu zu veranlassen, den Jod-Speicher in der Schilddrüse bis unter die Decke aufzufüllen. Wenn ihm dann radioaktives Jod unterkommt, passt dort einfach nichts mehr hinein.

Deshalb werden in der Schweiz an alle Haushalte und Arbeitsorte im Umkreis von 50km um Kernkraftwerke Jodtabletten (sie enthalten Kaliumiodid, also I-Ionen, die der Körper ohne Umwege einlagern kann) ausgegeben, die die Bewohner und Arbeitgeber vor Ort lagern und im Falle eines Unfalls sofort einnehmen können. Denn nur dafür sind sie gedacht: Die allermeisten radioaktiven Jodisotope zerfallen innerhalb von Tagen oder wenigen Wochen, sodass eine einmalige Überschwemmung mit nicht strahlendem Jod rechtzeitig nach dem Unfall in der Regel genügend Schutz bietet.

Ich habe übrigens keine Jodtabletten daheim – offenbar sind alle Atomkraftwerke weit genug entfernt, dass man uns genügend Zeit zubilligt, um im Ernstfall erst zur Apotheke zu gehen und welche zu holen. An meinem einstigen Arbeitsplatz in Uster im südöstlichen Kanton Zürich habe ich hingegen (auf der Suche nach einem Erste-Hilfe-Kasten) einige Packungen entdeckt.

 

Jod als Kontrastmittel

Einige organische Moleküle, die Jod-Atome enthalten, haben die für Mediziner nützliche Eigenschaft, dass sie Röntgenstrahlen schlucken können. Auch Körpergewebe – vor allem Knochen – besitzen solche Eigenschaften: Ein Röntgenbild entsteht, indem Röntgenstrahlen (eine energiereiche Form von Licht) durch den Körper auf einen lichtempfindlichen Film (bzw. einen entsprechenden digitalen Sensor) geschickt werden. Wenn etwas die Röntgenstrahlen auf ihrem Weg verschluckt (“absorbiert”), wirft es einen weissen Schatten auf den Film.

Wenn ein Patient ein Kontrastmittel – zum Beispiel eine jodhaltige organische Verbindung – gespritzt bekommt, gelangt sie in das Gewebe von Verdauungsorganen oder anderen Weichteilen im Körper. Dort schluckt es bei der anschliessenden Röntgenaufnahme oder einer Computertomographie (die auch mit Röntgenstrahlen gemacht wird) Strahlen, sodass die normalerweise kaum sichtbaren Organe nun deutliche Schatten werfen. Später werden die Kontrastmittel-Moleküle vom Körper selbst aufgeräumt und grösstenteils über die Niere wieder ausgeschieden.

jodhaltige Kontrastmittel

Zwei Beispiele für jodhaltige Kontrastmittel: Ähnlich wie in den Schilddrüsenhormonen sind Jod-Atome an ein Kohlenstoffgerüst gebunden (die Kohlenstoff(C-)-Atome zeichnet man der Übersicht halber nicht: jeder Winkel ohne Buchstabe steht für ein C-Atom). Und so, wie Jod-Atome von Schilddrüsenhormonen “abmontiert” werden können, können in den Prozessen im menschlichen Körper auch diese Jod-Atome abmontiert werden – und bei entsprechender Vorerkrankung zu einer regelrechten Vergiftung führen.

Nebenwirkungen jodhaltiger Kontrastmittel

Eine typische Kontrastmitteldosis kann rund 15 bis 30 Gramm Jod enthalten. Das ist im Massstab für medizinische Wirkstoffe, die der Körper zu verarbeiten hat, eine gewaltige Menge! Der eigentliche Haken daran ist aber: Die Jodatome, die an die “Benzol”-Ringe solcher Moleküle gebunden sind, können im menschlichen Körper davon abgelöst (ich vermute: durch Austausch (“Substitution”) gegen andere Atome oder Atomgruppen) werden. Das so freigesetzte Jod kann dann von der Schilddrüse aufgenommen werden – was dann zu einer gefährlichen Überladung mit Schilddrüsenhormonen führen kann, wenn der Patient eine Schilddrüsenüberfunktion hat oder sich in der Ausgangslage befindet, eine solche zu entwickeln. Deshalb sind jodhaltige Kontrastmittel für Patienten mit solchen Erkrankungen nicht – oder nur nach vorübergehender Blockade der Jodaufnahme durch die Schilddrüse – geeignet.

Ausserdem können jodhaltige Kontrastmittel – wie alle anderen grösseren körperfremden Moleküle auch – allergische Reaktionen auslösen. Wer solch eine Allergie hat, darf diese Art Kontrastmittel natürlich auch nicht verabreicht bekommen (Risikokandidaten mit anderen Allergien können vor einer unumgänglichen Kontrastmittel-Untersuchung vorsorglich allergiehemmende Mittel bekommen).

Jod als Desinfektionsmittel

Während jodhaltige Ionen in Salzen ein lebenswichtiger Nährstoff ist, hat elementares Jod, also solches, das aus I2-Molekülen besteht, geradezu gegenteilige Eigenschaften: Es ist sehr reaktionsfreudig und greift Körpergewebe und -zellen an. Aber nicht nur unsere, sondern auch die von Bakterien und anderen Krankheitserregern. Deshalb ist elementares Jod ein beliebtes Desinfektionsmittel.

Warum wirkt Jod desinfizierend?

Jod-Moleküle können im Zuge einer Redox-Reaktion einzelne Sauerstoff-Atome aus Wassermolekülen -die in Körpergewebe allgegenwärtig sind – herauslösen:

Diese Sauerstoff-Atome sind im Augenblick ihrer Freisetzung äusserst reaktionsfreudig (schliesslich fehlen ihnen je zwei Elektronen zu einem zufriedenstellenden (Edelgas-)Zustand) und greifen alles an, was ihnen in die Quere kommt, um sich irgendwie damit zu verbinden. Wenn das Kleinstlebewesen wie Bakterien sind, gehen die rasch daran zugrunde – wenn das menschliches Gewebe ist, reagiert das auf den Angriff mit Entzündungszeichen: Das Desinfizieren von Wunden mit Jod tut weh!

Was genau ist in jodhaltigen Desinfektionsmitteln drin?

Elementares Jod – ein fast schwarzer Feststoff – ist unlöslich in Wasser. Es gibt allerdings Tricks, mit deren Hilfe man Jod trotzdem mit Wasser mischen kann:

Entweder man mischt das Jod mit einer Kaliumiodid-Lösung. Die darin enthaltenen I-Ionen lagern sich mit den I2-Molekülen zusammen und bilden spezielle und wasserlösliche Ionen aus je drei Jod-Atomen (I3). Solche Lösungen werden deshalb auch “Kaliumtriiodid-Lösung” genannt und sind im Schullabor sehr beliebt.

Oder man verwendet wasserlösliche organische Kettenmoleküle, die mit Triiodid-Ionen Komplexverbindungen eingehen können. Bei Bedarf (d.h. wenn ein attraktiverer Reaktionspartner zugegen ist) können sich die I2-Moleküle aus dem Komplex bzw. dem Triiodid lösen und ihrer desinfizierenden Aufgabe nachgehen. Solche organischen Komplexe findet ihr in jodhaltigen Medikamenten: Das “Polyvidon-Jod” (kurz “Povidon-Jod”) in “Betaisodona”-Lösung oder -salbe ist einer davon.

Strukturformel Polyvidoniod

Das ist “Polyvidon-Iod” – Rechts: Der Kunststoff Polyvidon (Polyvinylpyrrolidon, PVP) besteht aus langen Kohlenwasserstoff-Ketten, die mit ringförmigen Atomgruppen besetzt sind (n und m stehen für beliebige Anzahlen solcher Kettenglieder). Links: Die Sauerstoff-Atome von je zwei benachbarten Ringen können ein positiv geladenes Wasserstoff-Ion (H+) “tragen”, an welches ein negativ geladenes I3-Ion bindet (denn entgegengesetzte Ladungen ziehen sich stets an).

 

Seiner aggressiven Wirkung auf Gewebe – vor allem auf Schleimhäute wegen – sind jodhaltige Desinfektionsmittel nur für die Anwendung “aussen”, d.h. auf der Haut bzw. zur Wundversorgung gedacht!

 

Jod als Reagenz zum Experimentieren

Im Schullabor ist der Nachweis von Stärke mit Jod (oder umgekehrt von Jod mit Stärke) sehr beliebt: Wenn man diese beiden zusammenbringt, bleiben die Jod-Moleküle nämlich in den langen Stärkeketten hängen und bilden mit ihnen eine tief blauschwarze Verbindung (Stärke ist dagegen weiss und jodhaltige Lösungen bräunlich).

Wie ihr die Stärke in Kartoffeln oder Pflanzenteilen zu Hause selbst nachweisen könnt – und zwar mit “Betaisodona” oder einem ähnlichen Desinfektionsmittel! – zeige ich euch hier in meiner Sammlung spannender Experimente mit Pflanzen.

Jod als Reagenz zum Stärkenachweis

Mit Jodlösung – zum Beispiel aus einem Desinfektionsmittel – könnt ihr Stärke in Pflanzenteilen nachweisen!

Achtung! Jod als Element ist ein Gefahrstoff!

Achtet beim Experimentieren oder Aufbewahren von Jodlösungen stets darauf, dass ihr sie nicht mit Ammoniak (Ammoniakwasser, ammoniakhaltige Reinigungsmittel, Salmiak, Salmiakgeist…) zusammenbringt! Dabei können nämlich explosive Verbindungen aus Jod und Stickstoff entstehen, die ihr sicher nicht in eurer Wohnung oder im Schulzimmer haben wollt.

Bedenkt zudem immer: Elementares Jod wirkt auf nützliche Wasserlebewesen genauso wie auf schädliche Keime und unsere Schleimhäute. Deswegen darf es nicht ins Abwasser gelangen! Bringt Reste von Experimenten mit Jod ebenso wie abgelaufene jodhaltige Desinfektionsmittel immer zur Sonderabfall-Entsorgungsstelle!

Wenn ihr im Schullabor das Salz Natriumthiosulfat (oder ein anderes passendes Reduktionsmittel) zur Hand habt, könnt ihr Reste von Jodlösungen auch damit mischen: Die I2-Moleküle reagieren damit zu I-Ionen (die braune Farbe der Lösung verschwindet dabei), die ins (Labor-)Abwasser entsorgt werden können.

 

Jod als umstrittener Stoff

Jod und Schilddrüsenüberfunktion

Bei bestimmten Schilddrüsenerkrankungen, speziell bei einer Überfunktion durch unkontrolliert hormonproduzierendes Gewebe, führt die Zufuhr von Jod zu einer Überproduktion von Hormonen, die in regelrechten Vergiftungserscheinungen münden kann: Auch deswegen ist es wichtig, die Behandlung von Schilddrüsenproblemen mit dem Arzt zu besprechen – denn der klärt die Art der Probleme ab und kann allenfalls vor solchen Schwierigkeiten warnen.

Gerne wird übrigens ein Zusammenhang zwischen entzündlichen Autoimmunerkrankungen der Schilddrüse wie Morbus Hashimoto ins Feld geführt. Ob es einen solchen gibt, konnte jedoch in klinischen Studien bislang nicht einwandfrei geklärt werden.

Gibt es eine Jodallergie?

Eine Überdosierung(!) von Jod kann generell die Bildung von Schilddrüsenhormonen beeinflussen bzw. zu allergieähnlichen Symptomen führen. Dann spricht man von einer Jod-Unverträglichkeit. Auch das ist ein Grund, weshalb eine Nahrungsergänzung mit zusätzlichen jodhaltigen Mitteln (über das Würzen mit Jodsalz und gewöhnliche Lebensmittel hinaus) sorgfältig auf den jeweiligen Körper und seinen Bedarf eingestellt werden sollte.

Aus diesem Grund wird der Zusatz von Jodsalzen zu Speisesalz und Futtermitteln nämlich so begrenzt, dass die Versorgung der Bevölkerung auf diesem Weg in der Schweiz wie auch in Deutschland bei “normaler” Ernährung im unteren Soll-Bereich liegt – sodass eine Überversorgung durch jodierte Lebensmittel praktisch nicht möglich ist.

Eine “echte” Jod-Allergie auf Kleinstmengen gibt es jedoch nicht (wie Allergien entstehen könnt ihr hier nachlesen): Sowohl I2-Moleküle als auch IO3 oder I -Ionen sind zu klein für die Wechselwirkung mit Antikörpern, die jeder Allergie zu Grunde liegt.

Allergien gegen jodhaltige organische Moleküle – wie sie zum Beispiel als Kontrastmittel eingesetzt werden – sind dagegen möglich (weil solche Moleküle wesentlich grösser sind als die der anorganischen Jodverbindungen) und bekannt.

 

Mein Fazit

Jod ist ein vielseitiges Element und in seinen Verbindungen ein für den menschlichen Körper unverzichtbares Spurenelement. Mit der Jodversorgung steht und fällt der Schilddrüsenstoffwechsel, der von grösster Bedeutung für unseren Energiehaushalt und die gesunde Entwicklung von Kindern ist.

Deshalb tun die Verantwortlichen in Ländern mit jodarmen Böden – wie der Schweiz und Deutschland – gut daran, für den Zusatz von Jod zu Speisesalz und Nahrungsmitteln zu sorgen. So kommen wir nämlich zu unserem Jod, ohne zusätzliche Kosten und Mühe mit speziellen Nahrungsergänzungsmitteln auf uns nehmen zu müssen. Zudem wird der Zusatz von Jod zu Lebensmitteln so gesteuert, dass eine Überdosierung, die zu Symptomen einer Jodunverträglichkeit führen kann, auf diesem Wege höchst unwahrscheinlich ist.

Elementares Jod hat dagegen ganz andere – aggressivere – Eigenschaften und findet deshalb als Desinfektionsmittel Verwendung, während es zur Einnahme nicht geeignet ist!

Wetter-Experiment: Regen machen im Glas

Am letzten Freitag spät nachmittags geschah, was zur Zeit am Ende eines sonnigen Tages immer wieder vorkommt: Es wird plötzlich dunkler, die Sonne verschwindet hinter dicken Gewitterwolken. Aufkommender Wind veranlasst mich, Balkontüre und Fenster zu schliessen. Denn bald schon spülen Gewitterschauer mitsamt Blitz und Donner das Land wieder ordentlich durch.

