Chemie ist schlecht für die Umwelt! So die Standardaussage. Tatsächlich ist die Chemie aber nicht immer so “böse”, sondern immer öfter unheimlich nützlich, wenn es darum geht, die Umwelt zu schonen. Was ihr tun könnt, damit sie möglichst wenig gefährlich und möglichst oft nützlich ist, erfahrt ihr hier!

Wie funktioniert Fahrbahnmarkierung?

Dieses Jahr sind all unsere Ferienpläne C-bedingt ins Wasser gefallen. Trotzdem haben wir doch noch ein paar Tage auf der Strasse zugebracht – zwecks Kurz-Roadtrip durch den Alpenraum. Reto, der nicht fährt, kommt dabei oft auf Gedanken, für die ich am Steuer oft gar keine Muddr habe. Zum Beispiel während der Durchfahrt durch die x-te Strassenbaustelle des Tages. Hier in der Schweiz weist dort orange Ersatz-Fahrbahnmarkierung darauf hin, wo es vorübergehend lang geht.

“Aber woraus besteht diese Fahrbahnmarkierung eigentlich”, fragte Reto, “und wie zum Teufel bekommen sie die wieder ab, wenn die Baustelle fertig ist?”

Was da aus dem Mund eines Ingenieurs kommt, hört sich vielleicht nicht wie eine Chemiefrage an. Trotzdem ist es eine – und erst noch eine interessante. Denn immer, wenn es um Materialien, ihre Verarbeitung und Entsorgung geht, sind Chemiker gefragt. Die beschreiben und charakterisieren Stoffe schliesslich nicht nur, sondern erschaffen sie geradewegs nach ihren Wünschen.

Was muss Fahrbahnmarkierung können?

Dies ist die wichtigste Frage, die Chemiker zu beantworten haben, wenn sie einen Stoff für einen bestimmten Zweck auswählen oder erschaffen wollen.

Und gerade an Fahrbahnmarkierungen haben wir ziemlich harte Anforderungen. Sie soll den Autofahrern schliesslich zeigen, wo sie lang sollen – und das zu jeder Tages- und Nachtzeit. Eine Fahrbahnmarkierung muss also stets gut sichtbar sein, im Hellen wie auch bei Dunkelheit, bei trockenen Verhältnissen wie auch bei strömendem Regen.

Ausserdem muss sie für eine lange Zeit sichtbar bleiben – wir wollen ja nicht überall Strassenbaustellen, weil alle paar Wochen alles nachgepinselt werden muss. Und während ihrer langen Lebensdauer fahren abertausende schwere Autos und Lastwagen mit dreckigen Reifen darüber.

Abgenutzte Parkverbot-Markierung in der Schweiz
“Hier ist Parkverbot!” bedeuten gelbe Markierungen in der Schweiz. Diese hier ist hoffentlich schon Jahrzehnte alt – denn eine Erneuerung ist längst fällig.

Eine Fahrbahnmarkierung muss sich somit deutlich von der Strasse abheben. Da der Asphalt meist dunkelgrau bis schwarz ist, sind dauerhafte Markierungen darauf in praktisch allen Ländern weiss. Und dieses Weiss darf weder von den darüberfahrenden Autos abgerieben werden, noch Sonne, Wind und Wetter zu schnell zum Opfer fallen. Folglich ist da ein besonders robustes Material gefragt.

Richtig kniffelig wird es jedoch bei vorübergehenden Markierungen in Baustellen. Für die gilt nämlich im Grossen und Ganzen das Gleiche – und sie sollen nach Abschluss der Bauarbeiten rückstandslos wieder entfernt werden können. Das ist nämlich Vorschrift: Nach dem Entfernen einer temporären Fahrbahnmarkierung dürfen keine Spuren davon zurückbleiben. Einfach überkleben ist – obwohl immer wieder praktiziert – eigentlich nicht erlaubt.

Für Baustellenmarkierungen braucht man also ein Material, das Wind, Wetter und Tausende Autos aushält, sich bei Bedarf aber vollständig wieder entfernen lässt.

Welche Stoffe können das?

Wie so oft haben Chemiker zur Lösung dieses Problems massgeschneiderte Stoffe erschaffen. Mit anderen Worten: Fahrbahnmarkierungen bestehen aus speziell dafür entworfenen Kunststoffen. Die gibt es in mehreren Varianten.

Bei dauerhaften Markierungen steht die Haltbarkeit der Stoffe im Vordergrund. Denn die sollen ja gar nicht von der Strasse verschwinden.

Farbe zum Auftragen

Ganz simple Farbe zum Aufsprühen oder -walzen, im Strassenbau Fahrbahnmarkierung Typ 1 genannt, kommt heutzutage höchstens noch in wenig befahrenen Bereichen, meist innerorts, zum Einsatz oder hat schon etliche Jahre auf dem Buckel. Denn heutzutage kennt man allerlei Tricks und Kniffe, um die Markierungen vor allem bei Regen besser sichtbar zu gestalten.

So streut man für Fahrbahnmarkierung vom Typ 2 Glitzerperlen und Streugut für bessere Griffigkeit (niemand möchte auf Linien und Pfeilen plötzlich ins Rutschen kommen) auf frisch aufgetragene Streifen oder mischt diese Zutaten gleich in die Farbe hinein. Letzteres hat den Vorteil, dass das Streugut nicht einfach von drüberfahrenden Autos von der Oberfläche abgerieben werden kann. Denn das Glitzerzeug ist dann ebenso in den tiefen Schichten wie obenauf.

Eine Maschine spritzt Fahrbahnmarkierung auf und streut Glitzerperlen hinterher. (Summysung / CC BY-SA)

Die Glitzerperlen funkeln deutlich sichtbar in der Sonne oder dem Licht von Strassenlaternen und Autoscheinwerfern. Ausserdem können sie aus einem Wasserfilm herausragen und bleiben so auch bei Regen sichtbar.

Ebenfalls gut bei Regen sichtbar sind Farben, die auf der Fahrbahn ein klumpiges Gitter bilden. Denn diese Gitter ragen nicht nur über der Fahrbahn empor. Die offenen Maschen und Streben erlauben Regenwasser ausserdem, zwischen ihnen hindurch abzufliessen, anstatt sie einfach zu überfluten. Dabei sind die Maschen gerade so dicht, dass sie aus der Sicht der Autofahrer wie eine durchgezogene Linie erscheinen.

Gitterartige Fahrbahnmarkierung
Gitterartige Fahrbahnmarkierung: Hier kann Regen leicht ablaufen (Dantor / CC BY-SA)

Kunststoff-Einlegearbeiten

Die haltbarste Fahrbahnmarkierung erhält man, wenn man Vertiefungen in Form der geplanten Linien und Pfeile in den Asphalt fräst und sie anschliessend mit Kunststoffmasse ausfüllt.

Dazu gibt es Kunststoffe, die “unfertig” verkauft werden: Ihre Zutaten werden in zwei getrennten Portionen geliefert, die jede für sich unfertig aufbewahrt werden können. Mischt man die beiden Portionen (manche muss man zunächst erhitzen, damit sie schmelzen) und lässt sie an der Luft liegen, reagieren sie miteinander zu den Riesenmolekülnetzen, aus denen feste Kunststoffe bestehen. So müssen die Strassenarbeiter nur schnell genug sein und die Mischung in die ausgefrästen Vertiefungen füllen, bevor sie hart wird.

Da Fahrbahnmarkierungen innerhalb eines Landes überall gleich aussehen sollen, kann man Linien, Pfeile und Schriftzeichen aus Kunststoff auch in einer Fabrik fertig herstellen. Dann brauchen die Strassenarbeiter sie nur noch in die vorgesehenen Vertiefungen zu kleben – mit einem superfesten Klebstoff, den Chemiker für genau diesen Zweck geschaffen haben.

Klebefolien

All diese aufwändigen, superhaltbaren Markierungen eignen sich aber schlecht für Baustellen, in denen die Fahrbahnmarkierung nur für eine begrenzte Zeit halten und dann spurlos verschwinden soll. Deshalb gibt es die Pfeile und Linien auch als Aufkleber – komplett mit Farbe und Glitzerperlen beschichtet. So lassen sie sich rasch auf den Asphalt aufkleben, ohne dass viel Zeit fürs Fräsen, Pinseln oder Bestreuen aufgewendet werden muss.

Ausserdem lassen sich Aufkleber relativ leicht wieder von der Strasse abziehen. Das birgt jedoch auch ein Problem, das ich schon oft in Baustellen beobachtet habe: Wenn tausende Autos darüber fahren, lösen sich die Klebestreifen irgendwann ab und werden geknickt oder verschoben wieder auf die Fahrbahn gepresst. Das Ergebnis entspricht sicherlich nicht den gesetzlichen Regeln für Fahrbahnmarkierung, die besonders in Deutschland sehr streng sind. Und im schlimmsten Fall könnte so eine beschädigte Markierung gefährlich werden.

Um der Sicherheit willen gibt es deshalb Fahrbahnmarkierungs-Aufkleber, die mit einem massgeschneiderten Leim zusammen verkauft werden: Ähnlich wie bei den Einlegearbeiten ist auch dieser Klebstoff “unfertig” und in zwei Portionen geteilt. Die eine befindet sich auf der Unterseite des Aufklebers, die andere wird auf den Asphalt aufgetragen. Legt man den Aufkleber auf diese “Grundierung” und drückt ihn fest an, dann mischen sich die beiden Klebstoffe und reagieren zu einem bombenfesten Molekülgefüge.

Damit lösen sich die Baustellenmarkierungen nicht vorzeitig – allerdings bekommt man sie auch nach den Bauarbeiten nicht mehr so einfach von der Strasse. Dementsprechend grobschlächtig muss dazu vorgegangen werden: Entweder fräst man die oberste Asphaltschicht mitsamt der Aufkleber weg, oder man fackelt den Kunststoff mit einer Art Flammenwerfer ab (da Asphalt feuerfest und dunkel ist, leidet er ja nicht darunter).

Schaden diese Kunststoffe der Umwelt?

Wenn Chemiker Stoffe erschaffen und so nah an die Umwelt bringen wie auf Strassen, die mitten durch die “Natur” verlaufen, ist auch dies eine entscheidende Frage. Denn zum Einen entsteht beim Wegfräsen von Fahrbahnmarkierung feiner Staub, und beim Verbrennen entstehen Abgase und Rauch.

Noch viel wichtiger ist aber, dass all die Autoreifen, die über die Markierungen fahren, winzigkleine Mengen davon abreiben. Und wenn tausende oder gar Millionen Autos vorbei kommen, werden diese winzigkleinen Mengen ganz schnell gross. Und Sand und Staub, die durch das Abschmirgeln von Kunststoffen entstehen, kennen die meisten von euch unter dem Begriff “Mikroplastik”. Das ja niemand haben will – und das trotzdem überall zu finden ist.

Das von der Fahrbahnmarkierung abgeriebene Mikroplastik wird vom Wind davongeweht oder vom Regen in den Boden gespült und gelangt mit dem Wasserkreislauf irgendwann in die Meere. Laut der Ergebnisse einer Studie des Dachverbands von Umweltorganisationen und -behörden IUCN machen abgeriebene Fahrbahnmarkierungen 7% des vom Land in die Meere geratenden Mikroplastiks aus. Ausgehend von geschätzten 1,5 Millionen Tonnen Mikroplastik-Eintrag im Jahr entspricht das rund 105 Tonnen Kunststoff-Staub von Fahrbahnmarkierungen (Klingt viel – der Löwenanteil des Mikroplastiks entsteht aber direkt in den Gewässern aus grösserem Plastikabfall: bis rund 10,5 Millionen Tonnen im Jahr!).

Ist Mikroplastik gefährlich?

Kann Mikroplastik unserer Gesundheit oder der von Lebewesen in den Meeren und anderen Lebensräumen gefährlich werden? Das ist eine wirklich schwierige Frage – denn man weiss die Antwort (noch) nicht. Was den menschlichen Körper angeht, geht man zur Zeit davon aus, dass es uns nicht gross schadet. Denn vornehmlich könnte Mikroplastik über den Verdauungstrakt in unsere Körper gelangen – und auf diesem Weg auch gleich wieder hinaus, da der Körper keinen Grund hat, die Kunststoffpartikel aus dem Nahrungsbrei heraus aufzunehmen. Eine andere Möglichkeit ist das Einatmen von Mikroplastik-Stäuben. Was das für Folgen haben kann, ist jedoch – wie so vieles in dem Bereich, noch nicht erforscht.

Was Meereslebewesen betrifft, gibt es Hinweise darauf, dass einzelne Arten unter Mikroplastik-Belastung leiden, besonders dann, wenn bestimmte Umweltbedingungen erschwerend dazukommen. Andere Arten scheinen sich dagegen gar nicht an den Kunststoffpartikeln zu stören. Wie beim Menschen auch gilt hier: Die Auswirkungen von Mikroplastik auf die Umwelt sind grösstenteils noch nicht erforscht.

Schon allein der erzeugten Mengen an Mikroplastik lohnt es sich, in diesen Bereichen weiter zu forschen. Und während die Forscher daran arbeiten, lohnt es sich ebenso, Vorsicht walten zu lassen und nicht unnötig Mikroplastik in die Umwelt gelangen zu lassen. Das gilt auch für die Gestaltung von Fahrbahnmarkierung, die wie so viele Kunststoff-Materialien laufend weiterentwickelt werden.

Chemie machts möglich: Markierungen der Zukunft

Fahrbahnmarkierung, die als Ganzes haltbar, zu Mikroplastik zerrieben aber biologisch abbaubar wäre (sodass kein Mikroplastik übrig bliebe, das in die Meere gelangen könnte), wäre ein Träumchen. Allerdings sind solche recht widersprüchlichen Eigenschaften meist nicht leicht zu realisieren.

Bereits Wirklichkeit ist dagegen eine Entwicklung hin zu noch besserer Sichtbarkeit bei schlechtem Wetter.

Sicher kennt ihr alle “Glow-in-the-dark”-Farbe oder ebensolche Klebesterne und andere Deko fürs Kinderzimmer. Diese Farben und Kunststoffgegenstände lassen sich mit Licht “aufladen” und leuchten später stundenlang im Dunkeln. (Dieser Vorgang heisst Phosphoreszenz – wie er funktioniert erfahrt ihr hier in Keinsteins Kiste!) Der Niederländer Daan Roosegarde hat Fahrbahnmarkierung aus solch einem phosphoreszierenden Kunststoff gemacht: Tagsüber speichert er Sonnen- bzw. Tageslicht, und nachts leuchten die Streifen aus sich selbst heraus! Das sieht nicht nur cool aus, sondern ist für die Autofahrer unabhängig von den Lichtverhältnissen draussen gut sichtbar.

Die Idee mit den selbstleuchtenden Fahrbahnmarkierungen lässt sich sogar noch weiter spinnen: Mit Kunststoffen, die nur in einem bestimmten Temperaturbereich phosphoreszieren, zum Beispiel bei weniger als 4°C, könnte man Glatteis-Warnungen aufbringen, die nur dann leuchten, wenn es kalt genug für Glatteis ist.

Zusammenfassung

Fahrbahnmarkierung muss viel und lange aushalten – und deshalb aus besonders widerstandsfähigen Stoffen bestehen. Chemiker können Kunststoffe mit genau diesen Eigenschaften entwickeln. Vorübergehende Markierungen in Baustellen müssen sowohl widerstandsfähig als auch leicht zu entfernen sein. Solch widersprüchliche Eigenschaften sind für Kunststoffdesigner besonders herausfordernd und nicht selten unlösbar.

Eine weitere Herausforderung ist der Abrieb von Fahrbahnmarkierungen, der als Mikroplastik in die Umwelt gelangt. Das zu vermeiden ist ein lohnendes Ziel der stetigen Weiterentwicklung von künstlichen Werkstoffen wie Fahrbahnmarkierung. Andere Ziele können ganz neuartige Eigenschaften dieser Stoffe sein, wie Phosphoreszenz, die selbstleuchtende Markierungen ermöglicht.

Ein Kunst- bzw. Werkstoff ist somit kaum ein “fertiges” Material, das unverändert bis in alle Ewigkeit weiter verwendet wird. Stattdessen entwickeln Chemiker die Materialien unserer Alltagswelt ständig weiter, um sie nützlicher, weniger gesundheitsschädlich und umweltverträglicher zu machen.

Und welche Arten Fahrbahnmarkierung sind euch schon begegnet? Habt ihr bestimmte Eigenschaften oder Mängel beobachten können? Seid ihr vielleicht sogar schon einmal auf Roosegardes phosphoreszierender Teststrecke in den Niederlanden unterwegs gewesen? Oder habt ihr beruflich mit Fahrbahnmarkierung zu tun?

Kunststoff - Recycling : So funktionierts

Ruhrpott, Deutschland, 2006: Reto, ein waschechter Schweizer und mein damals neuer Liebster, ist zu Besuch an meinem Studienort. Was mir traurig, wenn auch alltäglich erscheint, schockiert ihn zutiefst: Den überall herumliegenden Abfall ist er aus der Schweiz nicht gewohnt – zumindest nicht in solchen Mengen. Besonders Kunststoff-Verpackungen fallen uns vielerorts ins Auge. Dabei gibt es schon seit meiner Kindheit die “gelbe Tonne” und dahinter ein ausgefeiltes Recycling-System. Ganz zu schweigen von all den Abfalleimern im öffentlichen Raum.

Wenige Jahre später habe ich die Seiten gewechselt und musste Reto bald recht geben: Was die Abfall-Entsorgung betrifft, sind die Schweizer generell ordentlicher als meine Landsleute. Nach 10 Jahren unter den Eidgenossen wird allerdings deutlich: Auch hier wird Littering zunehmend zum Problem.

Da braucht es gar keine Horrorbilder und -meldungen von verschmutzten Stränden und Plastik in Tiermägen und dem Marianengraben, um zu begreifen, dass wir ein Problem haben.

Recycling – das Thema ist ein Dauerbrenner

Eigentlich haben wir gleich zwei Probleme:

  1. Klassische Kunststoffe sind Erdölprodukte. Sie werden also aus einem fossilen Rohstoff hergestellt, der irgendwann zur Neige geht.
  2. Klassische Kunststoffe werden kaum bis gar nicht biologisch oder von den Naturkräften abgebaut.

Beide sind nichts neues, sondern uns seit Jahrzehnten bewusst. Deshalb tüfteln Forscher und Ingenieure ebenso lang schon an Methoden, “verbrauchtes” Plastik wieder zu verwerten. Sie entwickeln Verfahren und bauen Recycling-Kreisläufe immer weiter aus. Die Schweizer bezeichnen sich gar als Weltmeister im Recycling von Abfällen – auch von Kunststoffen.

Aber welche Kunststoffe können wirklich recycelt werden? Wie funktioniert das? Wie könnt ihr zum nachhaltigen Umgang mit Plastik beitragen?

Welche Kunststoffe sind recycelbar?

Am einfachsten wiederverwendbar sind möglichst reine Stoffe. Ein Material, das aus nur einem Stoff besteht, hat nämlich durchgehend die gleichen Eigenschaften und kann mit einem einzigen, daran angepassten Verfahren behandelt werden. Das gilt auch für Verbundmaterialien, deren einzelne Bestandteile sich leicht voneinander trennen lassen.

Nicht trennbare Verbundmaterialien und Kunststoffe, die mit vielen Zusatzstoffen, sogenannten Additiven (z.B. für Farbeffekte, Weichmacher, Brandschutz,…), vermischt sind, lassen sich nur schlecht oder gar nicht wiederverwenden.

Thermoplaste als Recycling-Favoriten

Besonders für eine Wiederverwertung geeignet sind jene Kunststoffe, die bei hohen Temperaturen weich und formbar werden – die sogenannten Thermoplaste. Die kann man nämlich schreddern, erhitzen und zu neuen Gegenständen formen, ohne dass sich ihre Moleküle dabei verändern (zumindest im Optimalfall).

Zu den Thermoplasten gehören auch die verbreitetsten Alltagskunststoffe Polyethylenterephthalat (PET), Polyethylen (PE) und Polypropylen (PP) (Einzelheiten zu diesen Stoffen erfahrt ihr im Plastik-1×1 hier in Keinsteins Kiste). Da verwundert es nicht, dass gerade diese Kandidaten die grösste Rolle beim Recycling von Alltagsabfällen spielen. Allerdings gelingt auch das nur dann wirklich gut, wenn die Hersteller schon bei der Erstverarbeitung dieser Kunststoffe auf die Recyclingfähigkeit achten. Wie das geht, verraten Guidelines für die Industrie, verfasst von den Recycling-Verantwortlichen.

Auch Polyvinylchlorid (PVC) ist ein Thermoplast. Bei diesem Kunststoff gestaltet sich das Recycling (wie auch die Verwendung im Lebensmittelbereich) schon kniffeliger, weil er in vielfältiger Form verwendet wird und (besonders als Weich-PVC) kaum ohne Additive auskommt. Trotzdem wird auch PVC recycelt, wenn auch vornehmlich im Bauwesen, wo grössere Mengen gleichartigen PVC-Materials anfallen.

Und was ist mit kompostierbaren Biokunststoffen?

Was nach der ultimativen Verwertbarkeit bzw. Entsorgung klingt, hat oft einen beachtlichen Haken. Biopolymere sind aus Kettengliedern zusammengesetzt, die Lebewesen entlehnt sind, wie die Milchsäure-Glieder des Polylactids (PLA). Damit sind sie grundsätzlich für den Abbau durch Lebewesen oder deren Bestandteile geeignet.

In der Praxis sind dafür aber oft Bedingungen nötig, die ein Komposthaufen oder die freie Natur nicht bieten. PLA ist beispielsweise nur in speziellen Anlagen bei unnatürlichen Temperaturen abbaubar. So macht PLA zur Abfallvermeidung bislang nur dann Sinn, wenn der Anbieter – zum Beispiel ein Park mit Imbissbetrieb – direkt mit einem PLA-Entsorger (und bestenfalls -Wiederverwerter) zusammenarbeitet.

Wie wird recycelt?

Kunststoffe kann man grundsätzlich auf zwei Arten wiederverwerten:

  1. Werkstoffliche Verwertung: Das Material (die Polymer-Ketten als solche bleiben (weitestgehend) intakt und werden nur zu neuen Gegenständen geformt. Das ist der wohl wünschenswerteste Weg, da so der grösste Teil des zur Herstellung des Kunststoffs getätigten Aufwands nicht noch einmal nötig ist. Für diesen Weg geeignet sind im Besonderen die Thermoplasten unter den Kunststoffen. In der Praxis sind solche Verfahren leider meist nicht unendlich wiederholbar: Die Polymere überstehen das Erhitzen oft nicht gänzlich unbeschadet, sodass das Recycling-Material oft eine weniger gute Qualität als der Kunststoff bei der Erstverwendung hat. Fachleute nennen diesen Effekt deshalb “Downcycling”.
  2. Rohstoffliche Verwertung: Die Polymerketten werden dabei gezielt zerlegt. Die entstehenden Kleinmoleküle sind nach wie vor wichtige Energieträger und können als Brennstoffe oder Rohmaterial für andere Erdölprodukte verwendet werden.

So werden einzelne Kunststoffe recycelt

PET (Polyethylenterephthalat)

In der Schweiz gibt einen einzigartigen, geschlossenen PET-Recycling-Kreislauf: Überall in der Öffentlichkeit findet man hier blau-gelbe Sammelbehälter für PET-Getränkeflaschen – in Geschäften, an Bahnhöfen, bei Veranstaltungen, in Parkanlagen, an Abfall-Sammelstellen und anderswo. Die darin gesammelten Flaschen können farblich sortiert und nach Abtrennung von Fremdstoffen zu Pressballen verarbeitet werden, die rund 98% reines PET ihrer jeweiligen Farbe enthalten. Infrarot-Technik und Laser machen es möglich.

Diese PET-Abfälle werden weiter gereinigt, zu Flocken geschreddert und von den Flaschendeckeln getrennt. Letztere bestehen nämlich aus PE, welches – anders als PET – weniger dicht als Wasser ist und folglich darauf schwimmt. Die PET-Flocken sinken derweil auf den Grund (Chemiker und Physiker nennen dieses Trennverfahren Sedimentation), sodassman die PE-Deckel einfach abgiessen oder abschöpfen kann.

Nach weiterer Reinigung sind die Flocken schliesslich so sauber, dass sie als Lebensmittel-Verpackungsmaterial zulässig sind. Dann werden sie eingeschmolzen und zu sogenanntem Re-Granulat, einem groben Kunststoff-Gries, verarbeitet. Als Thermoplast kann dieser PET-Gries schliesslich bei 250°C zu neuen Gegenständen zusammengesinter werden – zum Beispiel zu dickwandigen “PET-Rohlingen”, die, bereits mit Gewinde und Deckel versehen, eine Flasche erahnen lassen.

PET-Rohling: Nach Erst-Herstellung oder Recycling kann PET in dieser Form platzsparend zum Getränkehersteller transportiert werden.
Pet-Rohling oder “Petling” mit Deckel: Daraus wird einmal eine Flasche.

In dieser platzsparenden Form werden die Rohlinge oder “Preforms” an die Getränkeabfüller (oder auch an Geocaching-Begeisterte, die darin ihre Schätze verstecken) geliefert. In der Abfüll-Anlage werden die Rohlinge erneut erhitzt und zu fertigen Getränkeflaschen aufgeblasen.

So effektiv geht PET-Recycling

Der Betreiber des PET-Kreislaufs – im Übrigen ein Verein, also nicht-staatlich und nicht gewinnorientiert – behauptet, bei der Wiederverwertung von PET-Getränkeflaschen finde kein Downcycling statt. Zudem betrage die Recyclingquote für PET in der Schweiz mittlerweile 82%! Bei freiwilliger Beteiligung der Getränkehersteller und Abfallsammler wohlgemerkt. Das hält die Regierung, die ein Minimum von 75% zum Ziel erklärt hat, bis dato davon ab, ein Pfandsystem einzuführen.

Polyethylen und Polypropylen (PE bzw. PP)

Auch PE und PP sind Thermoplaste. So kann man sie in ähnlicher Weise wie PET-Flaschen verwerten. Allerdings erweichen sie bei wesentlich niedrigeren Temperaturen (PE schon ab 80°C, PP bleibt noch etwas weiter fest) und würden sich bei 250°C längst zersetzen. Deshalb sind für das Recycling von PE und PP jeweils eigene Kreisläufe und Anlagen nötig, um diese Kunststoffe gemäss ihren Eigenschaften zu behandeln.

Ausserdem kommen nur dafür geschaffene PE- und PP-Produkte für die Wiederverwertung in Frage. Und selbst dann geht das Einschmelzen in der Regel mit einem Downcycling einher. So kann beim Recycling von PE oder PP meist kein Material mit Lebensmittelqualität gewonnen werden. R-PE und R-PP kommen daher vornehmlich im Bauwesen, in Nicht-Lebensmittelverpackungen, der Landwirtschaft, in Fahrzeugen oder Elektronik zum Einsatz.

EPS/Styropor = “Quietschpapier”

Diese Form von Polystyrol (EPS steht für “Expandiertes Polystyrol”) birgt ein ganz besonderes Problem: Das Material, das wir als massgeschneiderte, stosssichere Verpackung oder Wärmedämmstoff kennen, besteht zu 98% aus eingeschlossener Luft und nur zu 2% aus dem eigentlichen Kunststoff und seinen Additiven. Das Ganze ist also ein enormer Platzfresser!

Der Transport zu einer Mühle, in der Styropor zermahlen und anschliessend zu Re-Granulat eingeschmolzen werden kann, braucht daher ein enormes Volumen für reichlich wenig Kunststoff-Masse. Trotzdem wird das gemacht und das Granulat kommt vornehmlich für Einsätze im Bauwesen zur Verwendung.

Um dem Transportproblem zu begegnen, hat das Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV ein neues Recycling-Verfahren für EPS entwickelt (und CreaSolv® getauft). Die Abfälle sollen dabei noch an der Sammelstelle in ein Lösungsmittel, das möglichst nur Polystyrol auflöst, eingebracht werden. Dabei entweicht die ganze Luft und Beistoffe können später leicht abgetrennt werden. In der Lösung nimmt die Kunststoffmasse nur 1/50 des Raumes ein, den das ursprüngliche EPS bräuchte, was den Transport erheblich erleichtert.

Getränkekartons

Das ist auch mir neu: In der Schweiz können auch Getränkekartons (“Tetrapak”) recycelt werden. Tatsächlich tragen solche, die man in den grossen Supermärkten bekommt, das Kennzeichen “für den Restmüll”. Erst bei der Recherche für diesen Artikel bin ich bei Swiss-Recycling zufällig auf den – einmal mehr privaten – Anbieter für die Wiederverwertung von Getränkekartons gestossen. Bislang gibt es nur 100 Sammelstellen, aber die nächste ist nur wenige Dörfer weiter. Da führe ich die Tetrapak-Trennung doch gleich bei uns im Haushalt ein. Anbei: Ja, es stimmt: Abfalltrennung ist hier in der Schweiz eine besondere Spezialität.

Warum ist das Tetrapak-Recycling nicht weiter verbreitet?

Getränkekartons sind ein typisches Verbundmaterial: Pappe, Kunststoff- und Aluminiumschichten sind darin fest miteinander verklebt. Das schützt den Inhalt und ist für feuchtfröhliche Experimente nützlich, aber ganz kniffelig zu recyceln.

Immerhin können die Pappfasern aus den alten Kartons herausgelöst und zu Wellpappe verarbeitet werden. Kunststoff und Aluminium werden dann als Brennstoff für die Erzeugung von Fernwärme oder Strom eingesetzt – wie übrigens auch der Restmüll oder -kehricht hierzulande.

So könnt ihr zum Recycling beitragen

In Deutschland und Österreich werden wiederverwertbare Kunststoffe gemischt gesammelt. Verpackungen, die als rezyklierbar gelten, tragen als Kennzeichen den “grünen Punkt”. Ihr könnt sie – möglichst sauber – in die gelbe Tonne bzw. den gelben Sack entsorgen, deren Inhalt die Müllabfuhr regelmässig abholt.