Diesen Freitag, während ich noch unterrichtete, ging es allerdings ganz besonders schnell: Kaum war die Sonne verdunkelt, öffnete der Himmel seine Schleusen. Für den Regen. So richtig viel und mit Wind. Und ehe ich mich versah, hatten sich Wasserlachen in den Wohnzimmereingang, die Küche und das Schlafzimmer ergossen. Da konnte ich nur noch Aufnehmer und Frottee-Handtücher auswerfen, um die nasse Himmelsbotschaft einzudämmen.

Das ganze Malheur brachte mich allerdings auf eine ganz spannende Naturforscher-Frage: Wie kommt es eigentlich, dass es regnet?

Und damit ist auch gleich das Thema für die diesjährigen Sommer-Experimente in Keinsteins Kiste gefunden: Das Wetter! Rund um Wetterphänomene oder die Launen des Himmels gibt es nämlich eine Menge spannender Experimente zum Selbermachen. Und den Anfang mache ich heute mit: Regen.

Woher kommt der Regen?

Klar, aus den Wolken, werden viele von euch jetzt sagen. Denn Wolken bestehen schliesslich aus Wasser. Aber wie geht es vor sich, dass die Wolken schweben, während Flüsse, Seen und Meere brav der Schwerkraft folgend auf der Erde bleiben? Und warum fällt das Wasser schliesslich doch wieder runter und macht uns nass?

Um zu beobachten, wie Regen – im ganz einfachen Sinne – entsteht, könnt ihr ganz einfach Regen machen – in einem Glas!

Wie ihr Regen machen könnt

Ihr braucht dazu

  • Ein grosses Glas, zum Beispiel ein Honig- oder Einmachglas
  • Leitungswasser
  • Eine bis zwei Hände voll Eiswürfel
  • Eine Schale, deren Boden das Glas ganz zudeckt
  • Einen Schnellkocher oder Kochtopf auf dem Herd

Schnellkocher mit Wasser, Glas, Schale mit Eiswürfeln: Mehr brauch ihr nichts fürs Experiment!

So macht ihr das Experiment

  1. Erhitzt das Wasser im Schnellkocher oder im Kochtopf auf dem Herd. Giesst das (fast) kochende Wasser in das Glas, bis es darin etwa 2cm hoch steht. Das Glas ist damit nun sehr heiss! Weist die Jungforscher darauf hin, dass sie es jetzt nicht mehr anfassen sollten!
  2. Stellt sogleich die Schale auf die Glasöffnung (die sollte damit so vollständig wie möglich zugedeckt – aber nicht luftdicht verschlossen! – werden) und gebt die Eiswürfel hinein.
  3. Lasst euch Zeit und beobachtet, was im Glas geschieht.
Meine Eiswürfelform aus Aluminium passt genau auf das Becherglas - so habe ich die Eiswürfel gar nicht herausgenommen, sondern die Schale einfach auf das Glas gestellt.

Praktisch: Meine Eiswürfelform aus Aluminium passt genau auf das Becherglas – so habe ich die Eiswürfel gar nicht herausgenommen, sondern die Schale einfach auf das Glas gestellt.

Was passiert dabei?

Das beinahe siedende Wasser verdampft bzw. verdunstet. Der so entstehende Wasserdampf bleibt aber im Glas gefangen, wenn die Schale auf der Öffnung steht. Das Eis kühlt dabei den Boden der Schale stark ab. So kondensiert – das heisst verflüssigt sich – das Wasser an der Unterseite der Eis-Schale. Schon bald könnt ihr an der Glaswand winzigkleine Tröpfchen erkennen, die langsam zu immer grösseren Tropfen zusammenwachsen. Irgendwann können die grösseren, schweren Tropfen sich nicht mehr halten und rinnen der Schwerkraft folgend die Glaswand hinunter und zurück in die Wasserschicht am Boden.

Und es kommt noch besser Wenn ihr Geduld habt und 10 bis 20 Minuten wartet (so lange hat es bei mir gedauert), werden auch die Tropfen, die direkt unter dem Boden der Schale heranwachsen, so schwer, dass sie nach unten tropfen: Es regnet im Glas!

Gleich fällt der nächste Regentropfen vom Boden der Eiswürfelschale!

Gleich fällt der nächste Regentropfen vom Boden der Eiswürfelschale!

Wie entsteht der Regen im Glas?

In flüssigem Wasser können sich die winzigen Wasserteilchen zwar frei bewegen, kleben dabei aber stets dicht beieinander. So gleiten sie aneinander vorbei ohne sich zu trennen, so wie die vielen Menschen in einem richtig dichten Gewühl. Wenn die Wasserteilchen aber mit genügend Energie ausgestattet werden, zum Beispiel, indem ihr sie mit dem Schnellkocher erwärmt, können sie sich voneinander lösen und jedes für sich frei im Raum herumflitzen: aus flüssigem Wasser wird Wasserdampf, ein Gas aus Wasserteilchen (die zum Verdampfen nötige Energie wird “Verdampfungswärme” genannt und ist vergleichbar mit der Schmelzwärme, die ihr hier erforschen könnt).

Der Wasserdampf vermischt sich mit der Luft im Glas und verteilt sich dabei so weit wie möglich – also bis hinauf zum Boden der Eis-Schale. Der wiederum ist so kalt, dass die Wasserteilchen im Dampf ihre Wärme-Energie an die Schale abgeben. Damit büssen sie aber auch ihre freie Beweglichkeit wieder ein und müssen sich mit anderen Wasserteilchen zusammenrotten: Aus dem gasförmigen Wasserdampf wird wieder flüssiges Wasser!

Winzige, für unsere Augen unsichtbare Macken in der Oberfläche des Schalenbodens oder daran haftende Staubkörnchen machen vermutlich den Anfang, an dem sich erst wenige, dann immer mehr Wasserteilchen ansammeln. So entstehen winzige Tröpfchen, die immer grösser werden, je mehr Wasserdampf verflüssigt wird. Sobald die Tropfen zu schwer werden, um am Schalenboden zu haften, fallen sie wie Regen hinunter ins Glas.

Wo die Wärme aus dem kondensierenden Wasserdampf hingeht, könnt ihr übrigens auch beobachten: Das Eis in der Schale wird nämlich zu schmelzen beginnen!

 

Warum regnet es aus Wolken?

Auch Wolken bestehen aus winzigen Wassertröpfchen oder – wenn es in den hohen Luftschichten richtig kalt ist – aus Eiskristallen. Diese Tröpfchen entstehen aus Wasserdampf, der in die Lufthülle der Erde, die Atmosphäre, gelangt, wenn die Wärme der Sonne das Wasser von der Oberfläche von Meeren, Seen und Flüssen verdunsten lässt.

Damit Wasser gasförmig wird, muss es nämlich nicht kochen – auch bei niedrigerer Temperatur lösen sich immer mal einige Teilchen von der Wasseroberfläche und mischen sich unter die Luft. Das nennt man Verdunsten und nicht Verdampfen, und es dauert wesentlich länger als das Einkochen von Wasser.

So lange die Wasserteilchen sich als Dampf mit der Luft mischen oder die Flüssigkeitströpfchen winzig genug sind, um von Luftströmungen getragen zu werden, bleiben sie in der Luft, sodass wir sie von unten z.B. als Schäfchenwolken oder geschlossene Wolkendecke beobachten können. Wenn sich jedoch zu viel Wasser ansammelt und die Tröpfchen zu sehr wachsen, werden sie irgendwann zu schwer und fallen nach unten, bis sie auf die Erde treffen und uns nass machen.

Wie Regentröpfchen ihren Anfang nehmen

Darüber, wie die Entstehung von Tröpfchen überhaupt ihren Anfang nimmt, sind sich übrigens auch die Wetterforscher noch nicht ganz sicher. Aber sie vermuten, dass auch in den hohen Luftschichten reichlich Staubkörnchen schweben, an die erste Wasserteilchen sich anlagern können, sodass immer neue Teilchen dazustossen und sich anheften können, um ein immer grösseres Tröpfchen zu formen.

Regen an Hindernissen

Vielfach beobachten kann man indessen, dass das Auflaufen von Wasserdampf an Hindernissen zur Entstehung von Wolken beiträgt und so zu Regen führen kann: Wenn der Wind wasserdampfhaltige Luft oder Wolken gegen eine Bergkette schiebt, staut sich das Wasser vor diesem Hindernis. Die Wasserteilchen werden enger zusammen geschoben und so besonders leicht dazu verleitet, sich zu Regentropfen zusammenzurotten. So kommt es, dass es hier in der Schweiz häufig nur auf einer Seite der Alpen regnet: Entweder bei uns im Norden oder im Kanton Tessin im Süden – je nachdem woher der Wind weht.

Ganz extrem zeigt sich die Wirkung von hinderlichen Bergketten im Westen Nordamerikas: Hier schiebt der Wind aus dem Westen das verdunstende Wasser aus dem pazifischen Ozean gegen die Berge der Sierra Nevada, sodass gleich dort reichlich Nebel und Regen entsteht. Davon leben an der Westseite dieses Gebirges richtige Regenwälder und die grössten Bäume der Welt (die dicksten unter ihnen haben wir im Sequoia Nationalpark bestaunen dürfen). Die Luft, die schliesslich über die Berge schwappt, ist nach diesem Regen allerdings arm an Wasserteilchen, dass es daraus so gut wie gar nicht mehr regnen kann. Deshalb gibt es östlich der Sierra Nevada nur karge, trockene Wüsten – darunter das berühmt-berüchtigte Death Valley (auch das ist eine spannende Forscher-Reise wert).

Wenn es kalt ist: Schnee

Wenn es in einer Wolke sehr kalt ist, entstehen aus dem Dampf keine Flüssigkeitströpfchen, sondern feste Kristalle: Schneeflocken! Chemiker und Physiker sagen: Das Wasser resublimiert (das Sublimieren ist das Verdampfen von Feststoffen – resublimieren der umgekehrte Vorgang: Die frei fliegenden Teilchen eines Gases lagern sich zu einem regelmässigen, festen Kristall zusammen, ohne erst eine Flüssigkeit zu bilden).

Damit ein schöner sechseckiger Schneekristall entstehen kann, braucht es – wie zur Entstehung eines Wassertröpfchen – ein Staubkorn oder ähnliches, an das sich die Wasserteilchen anlagern können. Wenn die Umgebung dieses Staubkorns in alle Richtungen gleich ist, wächst der Kristall durch die Anlagerung weiterer Teilchen gleichartig in alle (6) Richtungen. Das könnt ihr euch im Winter übrigens unter einem einfachen USB-Mikroskop ansehen!

Kalt, nass und windig: Hagel

Enthält eine kalte Gewitterwolke dagegen viel Wasser und weht darin ein strammer Wind nach oben, der auch schwerere Tropfen in der Luft hält, können die Tröpfchen schnell zu festen, halbwegs runden Eiskörnern zusammenfrieren und mit jeder neuen drumherum gefrierenden Wasserschicht immer grösser werden. Wenn die dann runterfallen, heisst das für uns Deckung suchen, denn: Es hagelt! Übrigens: Erst ab einem Korndurchmesser von 5mm oder mehr ist Hagel offiziell Hagel…kleinere Körner werden Graupel genannt.

Entsorgung

Ihr habt keine gefährlichen Stoffe verwendet, also gibt es nichts besonderes zu beachten: Leitungswasser kann in den Ausguss gegeben oder besser zum Blumengiessen oder anders verwendet werden.

Ich wünsche euch viel Spass beim Regenmachen! Und welches Wetterphänomen beobachtet ihr eigentlich am liebsten?

Chemie mit Globi : Rezension und Gewinnspiel zum Schweizer Vorlesetag #vorlesefieber

Dieser Artikel enthält Affiliate-Links aus dem Affilinet-Partnerprogramm des Orell-Füssli-Verlags (gekennzeichnet mit (*) – (*) ) – euch kosten sie nichts, mir bringen sie vielleicht etwas für meine Arbeit ein. Ich habe für diese Rezension vom Orell Füssli Verlag ein Rezensionsexemplar des Buches und eine Zusage für den Versand eines zweiten Exemplars als Gewinn erhalten. Vielen Dank dafür! Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Mint&Malve veranstalten anlässlich des ersten Schweizer Vorlesetages am 23.Mai – ausgerichtet vom Schweizerischen Kinder- und Jugendmedien SIKJM – die Blogparade #vorlesefieber , bei welcher sich alles ums Vorlesen dreht. Vorlesen – das ist eine wunderbare Möglichkeit, Zeit mit (seinen) Kindern zu verbringen und sie von Anfang an beim Lernen zu unterstützen – ohne dass die Kinder etwas davon merken! Denn Vorlesen fördert Sprachkompetenz und Kreativität… und kann nebst Nähe auch noch Wissen vermitteln. Um zum Vorlesen und Zuhören zu animieren, finden an 23. Mai in der ganzen Schweiz Veranstaltungen rund ums Vorlesen statt – und hier in der virtuellen Schweiz bloggen wir fleissig zu allem, was eine schöne Vorleserunde ausmacht.

Aber wie passen denn Vorlesen und Naturwissenschaft zusammen? Kann man denn Kindern überhaupt schon so etwas wie Chemie vermitteln? Und sind Lehrbücher nicht selbst dann, wenn sie vorgelesen werden, viel zu trocken für junge Forscher?

Mitnichten! Ich war selbst positiv überrascht als ich zum ersten Mal davon las: Es gibt tatsächlich Kinderbücher, welche den jungen und jüngsten Lesern die Chemie ihrer Alltagswelt näher bringen und zum Erforschen anregen – und das ganz ohne den üblichen negativen Anstrich meines Fachs! Eines davon ist noch dazu made in Switzerland und dreht sich um einen der grössten Helden der Schweizer Kinderliteratur: Ich schreibe von “Chemie mit Globi”!

Globi forscht und entdeckt

…und seine Fans forschen und entdecken mit. In diesem Band der Reihe GlobiWissen macht der stets neugierige Globi sich daran, die Chemie in seiner alltäglichen Umgebung (schliessich ist Chemie überall und alles ist Chemie) zu erforschen. Dabei unterstützt ihn sein Freund, der Chemieprofessor Justus K. Rauch, nach Kräften. Und hinter Justus verbergen sich eine ganze Reihe kluger Chemieprofessoren und Gymnasiallehrer, die im Auftrag der Akademie der Naturwissenschaften Schweiz gründlich darauf geschaut haben, dass alles seine chemische Richtigkeit hat und verständlich ist.

So sind fast 100 farbenfrohe Seiten entstanden, auf welchen Globi und Justus ihre Welt der Stoffe und Reaktionen erkunden – die der Alltagswelt jeder Familie entspricht. Und das Beste ist: Sie verraten sogar, wie man einige ihrer Experimente nachmachen kann, sodass die Leser (bzw. Zuhörer) auch selbst mitexperimentieren können!

Zum Inhalt des Buches

Die Chemie ist ein unglaublich weites Feld, und tatsächlich geht in unserem Leben und unserer Umgebung praktisch nichts ohne sie (denn auch das Leben selbst und die Natur beruhen letztlich auf Chemie). Dementsprechend vielfältig und weit gestreut sind auch die Inhalte von “Chemie mit Globi”. Deshalb gebe ich euch eine Kurzübersicht, was ihr in diesem Buch finden könnt. Und zu fast allen Themen gibt es überdies Experimentieranleitungen zum Selberforschen!

  • Einleitung – ganz nach dem Motto von Keinsteins Kiste: Chemie ist überall – alles ist Chemie – und ein Wimmelbild-Inhaltsverzeichnis
  • Geschichte der Chemie, und ein wichtiger Sicherheitshinweis für alle folgenden Experimente
  • Atome und Elementarteilchen, Periodensystem der Elemente
  • Verbindungen: das Wassermolekül und Reaktionsgleichungen
  • Die Aggregatzustände fest, flüssig und gasförmig und ihre Umwandlungen ineinander
  • Reinstoffe, Stoffgemische und Trennverfahren
  • Metalle, Legierungen, Edelmetalle
  • Säuren und Basen (unter anderem mit dem Versuch mit dem “nackten Ei”) und die Messung des pH-Werts (als Experiment mit Rotkohl)
  • Salze und ihre Flammenfarben, die zum Beispiel dem Feuerwerk seine Farben geben
  • Die Entstehung von Rost
  • Die verschiedenen Erscheinungsformen von Kohlenstoff, Kohlenstoff als Element des Lebens, fossile Brennstoffe
  • Düngemittel und Nährstoffkreislauf in der Natur
  • Kunststoffe aus Erdöl: Langlebigkeit, Recycling
  • Strom durch Chemie: Batterien, Recycling, Leitfähigkeit von Salzlösungen
  • Medikamente sind Chemikalien
  • Gele: Gelatine als Superabsorber, Leim und Klebstoffe
  • Hefen machen Chemie: Sie erzeugen neue Stoffe, z.B. das Gas Kohlendioxid, Gärung
  • Indigo und andere pflanzliche Farbstoffe
  • Seife und die Superwaschkraft
  • Duft- und Aromastoffe aus der Natur
  • Spurensuche dank Erbsubstanz: DNA in der Kriminaltechnik

Zu guter Letzt werden reale ChemikerInnen vorgestellt – wie sie an Universitäten und vielen anderen Betrieben arbeiten, und solche, die weltberühmt geworden sind. So ist es fast unumgänglich, dass die Lektüre Neugier geweckt hat. Und Globi wäre vermutlich nicht Globi, wenn er nicht noch Infos zur Hand hätte, wo ihr euch weitergehend über Chemie-Berufe informieren oder weiter über Chemie und Experimente nachlesen könntet.

Und dass ihr aufmerksam gelesen bzw. beim Vorlesen zugehört habt, könnt ihr auf der letzten Seite des Buches schliesslich mit Globis Chemie-Quiz beweisen.

Mein Eindruck vom Buch

Auf knapp 100 Seiten wird eine grosse Fülle von Themen und Alltags-Phänomenen, die einen vielfältigen Einblick in das unfassbar weite Feld der Chemie gewähren, vorgestellt. Dabei schauen die Autoren nicht davor, auch abstraktere Inhalte wie Elementarteilchen, Elementsymbole und Reaktionsgleichungen einzubringen.

Warum auch – schliesslich haben auch und gerade solche alltagsfremden Dinge grosses Potential, um Neugier zu wecken. So haben mich selbst schon ab 8 Jahren in meinem WasistWas-Buch über Sterne und Astronimie die Skizzen zur Kernfusion mit dem Teilchenmodell am meisten fasziniert. – Indem diese Neugier genutzt wird, wird den Kindern ein einfacher Zugang zu später oft als “schwierig” weil “abstrakt” verschrienen Inhalten ermöglicht. Nichts desto trotz bleibt die Chemie mit Globi stets leicht verständlich.

So können auch die Grossen, die kaum (noch) Ahnung von Chemie haben, beim gemeinsamen (Vor-)Lesen und Experimentieren entdecken und repetieren – und sich so für allfällige Fragen widmen. Die werden nämlich ganz sicher kommen. Denn Globi und die Chemie ist kein umfassendes Lehrbuch – es macht vielmehr neugierig und regt dazu an, sich ohne negativen Vorbehalt mit der spannenden Chemie des Alltags zu beschäftigen.

 

Eckdaten zum Buch

(*)
Chemie mit Globi – Globi forscht und entdeckt

(*)
Globi-Verlag, Imprint Orell Füssli Verlag AG, Schweiz 2011
Hardcover-Ausgabe, 96 Seiten
ISBN 978-3-85703-007-9

Fazit

Chemie vorlesen? Ja, das geht! Das Buch richtet sich zwar vornehmlich an Kinder der Primarstufe (1. bis 6. Klasse), die also schon selbst lesen können oder lernen, aber auch in diesem Alter verbindet das gemeinsame Lesen. Denn manchmal ist es einfach entspannter, jemandem zuzuhören – und diesen Jemand dann auch gleich mit Fragen eindecken zu können, als selbst zu lesen. Und ich habe schon Kindergärtler kennengelernt, die ihre Eltern mit Fragen zu “Ha-zwei-Oh” gelöchert haben (und die Eltern waren dann froh, bei mir und in Keinsteins Kiste Antworten auf so manche Frage zu finden).

Im Übrigen: Niemand ist perfekt…auch nicht Globi. So haben sich aller Umsicht und Mühe zum Trotz ein paar Fehler in diesen Band eingeschlichten. Macht aber nichts, denn der Orell Füssli Verlag bietet die korrigierten Seiten gratis zum Download an. Und wenn ihr euch schon ein wenig mit Chemie auskennt: Findet ihr den groben Fehler gleich auf dem Cover (dem Beitragsbild)? Die Auflösung und alle anderen korrigierten Seiten findet ihr hier!

Gewinnspiel: Chemie mit Globi für euch

Wenn ihr nun neugierig seid und die Chemie mit Globi erforschen möchtet, habe ich noch ein besonderes Schmankerl für euch: Der Orell Füssli Verlag stellt mir ein Exemplar von “Chemie mit Globi”, das ich unter euch verlosen darf! Herzlichen Dank dafür!

Wie ihr am Gewinnspiel teilnehmen könnt

Zur Teilnahme kommentiert diesen Beitrag mit gültiger E-Mail-Adresse (die brauche ich, um euch über euren Gewinn benachrichtigen zu können!) und schreibt, welche Alltagsbeobachtung euch besonders neugierig auf Chemie, Physik und Co macht, oder was euch mit Globi verbindet.

Teilnahmebedingungen

  • Das Gewinnspiel wird von Keinsteins Kiste in Zusammenarbeit mit dem Orell Füssli Verlag veranstaltet. Vielen Dank für die Bereitstellung und den Versand des Preises!
  • Das Gewinnspiel startet am 15. Mai 2018 und endet am 31. Mai 2018 um 24.00 Uhr.
  • Die Teilnahme am Gewinnspiel ist kostenlos.
  • Ihr müsst mindestens 18 Jahre alt sein (Liebe Kinder: Tut euch mit euren Eltern, Grosseltern oder anderen Erwachsenen zusammen!).
  • Ihr müsst eine Post-Adresse in der Schweiz, Deutschland oder Österreich haben, an welche der Gewinnpreis versandt werden kann.
  • Gewinnpreis ist ein Exemplar des Buches “Chemie mit Globi”.
  • Es gibt 1 Los für einen Kommentar mit gewünschtem Inhalt (s.o.).
  • Eine Auszahlung des Gewinns in bar ist nicht möglich. Der Rechtsweg ist ausgeschlossen.
  • Der Gewinner wird ausgelost und per eMail benachrichtigt. Dabei wird er darum gebeten, der Weitergabe seiner Postadresse an den Orell Füssli Verlag zuzustimmen, damit der Gewinn direkt vom Verlag versandt werden kann.
  • Die Gewinne gelten auf den Namen der teilnehmenden Person und sind nicht auf Drittpersonen übertragbar. Sofern die Ausschüttung eines Gewinns an einen in der Ziehung ermittelten Gewinner nicht möglich ist, weil eine Gewinnbenachrichtigung und/oder Gewinnzustellung scheitern und nicht binnen eines Monats nach der Ziehung nachgeholt werden können, verfällt der Gewinnanspruch.
  • Der Veranstalter behält sich das Recht vor, das Gewinnspiel aus sachlichen Gründen jederzeit ohne Vorankündigung zu modifizieren, abzubrechen oder zu beenden.

Und nun wünsche ich euch viel Spass beim (Vor-)Lesen, Forschen, Experimentieren und Mitspielen!

Experiment: Carotin - Farbstoffe ausschütteln - Von Stoffteilchen und ihren Vorlieben

Zur Zeit geht es wieder hoch her in Keinsteins Kiste, denn nächste Woche ist es wieder soweit: Am Freitag, den 13.4. startet der zweite Experimentier-Workshop in der hiesigen Primarschule! Und wir werden erneut Stoffgemische trennen. Damit ihr anderen auch mitmachen könnt, gibt es heute ein schnelles, einfaches Trenn-Experiment in der Ausführung für zu Hause.

Wie man Stoffe trennt

Da Stoffe aus unzähligen kleinen Teilchen bestehen, kann man diese Teilchen verschiedener Stoffe miteinander mischen – und erhält so ein Stoffgemisch, das wie ein Stoff aussehen kann, aber aus mehr als einer Sorte Stoffteilchen besteht. Um ein solches Stoffgemisch wieder in zwei Reinstoffe (die aus je einer einzigen Teilchensorte bestehen) zu trennen, läge es nahe, die Teilchen Stück für Stück in eigene Gefässe zu sortieren, wie Aschenbrödel ihre Körner und Linsen.

Praktisch durchführbar ist das aber nicht – dazu gibt es schlicht und einfach viel zu viele Teilchen zu sortieren. So enthalten allein 18 Milliliter Wasser rund 602’000’000’000’000’000’000’000 – das sind 602 Trilliarden! – Teilchen. So viele Tauben wie ihr bräuchtet, um die in angemessener Zeit zu sortieren, könntet ihr gar nicht aufbieten!

Zum Glück gibt es Tricks, mit deren Hilfe ihr die vermischten Teilchen alle miteinander sortieren könnt. Diese Tricks bestehen darin, die Eigenschaften auszunutzen, in denen sich die verschiedenen Teilchensorten unterscheiden: Sind Teilchen unterschiedlich schwer, schwimmt vielleicht eine Sorte auf einer Flüssigkeit, während die andere Sorte auf den Grund sinkt. Andere Teilchen verdampfen bei unterschiedlichen Temperaturen, sodass ihr einen Stoff verkochen könnt und den anderen zurückbehaltet, dringen unterschiedlich schnell durch andere Stoffe (dann könnt ihr sie mittels Papierchromatographie trennen), oder “mögen” sich schlicht und einfach nicht, sodass sie sich von selbst in Gruppen gleichartiger Teilchen zusammenrotten.

Manchmal unterscheiden sich vermischte Teilchensorten aber nicht genug, um auf diese Weise voneinander getrennt zu werden. Dann gibt es einen weiteren Trick: Ihr macht der Teilchensorte, die ihr vom Rest abtrennen möchtet, ein besseres Angebot.

 

Dazu braucht ihr

  • Ein dicht verschliessbares kleines Einmach- oder Gewürzglas
  • Speiseöl (eine möglichst farblose Sorte – meines ist schon ziemlich gelb)
  • ein Tomatenpürree bzw. Tomatenmark oder passierte Tomaten oder Tomatensaft
  • Wasser

 Das braucht ihr: Glas, Tomatenmark, Speiseöl

Wie ihr das Experiment durchführt

  1. Gebt etwas Tomatenpürree in das Glas und mischt es mit wenigen Millilitern Wasser (das Glas sollte allerhöchstens halb voll werden!), bis eine gleichmässig trübe rote Mischung entstanden ist. Die Farbstoff-Teilchen (und die übrigen Teilchen des Tomatenmarks) sind jetzt mit den Wasserteilchen vermischt und werden sich nicht mehr so leicht von ihnen trennen lassen.1.) Tomatenmark gemischt mit Wasser
  2. Gebt vorsichtig Öl in das Glas, bis eine etwa 1 bis  1,5 cm hohe Ölschicht auf dem Wasser schwimmt und schraubt das Glas fest zu. Die Ölschicht ist jetzt annähernd farblos bzw. gelblich.2.) Die gelbliche Ölschicht schwimmt auf dem Tomaten-Wasser
  3. Schüttelt das verschlossene Glas nun kräftig, sodass sich Öl und Tomaten-Wasser bestmöglich mischen. 3.) Gleich nach dem Schütteln: Alles ist vermischtStellt das Glas dann ab und wartet einige Minuten. Das Öl wird sich erneut über dem Wasser in einer eigenen Schicht sammeln – aber jetzt ist es rot!4.) Öl und Wasser haben sich wieder getrennt. Das Öl ist jetzt rot gefärbt!

 

Weitere Varianten zum Ausprobieren

Anstelle von Tomaten könnt ihr auch Produkte aus Karotten oder roten bzw. gelben Peperoni (in Deutschland und Österreich: nicht die kleinen scharfen, sondern ganz gewöhnliche Paprika!) verwenden. Sie alle enthalten Carotinoide – also rote oder gelbe Farbstoffe, die sich auf diese Weise ausschütteln lassen.