In der Schweiz ist, wie bereits erwähnt, viel Eigeninitiative gefragt. PET-Getränkeflaschen könnt ihr in die blau-gelben-Behälter an öffentlichen Sammelstellen werfen, um sie in den PET-Kreislauf zurückfliessen zu lassen. PE- und PP-Flaschen werden häufig von den Supermärkten zurückgenommen (haltet die Augen nach der Entsorgungswand innerhalb des Marktes offen!). Wenn ihr eine der Sammelstellen für Getränkekartons in eurer Nähe habt, könnt ihr eure Tetrapaks auch dorthin bringen. Und neu führt auch die Migros – eine der beiden grössten Supermarktketten – eine Gemischtsammlung für rezyklierbare Kunststoffe ein.

Was bringt euch der ganze Aufwand? Nicht nur ein reines Gewissen: Was immer ihr an diesen für euch kostenfreien Sammelstellen entsorgt, landet nicht im Hauskehricht (Restmüll), für den hierzulande deftige Gebühren pro Abfallsack zu entrichten sind. Bedingung für ein effektives Recycling ist allerdings, dass nur die gewünschten Abfälle in den jeweiligen Sammelstellen landen!

Warum gibt es keine zentrale Gemischtsammlung in der Schweiz?

Das Recycling aus einer Gemischtsammlung liefere eine verminderte Ausbeute und Qualität, sagen die Recyclingverantwortlichen in der Schweiz. Laut einem Beitrag des Verbrauchermagazins “Kassensturz” beim Schweizer Fernsehen (Moderation und Interviews in Mundart, Kommentar in Hochdeutsch) liege die Ausbeute oft unterhalb dessen, was private Anbieter einer Gemischtsammlung behaupten. Ausserdem ist die nachträgliche Sortiererei teuer. So teuer, dass das Geld sinnvoller für die Umwelt eingesetzt werden könne. Viele private Anbieter von Gemischtsammlungen in der Schweiz verkaufen deshalb die gesammelten Abfälle in die Nachbarländer – und können dann nicht mehr kontrollieren, was damit geschieht.

Das Paretoprinzip und die Müllvermeidung

Das lässt mich persönlich an das Paretoprinzip denken: Wenn 100% aller Bemühungen 100% der Ergebnisse bringen, seien demnach nur 20% der Bemühungen nötig, um 80% der Ergebnisse zu erzielen (und umgekehrt brächten die übrigen 80% der Bemühungen nur 20% der Ergebnisse. Ob die Zahlenverhältnisse genau so überall anwendbar sind, sei dahingestellt. Kern der Sache ist in meinen Augen, dass Perfektionismus unglaubliche Ressourcen verschlingen und dabei vergleichsweise wenig bringen kann.

Das ist besonders dann spannend, wenn man mit begrenzten Ressourcen zurechtkommen muss. Wie auch im Umweltschutz: Wie in vielen Bereichen ist die begrenzteste Ressource hier wohl das Geld. Und das mag an anderer Stelle (sei es zum Ausbau funktionierender Kreisläufe, zur Förderung der Verwendung rezyklierbarer oder zur Entwicklung völlig neuer Materialien) effektiver eingesetzt werden können, als zum Aussondern weniger wiederverwertbarer Stoffe aus einem grossen Rest, der am Ende in der Müllverbrennungsanlage landet.

Der Kassensturz-Beitrag kommt für den Kunststoffsammelsack der Migros (bislang nur im Raum Luzern erhältlich) noch zum besten Testergebnis: Der “orange Riese” sammelt nur ausgewählte Kunststoffe und lässt tatsächlich recyceln – noch dazu in einer Anlage in der Schweiz. Ich bin gespannt, ob das auch funktioniert, wenn die Sammlung bis zum Frühling 2021 auf das ganze Land ausgeweitet wird.

Grundsätzlich gilt: Je ausgewähltere und sauberere Abfälle ein Anbieter sammelt, desto besser ist die zu erwartende Ausbeute. Wenn ihr Säcke für die Sammlung gemischter Kunststoffe verwendet, beachtet daher unbedingt die Gebrauchsanweisung!

Wirklich effektiv gegen Plastikmüll geht so

Hier folge ich meinem persönlichen Paretoprinzip: Mit überschaubarem Aufwand möglichst viel erreichen! Klar sollte man nach Möglichkeit keinen Abfall produzieren. Aber nicht jeder hat einen Unverpackt-Laden in seiner Nähe, und eine weite Anfahrt kostet nicht nur Zeit und Geld, sondern auch Kraftstoff in irgendeiner Form, der wieder zu Lasten der Umwelt geht.

Sehr einfach sind aber folgende Massnahmen:

  • Verwendet Mehrweg-Einkaufssäcke /- behälter – nicht nur im Supermarkt, sondern auch im Kaufhaus und anderen Geschäften
  • Nutzt die Mehrweg-Gemüse-Netzbeutel, die hier in der Schweiz in beiden Grossverteiler-Ketten angeboten werden (gibt es die in D und Ö auch? Falls nicht, sind die ein tolles Andenken an euren nächsten Schweiz-Urlaub 😉 )
  • Achtet, wenn ihr Produkte in Kunststoff-Verpackungen, insbesondere Flaschen, kauft, auf ein rezyklierbares Design. Das könnt ihr an folgenden Eigenschaften (gemäss den Richtlinien für Verpackungs-Hersteller) erkennen:
    • Das Material: Das Recyclings-Symbol mit der Ziffer im Pfeil-Dreieck, oft auf dem Flaschenboden, verrät es euch: PE (Ziffer 02 bzw. 04), PP (Ziffer 05) oder PET (Ziffer 01) sind leicht wiederverwertbar.
    • Die Farbe: PE und PP sind von Natur aus matt weiss und undurchsichtig. PET ist dagegen von Natur aus durchsichtig. Oberflächeneffekte wie Fluoreszenz (“grelle” Farben!) oder “metallic”-Schimmer entstehen durch Zusatzstoffe und verhindern die Wiederverwertung!
    • Etiketten: Sollten nicht mehr als 80% (vier Fünftel) der Flaschenoberfläche bedecken.
  • Vermeidet Produkte, die übermässig verpackt sind. Ein Klassiker ist unnötig vorgeschnittenes Obst: Die meisten Früchte sind von Natur aus mit einer Schale ausgestattet, die besten Schutz vor äusseren Einflüssen bietet. Die braucht ihr nur selber aufzuschneiden.
  • Kauft Getränke in Mehrweg- oder PET-Flaschen (letztere insbesondere, wenn ihr in der Schweiz seid) und entsorgt sie wie vom Anbieter vorgesehen.
  • Achtet beim Kauf von Kunststoff-Gegenständen auf gute Qualität und nutzt sie lange bzw. “vererbt” sie weiter, wenn ihr sie nicht mehr braucht.
  • Versucht euch im Upcycling: Viele gebrauchte Kunststoff-Verpackungen und -gegenstände könnt ihr auf neue Art verwenden oder geben prima Bastelmaterial ab – oder Rohstoffe zum Experimentieren!

Was haltet ihr von den Recycling-Bestrebungen in eurem Land? Habt ihr noch mehr Ideen zur Vermeidung von Kunststoff-Abfällen? Wie geht ihr mit euren Abfällen um?

Experiment: Recycling selbst gemacht - HDPE

In Deutschland wurden in meinen Kindertagen die “gelbe Tonne” und der “grüne Punkt” auf Kunststoff-Verpackungen eingeführt. Das Ziel: Plastikabfälle sollen vom Restmüll getrennt gesammelt werden, damit man sie recyceln kann. Hier in der Schweiz ist man leider bis heute nicht so weit – wenn wir von dem flächendeckenden Recycling-Kreislauf für PET*-Getränkeflaschen einmal absehen. HDPE und andere landen hierzlande dagegen in der Müllverbrennungsanlage.

*Eine Übersicht über die gängigsten Kunststoff-Arten und der gebräuchlichen Abkürzungen findet ihr hier!

Aber wie funktioniert Kunststoff-Recycling eigentlich? Wie kann man aus alten Plastik-Gegenständen neue herstellen?

Leicht recycelbar: Thermoplaste

Einige Kunststoffe, darunter die im Alltag am weitesten Verbreiteten, haben eine spannende Eigenschaft, die das Wiederverwenden einfach macht: Wenn man sie erhitzt, werden sie formbar – und kühlen sie ab, werden sie erneut fest! Solche Kunststoffe werden von den Fachleuten “Thermoplaste” genannt. Und nicht nur das – einzelne Kunststoffteile lassen sich in ihrem formbaren Zustand sogar mit anderen verschmelzen!

Wenn die Temperatur, ab welcher ein Kunststoff formbar (“plastisch”) wird, ausreichend weit unterhalb jener Temperatur liegt, bei welcher die Riesen-Kettenmoleküle im Kunststoff zerstört werden, lässt sich diese Eigenschaft für das Recycling nutzen. Nicht mehr benötigte Kunststoff-Gegenstände können erhitzt, neu geformt und zu neuen Gegenständen verschmolzen werden.

Experiment: Recycelt euren eigenen Thermoplast

Das könnt ihr sogar selbst ausprobieren! Sehr gut eignet sich dafür Polyethylen (PE), genauer gesagt HDPE, die Polyethylen-Spielart mit Hoher Dichte. Aus diesem Material bestehen die meisten Flaschen für Shampoo und andere Hygieneprodukte. Das Recycling-Dreieck aus drei Pfeilen mit der Ziffer 2 und dem Kürzel “HDPE” oder “PE-HD” verraten euch, dass eine Flasche wirklich aus diesem Material besteht.

Recycling-Symbol für HDPE (via Wikimedia Commons, User : Tomia / CC BY-2.5 )

Ihr könnt also aus leeren Shampoo-Flaschen ganz einfach neue Gegenstände herstellen – zum Beispiel Deko-Anhänger für den Weihnachtsbaum, Osterstrauch oder sonstige Anlässe.

Ihr braucht dazu

  • Leere Flasche(n) aus HDPE (eine Shampoo-Flasche reicht für bis zu vier Anhänger)
  • Ausstechformen für Plätzchen aus Metall (einfache Formen, sonst wird es sehr kniffelig)
  • Alufolie
  • Etwas Pflanzenöl
  • Küchenschere
  • Elektro-Herdplatte (KEIN Induktionsherd! Dunstabzug empfohlen!)
  • Einen Kochtopf
  • Greifzange (vom Grill, Tiegelzange o.Ä.)
Material zum Umschmelzen von HDPE
Die linke, feinstrukturierte Ausstechform habe ich schnell aufgegeben: Die kleinen Nischen lassen sich kaum mit Folie auskleiden, ohne dass diese reisst. Die rechte hat dafür gute Dienste geleistet.

So geht’s

  • Säubert die leere Flasche sorgfältig. Schneidet das obere und unter Ende – am besten über einem Waschbecken – ab. Wenn sich dabei weitere Reste des Inhalts zeigen, reinigt die Teile noch einmal gründlich.
  • Schneidet die Flasche in möglichst feine Schnitzel. Ich habe dazu die Seitenwände in grössere Stücke zerteilt und diese zunächst streifenartig eingeschnitten. Dann habe ich senkrecht zu den Einschnitten schmale “Streifen” abgetrennt (wie ein Coiffeur beim Haareschneiden). Das Ergebnis: HDPE-Flocken von etwa 2x2mm Grösse.
Schritt für Schritt von der HDPE-Flasche zu kleinen Flocken
Von der leeren Shampoo-Flasche zu kleinen Flocken
  • Kleidet eine Ausstechform mit Alufolie aus. Achtet darauf, dass die Folie die Form innen vollständig und bis zum Boden bedeckt. So kann euer Werkstück die Form des Ausstechers ganz übernehmen. Achtet aber darauf, dass keine Risse oder Löcher entstehen! (Dieser Schritt kann bei zu filigranen Ausstechformen sehr kniffelig werden.)
Ausstechform mit Alufolie von oben und unten
  • Bestreicht die Innenseite dieser selbstgemachten Aluschale mit etwas Öl, so als wolltet ihr darin einen Kuchen backen.
  • Füllt eine dichte Schicht eurer PE-Flocken in die Form. Achtet darauf, dass die Flocken jeden Winkel der Form dicht ausfüllen.
Ausstechform als Aluschale, gefüllt mit HDPE-Flocken
So ist die Form gut gefüllt: Der Boden ist nicht mehr zu sehen, die Flockenschicht ca. 3mm dick.
  • Stellt die Form in den leeren Kochtopf und stellt diesen leer (bis auf die Alu-Form(en)) auf den Herd.
  • Schaltet die Herdplatte für 8 bis 10 Minuten auf niedrige bis mittlere Stufe. Behaltet das Experiment unbedingt im Auge und schaltet wenn möglich den Dunstabzug ein! Sollte sich Geruch nach schmorendem Plastik oder gar Rauch zeigen, nehmt den Topf sofort vom Herd!
  • Nach gegebener Zeit, bzw. wenn die Flocken aneinanderbacken, nehmt den Topf vom Herd und lasst die Formen abkühlen. Vorsicht, heiss: Wenn ihr sie dazu aus dem Topf nehmen wollt, benutzt dazu die Zange!
  • Nehmt das abgekühle Werkstück samit Aluminium aus der Form. Die Folie sollte sich ganz leicht abschälen lassen. Dann könnt ihr mit Wasser und Seife das Öl abwaschen.
Fertige HDPE-Blume noch in der Alu-Form
Oops! Die braune Färbung zeigt: Das ist wohl etwas zu heiss geworden. Ausserdem ist bei diesem ersten Versuch Rauch entstanden und Reto hat sich über den Geruch nach schmorendem Plastik beschwert. Die Notkühlung mit Wasser hat dieses Stück aber noch retten können.

Notfall-Tipp: Wenn das Experiment zu stinken oder gar zu rauchen beginnt, droht der Kunststoff zu verschmoren. Um das Schlimmste zu verhindern, könnt ihr die Temperatur der Werkstücke sehr schnell senken, indem ihr kaltes Wasser einige Millimeter hoch in den Topf laufen lasst. Zischen und Dampfen ist dabei ein Zeichen für Energieverbrauch – und damit für die sinkende Temperatur.

Rückseite der gebräunten HDPE-Blume mit Alu-Resten
Die Rückseite des überhitzten Stücks, nachdem ich die Aluminiumfolie (ohne Öl!) mühsam mit einem Küchenmesser abgekratzt habe: Trotz Überhitzung hält der Kunststoff so fest zusammen, dass diese Blume nicht einmal bei der Kratzerei kaputt ging!

Was ihr beobachten könnt

Beim Erhitzen werden die Kunststofffocken dicker, beginnen zu glänzen und ihre Kanten werden weicher. Sie sehen aus wie Käse, der im Begriff ist zu schmelzen. Die dicht übereinander geschichteten Flocken verschmelzen dabei sogar miteinander. Wenn ihr die Flocken nun mit der Greifzange antippt, könnt ihr feststellen: Sie sind weich und nachgiebig – ganz wie schmelzender Käse.

Nachdem das Werkstück abgekühlt ist, ist der Kunststoff so hart wie zuvor, aber: Die Flocken haben sich zu einem einzigen Werkstück verbunden. Und zwar so fest, dass dieses sich problemlos mit einer Bürste reinigen lässt!

HDPE-Blume ohne Bräunung
Es geht auch ohne Bräunung! An der geölten Alufolie beim zweiten Versuch hat nichts mehr geklebt – nur ein paar Flocken mehr hätten es sein dürfen – für einen saubereren Rand.

Wenn euch das Ganze jetzt bekannt vorkommt: Genau, Bügelperlen funktionieren auf die gleiche Weise!  Die bestehen in der Regel auch aus Polyethylen, wenn auch aus LDPE.


Was passiert da?

Wie sind Thermoplaste aufgebaut?

Was wir im Alltag allgemein “Kunststoff” oder “Plastik” nennen, sind in aller Regel Stoffe, die aus langen Molekülketten aus sich wiederholenden Gliedern bestehen. Die Chemiker nennen diese Stoffe deshalb “Polymere”. Die Moleküle von thermoplastischen Kunststoffen sind tatsächlich ganz einfache Ketten oder “Fäden” ohne Verzweigungen, die mehr oder weniger wirr miteinander verknäuelt sind.

Ausschnitt aus einer Polyethylen-Kette als Kalottenmodell: Dieser Molekül-“Faden” besteht aus Kohlenstoff- (schwarz) und Wasserstoff- (weiss) Atomen.

Amorphe Thermoplaste

Ähnlich wie ein Haufen verworrene Wolle bildet dieses Gewirr einen einzigen Körper, den wir sehen und anfassen können. Denn so wie die rauhen Oberflächen der Wollfäden diese aneinander haften lassen, wirken auch zwischen den Molekülfäden schwache Kräfte, die für Haftung aneinander sorgen.

Wie ein Haufen wirrer Wolle sind auch solche Kunststoffe selbst bei Raumtemperatur sehr biegsam. Dazu gehört zum Beispiel Polyethylen “geringer Dichte” (Low Density – oder LDPE). Die Chemiker nennen solche Kunststoffe auch “amorph” – eben “ohne geordneten Aufbau”.

Teilkristalline Thermoplaste wie HDPE

Das HDPE, Polyethylen “hoher Dichte” ist dagegen hart und nur wenig flexibel. Das rührt daher, dass in dieser Variante des Kunststoff ein Teil der Ketten oder “Fäden” sorgfältig parallel zueinander aufgereiht sind. Als enthielte der Haufen verworrener Wolle zwischendurch Abschnitte, die sorgfältig zu kleinen Knäueln aufgewickelt sind. Und ein streng gewickeltes Wollknäuel ist bekannt ziemlich fest.

Beim realen Wollknäuel ist die straffe Wicklung dafür verantwortlich. In einem Polymerknäuel können sich zwischen ordentlich parallel laufenden Ketten wesentlich stärkere zwischenmolekulare Kräfte ausbilden, die die Ketten fester beieinander halten.

Weil ein so geordneter Aufbau Chemiker leicht an Kristalle erinnert, nennen die solche Kunststoffe “kristallin” bzw., wenn durch Teile des Gewirrs geordnet sind, “teilkristallin”.

Was beim Erhitzen passiert

Je wärmer ein Stoff ist, desto mehr Bewegungsdrang haben seine Moleküle. Im festen Kunststoff schwingen die Atome der Ketten hin und her. Mit steigender Temperatur führen sie einen immer wilderen Tanz auf. Irgendwann wird dieses Treiben so toll, dass die zwischenmolekularen Kräfte das Gezappel nicht mehr aufwiegen können. Die Moleküle lösen sich voneinander – und können nun aneinander vorbei gleiten.

Wären die rauhen Wollfäden mit einem Mal völlig glatt und geölt, könnte man den wirren Haufen auch ganz einfach entwirren oder umformen.

Das Gleiche wird nun mit dem Kunststoff möglich: Die voneinander gelösten Ketten lassen sich durcheinander schieben – und Kettenenden aus verschiedenen Haufen können sich sogar miteinander mischen! Der wärmebedingte wilde Tanz der Atome sorgt für die dazu nötige spontane Bewegung. So kann aus zwei wirren Molekülhaufen (oder Kunststoff-Flocken) schliesslich ein einziges Gewirr werden, ohne dass wir sie verrühren oder drücken müssten.

Nach dem Abkühlen ist der Spuk vorbei – vorerst

Sobald die Temperatur wieder sinkt, werden die Atome wieder ruhiger und die zwischenmolekularen Kräfte – jetzt mitunter zwischen neuen Nachbarn – gewinnen wieder die Oberhand. Der Kunststoff wird erneut hart.

Das Geniale daran: Das Spiel lässt sich praktisch beliebig oft wiederholen – so lange man den Kunststoff nicht zu heiss werden lässt und die Kettenmoleküle selbst zerstört werden.

Warum ich kein Wasserbad verwende, um das zu verhindern

Da viele organische Verbindungen kaputt gehen, wenn sie zu heiss werden, erhitzen Chemiker ihre Stoffe gerne in einem Wasserbad (oder einem aus Silikonöl, wenn die Temperatur noch etwas höher sein soll). So können sie sicherstellen, dass der Versuch nicht heisser als 100°C wird (denn da verdampft das Wasser, bevor es heisser wird).

HDPE wird allerdings erst ab 135°C richtig weich, sodass ein Wasserbad bei Atmosphärendruck einfach nicht heiss genug werden kann, um die PE-Flocken miteinander zu verschmelzen. Speiseöl kann dagegen so heiss werden (das nutzen wir ja beim Braten). Aber viele Pflanzenöle rauchen in diesem Bereich schon beträchtlich, was die Sicht auf den eigentlichen Versuch trüben und nachher zu viel Reinigungsarbeit führen kann.

Deshalb habe ich nur ein wenig Öl zum Einfetten der Form verwendet, da sonst der wieder erkaltete Kunststoff an der Aluminiumfolie kleben bleibt (und das Abkratzen ist überaus mühsam).


Entsorgung

Der Kunststoff als solcher verändert sich durch das Erhitzen nicht. Er kann also ganz normal in den Hausmüll entsorgt werden. Aber viel schöner ist doch, eure Versuchsergebnisse als Deko zu verwenden, oder?

Unverbrauchte Reste der Shampoo-Flaschen könnt ihr auch in die gelbe Tonne/den gelben Sack (Deutschland, Österreich) geben. Aluminium gehört in Deutschland ebenfalls in die gelbe Tonne. In der Schweiz gibt es dafür eigene Sammelbehälter an den Entsorgungsstellen.

Die Ausstechformen könnt ihr nach dem Experiment getrost weiter zum Backen verwenden.

Fazit

Leere PE-Flaschen lassen sich mit einfacher Küchenausrüstung leicht zu neuen Gegenständen umarbeiten. Durch das Zerschneiden des kalten Kunststoffs in kleine Flocken könnt ihr die neue Form dabei sehr frei vorherbestimmen (Recyclingprofis machen das übrigens auch so und zerkleinern die Kunststoffabfälle, bevor sie sie erhitzen und neu verarbeiten).

Die Bewegung der Kunststoff-Moleküle (bzw. ihrer Atome) bei hohen Temperaturen hebelt zwischenmolekulare Anziehungskräfte aus, sodass die Moleküle bei genügend hoher Temperatur (bei HDPE rund 135°C) gegeneinander beweglich werden und ihr sie in neue Form(en) bringen könnt.

Beim Ausprobieren wünsche ich euch viel Spass und freue mich über Berichte von euren Ergebnissen in den Kommentaren. Was habt ihr bei eurem Recycling-Experiment hergestellt?

Mehr zum Thema Kunststoffe in Keinsteins Kiste

Hast du das Experiment nachgemacht: 

PE-Recycling selbst gemacht: Hat das Experiment bei dir funktioniert?

View Results

Loading ... Loading ...

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Desinfektionsmittel - Was ist wirklich sinnvoll?

Der (oder das, beides ist richtig) neue Corona-Virus aus China alias COVID-19 bzw. SARS-CoV-2 ist in aller Munde – und Desinfektionsmittel erfreuen sich gerade grösster Beliebtheit. Selbst in unserem Dorfsupermarkt sind sie praktisch ausverkauft. Einige Medien veröffentlichen sogar Anleitungen für DIY-Hände-Desinfektionsmittel. “Das wäre doch ein Thema für Keinsteins Kiste”, meint mein Partner, als er ein solches Rezept liest.

Normalerweise bin ich ja für Alltags-Chemie zum Selbermachen sofort zu haben. Aber macht die Verwendung von Desinfektionsmitteln im Alltag überhaupt Sinn? Können wir uns damit vor Infektionen schützen? Oder hebeln die Nebenwirkungen solcher Mittel den Nutzen vollkommen aus?

Gleich vorweg: Die Antwort auf die letzte Frage lautet in der Regel “ja”. Deshalb bringe ich das erwähnte Rezept auch nicht als Experiment. Denn das Hamstern von Desinfektionsmitteln oder deren Bestandteilen ist für die meisten von uns nicht sinnvoll, sondern bereitet nur jenen, die wirklich darauf angewiesen sind, Schwierigkeiten bei der Beschaffung.

Stattdessen zeige ich euch, wie Desinfektionsmittel funktionieren und warum sie im Alltag meist mehr Probleme als Nutzen bringen. Und für Interessierte bzw. darauf Angewiesene verlinke ich im Verlauf das Original der verbreiteten Rezeptur.

Wie funktionieren Desinfektionsmittel?

Unsere Haut und unsere Umgebung sind von Myriaden Kleinstlebewesen besiedelt. Durch Berührung können sie von einer (Haut-)Oberfläche zur nächsten übertragen werden. Und einige dieser Mikroben können uns krank machen – besonders dann, wenn sie einen Weg durch offene Wunden finden oder/und unser Immunsystem nicht so funktioniert wie es soll.

Beides – Wunden und schlecht funktionierende Immunsysteme – findet man in Krankenhäusern, Arztpraxen und anderen Pflegeeinrichtungen besonders häufig. Deshalb gehört es zum Arbeitsalltag von Ärzten und Pflegern, sich immer wieder die Hände mit einem Desinfektionsmittel einzureiben. So wird die Gefahr minimiert, dass sie womöglich gefährliche Erreger von einem Patienten zum nächsten tragen.

Was ein Desinfektionsmittel können muss

Um das zu leisten muss ein Desinfektionsmittel verschiedene Gruppen von Erregern an den Händen (und medizinischen Geräten etc.) innerhalb kürzester Zeit unschädlich machen:

  • Bakterien
  • Pilze
  • Sporen der ersten beiden
  • Viren

Mit anderen Worten: Ein Desinfektionsmittel muss diese Mikroorganismen effektiv vergiften können. So kommen naturgemäss nur giftige Stoffe als Desinfektionsmittel in Frage.

Zum Glück haben wir Menschen diesen Mikroben einiges voraus:

  1. Wir sind Vielzeller (ein Mensch besteht aus rund   Zellen), während Bakterien und Pilze wie jene der Gattung “Candida” Einzeller sind. Wenn uns ein paar Hautzellen verloren gehen, schadet uns das nicht sofort. Schliesslich hat unser Vielzeller-Körper Mittel, um solche Zellen zu ersetzen. Eine Bakterien- oder Einzeller-Pilzzelle, die tödlich beschädigt wird, bedeutet dagegen sofort ein totes Lebewesen.
  1. Unsere Zellen haben einen Zellkern, in dem unsere DNA weitgehend sicher verwahrt ist. Bakterienzellen haben dagegen keinen Zellkern. Das bedeutet auch, sie funktionieren anders als unsere Zellen. Sie sind somit gegenüber anderen (bzw. mehr) Dingen empfindlich als unsere Zellen (und die der Pilze!) mit Kern.

So ist es nicht schwer, Stoffe zu finden, die Einzellern den Garaus machen, für unsere eigenen Zellen aber nicht all zu schädlich sind.

Besonders kniffelig: Die “Keinzeller” unter den Erregern

Viren sind hingegen gar keine Zellen, sondern winzige Erbgut-Pakete, die Zellen “kapern” (indem sie sich von den Zellen aufnehmen lassen) und für ihre Vermehrung zweckentfremden können. Die Pakethülle von Viren besteht aus Membranlipiden und Proteinen, was sie lebenden Zellen chemisch ähnlich macht. Vergiften bzw. töten kann man sie dennoch nicht, da sie streng genommen gar nicht leben. “Zerstören” träfe es da wohl besser. Mit etwas Glück kann ein Stoff, der für Bakterien giftig ist, auch einen Virus zerstören.

Elektronenmikroskop-Aufnahme von Corona-Virionen (ein einzelnes Virus-Partikel wird “Virion” genannt) aus dem Jahr 1975: Die Stachel-“Krone” (lat. corona) aus Hüllenproteinen gibt dieser Virus-Familie ihren Namen. Bilder von den aktuellen COVID-19-Erregern findet ihr hier!

Besonders kniffelig ist die Beseitigung von Sporen. Das sind stark gepanzerte Ableger von Bakterien oder Pilzen, aus denen sich neue Zellen entwickeln können. Ein Stoff, der Sporen ausschalten soll, muss durch deren Panzerung dringen (wofür er meist etwas mehr Zeit braucht) und so viel Schaden anrichten, dass eine Spore sich nicht mehr zur neuen Zelle entwickeln kann.

Welche Stoffe können das?

Oxidationsmittel

Die Allrounder unter den keimtötenden (d.h. bioziden) Stoffen sind Oxidationsmittel, insbesondere solche, die einzelne Sauerstoffatome freisetzen können. Solche Oxidationsmittel nehmen nämlich all zu gern anderen Molekülen Elektronen weg (die Moleküle werden damit oxidiert), wodurch sie verschiedenste Reaktionen in Gang setzen. Und diese Reaktionen beschädigen oder zerstören nicht zuletzt die Bestandteile von Lebewesen und ihnen ähnlichen Gebilden: Bakterien, Pilze, Viren und sogar Sporen.

Leider sind Oxidationsmittel nicht wählerisch, wenn es um ihre Reaktionspartner geht. So können sie unsere Körpergewebe ebenso schädigen wie die Mikroorganismen. Deshalb sind besonders starke Oxidationsmittel sowie höhere Konzentrationen für die Anwendung an Haut und Schleimhäuten nicht geeignet. In geringer Konzentration kommen am Körper zum Einsatz:

  • Wasserstoffperoxid (H2O2)
  • Natriumhypochlorit (NaOCl, wie H2O2 im medizinischen Bereich, z.B. beim Zahnarzt)
  • Chloramin T (eine organische Verbindung, die in Wasser Hypochlorit freisetzt)
  • Elementares Iod (in Präparaten zur Wunddesinfektion –> z.B. “Betaisodona”)
  • Benzalkoniumchlorid (

Andere Oxidationsmittel wie Chlordioxid (“MMS”!), elementares Chlor, Ozon oder Peressigsäure sind hingegen nur für die Desinfektion von Gegenständen oder Wasser geeignet. In letzterem (z.B. im Schwimmbad) kommen Chlor oder Ozon in kleinsten Mengen mit uns in Kontakt, was wir an brennenden Augen und wunden Stellen leicht bemerken. Die haben es also wirklich in sich!