Ausserdem könnt ihr diese Farbstoffe auch direkt aus dem Gemüse gewinnen. Zermörsert es dazu mit etwas Wasser und feinem Sand, so wie die Blätter, deren Farbstoffe ihr in diesem Experiment trennen könnt. Dann füllt etwas von dem Gemüsebrei in ein Glas und gebt etwa 1 cm hoch Pflanzenöl dazu. Nach dem Schütteln sieht die Ölschicht farbig aus: Ein Teil der Farbstoffteilchen ist aus dem Gemüsebrei in das Öl gewandert.

Die Experimentier-Profis unter euch können die Teilchen auch zweimal wandern lassen: Gebt dazu zu einer neuen Portion Gemüsebrei zunächst Brennsprit (Spiritus, Ethanol – Achtung! Leichtentzündlich!) und schüttelt gründlich. Ein Teil der Farbstoffe wird sich so mit dem Ethanol mischen. Gebt dann noch etwas Öl dazu und schüttelt wieder. Da die Anziehungskräfte zwischen Ethanol-Teilchen jenen der Wasserteilchen gleichen, ziehen die Carotinoid-Farbstoffe die Gesellschaft des Öls vor und wandern dahin weiter. Die Ethanol-Schicht hat deshalb nach der Trennung Farbe verloren (ausserdem schwimmt sie oben, was euch verrät, dass Brennsprit leichter ist als Öl!).

 

Was geschieht da?

Wasser- und Ölteilchen “mögen” sich überhaupt nicht, weshalb sie mit allen Mitteln versuchen unter sich zu bleiben, wenn man sie zu mischen versucht (tatsächlich sind unterschiedliche Anziehungskräfte zwischen den Teilchensorten für die Uneinigkeit verantwortlich: Wasserteilchen ziehen sich aufgrund permanenter elektrischer Ladung an (ein Experiment dazu findet ihr hier), während die Anziehung zwischen Ölteilchen auf einem anderen Vorgang – der van-der-Waals-Wechselwirkung – beruht.

Carotinoide haben eine Vorliebe für Öl

Tomaten und andere rote oder gelbe Gemüse enthalten Farbstoffe, die man Carotinoide nennt (der Tomatenfarbstoff heisst genau genommen Lycopin). Die Carotinoide lassen sich sehr gut mit Öl mischen, da sich ihre Teilchen auf die gleiche Weise anziehen wie die Ölteilchen. Mit Wasser mischen sie sich dagegen nur schlecht. Das könnt ihr schon daran erkennen, dass beim Mischen des Tomatenpürrees mit Wasser eine trübe Suppe entsteht.

Lieber würden sich die Carotinoid-Teilchen aber mit Öl mischen. Deswegen lassen sie, wenn man ihnen die Möglichkeit bietet – indem man Öl mit dem Wasser in Berührung bringt, das Wasser links liegen und rotten sich stattdessen mit den Ölteilchen zusammen. Die Farbstoffteilchen verlassen also das Wasser, um sich mit dem bevorzugten Öl zu mischen – sodass das Öl schlussendlich rot aussieht. Und nicht nur das: Sobald Öl und Wasser sich getrennt haben, ist das rote Öl wieder durchsichtig (mehr oder weniger jedenfalls)! Die Farbstoff-Teilchen haben sich folglich bestmöglich mit dem Öl gemischt.

Eine grosse Grenzfläche sorgt für eine schnelle Wanderung

Damit möglichst viele Teilchen möglichst schnell vom Wasser ins Öl gelangen können, müssen sich Öl und Wasser auf einer möglichst grossen Fläche berühren. Um das zu erreichen, schüttelt ihr das Glas mit den beiden Flüssigkeiten. So werden die anfänglichen Schichten nämlich in viele kleine Tröpfchen zerlegt, die einander berühren. Und durch alle einander berührenden Tröpchenoberflächen können Farbstoffteilchen schnell ins Öl “auswandern”.

Wenn ihr, nachdem das geschehen ist, das Gefäss abstellt und in Ruhe lasst, rotten sich Öl und Wasser wieder in getrennten Schichten zusammen – das leichtere Öl schwimmt wiederum oben – wobei die Farbstoffteilchen im Öl bleiben.

Dieses Trennverfahren, bei welchem ein Stoff beim Schütteln aus einem Gemisch in ein anderes “auswandert”, nennen die Chemiker “Ausschütteln”. Im Labor ist das sehr nützlich, wenn so man einen Stoff dazu bringen kann, allein in ein Lösungsmittel mit z.B. niedrigem Siedepunkt einzuwandern. Dann kann man nämlich das Lösungsmittel einfach einkochen, ohne dass die Teilchen des anderen Stoffs dabei Schaden nehmen – und erhält so den reinen Stoff.

Wird mit diesem Trick (aber meist ohne Schütteln) ein (oder mehrere) Bestandteil(e) aus einem Feststoffgemisch abgetrennt, sprechen Chemiker zudem von einer Extraktion – der abzutrennende Stoff wird aus dem Gemisch extrahiert. Und das passiert ganz bestimmt auch in eurem Alltag!

 

Extraktion in eurem Alltag

Das Extrahieren ist überaus nützlich, wenn man Gemische von Feststoffen trennen möchte, die sich nicht alle gleich gut in Wasser (oder einem anderen Lösungsmittel) lösen. Solche Gemische können zum Beispiel Teeblätter oder andere Pflanzenteile sein. Die können wir Menschen nicht besonders gut verdauen – aber wir mögen das Aroma und können viele gesunde Bestandteile der Pflanzen brauchen. Glücklicherweise lösen sich viele dieser Stoffe gut ins Wasser.

So geben wir die Teeblätter oder Pflanzenteile in heisses Wasser (heisse Lösungsmittel lösen andere Stoffe gewöhnlich besser als kalte – ausserdem brechen in heissem Wasser die grossen Biomoleküle, die die Pflanzenoberfläche bilden, leichter auf) und warten ein paar Minuten, während die wasserlöslichen Stoffteilchen – darunter sind häufig auch farbige – aus den Blättern in das Wasser wandern. Die unverdaulichen Pflanzenreste können dann ganz einfach mit einem Filter abgetrennt werden.

Und das Ergebnis – den Extrakt – trinken wir als Tee! Genauso funktioniert auch das Kaffeekochen. Hier werden die Kaffeebohnen bloss vorher zu Pulver zermahlen. So kann besonders viel Wasser die Oberflächen der unzähligen Pulverkörner berühren – und die gewünschten Stoffe (Aromen, dunkle Farbe, Koffein) können besonders schnell aus dem Kaffeepulver in das Wasser wandern.

Und wo ist euch in eurem Alltag schon ein Extraktions-Verfahren begegnet?

Deko im Frühling mit Superabsorber

Es ist die Zeit der Hasen, Küken Blumen…. Wie wäre es mit einer Osterdeko im Forscher-Stil – die gleich noch ein Experiment beinhaltet? Und (nicht nur) im Frühling jedes Heim-Labor verschönert? Ich habe ein tolles Gadget gefunden, das nicht nur eine besondere Sicht auf das Leben von Pflanzen gewährt, sondern auch eine verblüffende Eigenschaft von bestimmten Riesenmolekülen offenbart: Superabsorber!

Ich habe das Material für das Experiment aus eigenem Antrieb beschafft. Für die Idee dazu danke ich Marion Rotter vom Luxury Lifestyle Magazine, in welchem diese spannende Frühlingsdekoration auch einen Platz finden wird.

 

Superabsorber statt Pflanzenerde für Zwiebelblumen

Hydroperlen aus Superabsorbern sind ganz besondere Kunststoffgebilde, die unglaubliche Mengen Wasser speichern und wieder abgeben können. Dabei sind sie durchsichtig und nach Wunsch bunt. So geben sie nicht nur einen praktischen Ersatz für Pflanzenerde ab (das kann z.B. Blähton für die Hydrokultur auch), sondern gewähren, wenn man sie in gläsernen Blumentöpfen verwendet, einen spannenden Blick auf das Wurzelwerk der Pflanzen.

Und da Zwiebelblumen sich besonders leicht ein- und umsetzen lassen, bietet der Frühling die ideale Gelegenheit zum Experimentieren mit Superabsorbern!

 

Ihr braucht dazu

  • Glasgefässe mit weiter Öffnung: Für den Labor-Stil können das zweckentfremdete Behälter sein, wie mein Honigglas, mein Einmachglas oder der Glaszylinder aus meinem Windlicht. Auch ein Labor-Becherglas eignet sich natürlich.
  • Zwiebelblumen, die idealerweise schon ein wenig ausgetrieben haben
  • Superabsorber: Die gibt es als “Hydrokristalle” oder “Hydroperlen” für kleines Geld in verschiedenen Shops für Krimskrams, Gadgets oder Geschenkartikel (meine Bezugsquelle hat mich letztlich nicht zu einer Erwähnung überzeugt, da sie stark verspätet und erst nach meiner Nachfrage geliefert und mich überdies trotz meiner Nicht-Zustimmung mit einer ganzen Flut von Newslettern zugeschüttet haben).
  • Leitungswasser, ein Lavabo bzw. Spülbecken zum Reinigen von Pflanzenwurzeln
  • Ein paar Stunden Zeit für viele Tage Freude

Material : Zwiebelpflanzen, Hydroperlen, leere Gläser

Wie ihr eure gläsernen Topfpflanzen setzt

Zunächst müsst ihr die Superabsorber in Wasser ziehen lassen, damit sie sich ordentlich voll saugen. Das dauert ein paar Stunden, sodass es sich anbietet, sie über Nacht ziehen zu lassen. Eine Anleitung dazu liegt normalerweise der Verpackung der Hydrokristalle oder Hydroperlen bei. So bin ich mit meinen vorgegangen:

  • Schätzt ab, wieviele (Milli)Liter Wasser in die Gefässe passen würden, die ihr bepflanzen wollt. Entnehmt der Verpackung so viele Perlen bzw. Kristalle, wie ihr laut Angaben auf der Packung für dieses Volumen braucht. Achtung! Das sieht nach verdammt wenig aus, aber das passt schon: Ihr habt die grosse Überraschung ja noch vor euch!

    Hydroperlen bzw. Hydrokristalle für etwa 600ml Wasser

    Das sind genug Hydroperlen für die zwei Gläser oder insgesamt 600 Milliliter Wasser!

  • Verteilt die Hydroperlen bzw. Hydrokristalle auf die leeren Gefässe entsprechend ihrer Grösse. Dann füllt die Gefässe mit Wasser auf.

    Hydroperlen bzw. Hydrokristalle in Wasser

    Die Hydroperlen in den Gläsern, gleich nach dem Auffüllen mit Wasser. Und wirklich: Das genügt!

  • Stellt die Gefässe dorthin, wo sie nicht stören und deckt sie ggfs. gegen Staub ab (z.B. Deckel lose auflegen). Schaut in den nächsten Minuten bzw. Stunden immer mal wieder nach den Gläsern: Schon in den ersten Minuten werden die Perlen/Kristalle merklich wachsen und dabei zunehmend durchsichtiger erscheinen.

    Superabsorber in Aktion: Hydroperlen trocken und nach einer Nacht im Wasser

    Nach einer Nacht: So gross sind die Perlen geworden!

  • Nach einer Nacht sind meine Perlen von ursprünglich rund 2 mm im Durchmesser auf sage und schreibe 12 mm angewachsen und füllen die Gläser fast vollständig! Wenn es bei euch so weit ist, giesst das übrige Wasser ab.

    Superabsorber: Hydroperlen bzw. Hydrokristalle nach einer Nacht in Wasser

    Am nächsten Morgen: Die Hydroperlen sind über Nacht gewachsen und haben fast alles Wasser aufgesogen!

Jetzt könnt ihr mit dem Bepflanzen beginnen.

  • Wenn ihr bereits ausgetriebene Blumenzwiebeln umsetzt: Nehmt die Zwiebeln aus dem Topf und befreit die Wurzeln vorsichtig von der Erde (die könnt ihr zum Gärtnern aufheben). Spült die Wurzeln dann gründlich unter fliessendem Wasser, bis sie blitzsauber sind.
  • Nehmt einen Teil der Hydroperlen bzw. Hydrokristalle aus eurem Pflanzgefäss, legt sie in einem anderen Behälter beiseite (die Perlen sind jetzt elastisch wie Gummibälle – passt auf, dass sie euch nicht davonspringen!).
  • Platziert die Zwiebel mit den Wurzeln nach unten im Gefäss und füllt die Zwischenräume zwischen den Wurzeln behutsam mit den beiseite gelegten Perlen bzw. Kristallen auf (die Superabsorber gehen nicht so leicht kaputt, die Pflanzenwurzeln können dagegen recht empfindlich sein).

    Zwiebelblumen in Hydroperlen: Frühlings-Deko im Labor-Style

    Fertig! Jetzt heisst es geduldig warten!

  • Wenn die Zwiebel stabil untergebracht ist, platziert das Gefäss an einem hellen, nicht zu warmen Ort (wenn es nicht mehr friert auch draussen). Zwiebelblumen wie Krokusse, Narzissen und andere Frühlingsblüher sind für kühles Frühlingswetter geschaffen und welken bei zu hoher Raumtemperatur schnell.
  • Freut euch die nächsten Wochen an eurer Forscher-Frühlingsdeko und beobachtet die Pflanze und ihre Wurzeln beim Wachsen! Die Hydroperlen oder -kristalle werden mit der Zeit wieder schrumpfen, wenn das Wasser verdunstet oder die Pflanze davon trinkt. Insgesamt sollten die Pflanzen aber bis zu zwei Wochen ohne Giessen auskommen! Danach giesst einfach etwas Wasser nach, und die Superabsorber sollten wieder aufgehen.

 

Was passiert da?

[yellow_box]

Was genau sind eigentlich Superabsorber?