Aldehyde

Aldehyde oder chemisch korrekt “Alkanale” sind hochwirksam gegen alle möglichen Bakterien (einschliesslich des besonders widerspenstigen Tuberkulose-Erregers), Pilze, Viren und Sporen. Aber leider auch gegen unsere eigenen Körper: Viele desinfizierende Aldehyde sind sehr giftig, weshalb sie nur zur Desinfektion von Oberflächen, Geräten und Räumen zum Einsatz kommen.

Alkohole

Der “Trinkalkohol” Ethanol und verschiedene Varianten des Propanols sind bekannte Beispiele für desinfizierende Alkohole. Werden sie mit Wasser gemischt, können sie in (Bakterien)zellen eindringen und dafür sorgen, dass die Proteine darin ihre Form und damit ihre Funktion verlieren. Ein reiner Alkohol würde stattdessen schon die Proteine auf der Zelloberfläche zerstören und dann keinen Weg hinein mehr finden – sodass das Bakterium am Leben bliebe.

Auf der Haut angewendet sind sie für uns ungiftig (eingenommen dafür um so mehr – das weiss jeder, der schonmal einen Kater hatte), töten bzw. zerstören aber Bakterien (einschliesslich der Tuberkulose-Erreger), Pilze und Viren mit Hülle (es gibt auch Viren ohne Hülle, jedoch ist die Hülle ein wichtiges Werkzeug für das Kapern von Zellen, weshalb viele der uns krankmachenden Viren – z.B. Corona- und Influenza-Viren – eine Hülle haben). Den Sporen können Alkohole hingegen nichts anhaben.

Quartäre (“Quaternäre”) Ammoniumverbindungen

Zum Beispiel Benzalkoniumchlorid. Diese organischen Moleküle enthalten (wie das Ammoniumion) ein positiv geladenes Stickstoffatom, an welches vier organische (kohlenstoff- und wasserstoffhaltige) Atomgruppen gebunden sind.

Benzalkoniumchlorid - eine quartäre Ammoniumverbindung als Konservierungs- und Desinfektionsmittel
Benzalkoniumchlorid(e): Davon gibt es mehrere Varianten mit unterschiedlich langen Seitenketten.

Diese Moleküle sind Tenside, können also gleichsam mit wasserliebenden und fettliebenden Oberflächen wechselwirken (was Tenside genau sind und was sie können erfahrt ihr hier). Wenn eine der Kohlenwasserstoff-Gruppen 8 bis 18 Kohlenstoffatome enthält, können die betreffenden Moleküle derart mit Zell-Aussenhüllen wechselwirken, dass diese beschädigt werden und die Zellen daran eingehen.

Das gilt leider ebenso für Bakterien wie für unsere eigenen Zellen. Deshalb ist Benzalkoniumchlorid als Konservierungsmittel für Medikamente (insbesondere Augentropfen) wegen seiner Nebenwirkungen umstritten.

Metallisches Silber oder Kupfer

Die Oberflächen dieser Metalle wirken schädlich – um nicht zu sagen tödlich – auf Bakterien, jedoch nicht auf die anderen  Erreger-Kandidaten (Pilze, Viren, Sporen). So sind Silberfäden als Mittel gegen Käsesocken und Kupfertürklinken als Beitrag zur Verminderung der Keim-Verbreitung in Krankenhäusern gefragt, aber längst kein Rundumschutz.

Eine ausführliche Liste mit weiteren desinfizierenden Verbindungsklassen, auch für die Haut-Desinfektion, findet ihr hier im Wikipedia-Artikel zur Desinfektion.

Und was taugt das DIY-Desinfektionsmittel aus den Medien?

Das Rezept, welches die Schweizer Gratis-Zeitung “20 Minuten” vom österreichischen Portal “heute.at” übernommen hat, stammt ursprünglich von der WHO. Gedacht ist es allerdings als Empfehlung für Apotheker und medizinsches Personal rund um den Globus, die auch unter einfachen Bedingungen Patienten versorgen müssen. Also ebenso für ein Ebola-Gebiet im Kongo wie für das Behelfsspital in Wuhan – aber auch für die Schweizer Apotheke um die Ecke.

Die Desinfektionslösung gemäss der WHO-Rezeptur besteht aus rund 83% Ethanol (“Alkohol”) in destilliertem Wasser, mit einer kleineren Menge Glyzerin und ein wenig Wasserstoffperoxid dabei.

Das eigentliche Desinfektionsmittel darin ist der Alkohol. Wasserstoffperoxid in der geringen Menge dient dagegen mehr als eine Art Konservierungsmittel. Und das Glyzerin – ein verbreiteter Bestandteil von Kosmetikprodukten – soll der Haut die Feuchtigkeit erhalten.

Alle vier Stoffe sind in den allermeisten Ländern recht einfach und preisgünstig zu bekommen. Und sie funktionieren. So soll medizinisches Personal auf der ganzen Welt Zugang zu einfacher aber wirksamer Desinfektionslösung bekommen.

Doch was wirksam ist, hat naturgemäss auch unerwünschte (Aus-)Wirkungen:

Desinfektionsmittel bringen auch Schwierigkeiten durch…

Resistenzen

Insbesondere Bakterien können resistent gegenüber Desinfektionsmitteln werden (ähnlich wie gegenüber Antibiotika), wodurch die Desinfektionsmittel gegen solche Stämme unwirksam werden.

Schädigung der Haut

Ich habe während der Anfertigung meiner Diplomarbeit im Zellkulturlabor ein knappes Jahr lang regelmässig Hände und Arbeitsumgebung desinfizieren müssen (Bakterien und Pilze waren unser bzw. der Zellkulturen grösster Feind). Für die Hände hatten wir ein Desinfektionsmittel aus dem medizinischen Bereich (das blaue “Sterillium”), für die Arbeitsumgebung 70% Ethanol in destilliertem Wasser (das ist billiger als das Sterillium).

Ich habe schnell gelernt, ausserhalb der Arbeitszeit eine Handcreme zu verwenden, weil das ständige Desinfizieren zu trockener, gereizter Haut führte. Und was für mich nach einigen Monaten wieder vorbei war, taten unsere MTAs (“Labortechniker”) ein (Arbeits-)Leben lang. Die Folge: Trotz Handcreme hatten sie rissige, dauergereizte Hände, um die ich meine Kolleginnen absolut nicht beneidet habe.

Wie kommt es dazu?

Die meisten Mikroorganismen auf unserer Haut machen nicht nur nicht krank, sondern schützen uns sogar vor schädlichen Keimen. Die finden bei intakter “Hautflora” nämlich gar keinen Platz, um sich anzusiedeln. Desinfektionsmittel, die gegen Bakterien wirken, sind aber leider nicht wählerisch. Sie töten die erwünschten Hautbakterien ebenso wie die Krankmacher. Und ist die Hautflora einmal dezimiert, finden unerwünschte Gäste um so mehr Platz, um sich einzunisten.

Ausserdem entziehen die in Desinfektionslösungen enthaltenen Stoffe der Haut leicht Feuchtigkeit. Die Handcreme sollte den Folgen dessen entgegen wirken. Zudem enthält die “Sterillium”-Lösung Stoffe, die zur Erhaltung der Hautfeuchtigkeit beitragen sollen.

Gefahren für die Umwelt

Auch in Kläranlagen gibt es zahlreiche Bakterien, die dort wertvolle Reinigungsarbeit leisten, und zu einem “gesunden” natürlichen Gewässer gehören Bakterien einfach dazu. Wenn nun Desinfektionsmittel – besonders in grösseren Mengen – nicht fachgerecht entsorgt werden (im Sonderabfall!), können sie das Ökosystem in Klärwerken oder natürlichen Gewässern empfindlich schädigen.

Daheim oder in der Medizin – Wo machen Desinfektionsmittel Sinn?

Im medizinschen Bereich

Wo kranke Menschen gepflegt, offene Wunden versorgt und schwache Immunsysteme häufig sind, trägt die Händedesinfektion Grosses zur Verminderung der Übertragung von Keimen bei. Medizinisches Personal reibt sich dazu mindestens vor und nach jedem Patientenkontakt die Hände mit einer alkoholhaltigen Desinfektionslösung für den medizinischen Bereich (z.B. das erwähnte “Sterillium”) ein. Dadurch wird der grösste Teil der Mikroorganismen auf der Haut – einschliesslich der nützlichen Hautflora – ausgeschaltet.

In den Tiefen unserer Haarwurzeln, gut geschützt unter einer Schicht Talg, überleben jedoch einige der wichtigen Hautbewohner (ohne einem Patienten direkt schaden zu können). Die können sich nach dem Verschwinden des Desinfektionsmittels ungehindert teilen und die Hautoberfläche neu besiedeln. Dank dessen und dank feuchtigkeitserhaltender Zusatzstoffe sollte sich der Schaden an den Händen des medizinschen Personals in Grenzen halten.

Und daheim?

Warum sollten wir diesen schützenden Effekt nicht auch in unserem Zuhause haben? Das zumindest denken sich Anbieter für desinfizierende Reiniger und Hand-Desinfektionsmitteln für die Alltagsgebrauch. Eine Stichprobe bei einem bekannten Anbieter (auf dessen Website, denn die Originale sind ja ausverkauft…) zeigt: Diese Alltags-Desinfektionsmittel sind anders zusammengesetzt als jene für den medizinischen Bereich, enthalten mitunter nur Alkohole und Wasser.

Und damit sind wir wieder bei den MTAs im Zellkulturlabor: Die hatten nämlich nicht nur die medizinische Desinfektionslösung, sondern, beim Auswischen der sterilen Werkbänke und Desinfektion von Instrumenten, auch das simple Gemisch von Ethanol und Wasser ständig an den Händen. Und das enthielt eben – wie so manches Alltags-Desinfektionsmittel – keine hautschützenden Zusätze. Dieser Umstand hat gewiss nicht zur Hautgesundheit – insbesondere bei langfristiger Anwendung – beigetragen.

Also nutzen wir doch lieber die Desinfektionslösungen für den medizinischen Bereich?

Die sollen ja – in Kombination mit einer guten Handcreme – für unsere Haut auch bei regelmässigem Gebrauch erträglich sein. Aber brauchen wir so viel Desinfektion überhaupt?

Warum wir Desinfektionsmittel im Alltag nicht brauchen (und wann doch)

Ein intaktes menschliches Immunsystem ist von Natur aus darauf angelegt, mit der Vielfalt der Mikroben in unserem alltäglichen Umfeld zurechtzukommen. Nicht zuletzt deshalb, weil viele davon uns als äusserst nützliche Mitbewohner begleiten.

Im Normalfall ist es daher im Alltag gar nicht nötig, regelmässig Desinfektionsmittel zu verwenden. Ausgenommen sind die Fälle, die eben nicht “normal” sind:

  • Jemand im Haushalt ist krank und muss gepflegt werden (im Fall von akuten Infektionen ist dieser Umstand allerdings von vorübergehender Natur).
  • Jemand im Haushalt hat kein intaktes Immunsystem (beispielsweise durch eine Chemotherapie).

Für Menschen in diesen Situationen kann es wirklich schwierig werden, wenn Desinfektionsmittel nur noch schwer oder gar nicht erhältlich sind!

Das könnt ihr wirklich tun, um euch zu schützen

Ist hingegen “nur” Erkältungssaison und es “geht etwas um” (auch wenn das “Etwas” COVID-19 heisst), sind einfache Hygienemassnahmen wesentlich wirksamer, da  schonender für die Verteidigungslinien auf unserer Haut:

  • Hustet oder niest stets in die Armbeuge anstatt einfach in die Gegend.
  • Haltet von hustenden oder niesenden Personen mindestens einen Meter Abstand.
  • Fasst euch mit ungewaschenen Händen möglichst nicht in das eigene Gesicht (und schon gar nicht in das von Anderen, beispielsweise das eurer Kinder).
  • Insbesondere gegen “Mitbringsel” von draussen: Wascht euch, wenn ihr heimkommt (aber auch unterwegs), die Hände mit gewöhnlicher Seife, nachdem ihr in der Öffentlichkeit viel berührte Dinge (z.B. Türklinken, öffentliche Verkehrsmittel!) angefasst habt und bevor ihr zu Hause irgendetwas anderes berührt.
  • Wenn ihr bereits (infektions-)krank seid: Bleibt zu Hause. Geht nicht arbeiten und schickt kranke Kinder nicht in die Schule/den Kindergarten/die KiTa! Bei Fieber, Husten und Atembeschwerden ruft euren Arzt an (bevor ihr hingeht!) und befolgt dessen Anweisungen.

Was ihr niemals tun solltet

Desinfektionsmittel mit Seife kombinieren

Doppelt hält besser? Leider nein. In Verbindung mit Seife (also Tensiden), bergen Desinfektionsmittel im Alltag noch ein weiteres Problem:

Wenn ihr eure Hände mit Seife wascht, vergrault das eure nützlichen Mitbewohner nämlich nicht, entfernt aber den schützenden Talg, unter dem sich deren letzte Reserven verstecken, von den Haarwurzeln. Wenn ihr dann während oder nach dem Händewaschen zu einem Desinfektionsmittel greift, rottet das die letzten Reserven ebenso aus wie die Hautflora auf der Hautoberfläche. Und dann bleibt nichts mehr, was sich weiter vermehren und auf eurer Haut, dem Eingang zu eurem Körper, Wache schieben könnte.

Desinfektionsmittelhaltige Seife oder Desinfektionsmittel nach dem Seifeneinsatz sind in Hinsicht auf die Übertragung von Erregern an den Händen eher schädlich als dass sie nutzen!

Desinfektionsmittelreste in den Ausguss oder gar in die freie Natur entsorgen

Wie bereits erwähnt gibt es in Klärwerken wie auch in der Natur zahlreiche Bakterien, die für eine funktionierende Anlage bzw. ein gesundes Ökosystem notwendig sind. Und die nehmen an Desinfektionsmitteln genauso Schaden wie unliebsame Erreger.

Sämtliche Abflüsse in unserem Zellkulturlabor münden – wie vermutlich auch jene in Krankenhäusern – in spezielle Abwasser-Anlagen, die darauf ausgerichtet sind, Chemikalien im Abwasser zu beseitigen, bevor es in die eigentliche Kanalisation gelangt. So ist der Einsatz von Desinfektionsmitteln im Labor – und wahrscheinlich auch im medizinischen Bereich – eine deutlich geringere Gefahr für die Umwelt als ihr Einsatz im Alltag.

Desinfektionsmittel hamstern, wenn “etwas umgeht”

Es sei denn, ihr gehört zu jenen, die aufgrund von Krankheit oder/und unzureichendem Immunsystem wirklich auf die Nutzung von Desinfektionsmitteln im Alltag angewiesen sind. Genau diese Menschen werden euch – ebenso wie die Menschen mit Medizinberufen – sehr dankbar dafür sein, wenn sie die dringend benötigten Mittel auch während eines Ausbruchs wie dem von COVID-19 problemlos bekommen.