Superabsorber sind riesige Moleküle, sogenannte Polymere. Das sind lange Ketten aus sich immer wiederholenden kleinen Atomgruppen, die bei der Herstellung der Polymere miteinander verbunden werden. Was wir als “Plastik” oder “Kunststoff” bezeichnen, besteht aus solchen Riesen-Kettenmolekülen. Doch auch die Natur hält verschiedenste Polymere bereit, wie Proteine, Stärke, Zellulose oder unsere DNA.

Die Superabsorber unter den Polymeren haben zwei besondere Eigenschaften:

  1. Die langen Kettenmoleküle sind über Querstreben aus weiteren Atomgruppen miteinander vernetzt. Das Ergebnis ist ein regelrechter Molekül-Schwamm, dessen Poren in der Grössenordnung von einigen Atomdurchmessern liegen. Das bedeutet, eine Hydroperle bzw. ein Hydrokristall ist im Grunde genommen ein einziges gigantisches Molekül – so gross, dass wir es sehen und anfassen können!
  2. Die Atomgruppen, aus welchen die Superabsorber-Polymere bestehen, sind so gestaltet, dass sie und Wassermoleküle einander anziehen: Chemiker sagen, die Atomgruppen sind “hydrophil” – sie mögen Wasser. Wie Atomgruppen aussehen müssen, die Wasser mögen, und wie die gegenseitige Anziehung funktioniert, habe ich im Artikel über Tenside genauer beschrieben.

Kurz gesagt: Zu den wasserfreundlichsten Kohlenstoffverbindungen (zu diesen zählen die meisten Kunststoffe) gehören solche, die elektrische Ladungen tragen, also Ionen sind. Deshalb tragen die riesigen Superabsorber-Moleküle eine Unzahl an negativen Ladungen auf ihrem Netz aus Atomketten. Die wiederum ziehen nicht nur Wasser an, sondern auch positiv geladene Metall-Ionen. Mit solchen gehen die negativ geladenen Atomgruppen des Molekül-Schwamms Ionen-Bindungen ein – wie die Natrium- und Chlorid-Ionen in einem Kochsalzkristall!

Woraus meine (und höchstwahrscheinlich auch eure) Hydroperlen bestehen

Superabsorber sind also riesige Molekül-Netze, die aus zahllosen kleinen Carbonsäure-Gruppen (sehr häufige Monomere sind Acrylsäure bzw. ihre stickstoffhaltige Variante Acrylamid*, aus denen auch meine Hydroperlen bestehen) zusammengesetzt sind. In trockenem Zustand werden die Ladungen durch in den Maschen gebundene Natrium (Na+)-Ionen ausgeglichen, sodass das Netz sich auf sehr engem Raum dicht zusammenpacken lässt. So fühlen sich die trockenen, winzigen Hydroperlen hart und massiv an. Tatsächlich kann man sagen: Ein (trockener) Superabsorber ist sowohl ein Polymer als auch ein Salz!

*Wenn der Begriff “Acrylamid” bei euch die Alarmglocken klingeln lässt: In verketteter Form, also als Polyacrylamid bzw. “Polyamid” ist diese Verbindung absolut nicht giftig!

Wie funktionieren Superabsorber?

Wenn ihr trockene Hydroperlen oder Hydrokristalle in Wasser legt, passiert mit ihnen das selbe, was auch mit meinem nackten Ei (ein weiteres spannendes Oster-Experiment!) passiert ist: Die Ionen im Inneren des Molekül-Schwamms streben danach, sich mit Wassermolekülen zu mischen und mit ihnen zu wechselwirken. Dabei sind zunächst im Schwamm viele Ionen zwischen wenigen bis gar keinen Wassermolekülen, während das Wasser draussen nur wenige Ionen enthält – und die Natur verlang danach, diesen Unterschied auszugleichen: Physiker nennen dieses Verlangen “osmotischer Druck”.

Mit Osmose zum Gel

Dem osmotischen Druck folgend dringen die Wassermoleküle rasch in den Molekül-Schwamm ein. Dort umlagern sie die Natrium-Ionen, welche sich daraufhin vom Molekül-Netz lösen, und die Anionengruppen. Letztere bleiben allerdings fest mit den Kohlenstoff-Maschen des Polymers verbunden, sodass der Schwamm selbst sich nicht auflöst. Dabei stossen sich die negativen Ladungen, die nicht länger von Natriumionen aufgehoben werden, gegenseitig ab und treiben das anfangs eng gepackte Netz immer weiter auseinander.

Das Ergebnis ist ein riesiges Schwamm-Molekül, in dessen wachsenden Poren Wassermoleküle regelrecht kleben, während es immer mehr Raum einnimmt. Solch ein Gebilde, das weder wirklich ein Feststoff noch wirklich in Wasser gelöst ist, nennen die Physiker ein Hydrogel. Damit die Hydroperlen für eure Topfpflanzen bei all dem aber nicht völlig aus dem Leim gehen, ist ihre Oberfläche von einem zusätzlichen Polymer-Netz umgeben, das sich nur begrenzt ausdehnt und so dafür sorgt, dass die Perlen ihre Form behalten und so lustig herumspringen können.

Wo finden Superabsorber sonst noch Verwendung?

Ihrer Supersaugkraft wegen werden Superabsorber auch in Babywindeln eingebaut, damit Babys Popo auch die ganze Nacht trocken bleibt (ebenso saugen sie wirksam die Folgen einer Blasenschwäche auf). Dabei wird auf die formgebende Aussenhülle verzichtet, denn die Windel selbst hält ja alles an Ort und Stelle. Was passiert, wenn man Superabsorber ohne begrenzende Hülle mit Wasser tränkt, zeigen die Simple Chemics hier sehr eindrücklich:


Da kann man bestimmt auch Pflanzen hinein setzen, aber man sieht dabei auch nicht mehr als in richtiger Erde. Ausserdem haben die springenden Gelbällchen es mir wirklich angetan. Man kann damit wunderbar herumspielen!

Indem man kleine Superabsorber-Körner mit Erde mischt, wird zudem Blumenerde hergestellt, die auch ohne den “Labor-Look” besonders viel Wasser speichern kann.

[/yellow_box]

Entsorgung

Polyacrylsäure und Polyamid sind nicht giftig. Polyacrylsäure wird sogar als Grundstoff für Medikamente und Kosmetik wie Gels zum Auftragen oder Augentropfen als Tränenersatz verwendet. Deshalb machen sie auch bei der Entsorgung keine Umstände.

Die Hydroperlen oder Hydrokristalle können immer wiederverwendet werden – es ist nicht nötig, sie nach einmaliger Benutzung wegzuwerfen! Falls ihr sie doch irgendwann nicht mehr braucht, können sie in den Restmüll gegeben werden. Blumenzwiebeln könnt ihr bis im Herbst in den Garten oder auf den Balkon auspflanzen. Welke Pflanzenteile können ganz normal auf den Kompost oder in den Bioabfall.

Und wir sieht eure – vielleicht auch ungewöhnliche – Frühlings- oder Osterdekoration aus?

DIY Taschenwärmer mit Natriumacetat

Aus gegebenem Anlass habe ich auch an diesem Montag ein Experiment für euch: Denn es ist arktisch kalt draussen. Da kommen euch Taschenwärmer mit Sicherheit sehr gelegen. Und die könnt ihr aus ganz einfachen Zutaten aus dem Haushalt selbst machen – und euch mit einem ganz ungefährlichen Chemie-Trick warm halten! Und so macht ihr euch eure eigenen DIY – Taschenwärmer :

Ihr braucht dazu

  • Soda (Natriumcarbonat, zum Beispiel Waschsoda oder Backpulver)
  • Haushaltsessig (bzw. Essigessenz)
  • Einen wasserdichten Plastikbeutel (zum Beispiel einen “Ziplock”-Beutel)
  • Die Aluminiumhülse eines Teelichts
  • Ein Gefäss mit hohem Rand
  • Kochtopf, Herd, Backofen, Rührstab
  • Ein ganz sauberes Glasgefäss
  • Evtl. Trichter und Filterpapier (z.B. einen Kaffeefilter)
  • eine Schutzbrille (das ist sicherer, damit nichts in eure Augen spritzt)

Das braucht ihr für einen DIY Taschenwärmer

Wie ihr einen Taschenwärmer herstellt

Zuerst müsst ihr Natriumacetat herstellen

Das ist das spezielle Salz, das ihr später in den Taschenwärmer füllt. Ihr könnt es auch in der Apotheke oder Drogerie kaufen – dann könnt ihr diesen Abschnitt überspringen. Aber das wäre dann ja nur ein halbes DIY.

Gebt für einen kleinen Handwärmer etwa 250 ml Haushaltsessig (das sind ca. 10% Essigsäure gelöst in Wasser) in das Gefäss mit dem hohen Rand.

Essig und Soda für den Handwärmer

Essig und Soda: Wenn ihr sie abmessen möchtet, helfen Messbecher und Waage. Diesen Messbecher benutze ich übrigens nur fürs Experimentieren! Für die Küche habe ich einen eigenen – das ist sicherer.

 

Gebt langsam(!) etwa 25 g Soda dazu. Das Gemisch wird stark aufschäumen! Wenn ihr die Soda langsam hinzugebt, schäumt es nicht über. Wenn sich die Soda vollständig unter Schäumen gelöst hat, gebt langsam noch etwas mehr dazu, bis das Aufschäumen nachlässt (Ihr könnt die passende Menge auch genau ausrechnen, wie ich es beim Start meiner Essig-Carbonat-Rakete gezeigt habe). Rührt dabei immer gut um!

Wenn ihr ganz sicher gehen wollt, könnt ihr den pH-Wert der Mischung mit einem pH-Streifen überprüfen: Essig ist eine Säure, die einen Universalindikatorstreifen rot färbt (pH < 7). Wenn die Säure durch die Soda neutralisiert ist, färbt sich der Streifen grün (pH = 7). Dann ist euer Mischungsverhältnis genau richtig. Wenn ihr zu viel Soda – eine Base – hinzu gebt, wird der Streifen blau (pH > 7). Falls das passiert, gebt einfach noch ein paar Tropfen Essig dazu, bis der pH-Wert stimmt.

Ihr habt nun eine Lösung des Salzes Natriumacetat in Wasser. Gebt diese in ein Gefäss, das ihr erhitzen könnt, und lasst das Wasser auf dem Herd einkochen. In meinem relativ grossen Kochtopf ist die Flüssigkeit breit auf der Herdplatte verteilt – so verdampft sie schneller als in einem engen Gefäss.

Natriumacetat-Lösung auf dem Herd

Den ausrangierten Kochtopf benutze ich zum Kochen nicht mehr. Zum Experimentieren taugt er aber noch: Es bilden sich bereits Dampfbläschen in der Lösung.

 

Der zurückbleibende weisse Feststoff darf nicht heisser als 324°C werden – ab dieser Temperatur zerfällt das Natriumacetat! Passt daher gut auf und nehmt den Topf von der Platte, sobald kein Wasser mehr sichtbar ist (wenn ihr meinen Beitrag über Schmelz- bzw. Verdampfungswärme gelesen habt, wisst ihr, dass siedendes Wasser nicht heisser als 100°C werden kann).

Natriumacetat nach dem Abdampfen

Das Wasser ist verdampft – jetzt kratze ich das feuchte Salz aus dem Topf.

 

Stellt das noch feuchte Natriumacetat anschliessend ca. 45 Minuten bei 150°C in den Backofen, um es ganz zu trocknen.

Natriumacetat im Ofen

Umgefüllt in ein handliches Gefäss (nicht zwingend nötig) kann das Natriumacetat nun trocknen.

Bereitet jetzt die Füllung für den Taschenwärmer vor

Während das Natriumacetat trocknet, schneidet ihr ein handliches Plättchen aus dem Boden der Aluminium – Teelichthülse. Das Metall ist so dünn, dass es sich problemlos mit einer Küchenschere schneiden lässt. Legt den Plastikbeutel und das Plättchen bereit. Bringt schliesslich noch etwas Wasser zum Kochen.

Das mittlere Teil kommt in den Taschenwärmer.

Das mittlere Teil kommt in den Taschenwärmer.

 

Stellt das Natriumacetat auf der Herdplatte bereit (ich habe es der Handlichkeit wegen vor dem Trocknen und jetzt noch einmal umgefüllt – das ist aber nicht zwingend nötig). Gebt ein wenig kochendes Wasser dazu (je 1 ml Wasser auf 9 g Natriumacetat!) und schaltet sofort die Herdplatte ein, sodass das Gemisch weiterhin beinahe kocht. Wenn ihr gut umrührt, löst sich das Salz vollständig im heissen Wasser. Falls nicht, gebt tropfenweise mehr Wasser hinzu.

Natriumacetat löst sich in heissem Wasser.

Links: Hier muss ich noch etwas rühren. Rechts: Das Salz hat sich vollständig aufgelöst. Jetzt noch schnell filtrieren, dann ist die Füllung für den Taschenwärmer fertig!

 

Jetzt wird es ein wenig kniffelig: Wärmt euren Trichter am besten vor, indem ihr ihn unter fliessendes heisses Wasser haltet (verbrüht euch eure Finger aber nicht!). Legt das Filterpapier ein und filtriert die heisse Lösung schnell in das sehr saubere Gefäss. Ich habe das saubere Gefäss dazu auf die noch heisse Herdplatte gestellt, denn die Lösung darf bei diesem Schritt nicht abkühlen!

Ihr habt nun eine heisse, klare Natriumacetat-Lösung, die keinerlei sichtbaren Partikel mehr enthält. Bewegt diese Lösung möglichst nicht mehr und lasst sie an der Raumluft abkühlen. Dabei sollte die Flüssigkeit klar und – natürlich – flüssig bleiben. Falls beim Abkühlen Kristalle entstehen, erwärmt den Behälter noch einmal auf der Herdplatte, bis die Kristalle verschwunden sind und lasst ihn wieder abkühlen.

Jetzt könnt ihr euren Taschenwärmer füllen und benutzen

Giesst die abgekühlte Natriumacetat-Lösung vorsichtig in den Plastikbeutel. Fügt das ausgeschnittene Aluminium-Plättchen hinzu und verschliesst den Beutel fest.

Wenn euch kalt ist, knickt das Plättchen (es muss dabei in der Flüssigkeit liegen), bis der Inhalt des Beutels fest zu werden beginnt. Ihr werdet merken: Sobald das Natriumacetat fest wird, wird es ziemlich warm!

Handwärmer in Aktion

Zugegeben: Mein Ziplock-Beutel ist etwas zu gross für das Bisschen Natriumacetat. Aber das macht nichts: Warm wird es trotzdem – das Thermometer beweist es!

 

Haltet den Beutel in den Händen oder steckt ihn in eine Tasche und geniesst die Wärme!

Ihr könnt diesen Taschenwärmer ausserdem beliebig wiederverwenden:

Legt den Beutel mitsamt Inhalt in kochendes Wasser und die Natriumacetat-Kristalle werden sich wieder auflösen. Lasst den Beutel langsam abkühlen. Wenn euch wieder kalt ist, knickt das Metallplättchen erneut, sodass wiederum Kristalle entstehen und dabei Wärme freisetzen!

Was passiert da?

…Bei der Herstellung von Natriumacetat

Der Taschenwärmer-Trick funktioniert mit einem ganz besonderen Salz, das ihr aus Essigsäure (CH3COOH) und Natriumcarbonat (, Soda) herstellen könnt. Essig ist eine Säure, Natriumcarbonat hingegen eine Base. Beide reagieren miteinander, indem sie sich neutralisieren. Das heisst, aus einer relativ starken Säure und Base entstehen sehr viel schwächer saure und basische Stoffe:

Kohlensäure () ist nicht nur eine sehr schwache Säure, sondern zerfällt zudem leicht in Kohlenstoffdioxid und Wasser:

Das Gas Kohlenstoffdioxid steigt aus der Lösung auf (Deswegen schäumt das Ganze so. Ausserdem ist dieses Gas ein prima Treibstoff für viele andere spektakuläre Experimente!). So erhaltet ihr eine Lösung, die ausschliesslich Natrium ()- und Acetat ()-Ionen enthält. Wenn ihr nun das Wasser einkocht und trocknet, bleibt das feste Salz Natriumacetat übrig:

Warum Natriumacetat “auf Kommando” fest wird

In warmem Wasser löst sich mehr von einem Stoff als in kaltem Wasser. Das gilt auch für Natriumacetat. Deswegen macht ihr das Wasser so heiss wie möglich, um möglichst viel Natriumacetat in sehr wenig Wasser aufzulösen.

Wenn solch eine heisse Lösung abkühlt, “vergisst” das Natriumacetat leicht, dass es fest werden sollte. So bleibt auch in kaltem Wasser mehr gelöst, als “erlaubt” ist. Die Chemiker nennen so etwas eine übersättigte Lösung. Und diese spezielle übersättigte Lösung kann man auch als unterkühlte Schmelze ansehen – denn wenn ihr euren Taschenwärmer genau anseht, nachdem er seine Wärme angegeben hat, werdet ihr feststellen, dass von dem Wasser darin nicht mehr viel zu sehen ist: Nahezu der ganze Inhalt ist zu Kristallen erstarrt!

Ob übersättigte Natriumacetat-Lösung  oder unterkühlte Natriumacetat-Schmelze: Das Ganz ist sehr empfindlich. Ein “Tritt in den Hintern” durch das Knicken des Plättchens oder in der Lösung herumwirbelnde Schwebstoffe oder ein winzigkleiner Natriumacetat-Kristall genügen, um das Salz daran “zu erinnern”, dass es fest zu werden hat. Deshalb muss das Gefäss, indem die Natriumacetat-Lösung abkühlt, so vollkommen sauber sein.

Ansonsten – oder wenn ihr den Prozess durch das Knicken des Metallplättchens gezielt auslöst – geschieht folgendes:

 

Das heisst, das Wasser, das euch anfangs als Lösungsmittel gedient hat, wird grösstenteils in die Natriumacetat-Kristalle eingebaut. Die Kristalle enthalten also Kristallwasser! Der Stoff rechts vom Reaktionspfeil heisst deshalb korrekterweise “Natriumacetat-Trihydrat”.

Und nun der Trick: Woher die Wärme kommt

Der Umstand, dass es sich bei der Natriumacetat-Lösung in eurem Taschenwärmer eigentlich um eine Schmelze handelt, macht den Trick mit der Wärme möglich: Wie ihr auch an Wasser überprüfen könnt, wird zum Schmelzen Energie – die sogenannte Schmelzwärme – benötigt, die anschliessend der Schmelze innewohnt.

Das gilt auch für eine Natriumacetat-Schmelze, die auf Umwegen, nämlich durch das Auflösen von Natriumacetat in wenig Wasser, entsteht: Die Wärme wird dabei aus der Herdplatte bzw. dem kochenden Wasser in der Lösung “entnommen” und in der Schmelze gespeichert (d.h. ohne Herdplatte würde das Wasser durch das Auflösen des Natriumacetats abkühlen!). Das heisst, diese Energie verbleibt in der Schmelze auch dann verborgen, wenn sie abkühlt. Erst wenn die unterkühlte Schmelze wieder “auf Kommando” fest wird, wird diese Energie wieder abgegeben – und eure Hände werden warm!

Ich wünsche euch damit einen warmen Start in die kälteste Woche dieses Winters! Und verratet uns doch: Was tut ihr, um euch warm zu halten?

Was macht man, wenn man das nass-kalte Winterwetter satt hat und sich nach dem Frühling sehnt, der aber noch weit weg ist? Man geht dahin, wo es warm ist! Viele Zoos haben auch im Winter einladende Behausungen für Tiere und Pflanzen aus aller Herren Länder – auch solchen, in welchen es stets warm und häufig sonnig ist.

Der “ZOOh” in Zürich wartet diesbezüglich mit einem besonderen Leckerbissen auf: Der riesigen Masoala-Regenwaldhalle, in welcher man sich kurzerhand in den Dschungel auf Madagaskar versetzen lassen kann – auch mitten im Winter!

Nicht nur dort, sondern auf dem ganzen Zoo-Gelände habe ich bei unserem jüngsten Besuch viele faszinierende Tiere entdeckt, die sich Physik oder Chemie auf teils spektakuläre Weise zu Nutze machen. So kommen selbst Forscher, die sich mehr für diese beiden als für die Biologie der Tiere interessieren, im ZOOh voll auf ihre Kosten.

Hinter diesem Beitrag steht KEINE Kooperation mit dem ZOOh in Zürich, d.h. es gibt keine Vereinbarung über eine Gegenleistung – ich gehe liebend gern in den Zoo und bin nicht zuletzt der räumlichen Nähe wegen in Zürich Stammgast. Dieser Beitrag ist damit eine ausschliesslich persönliche Empfehlung aus Eigeninitiative!

Der zoologische Garten – zum Lernen und für den Artenschutz

Wenn ihr einmal nach Zürich kommt (oder sogar in der Nähe lebt), ist der Zoo für Naturfreunde immer einen Besuch wert. Wunderschöne und leider oft vom Aussterben bedrohte Tiere können hier in meist hochmodernen Anlagen bewundert werden. Diese Tiere werden hier oder in anderen Zoos ausserdem nachgezüchtet, womit sich die zoologischen Gärten aktiv an der Erhaltung der Arten beteiligen. Damit die genetische Vielfalt dabei erhalten bleibt, tauscht man den Nachwuchs gerne untereinander, d.h. von Zoo nach Zoo aus.

Viele Anlagen in Zürich sind zudem nach Naturreservaten rund um den Globus benannt, mit welchen der Zoo in enger Verbindung steht. So ist er auch am Schutz der Tiere in ihrer jeweiligen Heimat beteiligt. Und der fängt damit an, unsereinem ohne grossen Aufwand eine Weltreise zu ermöglichen und die Tiere und ihre Heimat kennen zu lernen. Denn inzwischen sind alle sieben (Teil-)Kontinente im ZOOh vertreten:

  • Asien mit Trampeltieren, indischen Löwen und Elefanten
  • Afrika mit den Dschelada-Pavianen und den Bewohnern der Masoala-Regenwaldhalle
  • Europa in Form der Storchenkolonie auf dem Zoogelände und mehreren Eulen-Arten
  • Südamerika mit zwei Lama-Arten und dem Flachlandtapir
  • Nordamerika mit Reptilien wie der Sidewinder-Klapperschlange
  • Australien mit einer neuen Anlage, die im März 2018 ihre Tore öffnet!
  • Die Antarktis – mit gutem Willen – mit den Königspinguinen (die leben tatsächlich auf Inseln etwas nördlich der Antarktis, doch ich lasse sie als kleine Brüder des Kaiserpinguins gerne durchgehen)

Das sind natürlich nur Beispiele für die vielen verschiedenen Arten, die es hier zu entdecken gibt.

Damit ihr bei eurem Zoobesuch inmitten der Artenvielfalt einen roten Faden habt, habe ich euch ein Quiz rund um die Physiker und Chemiker unter den Tieren im ZOOh zusammengestellt.

Wie das Quiz funktioniert

Nehmt die folgenden Fragen als Printable oder auf eurem Mobilgerät mit in den Zoo und haltet dort die Augen offen: Welche Tierarten werden in den einzelnen Abschnitten beschrieben? Die Tiere sind in keiner bestimmten Reihenfolge aufgelistet. Ihr könnt euch im ganzen Zoo frei bewegen und so die Anlagen in beliebiger Reihenfolge besuchen.

Tragt jeweils den deutschen Arten-Namen des gesuchten Tiers (wie auf der jeweiligen Beschreibungs-Tafel angegeben, Einzahl, ä = ae, ö = oe, ü =ue) in die Liste ein. Die markierten Buchstaben ergeben ein Lösungswort, das ihr als Password eingeben könnt, um hier eure Experten-Urkunde herunter zu laden!

Wie ihr zum ZOOh kommt

In Zürich ist das Parkieren teuer. Deshalb reist ihr am einfachsten mit dem Zug nach Zürich an. Vom Hauptbahnhof (“HB”) lauft ihr etwa 300 Meter zur Tram-Station “Central” und fahrt von dort mit dem Tram Nummer 6 in Richtung Zoo bis ganz nach oben zur Endstation. Von dort aus folgt ihr einfach den Tierspuren bis zum Haupteingang. Genaueres, auch zu Öffnungszeiten und Eintrittspreisen, erfahrt ihr auf der Homepage des Zoos!

Während der Anreise könnt ihr euch die Vorfreude übrigens wunderbar versüssen, indem ihr schon einmal die spannenden Infos zu den Tieren in den Quizfragen lest.

Wenn Zürich zu weit weg ist

Natürlich könnt ihr das Quiz auch in einem oder mehreren anderen Zoos (ein einziger anderer Zoo, der alle gesuchten Tiere hält, ist vermutlich schwer zu finden), mit Hilfe des Internets oder schlauer Bücher lösen.

Die gesuchten Tiere

Die lebende Batterie

Was ihr Menschen erst mit Hilfe von Sonne, Wind und Wasser mühsam erzeugen und in Batterien abfüllen müsst, trage ich in meinen eigenen Zellen bei mir!

Jede zweckentfremdete Zelle meiner elektrischen Organe ist eine winzigkleine Batterie, die ich mit der Energie aus meiner Körperchemie aufladen kann. Das funktioniert wie bei Muskelzellen – nur dass meine elektrischen Zellen sich nicht zusammenziehen, sondern ihre Ladung speichern.

Da all meine aufladbaren Zellen in Reihe geschaltet sind – wie die Batterien einer grossen Taschenlampe – können sie, wenn sie sich alle miteinander entladen, bei einer Gesamtspannung von bis zu 600 Volt für einige Sekunden einen Strom von bis zu 0,83 Ampere erzeugen. Das ergibt eine Leistung von 415 Watt – für einen Augenblick genug für den Betrieb eines Haarföhns.

Also ärgere mich lieber nicht, sonst bekommst du noch einen Schlag ab!

__ __ __ __ __ __ __ __ __

Doppelklebeband frei Haus

Meine kleineren Verwandten sind dafür bekannt, dass sie senkrecht oder gar kopfunter an Wänden, Zimmerdecken oder dem Glas ihres Terrariums hängen. Das kann ich auch, obwohl ich als Grösster meiner Familie bis zu 35cm lang und entsprechend schwer werde!

Möglich ist mir das dank unzähliger mikroskopisch winziger Härchen an meinen Fusssohlen, die zusammen eine wahnsinnig grosse Oberfläche haben. Und die vielen, vielen Moleküle auf dieser Oberfläche ziehen die Moleküle von Glas und Mauern an, bzw. werden von diesen angezogen.

So ergeben auch hier viele winzigkleine Effekte in der Summe einen Grossen: Meine Füsse kleben förmlich an der Oberfläche, ohne dass sie untrennbar damit verbunden wären. Übrigens nur, wenn es nicht zu nass ist: Auf einem Wasserfilm komme sogar ich ins Rutschen!

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Auch Tiere schätzen Lebensmittelfarben

Ich bin für meine auffällige, zuweilen als kitschig empfundene Farbe bekannt. Die ist aber nicht in meinen Genen festgeschrieben. Stattdessen nehme ich die Farbstoffe – es handelt sich um Carotinoide, die ihr z.B. von Herbstblättern, Eidotter bzw. als Vitamin A kennt – mit der Nahrung auf.

Hier im Zoo bekomme ich deshalb zum üblichen Futter extra orange Krevetten-Schwänze serviert, damit ich auch so ausschaue, wie ihr mich kennt!

__ __ __ __ __ – __ __ __ __ __ __ __ __

Hier stimmt die Chemie

Ich lebe eng mit einem giftigen Tier zusammen, das eigentlich mehr wie eine Pflanze erscheint. Diesen Partner zu berühren hat denn auch für die meisten Lebewesen einiges mit der Begegnung mit einer Brennnessel gemein: Es tut weh, und wer nicht aufpasst, wird gelähmt und gefressen.

Mir passiert das nicht, denn ich schmiere mich mit dem Schleim von der Oberfläche meines WG-Partners sein, sodass dieser glaubt, ich sei ein Teil von ihm selbst! Dafür gewinnt mein Partner aus meinen Hinterlassenschaften wertvolle Nährstoffe. So eine Symbiose ist schon praktisch.

Seit Anfang dieses Jahrtausends bin ich übrigens ein weltbekannter Disney-Star. Wer findet mich?