Das Gleiche gilt im Übrigen auch für die Gesichtsmasken. Die nützen dem Chirurgen oder Zahnarzt sehr, um seine eigenen Bakterien vom Patienten fernzuhalten. Vor einer Tröpfchen- oder Schmierinfektion mit einem Atemwegs-Virus schützen sie aber praktisch nicht.

Zusammenfassung

Desinfektionsmittel sind Stoffe, die Mikroorganismen wie Bakterien und Pilze, deren Sporen, aber auch Viren abtöten oder zumindest am Wachstum hindern können. Solche Stoffe sind naturgemäss giftig – aber für Mikroben oft mehr als für uns – und umweltschädlich.

In der Krankenpflege sind Desinfektionsmittel ein wertvolles Mittel, um die Gefahr der Übertragung von Keimen zwischen Patienten und Pflegern gering zu halten. Wie alle wirksamen Mittel haben jedoch auch Desinfektionsmittel Nebenwirkungen und bergen wie alle (umwelt-)giftigen Stoffe Gefahren.

Im Alltag überwiegen diese Schwierigkeiten den Nutzen von Hände-Desinfektionsmitteln, zumal es einfachere und nebenwirkungsärmere Mittel und Wege gibt, die Übertragung von Keimen zu vermeiden:

  • In die Armbeuge husten oder niesen
  • zu erkälteten Personen Abstand halten
  • Nicht ins Gesicht fassen
  • Hände waschen (aber nicht mit Desinfektionsmittel kombinieren!)
  • mit Infektionskrankheiten zu Hause bleiben

Wenn ihr selbst einen Pflegeberuf ausübt oder im Alltag mit kranken oder/und immunschwachen Personen lebt oder eine solche seid, kann – so meine eigene Erfahrung im Labor – eine Handcreme dabei helfen, die Hautschäden durch regelmässigen Einsatz von Desinfektionsmitteln gering zu halten.

Und wie geht ihr angesichts von COVID-19 oder anderen Erregern mit Desinfektionsmitteln um? Habt ihr vielleicht im Beruf regelmässig damit zu tun und weitere (bessere?) Tipps zur Hautpflege?

Free Printable: So experimentiert ihr auch mit gefährlichen Chemikalien sicher!

Chemikalien können gefährlich sein. Das weiss jeder, und viele Stoffe werden dahingehend sogar überschätzt. Eigentlich sollte es heissen: Chemikalien können gefährlich sein – wenn man nicht richtig mit ihnen umgeht.

Die Experimente in Keinsteins Kiste könnt ihr mit Zutaten durchführen, die ihr im Haushalt findet oder im Bau- oder Supermarkt kaufen könnt. Nur manchmal ist eine Spezialzutat nötig, die ihr in der Regel in einer Apotheke oder Drogerie bestellen könnt. Krebserzeugende oder anderweitig “besonders besorgniserregende Stoffe” gibt es in den Versuchen in Keinsteins Kiste nicht.

Doch auch von Haushaltschemikalien und -zutaten können Gefahren für Umwelt und Gesundheit ausgehen. Deshalb gebe ich euch ein paar einfache Regeln zum Umgang damit auf den Weg. Wenn ihr euch daran haltet, sind die Experimente in Keinsteins Kiste praktisch ungefährlich!

Checkliste zum Sicheren Umgang mit Chemikalien

Druckt euch diese Liste am besten aus und habt sie griffbereit, wenn ihr euch ans Experimentieren macht. Hier geht es zum Download! So könnt ihr jederzeit nachschauen, was zu tun ist, wenn ihr unsicher seid. Denn Sicherheit geht immer vor!

1. Bevor ihr Chemikalien verwendet, lest euch die Warnhinweise auf der Verpackung durch!

Möglicherweise gefährliche Stoffe, die verkauft oder in Betrieben bzw. öffentlichen Einrichtungen verwendet werden, müssen dem “global harmonisierten System” (GHS) folgend deutlich gekennzeichnet werden. Folgende Symbole auf Chemikalienflaschen und -Verpackungen weisen euch auf die wichtigsten Gefahren hin:

GHS-Symbol Achtung gefährlich!

Vorsicht gefährlich: Geht achtsam mit diesem Stoff um. Neben dem Symbol wird schriftlich erläutert, wovor genau ihr euch in Acht nehmen müsst. Findet man zum Beispiel auf Stoffen, die Haut und Schleimhäute reizen oder Allergien auslösen können.

leicht_entzündlich

Leicht entzündlich: Dieser Stoff brennt sehr leicht und schnell. Haltet ihn unbedingt von offenem Feuer und Funken fern! Brennsprit (Spiritus) und andere organische Lösungsmittel tragen dieses Zeichen.

brandfoerdernd

Brandfördernd: Haltet auch diesen Stoff von offenem Feuer fern. Die meisten Stoffe mit diesem Symbol können Sauerstoff freisetzen oder sind auf andere Weise reaktionsfreudig, sodass sie einen Brand unkontrolliert anheizen können!

Ätzend: Schlimmer als reizend. Dieser Stoff kann Haut und Schleimhäute ernsthaft verletzen und empfindliche Materialien beschädigen. Findet man auf Säuren, Basen und starken Oxidationsmitteln.

umweltgefaehrdend

Umweltgefährdend: Dieser Stoff ist giftig für Wasserlebewesen wie Fische, Wirbellose und Kleinstorganismen. Gebt davon der Umwelt zuliebe nichts in den Abluss oder den Hausmüll, sondern bringt Reste zu einer Schadstoff-Sammelstelle!

Gas_unter_Druck

Gas unter Druck: In diesem Behälter befindet sich ein Gas, das sich stark ausdehnen kann. Lasst ihn nicht in der Sonne stehen oder auf andere Weise heiss werden, damit er keinen Grund zum Platzen hat! Auf Nachfüllkartuschen für Kohlensäure-Spender zu finden!

Gesundheitsgefährdend: Krebserzeugend, Erbgutschädigend oder auf andere Weise gefährlich für bestimmte Organe – möglicherweise auch langfristig. Nehmt diesen Stoff niemals ein und vermeidet, ihn einzuatmen. Verwendet ihn nur, wenn unbedingt nötig und haltet den Behälter fest geschlossen! Diese Kennzeichnung findet ihr auf Fleckbenzin und hochkonzentrierten ätherischen Ölen.

Die folgenden Symbole werden euch im Alltag und in Keinsteins Kiste selten bis gar nicht begegnen:

Giftig: Das Symbol kennt jeder. Schon kleine Mengen dieses Stoffs können eine gefährliche Wirkung entfalten. Daher niemals einnehmen oder einatmen und mit grosser Vorsicht behandeln! Rattengift trägt dieses Symbol.

explosiv

Explosiv: Dieser Stoff kann explosionsartig reagieren, zum Beispiel bei Kontakt mit Feuer, Funken, nach einem Schlag, Reibung, Hitzeeinwirkung oder falscher Lagerung, und beträchtlichen Schaden anrichten. Solche Stoffe gehören ausschliesslich in die Hände von Experten. Sprengstoffe tragen dieses Symbol.

Neben den Gefahrensymbolen findet ihr auf der Verpackung genauere Einzelheiten über die Gefahren und Anweisungen, wie ihr mit dem jeweiligen Stoff umgehen und euch bei einem Unfall damit verhalten solltet. Lest diese Hinweise gut durch und befolgt sie!

2. Findet für eure Experimente einen geeigneten, sicheren Arbeitsplatz!

An einem guten Experimentierplatz ist die Umgebung – mindestens aber die Unterlage – feuerfest, leicht zu reinigen und möglichst beständig gegenüber Säuren, Basen (Laugen), Lösungs- und Oxidationsmitteln. Und dort wird nicht mit Lebens- oder Körperpflegemitteln umgegangen.

Die Küche ist also kein geeigneter Ort zum Experimentieren! (Es sei denn, ihr verwendet ausschliesslich Lebensmittel.)

Ausserdem sollte sich euer Experimentierplatz leicht lüften lassen. Bei schönem Wetter kann er deshalb durchaus draussen sein.

Eine alte Küchenarbeitsplatte gibt eine ideale Unterlage zum Experimentieren ab – ein glatter, versiegelter bzw. lackierter Holztisch oder nicht poröser Stein bzw. Fliesen oder Edelstahl tun es aber ebenso. Marmor und Kalkstein sowie Aluminium sind allerdings ungeeignet – sie werden von Säuren angegriffen!

Wenn euch das makellose Aussehen des Möbels eurer Wahl wichtig ist, testet aus, ob die Oberfläche Lösungsmitteln oder aggressiven Stoffen, die ihr verwendet, standhält. Oder benutzt einfach einen alten Tisch, dem Flecken und Macken nicht mehr schaden.

3. Bewahrt gefährliche Chemikalien für Kinder unzugänglich auf!

Jeder Putzmittelschrank und jede Hausapotheke sollten dieser Anforderung entsprechen: Abschliessbar oder so hoch gelegen, dass unbedarfte kleine Forscher nicht allein herankommen und sich mit gefährlichen Stoffen verletzen oder vergiften können!

4. Tragt beim Experimentieren passende, sichere Kleidung!

Die perfekte Forscher-Bekleidung bedeckt den Körper möglichst weitgehend, ist schwer entflammbar und möglichst widerstandsfähig gegenüber ätzenden Stoffen. Laborkittel bestehen deshalb meist aus Baumwolle, die diese Eigenschaften erfüllt. Wer sich keinen Laborkittel leisten möchte, ist mit einem langärmeligen Baumwollhemd ebenso gut bedient.

Baumwoll-Herrenoberhemden geben übrigens tolle Labor- und Malkittel für Kinder ab: Einfach die Ärmel auf die richtige Länge umschlagen oder kürzen und umnähen und mit der Knopfleiste nach hinten über die Kleidung streifen!

Tragt zudem beim Umgang mit ätzenden Stoffen möglichst lange Hosen und geschlossene Schuhe, sowie Putz- oder Einmalhandschuhe und eine Schutzbrille (als Brillenträgerin begnüge ich mich beim Umgang mit “milden” Haushalts-Säuren wie Essig mit meiner “normalen” Brille – eine Schutzbrille mit Seitenflügeln ist letztendlich aber sicherer.

5. Beim Experimentieren wird nicht gegessen oder getrunken!

Wer Chemikalien an den Händen hat, läuft Gefahr, beim Essen oder Trinken etwas davon mit aufzunehmen. Haltet Essen und Getränke daher räumlich vom Experimentierplatz getrennt. Wenn ihr zwischendurch etwas essen oder trinken möchtet, zieht allfällige Handschuhe aus und wascht euch vorher (und nachher) die Hände. Das gleiche gilt für den Gang aufs stille Örtchen!

Bewahrt ausserdem niemals Chemikalien in Lebensmittelverpackungen auf! Wenn ihr PET-Flaschen, Honiggläser oder ähnliches beim Experimentieren wiederverwenden möchtet, entfernt zuvor alle Lebensmitteletiketten und beschriftet die Gefässe deutlich mit dem neuen Inhalt!

6. Kein offenes Feuer beim Experimentieren!

Beim Experimentieren wird also nicht geraucht! Haltet ausserdem Kerzen und andere Feuerquellen von eurem Experimentierplatz fern – ganz besonders, wenn ihr mit brennbaren Lösungsmitteln arbeitet! Wenn ihr bei einem Experiment etwas anzünden müsst, legt die Zündquelle – Streichhölzer, Feuerzeug oder ähnliches – gleich danach in sicherer Entfernung auf die Seite. Lasst Feuer ausserdem niemals unbeaufsichtigt.

7. Haltet Chemikalienbehälter immer sicher verschlossen!

Öffnet Chemikalienbehälter immer erst, wenn ihr etwas daraus entnehmen wollt, und macht sie danach sofort wieder zu! So wird nichts verschüttet, wenn ihr versehentlich mal etwas umstosst.

Wenn ihr Chemikalienbehälter durch die Wohnung tragen oder über längere Strecken transportieren müsst, stellt sie in eine Kunststoffwanne oder einen Eimer und tragt diese/n. Sollte beim Transport etwas auslaufen oder kaputtgehen, bleibt die potentiell gefährliche Sauerei so auf die Wanne / den Eimer beschränkt.

8. Lagert und verwendet Chemikalien in Gefässen aus Glas, reaktionsträgem Kunststoff oder Edelstahl!

Ihr wollt ja nicht, dass eure Zutaten mit dem Gefäss statt miteinander reagieren. Obwohl zerbrechlich ist Glas das ideale Material für Versuchsgefässe: Es hält allen Stoffen, die in den Versuchen in Keinsteins Kiste Verwendung finden, stand, kann schadlos erhitzt werden – und man kann durchschauen. Kunststoff-Behälter aus Polyethylen (PE) oder Polypropylen (PP) reagieren ebenfalls nicht mit ihrem Inhalt, halten allerdings nicht jeder Hitze stand. Ein grösseres Volumen, zum Beispiel ein Wasserbad, findet auch gut in einem ausrangierten Edelstahl-Kochtopf Platz.

9. Entsorgt Chemikalen gemäss den Hinweisen in der Versuchsbeschreibung oder auf der Verpackung!

DIE UMWELT WIRD ES EUCH DANKEN!

Wenn es nach den Experimenten in Keinsteins Kiste etwas zu entsorgen gibt, findet ihr entsprechende Hinweise am Ende des jeweiligen Artikels. Lest daher vor dem Experimentieren die Anleitung vollständig durch! Gehört ein Stoff über eine Schadstoff-Sammelstelle entsorgt oder seid ihr euch dessen unsicher, lagert die Reste sicher verschlossen, bis ihr sie dort hinbringen könnt.

Achtet darauf, besonders bei “Schadstoffen”, nicht mehr als unbedingt nötig von einem Stoff zu verwenden! Je weniger ihr einsetzt, desto weniger Reste müsst ihr nachher umständlich entsorgen!

Und wenn doch etwas passieren sollte:

Wenn ihr mit Chemikalien in Kontakt kommt

  • Wascht Chemikalienspritzer gründlich ab und zieht getränkte Kleidung sofort aus.
  • Wenn ihr etwas in die Augen bekommt: Spült die Augen gründlich, das heisst bis zu 10 Minuten, mit fliessendem Wasser aus und konsultiert bei Beschwerden oder wenn es sich um einen ätzenden Stoff handelt, einen Augenarzt.
  • Wenn ihr etwas eingeatmet habt, hindert die Dämpfe an der Ausbreitung (Gefäss schliessen!) und geht an die frische Luft.
  • Wendet euch mit Beschwerden nach dem Kontakt mit Chemikalien an euren Arzt oder den Giftnotruf:

In der Schweiz (und in Liechtenstein) erreicht ihr ToxInfo Suisse unter der Nummer 145 .

In Deutschland haben die Bundesländer unterschiedliche Giftnotruf-Nummern.

In Österreich erreicht ihr die Vergiftungsinformationszentrale unter +43 1 406 43 43 .