__ __ __ __ __ __ __ __ __ __ – __ __ __ __ __ __ __ __ __ __ __ __ __

Giftnudel

Ich bin eines der giftigsten Tiere der Erde! Mein Gift heisst Batrachotoxin und stört die Nervenreizleitung zu den Muskeln anderer Tiere. Die Folge sind Lähmungen, auch der Atemmuskeln, die meine Fressfeinde bis hin zu einem Menschen töten können!

Deshalb nutzten die Choco-Indianer in Kolumbien mein Gift für ihre Pfeile für die Jagd. Nichts desto trotz bin ich eine gute Mutter und kümmere mich um meinen Nachwuchs. Das ist in unserer Familie nicht selbstverständlich.

Achtung! Eine ganze Reihe meiner Verwandten leben ebenfalls im ZOOh! Deshalb ein Tipp: Mein deutscher Name, der meine Farbe beschreibt, enthält ein edles chemisches Element!

__ __ __ __ __ __ __ __   __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Lichtgestalt

Mein physikalisch-chemischer Trick gereicht für einem nicht meinem sondern eurem Vorteil. Ihr könnt mich dank ihr nämlich leichter entdecken, bevor ihr ungewollt über mich stolpert (ich bin nämlich klein und meistens giftig). Meine Oberfläche strahlt nämlich hell, wenn man sie mit UV-Licht, dem sogenannten Schwarzlicht, beleuchtet: Ich fluoresziere!

Hier im Zoo bin ich übrigens Untermieter in der Anlage einer sehr viel grösseren Tierart – und natürlich ist meine Behausung mit einer Schwarzlicht-Lampe ausgestattet, mit der ihr mich zum Leuchten bringen könnt (Kathi hat vergessen, mein Schild abzulichten, weshalb hier meine allgemeine Bezeichnung genügt)!

__ __ __ __ __ __ __ __

Lebendes Stimmungsbarometer

Bestimmt kennt ihr mich für meine Fähigkeit, innerhalb kürzester Zeit die Farbe zu wechseln. Das mache ich aber nicht, wie ihr oft erzählt, um mich zu tarnen, sondern um meine Laune kundzutun und mich den wechselnden Widrigkeiten meines Lebensraums anzupassen.

So bin ich bei Wärme hell, sodass ich einfallende Sonnenstrahlung und bei Kühle dunkel, um möglichst viel Strahlungswärme aufzunehmen. Als wechselwarmes Tier fällt es mir nämlich nicht leicht, meine Körpertemperatur stabil zu halten. Bei zu viel Sonne werde ich allerdings fast schwarz, damit ich keinen Sonnenbrand bekomme, und zur Paarungszeit ist bei uns Fasnacht: Um die Weibchen zu beeindrucken, werde ich dann so bunt wie möglich. Wie bunt, hängt davon ab, wo genau ich zu Hause bin.

Wie ich das hinbekomme? Meine Hautzellen enthalten Farbstofftröpfchen, die nach Bedarf umsortiert und neu geordnet werden können. Zusammen ergeben die Tröpfchen, die gerade oben liegen, ein farbiges Muster – wie Pixel ein Computerbild ergeben.

Wenn ihr mich in Zürich findet (das ist nicht einfach, weil ich hier unglaublich viele Möglichkeiten habe, mich zu verstecken), ist meine Grundfarbe in der Regel grün. Wenn Reto und Kathi mich besuchen, machen sie stets eine Wette: Wer mich zuerst findet, bekommt im Restaurant ein Dessert. Macht ihr mit?

__ __ __ __ __ __ __ – __ __ __ __ __ __ __ __ __ __

Geisterstunde

Ich bin ein Jäger und in der Regel nachts auf Beutezug. Deshalb muss ich besonders leise sein, damit die Mäuse und anderes kleines Getier mich nicht kommen hören.

An meinem samtig weichen Gefieder gleiten die Luftteilchen vorbei ohne zu verwirbeln. So ist, wenn ich fliege, kein Rascheln oder Flattern zu hören. Um so besser kann ich meine Beute hören – wenn ich sie nicht schon längst mit meinen grossen Augen gesehen habe – während ich lautlos auf sie herabstürze.

Ich bin übrigens nach einem tagsüber jagenden Verwandten benannt.

__ __ __ __ __ __ __ __ __ __ __ __

Wasserfreund – Wasserfeind

Obwohl ich ein Vogel bin, könnte man meinen, ich hätte Fell. Meine Federn sehen wirklich nach Haaren aus. Davon habe ich auch gleich besonders viele: Innen flauschige Daunen, die halten mich warm. Die haarfeinen Federn aussen fügen sich dagegen zu einer glatten Oberfläche zusammen, an der Wasser einfach abperlt.

Damit das funktioniert, muss ich mein Gefieder regelmässig putzen und mit einem öligen Stoff aus meiner Bürzeldrüse einschmieren. Man unterscheidet nämlich Stoffe in “wasserliebend” und “fettliebend”. Wasserliebende Stoffe mischen sich prima mit Wasser, aber nicht mit Fetten. Fettliebende Stoffe mischen sich dagegen prima mit Fetten, aber nicht mit Wasser. Und zu letzteren zählt mein Öl für die Federn.

Das ist auch gut so, denn meine Beute sind Fische, denen ich erst einmal hinterher “fliegen” muss.

__ __ __ __ __ __ __ __ __ __ __ __ __ __

Wärmetauscher gesucht

Wenn ihr Menschen warm habt, schwitzt ihr, und die Flüssigkeit auf eurer Haut nutzt eure Körperwärme, um zu verdampfen. So kühlt ihr euch ab. Da ich wie die meisten anderen Tiere keine Schweissdrüsen habe (die wären in meiner warmen und feuchten Heimat auch nicht besonders nützlich), muss ich mich anders kühlen.

Zum Glück ist mir ein Schnabel mit grosser Oberfläche gewachsen, über welchen ich überschüssige Körperwärme direkt aus dem Blut darin an die Luft abgeben kann!

__ __ __ __ __ __ __ __ __ __ __

Lösungswort:

__ __ __ __ __ __ __ __ __ __

Viel Spass bei eurem nächsten Zoo-Besuch

wünscht euch eure Kathi Keinstein!

Und erzählt doch in den Kommentaren, was ihr Spannendes im Zoo erlebt habt!

Experimente Zauber mit Oberflächenspannung

In der Schweizer Fasnacht sind Hexen zentrale Figuren, aber bestimmt sind auch Zauberer, Feen und andere magische Wesen bei der Kostümwahl beliebt. Mache dein magisches Kostüm wirklich einzigartig: Ich verrate dir, wie du wirklich zaubern und deine Freunde und (Mit-)Gäste verblüffen kannst! Die Physik bzw. Chemie machts möglich!

1. Die schwimmende Büroklammer

Du brauchst dazu

  • ein sauberes Glas mit Leitungswasser
  • ein wenig Flüssigseife
  • eine Büroklammer
  • eine Pinzette
  • deinen Zauberstab

 Material für Büroklammer vs. Oberflächenspannung

Wie du den Zauber durchführst

  • präpariere den Zauberstab, bevor die Zuschauer dabei sind: Gib ein wenig Flüssigseife auf die Spitze, sodass das nicht auffällt
  • In Gegenwart der Zuschauer: Lege die Büroklammer mit Hilfe der Pinzette vorsichtig auf die Oberfläche des Wassers im Glas. Die Klammer wird schwimmen.
  • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor
  • Führe den Zauberstab dabei nahe an die WasseroberflächeAlles bereit: Jetzt dein Zauberspruch!
  • Tippe, während du deinen Zauberspruch sagst, mit der seifigen Spitze des Stabes 1 – 2 cm von der Büroklammer entfernt auf die Wasseroberfläche. Klammer wird sofort auf den Grund des Glases sinken.Keine Oberflächenspannung mehr: Die Klammer ist versunken!

Was passiert da?

Wenn du schon das letzte Experiment rund um die Dichte und die Anomalie des Wassers gelesen hast, wirst du wissen: Nur Dinge, deren Dichte kleiner ist als die von flüssigem Wasser, können darauf schwimmen. So sollte es jedenfalls sein. Trotzdem schwimmt die Büroklammer aus Metall (zum Beispiel Eisen), dessen Dichte um ein Vielfaches höher als die flüssigen Wassers ist!

Die Oberflächenspannung machts möglich

Das rührt daher, dass Wasserteilchen ausserordentlich fest zusammenhalten. Zwischen den Wasserteilchen bzw. -molekülen wirken auch im flüssigen Zustand stark anziehende Kräfte, die sogenannten Wasserstoffbrücken, welche auch einen weiteren Zaubertrick – Harry Potter und der krumme Wasserstrahl – möglich machen. Dank dieser Wasserstoffbrücken halten die Wasserteilchen so dicht zusammen, dass sie an der Luft (mit welcher Wasserteilchen so gar nicht wechselwirken mögen) eine relativ schwer zu durchdringende Oberfläche bilden.

Diese Oberfläche ist so stabil, dass sie sogar der Erdanziehung standhalten kann: Wassertropfen zerlaufen auf einer Unterlage nicht, um der Schwerkraft folgend möglichst flach zu werden. Stattdessen erscheinen sie gewölbt (dazu findet ihr ein Experiment bei Forschen für Kinder)! Wie die Haut eines aufgeblasenen Luftballons steht die Wasseroberfläche dabei unter Spannung. Deshalb wird diese fesselnde Eigenschaft des Wassers (und anderer Stoffe) “Oberflächenspannung” genannt.

Dank der grossen Oberflächenspannung des Wassers können auch kleine Eisenteile schwimmen, obwohl sie eigentlich zu dicht dafür sind – wenn ihr Gewicht, wie bei der Büroklammer, auf genügend Auflagefläche verteilt wird. So ist nämlich an keiner Stelle die Last gross genug, um die film-artige Wasseroberfläche zu durchbrechen.

Die Zauberkraft der Tenside

Seife – nicht nur flüssige – besteht aus Tensiden. Das sind ganz besondere Teilchen: Sie haben nämlich zwei unterschiedliche Enden, die mit unterschiedlichen wechselwirken! Das macht die Tenside zu kleinen Diplomaten. Während nämlich das eine Ende Wasserteilchen anzieht und von ihnen angezogen wird, pflegt das andere Ende anziehende Wechselwirkungen mit solchen Teilchen, die sich nicht gern mit Wasser mischen.

Das verleiht den Tensiden nicht nur ihre Super-Waschraft, die darauf beruht, dass sie zwischen Wasser und Fett “vermitteln” und dem Fett ermöglichen, sich mit Wasser zu mischen. Tenside vermitteln nämlich ebenso zwischen Wasser und Luft – die sich in Bezug auf Wechselwirkungen wie Fett verhält, nämlich wasserabweisend.

Was dein Zauber bewirkt

Wenn du mit der Seife am Zauberstab auf die Wasseroberfläche tippst oder kurz hinein tauchst, lösen sich die Tenside vom Stab und ordnen sich an der Wasseroberfläche an: (wasserliebendes) Köpfchen in das Wasser, (fett- bzw. luftliebendes) Schwänzchen in die Höh!

Streichholzmodell: Tenside an der Wasseroberfläche

Dadurch wird der Zusammenhalt zwischen den einzelnen Wasermolekülen minimiert, wenn nicht gar aufgehoben, sodass die Oberflächenspannung zusammenbricht. Ohne den festen Oberflächenfilm ist nichts mehr da, was die Büroklammer tragen könnte, sodass sie wie ein Stein auf den Grund sinkt, wie ihre Dichte es vorschreibt.

2. Der furchtsame Pfeffer

Du brauchst dazu

  • ein sauberes Glas mit Leitungswasser
  • gemahlenen Pfeffer oder ein anderes wasserunlösliches Pulver
  • Flüssigseife
  • deinen Zauberstab

Material für den Zauber mit Pfeffer

Wie du den Zauber durchführst

  • Bringe wie im 1. Versuch vorab ein wenig Flüssigseife auf die Spitze deines Zauberstabs.
  • Wenn die Zuschauer da sind, bestreue die Wasseroberfläche auf dem Glas dicht mit gemahlenem Pfeffer. Das Pulver wird auf der Wasseroberfläche schwimmen.Pfeffer schwimmt auf der Wasseroberfläche
  • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor. Bringe dabei den Zauberstab in die Nähe der Wasseroberfläche.
  • Wenn du deinen Zauberspruch sagst, tippe die Stabspitze kurz – für höchstens ein bis zwei Sekunden – auf die Wasseroberfläche. Die Pulverkörner auf der Wasserfläche werden sofort vor der Stabspitze Reissaus nehmen und in Richtung der Glasränder drängen!Der Pfeffer flieht vor dem Zauberstab!

 

Was passiert da?

Es sind einmal mehr die Tenside, welche die Pfefferkörnchen zur Flucht bewegen. Wie eine Schar, die auseinanderstrebt, breiten sich die Seifenteilchen vom Zauberstab fort auf der Wasseroberfläche aus. Dabei schieben sie die schwimmenden Pulverkörner kurzerhand zur Seite.

Da wir die winzigen Seifenteilchen nicht sehen können, erscheint dies so, als würden die sichtbaren Pulverkörner vor dem Stab zurückweichen!

 

Damit dir und allen anderen Lesern ein fröhliches Ohhh Häx!, Helau!, Alaaf!, Narri! Narro! und was man im durch die Länder sonst noch alles ruft!

Glasreiniger - Streifenfrei auch ohne Ammoniak

Die spannenden Antworten, die ich einer Leserin zur Wirkweise von WC-Reinigern gab, haben eine weitere Verfolgerin dazu bewegt, auch gleich nach der Funktion eines anderen Putzmittels zu fragen: Wie funktioniert ein Glasreiniger?

Wenn wir sauber machen, benutzen wird fast überall Seifen – denn die Superwaschkraft der Tenside darin ist einfach unschlagbar. Beinahe jedenfalls. Doch wer schon einmal Fenster geputzt hat, kennt ein leidiges Phänomen: Streifen an den Scheiben. Die entstehen entweder aus nicht gänzlich entferntem Schmutz – oder sind ein Souvenir, das die oberflächenliebenden Tenside uns hinterlassen.