Wenn ein Feuer ausbricht

  • Wenn der Inhalt eines Gefässes brennt, deckt dieses schnell mit einem festen Gegenstand ab. Ein Buch oder ein glattes Holzbrett ersticken die Flammen im Gefäss, bevor sie Feuer fangen können! In einem feuerfesten Gefäss könnt ihr den Inhalt auch einfach ausbrennen lassen.
  • Löscht brennende Flüssigkeiten nicht mit Wasser! Wenn ihr einen CO2-Feuerlöscher habt, ist der die bessere Wahl.
  • Bringt Lösungsmittel und andere brennbare Stoffe auf Abstand!
  • Sollte eine Person oder deren Kleidung brennen, stellt sie zum Löschen sofort mit Kleidung und allem unter die laufende Dusche! Verbrennungen können ebenfalls unter fliessendem kalten Wasser effektiv gekühlt werden. Haltet Verbrennungen sofort – leichtere einige Minuten, schwerere bis zur ärztlichen Versorgung – unter den Wasserhahn oder die kalte Dusche!
  • Wenn ein Brand ausser Kontrolle zu geraten droht, alarmiert die Feuerwehr, schliesst, wenn möglich, Fenster und Türen (nicht verriegeln!) und verlasst das Haus!

Aber keine Sorge: Wenn ihr euch an die Vorsichtsmassnahmen aus dem ersten Teil des Artikels haltet, ist es höchst unwahrscheinlich, dass es so weit kommt.

Somit wünsche ich euch viel Spass beim entspannten und sicheren Experimentieren!

Wie entstehen Kondensstreifen? Zwischen Naturphänomen und Chemtrails

Die Sommerferien rücken näher und viele von uns ergreift das Fernweh. Dann wandert der Blick zum Himmel und den Flugzeugen hinterher… mitsamt ihrer weissen Kondensstreifen. Im Netz kursieren die wildesten Verschwörungstheorien, die die wolkig-weissen Bänder zu “Chemtrails” aufbauschen. Meist sind es Regierungen, Militärs oder Industrien, die Verkehrsflugzeuge “missbrauchen” sollen, um – aus welchem Grund auch immer – vorsätzlich Chemikalien in der Luft und damit über uns ausbringen würden.

Mein Leser Rene ist da zu Recht skeptisch. Und fragt, wie Kondensstreifen tatsächlich entstehen.

Wer sich jetzt fragt, ob es sich dabei tatsächlich um “Chemtrails” handeln könnte, dem sei gesagt: Jain!

Was kommt aus Flugzeugturbinen heraus?

Alle grösseren Flugzeuge fliegen heute mit Kerosin. Oder besser Kerosinen. Denn “Kerosine” bezeichnet eine ganze Gruppe von Stoffgemischen aus Kohlenwasserstoffen mit meist 8 bis 13 Kohlenstoffatomen. Diese Moleküle sind also nur wenig grösser (und damit schwerer) als die des Benzins für Autos.

Wie letzteres wird auch Kerosin aus Erdöl gewonnen. So bleibt es nicht aus, dass im Kerosin neben den “einfachen” Kohlenwasserstoffen auch sogenannte “aromatische” Kohlenwasserstoffe wie Benzol enthalten sind. Dazu kommen weitere organische Stoffe – sogenannte Additive – die besondere Eigenschaften haben. Zum Beispiel eine antioxidative – also reduzierende – Wirkung, die den Flugzeugmotor vor Korrosion schützen soll.

Verbrennung von Kohlenwasserstoffen

Eines haben all diese Stoffe jedoch gemeinsam: Sie sind allesamt organische Verbindungen, bestehen also vornehmlich aus Kohlenstoff und Wasserstoff. Und damit verbrennen sie im Flugzeugmotor auf die gleiche Weise:

Die Gleichung beschreibt die vollständige Verbrennung von organischen Verbindungen am Beispiel von Octan: Dabei entstehen stets Kohlenstoffdioxid und Wasserdampf.

Weitere Verbrennungsprodukte

Manche Kerosinbestandteile enthalten zusätzlich Schwefelatome (trotz Entschwefelung bleiben immer ein paar übrig). Aus solchen Molekülen entsteht bei der Verbrennung das Gas Schwefeldioxid (SO2) – das mit Wasser zu schwefliger Säure (H2SO3) weiterreagieren kann.

Mit mehr Sauerstoff kann es ausserdem zu Schwefeltrioxid (SO3) weiterreagieren, aus welchem wiederum mit Wasser Schwefelsäure entstehen kann.

Zudem werden nicht alle Moleküle vollständig verbrannt, sodass immer ein paar Kohlenwasserstoff-Trümmer zurückbleiben. Diese Trümmer kennen wir von Kerzenflammen als Russ – und im Abgas von Verbrennungsmotoren als “Feinstaub”.

Alles in allem entstehen in Flugzeugmotoren Abgase, die mit denen von Automotoren vergleichbar sind. Einschliesslich der durch die Verbrennung von Luftstickstoff entstehenden Stickstoffoxide NOx, die hier aber keine Rolle spielen.

Was passiert mit den Abgasen?

Kohlenstoffdioxid ist ein Gas mit Sublimationspunkt (hier wird festes CO2 direkt zu CO2-Gas) bei -78°C bei Atmosphärendruck. Bei niedrigerem Druck in grosser Höhe liegt er noch niedriger. Wasser ist bei über 100°C (Atmosphärendruck) ein Gas, zwischen 0°C und 100°C flüssig und bei unter 0°C fest. Auch der Siedepunkt von Wasser liegt bei geringerem Druck deutlich niedriger, aber nicht entscheidend niedrig.

Auf der Reiseflughöhe von Verkehrsflugzeugen, also etwa 8000 bis 11000 Meter über dem Meer, ist es -40°C bis -60°C kalt. Das könnt ihr während eures nächsten Fluges selbst an eurem Sitz-Bildschirm ablesen.

Das CO2 bleibt auch bei solch niedrigem Druck und niedriger Temperatur ein Gas und verliert sich in der Atmosphäre. Der Wasserdampf kondensiert dagegen schnell und gefriert anschliessend zu Eiskristallen. Oder er resublimiert direkt vom Gas zu Eis. Auf diese Weise entstehen in der Natur Wolken!

Für einen Eiskristall braucht es jedoch immer einen Anfang, der den Mittelpunkt bildet (wenn es im Winter schneit, könnt ihr euch diese filigranen Gebilde unter dem Mikroskop anschauen). Einen solchen “Anfang” nennen Chemiker “Kristallisationskeim”. Und hier kommen die Schwefeloxide und die Feinstaubpartikel aus dem Flugzeugabgas ins Spiel. Die geben nämlich wunderbare Kristallisationskeime ab.

So kristallisiert an ihnen nicht nur das Wasser aus dem Abgas (das reicht für die Kondensstreifen nicht aus), sondern vor allem die Feuchtigkeit aus der Umgebungsluft! Wenn es denn welche hat. In grosser Höhe ist das oft der Fall: Hier sind Luftfeuchtigkeiten bis 200% möglich!

Kondensstreifen sind Wolken

Kondensstreifen sind also “Wolken” aus natürlicher Luftfeuchtigkeit, die von ganz normalen Flugzeugabgasen angeregt entstehen!

Je nach Wetterlage in Reiseflughöhe entstehen diese Wolken entweder gar nicht (es ist zu trocken), sie verschwinden binnen Sekunden/Minuten wieder (es ist nur wenig feucht), oder sie bleiben stundenlang am Himmel sichtbar, wobei sie immer weiter zerfasern und breiter werden (wenn es reichlich feucht ist).

Dann bekommen sie von den Wetterforschern sogar einen eigenen Namen: “Homomutatus” – lateinisch in etwa für “menschengemachte Veränderung”. Zudem werden sie in die Gruppe der als Schlechtwetterwolken bekannten “Cirrus-“, also Federwolken eingeordnet.

Kondensstreifen als Wetter-Vorboten

Wie die bleibende Kondensstreifen bzw. Homomutatus-Wolken entstehen auch die natürlichen Cirrus-Wolken, wenn es in grosser Höhe feucht und kalt ist. Und das kommt vor, wenn das Wetter umschlägt. So können Homomutatus-Wolken ebenso wie ihre natürlichen Vettern Anzeichen für ein aufziehendes Tiefdruckgebiet, also schlechtes Wetter sein.

Kondensstreifen bzw. Homomutatus- und natürliche Cirrus - Wolken
Eine Wetterlage mit natürlichen Federwolken begünstigt auch die längere Erhaltung von Kondensstreifen bzw. Homomutatus-Wolken

Manche Menschen – besonders solche, die schon ein paar mehr Jahre gelebt haben – fragen sich, warum es heute mehr Homomutatus-Wolken zu geben scheint als früher. Die Beobachtung ist sicherlich nicht falsch. Denn es gibt nicht nur mehr Flugzeuge als früher, sondern dank des Klimawandels auch weniger stabiles Wetter und damit mehr aufziehende Tiefs. So ergeben sich mehr Gelegenheiten für die Entstehung bleibender Kondensstreifen. So kann der Himmel in luftverkehrsreichen Gebieten an solchen Tagen schon einmal regelrecht gemustert aussehen:

Kondensstreifen bilden fast rechtwinklige Karrees am Himmel: Das Himmelsstrassennetz wird sichtbar!
Auch am Himmel gibt es festgelegte Verkehrswege. Bei entsprechender Witterung werden die an luftverkehrsreichen Orten als Kondensstreifen-Muster am Himmel sichtbar.

Können Kondensstreifen das Klima beeinflussen?

Wenn sie als Homomutatus länger am Himmel bleiben ja. Denn wie natürliche Cirrus-Wolken reflektieren sie einen Teil der Sonneneinstrahlung zurück ins All (Albedo-Effekt), sodass es darunter kühler wird. Dafür reflektieren sie ebenso einen Teil der Wärmestrahlung vom Erdboden zurück (Treibhauseffekt), sodass es unter ihnen wärmer wird. Wenn diese beiden Effekte sich nicht aufheben, tragen Kondensstreifen/Homomutatus zur Klimaveränderung bei, die im Zweifelsfall wiederum mehr Kondensstreifen verursacht. Ein Teufelskreis!

Also keine Chemtrails durch geheime operationen?

Wenn man “Chemtrails” als Spuren von Flugzeugen ausgebrachter Chemikalien definiert, sind Kondensstreifen tatsächlich Chemtrails. Ihre Entstehung liegt allerdings in der Natur eines jeden Verbrennungsmotors: Sie bilden sich durch ganz normale Abgase.

In manchen Situationen werden dennoch besondere Stoffe von Flugzeugen ausgestossen.

Stealth-Technologie

Tatsächlich gibt es Flugzeuge, die zusätzliche Stoffe durch ihre Turbinen gejagt haben sollen. Die dienten aber dazu, die Entstehung von Kondensstreifen zu vermeiden! Zum Beispiel beim B2-Tarnkappenbomber des amerikanischen Militärs.

Die Northrop B-2 Spirit der US Airforce : Der Tarnkappenbomber hinterlässt keine Kondensstreifen. Treibstoffzusätze wie Fluorschwefelsäure oder technische Finessen wie Laserstrahlen sollen es möglich machen.

Es wäre ja auch schön blöd, ein (vor Radarortung) getarntes Flugzeug zu fliegen und anhand des Kondensstreifens am Himmel ganz einfach zu entdecken zu sein. Prof. Blume vermutet, diese Additive könnten Fluorschwefelsäure, perfluorierte Tenside (PFT) wie zum Beispiel die Perfluoroalkylsulfonsäure bzw. -sulfonate sein. Liest sich mit Chemikeraugen alles nicht besonders einladend. Welche Stoffe genau verwendet werden bzw. wurden und wie sie funktionieren ist jedoch – ganz militärisch – streng geheim.

Flugshow mit bunten Himmelsschreibern

Zu Grossanlässen wie Formel-1-Rennen sieht man jedoch manchmal Flugzeuge, die zum Beispiel die Landesflagge des Veranstaltungsortes an den Himmel malen. Dazu produzieren sie sogar ganz bewusst “Chemtrails”: Sie zerstäuben nämlich Paraffinöl (flüssiges Wachs!), ggfs. mit Farbstoffen, das nach der Himmelsshow zu Boden sinkt. Parkiert also nicht euer Auto in der Nähe solcher Flugstrecken – sonst könnt ihr nachher zusehen, wie ihr den Wachs- oder Ölfilm darauf wieder loswerdet!

Keine Kondensstreifen, sondern "Chemtrails": Im Rahmen einer Flugshow "malen" fünf Kampfjets eine rot-weiss-blaue Streifen an den Himmel.
Sind es die Niederländer oder die Franzosen? Im Rahmen einer Flugshow versprühen die Flieger Paraffinöl und Farbstoffe, um die Landesflagge an den Himmel zu “malen”.

Fazit

Die Verschwörungstheoretiker unter euch muss ich leider enttäuschen: Kondensstreifen sind natüriches Wasser, das von ganz normalen Flugzeugabgasen zur Wolkenbildung animiert worden ist. Dafür, etwas anderes anzunehmen, gibt es keinen Anlass.

Dass diese Wolken sowohl vom Klimawandel künden als auch diesen fördern mögen, ist dagegen nicht von der Hand zu weisen. Ebenso wie ganz normale Abgase dem Klimaschutz nicht zuträglich sind.

Wenn das Militär tatsächlich einmal zusätzliche Chemikalien mit Flugzeugen “ausbringt”, dann entweder, um die Entstehung von Kondensstreifen zu vermeiden, oder um uns eine bunte Show zu bieten.

Die Umwelt freut sicher keine der genannten Aktionen (mit Verbrennungsmotor fliegen, mit Additiven gegen Kondensstreifen fliegen, bei Flugshows Paraffinöl versprühen) – aber eine Verschwörung ist als Erklärung dafür nicht nötig!

Und was haltet ihr von Kondensstreifen am Himmel?

Klimawandel - Worum geht es da eigentlich?

Jeden Freitag gehen wieder Tausende Jugendliche auf die Strasse, fordern Engagement für den Klimaschutz. Alex von livelifegreen hat deshalb zur Blogparade #bloggersforfuture aus Solidarität zu unseren Kindern aufgerufen. Die setzen sich nämlich für ihre Zukunft ein, die wir heute Erwachsenen ziemlich leichtfertig aufs Spiel gesetzt haben und noch aufs Spiel setzen. Indem wir den Klimawandel zugelassen haben.

Aber worum geht es da eigentlich?

Was ist eigentlich Klima? Was passiert mit dem Klima auf der Erde: Warum wird es wärmer? Können wir überhaupt etwas dagegen tun? Was können Politiker und die Wirtschaft tun? Was kann jeder von uns beitragen?

Mit den Antworten auf diese Fragen könnte ich ein ganzes Buch füllen – oder zumindest eine ganze Beitragsserie. Deshalb bleibe ich in Teilen dieses Artikels bewusst oberflächlich, enthalte euch aber spannende und verlässliche Links zum Weiterlesen nicht vor.

Woher ich meine Daten habe

Verlässlich ist ein gutes Stichwort: Nicht zuletzt im Netz findet man eine ganze Menge mehr oder weniger dem aktuellen Wissensstand entsprechenden Informationen und Behauptungen rund um das Klima und seine Veränderung.