Deshalb scheinen Glasreiniger anders zu funktionieren als gewöhnliche Seife, die man nach der Verwendung gründlich abwaschen muss: Einmal rasch aufgesprüht lösen sie den Schmutz ratzfatz, und nach dem Abwischen verschwinden die verbleibenden Streifen innerhalb von Sekunden. Was aber macht Glasreiniger so besonders?

Was im Glasreiniger drin ist

Wer Glas streifenfrei reinigen möchte, braucht eine Substanz, die sowohl ein Talent zum Schmutzlösen hat, als auch leicht und rückstandslos entfernbar ist. Deshalb enthalten Glasreiniger in der Regel

  • Organische Lösungsmittel: Ethanol oder/und andere Alkohole mit ähnlichen Eigenschaften. Organische Lösungsmittel können, was ihr Name verspricht: In ihnen lösen sich viele Stoffe leicht auf, die sich in Wasser weniger leicht lösen. Alkohole aus kleinen Molekülen lassen sich trotzdem leicht mit Wasser mischen, sodass man gemeinsam mit Wasser verwenden kann. Dabei setzen Alkohole die Oberflächenspannung von Wasser herab, sodass nicht nur sie selbst, sondern auch das Wasser schnell verdunsten kann: Flüssigkeitsreste verschwinden schnell vom Glas.
  • Wenig oder gar keine Seife: Die würde ja Streifen hinterlassen. Deshalb wird in Glasreinigern weitgehend darauf verzichtet.
  • Duftstoffe
  • Konservierungsmittel
  • Farbstoffe
  • Manche Glasreiniger enthalten zudem Ammoniak, dem eine zusätzliche Reinigungskraft zugeschrieben wird.

Alkohole sind umweltfreundlicher als Seifen

Organische Lösungsmittel haben vielerorts ein anrüchiges Image – aber keine Panik: Diese Stoffe sind nicht immer so schlimm, wie ihnen nachgesagt wird. Das gilt ganz besonders für Ethanol – den uns wohlbekannten Trink-Alkohol – und seine Verwandten. Die sind nämlich viel umweltverträglicher als viele Tenside in Seifen!

Als natürlicher Bestandteil vieler lebender Systeme (viele Kleinlebewesen stellen im Zuge der alkoholischen Gärung Ethanol selbst her und noch mehr – uns Menschen eingeschlossen – können ihn verstoffwechseln) ist Ethanol, anders als viele Tenside, leicht biologisch abbaubar.

In hoher Konzentration verursacht Ethanol allerdings nicht nur uns einen Kater oder schlimmeres, sondern ist auch für viele Kleinstlebewesen tödlich – was ihn zu einem beliebten Desinfektionsmittel macht. So sollten Glasreiniger auf Ethanol-Basis ohne weitere Konservierungsmittel auskommen können.

Denn die Duftstoffe und Konservierungsmittel in vielen Glasreinigern sind die gleichen zweischneidigen Schwerter wie in anderen Reinigungsmitteln, sodass mit solchen Zusätzen auch ein Glasreiniger nicht pauschal als “vollkommen harmlos” angesehen werden kann.

Warum Duftstoffe bedenklich sind

Duftstoffe leisten keinen direkten Beitrag zur Funktion des Reinigungsmittels: Sie reinigen nicht. Stattdessen sollen sie dem Produkt einen angenehmen Duft verleihen, welcher dem Konsumenten vermitteln soll, dass die Anwendung ungefährlich, angenehm, mit Sauberkeit und “Frische” und damit mit Gesundheit verbunden ist. Im “schlimmsten” Fall werden dabei sogar unangenehme Gerüche überdeckt, die andernfalls dem Körper als (lebens-)wichtige Warnung dienen: Ich stinke, also bin ich ungesund.

In Reinigungs- und anderen Produkten ist eine Vielzahl verschiedener Duftstoffe im Einsatz, die – praktisch alle körperfremd – auch gleich eine Vielzahl möglicher Allergieauslöser darstellen. Und das gilt für “naturnahe” bzw. natürliche ätherische Öle ebenso wie für Molekül-Kreationen aus dem Labor, wie ich hier näher erläutert habe.

Ebenso besonderes Augenmerk verdienen Konservierungsmittel: Die können nicht nur ebenso Allergien auslösen wie Duftstoffe. Sie sind überdies dem Leben nicht zuträglich – zwangsweise, denn sie sollen ja verschiedenste Kleinstlebewesen daran hindern, in unseren angebrochenen Putzmittel-Flaschen zu hausen und zu gedeihen. Das Problem dabei ist, dass viele solcher “Biozide” – lebensvernichtende Stoffe – auch für menschliche Zellen giftig sind.

Wenn wir Reinigungsmittel in normalem Umfang dafür benutzen, wozu sie gedacht sind, werden wir kaum eine gefährliche Dosis solcher Konservierungsmittel abbekommen. Die Dämpfe solcher Produkte einzuatmen empfiehlt sich trotzdem nicht. Denn was für die Vernichtung unliebsamer Kleinstlebewesen geschaffen ist, wird auch vor den unverzichtbaren Bewohnern unserer Haut und Schleimhäute nicht Halt machen. Wer viel putzen muss, ist deshalb nicht nur möglicher Allergien wegen mit Handschuhen gut bedient.

Ammoniak – Warum dieser Inhaltsstoff die Geister scheidet

Manche Glasreiniger enthalten neben Alkoholen oder anderen Reinigungskünstlern Ammoniak (der gern auch als “Salmiak” umschrieben wird). Ammoniak, , ist ein Gas, das sich sehr gut in Wasser löst. Die wässrige Lösung, heute Ammoniak-Wasser genannt, war vor allem früher als Salmiakgeist bekannt.

Ammoniak ist eine Base: Beim Lösen in Wasser kann ein Ammoniak-Molekül ein -Ion von einem Wassermolekül aufnehmen (“aq” im Index deutet an, dass das betreffende Teilchen in Wasser gelöst ist):

Unter den alten Sammelbegriff “Salmiak” fallen deshalb auch die Salze des Ammonium-Ions , wie sie zum Beispiel in Salmiakpastillen vorkommen! Anders als Ammoniak sind Ammoniumsalze, wenn man sie in Wasser löst, jedoch sehr schwache Säuren (das Ammonium-Ion muss schliesslich ein -Ion abgeben, damit daraus Ammoniak entstehen kann) – haben also ganz andere Eigenschaften!

In einer Ammoniak-Lösung liegen stets Ammoniak-Moleküle und Ammonium-Ionen zugleich vor: Ammoniak ist eine relativ schwache Base. Das bedeutet aber auch, dass sich stets gelöste Ammoniak-Moleküle im Gleichgewicht mit gasförmigem Ammoniak befinden.

Diese Moleküle können wir riechen, sodass eine Ammoniak-Lösung durch ihren mehr oder weniger stechenden Geruch auffällt.

Eine Base als Reinigungsmittel

Die Basizität ist wohl auch der Grund für die “reinigungsverstärkende” Wirkung des Ammoniaks. Denn die Gegenwart von Basen, genauer gesagt -Ionen, führt dazu, dass verschiedene grössere Biomoleküle leicht in kleinere, einfach abwaschbare Bruchstücke zerfallen. Fette beispielsweise sind mittelgrosse, wasserunlösliche Moleküle, die zu den Estern gehören und deshalb in Gegenwart von Basen gespalten werden. Die Bruchstücke – Glycerin und Fettsäuren – lassen sich leicht mit Wasser oder Ethanol aufnehmen. Auch Eiweisse, d.h. Proteine, werden in Gegenwart von Basen leicht hydrolysiert, also in Bruchstücke bis hin zu ihren Aminosäuren zerlegt.

Das Problem: Ammoniak ist giftig

  • Wie alle stärkeren Säuren und Basen wirkt Ammoniak ätzend – auch auf unsere Schleimhäute – und kann, wenn es eingeatmet wird, im schlimmsten Fall ein Lungenödem verursachen.
  • Ammoniak ist ausserdem ein Nervengift, das je nach Konzentration zu neurologischen Ausfällen, Koma und Tod führen kann.
  • Da es sich um ein Gas handelt, das aus der wässrigen Lösung leicht flüchtig ist und sich im Wasser auf unseren Schleimhäuten erneut lösen kann, ist Ammoniak schwer unter Kontrolle zu halten.
  • Ammoniak ist sehr giftig für Wasserorganismen: In natürlichen Gewässern sind praktisch immer Ammoniumionen zugegen (denn die Lebewesen darin scheiden sie als Stoffwechselabfall aus). Wenn eine Base wie Ammoniak-Lösung da hinein gerät, wird der pH-Wert angehoben (d.h. es gibt vermehrt -Ionen und damit wenig -Ionen im Wasser). Gemäss Le Chateliers Prinzip des kleinsten Zwangs wird dadurch das Gleichgewicht zwischen Ammonium-Ionen und Ammoniak, das natürlicherweise weit auf der Seite von  liegt, auf die Seite von  – Ammoniak – geschoben:
    Und Ammoniak ist auch für viele Wasserlebewesen bis hin zu Fischen giftig – ganz davon abgesehen, dass sich die meisten Lebewesen bei einem erhöhten pH-Wert ohnehin nicht wohlfühlen werden.

Es gibt also genug Gründe, um auf Ammoniak in Reinigungsmitteln zu verzichten.

Wie du dem Ammoniak aus dem Weg gehen kannst

Das ist eigentlich ganz leicht: Ammoniak hat einen extrem unangenehmen, stechenden Geruch – wenn du einem solchen begegnest, hör auf das Fluchtsignal deines Körpers und gehe auf Abstand.

Ich habe mal vielleicht 100-200 Milliliter konzentrierte Ammoniak-Lösung in einem Labor-Abzug (einem per Schiebetür verschliessbaren Kleinraum mit eingebauter “Dunstabzugshaube”) verschüttet. Ich musste mich selbst bewusst am Weglaufen hindern und stattdessen den Abzug schliessen, um das Gas an der Ausbreitung zu hindern, bevor ich das Zeug ordnungsgemäss entsorgen konnte!)

Das heisst: Wenn du zur Zeit einen Glasreiniger mit Ammoniak verwendest:

  • Atme den Sprühnebel bzw. die Dämpfe möglichst nicht ein (auch möglicher Duft- und Konservierungsstoffe wegen)-
  • Brauche den Glasreiniger auf. Das ist meiner Meinung nach sinnvoller als Wegwerfen – es sei denn, das Mittel bereitet dir schon gesundheitliche Probleme wie beispielsweise eine Allergie. Dann bringe die Reste zur Sondermüll-Entsorgung: Ammoniak darf nicht ins Abwasser gelangen!

Wenn du einen neuen Glasreiniger kaufen möchtest:

  • Achte darauf, dass der neue keinen Ammoniak (Ammoniak-Wasser, Salmiak, Salmiakgeist,…) enthält.
  • Achte ebenso darauf, dass Stoffe, die dir bereits Allergien auslösen, nicht enthalten sind.
  • Am empfehlenswertesten ist ein Glasreiniger auf Alkohol-Basis (Spiritus-Reiniger).

 

Glas reinigen mit Hausmitteln

Statt einem Glasreiniger aus dem Supermarkt kannst du auch einfach Brennsprit (Spiritus) in eine Zerstäuberflasche füllen und zum Reinigen verwenden. Statt – wie oft genannt – Zeitungspapier solltest du dabei aber ein Mikrofasertuch zum Wischen verwenden. Das fusselt ebenso wenig und enthält keine Druckerschwärze, die abfärben könnte.

Beim Umgang mit Brennsprit bzw. Spiritus und anderen organischen Lösungsmitteln gilt ausserdem: Kein offenes Feuer in ihre Nähe bringen! Diese Substanzen gehen sehr leicht in Flammen auf: Rauchen oder brennende Kerzen sind beim Fensterputz daher tabu!

Ausserdem gilt auch hier: Dämpfe nicht einatmen – die können benommen oder zumindest Kopfschmerzen machen!

Überdies sind dem Brennsprit aus dem Supermarkt Spuren sehr unangenehm riechender und schmeckender Substanzen wie Denatonium (dem bittersten bekannten Stoff der Welt) oder Butanon (Methylethylketon, MEK) beigemengt. Mit anderen Worten: Der Ethanol ist vergällt. Das lässt vermutlich die meisten Menschen nicht nur Abstand davon nehmen, den Sprit zu trinken um die Alkoholsteuer zu umgehen, sondern auch davon, daran zu schnüffeln. Ich zumindest empfinde den Geruch meines Brennsprits als viel unangenehmer als jenen des wirklich reinen Labor-Ethanols. Somit ergibt sich das “nicht einatmen” mehr oder weniger von selbst.

 

Wie ich meine Scheiben praktisch streifenfrei sauber bekomme

Ich verwende, der vermutlich vorwiegend aus Alkoholen besteht und keinen Ammoniak enthält (Ausser den Duft- und Konservierungsstoffen sind die Inhaltsstoffe nicht auf der Flasche angegeben. Der pH-Wert ist allerdings laut pH-Streifen neutral (und nicht basisch wie in Gegenwart von Ammoniak) und die Farbstoffe aus dem pH-Streifen lösen sich schnell in der Flüssigkeit (viele wasserunlösliche Farbstoffe lösen sich leicht in organischen Lösungsmitteln). Da der Reiniger beim Aufsprühen leicht schäumt, könnte überdies ein kleiner Anteil Seife enthalten sein).

  • Stark verschmutzte Aussenscheiben besprühe ich mit etwas Glasreiniger und rubble sie gründlich mit einem triefnassen Schwamm ab.
  • Das Alkohol-Wasser-Gemisch ziehe ich dann gründlich mit einem Gummi-Abzieher ab. Ein betagtes, einfaches Markenprodukt leistet mir dabei bessere Dienste als sein No-Name-Gegenstück aus Studentenzeiten.
  • Ganz wichtig: Den Abzieher wische ich nach jedem Zug über die Scheibe kurz an einem Tuch ab, sodass kein Wasser/Reiniger mehr daran klebt, das/der tropfen könnte!
  • Falls doch noch Streifen bleiben, poliere ich mit einem trockenen Mikrofasertuch kurz nach.

Und wie putzt ihr eure Fenster? Welche Glasreiniger verwendet ihr? Und wie wichtig ist euch die Zusatz-Reinigungskraft von Ammoniak?