Umso froher war ich, dass ein Student der ETH Zürich die Aufgabe, eine verlässliche Übersicht über diesen Wissensstand zusammen zu tragen, im Rahmen einer mentorierten Arbeit bereits erledigt hat. Der Autor verwendet dazu hauptsächlich Daten des “Intergovernmental Panel on Climate Change (IPCC)”, das 1988 vom Umweltprogramm der Vereinten Nationen und der Weltorganisation für Meteorologie (WMO) eingerichtet worden ist. Dessen Zusammenfassungen der weltweiten Forschungsergebnisse könnt ihr hier in offiziellen deutschen Übersetzungen in allen Einzelheiten nachlesen.

Aus Zeitgründen bezieht sich mein Artikel vornehmlich auf die 2012 entstandene mentorierte Arbeit. Ich gehe jedoch guten Gewissens davon aus, dass auch die jüngeren Berichte des IPCC von den grundlegenden Aussagen nicht gross abweichen werden.

Nun aber zum Wesentlichen.

Was ist eigentlich Klima?

Letzten Donnerstag hatten wir Schneefall bis in tiefe Lagen – im April. Von Klimaerwärmung kann da keine Rede sein, mögen manche tönen. Die vergessen nur eins: Wetter und Klima sind zwei ganz unterschiedliche Dinge!

Wetter ist nämlich ein kurfristiges Geschehen in der Atmosphäre an einem bestimmten Ort (über) der Erdoberfläche.

Ein Beispiel: Am Donnerstag (4.April 2019) betrug die Lufttemperatur zur wärmsten Tageszeit hier in Pfäffikon SZ laut Accuweather.com 4°C.

Das Klima ist dagegen das “Durchschnittswetter” über grössere Teile der Erde oder gar den ganzen Planeten und über einen langen Zeitraum verteilt.

Um das Klima in einer bestimmten Region oder auf der ganzen Erde zu bestimmen, werden also viele Daten an vielen Orten und/oder über grössere Zeiträume hinweg gesammelt, Durchschnittswerte berechnet und die Bandbreite von Abweichungen davon bestimmt.

Durchschnittlich ist es hier in Pfäffikon Anfang April zur wärmsten Tageszeit 13°C warm (Accuweather gibt leider nicht preis, über welchen Zeitraum die Temperaturen erfasst worden sind). Das Wetter am Donnerstag war also ein Ausreisser im Vergleich zum hiesigen Klima. Wie häufig solche Ausreisser sind oder ob unser April regelrecht aus Ausreissern nach oben und unten besteht (wie man ihm ja gerne nachsagt), geben die Daten von Accuweather allerdings nicht her.

Es geht noch komplexer: Das Klimasystem

Der Begriff “Klima” ist eigentlich viel zu einfach für das vielschichtige System, das hinter dieser Datensammlung steckt. Das Klimasystem der Erde setzt sich nämlich aus einer ganzen Reihe verschiedener Systeme zusammen:

Der Atmosphäre (also der Lufthülle der Erde), der Gesamtheit aller Meere und Gewässer (Hydrosphäre), der Gesamtheit von Eis und Schnee auf der Erde (Kryosphäre), der steinernen Erdkruste (Lithosphäre), der Gesamtheit des Erdbodens (Pedosphäre) und schliesslich der Gesamtheit der Lebewesen (Biosphäre), welche all diese Systeme bevölkern.

Und all diese System stehen in ständigem Austausch untereinander: In verschiedenen, aber zusammenhängenden Kreisläufen werden immerzu Energie und Stoffe zwischen den verschiedenen Bereichen ausgetauscht. Wichtige Beispiele für solche Stoffkreisläufe habe ich im Artikel über die Hermetosphären näher erklärt. Dort findet ihr auch eine Anleitung, wie ihr euer eigenes Mini-Klimasystem im Wohnzimmer selbst anlegen und beobachten könnt!

Ein solches Netzwerk aus miteinander verbundenen Systemen bedeutet: Wenn irgendwo an einer Stelle etwas daran verändert wird, kann diese Veränderung Folgen für weite Teile des Netzwerks, wenn nicht gar für das ganze Klimasystem haben! Und dass sich von den letzten Jahrzehnten an in auffälliger Weise etwas ändert, ist laut der Beobachtungen der Klimawissenschaftler unbestreitbar.


Was passiert mit dem Klima auf der Erde?

Seit gut 100 Jahren wird die Klimaentwicklung wissenschaftlich beobachtet, vermessen und festgehalten. Ältere Daten können in historischen Quellen gesucht oder aus erdgeschichtlichen Spuren (Baum-Jahresringe, Bohrkerne aus Eis oder Gestein, Fossilien,…) gewonnen werden.

Was die Wissenschaftler direkt beobachten konnten

  • Von 1906 bis 2005 ist die Durchschnittstemperatur auf der Erde um 0,74°C angestiegen.
  • Der Meeresspiegel ist im Laufe des 20. Jahrhunderts um ca. 0,17m angestiegen.
  • Die im Mittel von Schnee und Gletschern bedeckte Fläche (Eiskappen an den Polen nicht mit eingerechnet) wird kleiner.
  • Einige Gebiete der Erde (Nord- und Südamerika, Nordeuropa, Nord- und Zentralasien) erfahren mehr Niederschläge (Regen, Schnee,…), andere Gebiete (Sahel, Mittelmeerraum, Südafrika, Teile Südasiens) werden hingegen trockener.

Was die Klima-Geschichtsforscher ihren Spuren entnehmen können

  • Die Durchschnittstemperatur war während der letzten 1300 Jahre nie hoch wie heute.
  • Der Meeresspiegel war vor 125’000 Jahren – lange bevor es nennenswert Menschen auf der Erde gab – rund 4 bis 6 Meter höher als im 20. Jahrhundert (Grund dafür war eine Zwischeneiszeit, in der es zum Abschmelzen grosser Mengen Eis und Schnee kam).

Einige der jüngst beobachteten Entwicklungen werden also von den geschichtlichen Daten als unnatürlich bestätigt, andere weniger.

Warum geschieht nun die Klimaerwärmung?

Dass es auf der Erde überhaupt lebensfreundlich warm ist, haben wir der Sonne zu verdanken. Die versorgt uns nämlich mit einem bunten Mix von Energie in Form elektromagnetischer Strahlung: Licht Wärme, UV-Strahlung,… Die jährliche Leistung unseres Sonnenofens beträgt dabei über den ganzen Planeten gemittelt 342 Watt pro Quadratmeter.

Knapp ein Drittel dieser Strahlung bewirkt allerdings überhaupt nichts: Eine Strahlungsleistung von 107 Watt pro Quadratmeter und Jahr wird ins Weltall zurückreflektiert (von Wolken, der Erdoberfläche und Aerosolen, also Partikeln in der Luft) ohne mit den Bestandteilen des Planeten Energie auszutauschen.

Unsere globale Energiebilanz

Die übrigen Strahlen mit einer Leistung von 235 Watt geben ihre Energie an die Erdoberfläche und die Atmosphäre ab. Mit dieser Energie kann nun beispielsweise Wasser verdunsten (es entstehen Wolken, die ihre Energie wiederum abgeben können, wenn sie abregnen), energiereiche Moleküle in Lebewesen entstehen oder es wird schlichtweg warm. Schlussendlich wird die gesamte Energie aber wieder in den Weltraum abgestrahlt.

Nach den zahlreichen Umwandlungen kommt die Energie jedoch nicht als breit gefächerter Strahlenmix wieder heraus, sondern vornehmlich in Form von langwelliger Wärmestrahlung. Die Gesamtleistung der abgegebenen Strahlung ist aber die selbe wie die jener Sonnenstrahlung, die zuvor von der Erde aufgenommen worden ist: 235 Watt pro Quadratmeter und Jahr.

Genau so hat eine ordentliche Bilanz auszusehen: Was reinkommt, geht auch irgendwo wieder raus und die Bilanz ist 0.


Abschätzung der jährlich und global gemittelten Energiebilanz der Erde. Langfristig wird die Menge an einfallender Sonnenstrahlung, die von der Erde und der Atmosphäre absorbiert wird, dadurch ausgeglichen, dass Erde und Atmosphäre die gleiche Menge langwelliger Strahlung wieder freisetzen. Ungefähr die Hälfte der einfallenden Sonnenstrahlung wird von der Erdoberfläche absorbiert. Die Energie gelangt in die Atmosphäre, wenn sich die Luft im Kontakt mit der Oberfläche erwärmt („Thermik“), sowie durch Verdunstung von Wasser („Evapotranspiration“ genannt) und durch langwellige Strahlung, die durch Wolken und Treibhausgase absorbiert wird. Die Atmosphäre wiederum strahlt langwellige Energie sowohl auf die Erde zurück, wie auch in den Weltraum hinaus. Bildquelle: Kiel und Trenberth (1997).

Die Erde: Ein gar nicht idealer schwarzer Körper

Wenn die Erde nun ein idealer schwarzer Körper wäre, könnte man mit einer physikalischen Gleichung, dem Stefan-Boltzmann-Gesetz, anhand der abgegebenen Strahlungsleistung berechnen, welche Temperatur ihre Oberfläche haben sollte.

Solch ein schwarzer Körper ist die Erde zwar nicht, aber dem doch immerhin so ähnlich, dass man die erwartete Oberflächentemperatur anhand dieses Gesetztes abschätzen kann. Und die Schätzungen der Wissenschaftler belaufen sich auf -19°C. Also im Mittel auf ständigen sibirischen Winter auf dem ganzen Planeten. Irgendwie passt das Stefan-Boltzmann-Gesetz also doch nicht so gut zu unserer Erde.

Treibhauseffekt…

Das liegt daran, dass dieses Gesetz nicht berücksichtigt, dass ein erheblicher Teil der wieder abgegebenen Wärmestrahlung von der Erdatmosphäre gleich wieder zur Erdoberfläche zurückgeworfen wird. Dort wird die Strahlung erneut von Wasser, Lebewesen und anderen Bestandteilen der Oberfläche aufgenommen und umgewandelt, ehe sie in einem zweiten Anlauf erneut abgegeben wird. Und auch davon wirft die Atmosphäre einen Teil gleich wieder zurück.

Statt eines ungehinderten Energieaustauschs gibt es also einen Rückstau: An der Erdoberfläche unter ihrer Atmosphärenhülle wird ein Teil der Sonnenenergie “zwischengelagert”. So ist es möglich, dass die Erdoberfläche in einem Jahr mehr Energie abstrahlt (mit 390 Watt pro Quadratmeter) als sie direkt von der Sonne erhält (235 Watt pro Quadratmeter).

Das “Mehr” resultiert aus jener Strahlung, die gleich wieder aus der Atmosphäre zurückkommt und noch einmal abgestrahlt werden kann. Die zwischengelagerte Energie können wir überdies direkt wahrnehmen: Dank ihr war es 1997 an der Erdoberfläche im Mittel nicht -19°C, sondern +14°C warm (Kiehl und Trenberth, 1997)!

Dieser wärmende Effekt kann auch ganz einfach in einem gläsernen Gewächshaus beobachtet werden: Hier übernehmen Glasdach und -wände die Rolle der Atmosphäre und werfen ursprünglich von der Sonne stammende Energie wieder zurück, bevor sie aus dem Glashaus entweichen kann. So wird es im Gewächshaus wesentlich schneller warm als draussen. Deshalb wird der ganze Vorgang auch “Treibhauseffekt” genannt.

…durch Treibhausgase

Besonders gut im Zurückwerfen von Wärmestrahlung ist das Gas Kohlenstoffdioxid, CO2. Das ist erst einmal ein natürlicher Bestandteil der Erdatmosphäre, der zum Beispiel durch Vulkanausbrüche oder die Ausscheidungen sauerstoffatmender Lebewesen da hinein gelangt.

Methan, CH4, ist ein weiteres solches Treibhausgas. Auch das kommt in der Natur vor: In Erdgas oder gebunden in Methanhydrat tief unter dem Permafrost Sibiriens oder am Meeresgrund, als Ausscheidung von Mikroorganismen als Faul- oder Sumpfgas oder Darm-Abgas von höheren Säugetieren (man denke an die furzenden Kühe).

Wie kann der Energiehaushalt der Erde verändert werden?

  1. Der Energiehaushalt des Planeten – insbesondere die Menge der “zwischengelagerten” Energie und damit die Temperatur an der Oberfläche – könnte vor allem durch Änderungen an drei Stellen beeinflusst werden.
  2. Durch Änderung des Einfalls von Sonnenstrahlen, zum Beispiel durch Veränderung der Erdumlaufbahn oder/und Achsenneigung
  3. Änderungen des Anteils reflektierter Sonnenstrahlen, zum Beispiel durch Veränderung der Landschaft bzw. der Schnee- und Eisdecken auf der Erdoberfläche
  4. Änderung der Menge von der Erde abgegebener langwelliger Strahlung – mit anderen Worten durch Änderung der Energiemenge, die von der Atmosphäre gleich wieder zurückgeworfen wird!

Wie entsteht natürlicher Klimawandel?

  1. Durch zyklische Änderung der Sonneneinstrahlung: Tatsächlich “eiert” die Erde ein wenig, d.h. ihre Drehachse schwankt wie die eines Spielzeugkreisels, der nicht perfekt senkrecht auf einer glatten Oberfläche kreiselt. Auch die Umlaufbahn der Erde um die Sonne selbst ist nicht unveränderlich: Sie verändert sowohl ihre Form als auch ihre Orientierung. Das alles geschieht jedoch in wiederkehrender Weise, und zwar in Zyklen von etwa 20’000 bis 100’000 Jahren. Also zu langsam, um für die drastischen Veränderungen in den letzten 100 Jahren verantwortliche zu sein.
  2. Durch Prozesse wie die tektonische Verschiebung von Kontinentalplatten. Die kann ganze Kontinente in eine andere Klimazone verschieben, sodass nicht nur das dortige Klima sondern als Konsequenz auch die Landschaft und damit die Reflektion der einfallenden Strahlen sich verändern. Durch die mit der Kontinentaldrift einhergehende Veränderung der Form und Grösse von Meeren werden zudem Meeresströme erzeugt, in ihrem Verlauf verändert und zum Versiegen gebracht. Das alles geschieht jedoch noch um ein Vieles langsamer als die Milankovic-Zyklen (s.1.)!
  3. Durch schwerwiegende Ereignisse wie Vulkanausbrüche oder Asteroideneinschläge: Wenn dabei grosse Mengen Treibhausgase wie CO2 freigesetzt und Russ- und Staubpartikel in die Luft befördert werden, kann das sowohl die Sonneneinstrahlung (mehr wird reflektiert: es wird dunkler und kälter auf der Erde) als auch den Treibhauseffekt (mehr Treibhausgase machen ihn grösser) beeinflussen.

Alles in allem reicht das sehr wahrscheinlich nicht als Erklärung für die bedeutsamen Veränderungen in den letzten 100 Jahren und diejenigen, die uns gemäss Berechnungen der Wissenschaftler noch bevorstehen können.

Wie entsteht von Menschen gemachter (anthropogener) Klimawandel?

Sehr wahrscheinlich ist die steigende Menge der von Menschen erzeugten Treibhausgase, allen voran CO2, die Haupttriebkraft für die menschengemachte Klimaerwärmung.

Kohlenstoffdioxid, CO2, gelangt durch Verbrennung von Kohlenstoffverbindungen in die Luft: Durch das Verheizen von Kohle in Kraftwerken zur Stromerzeugung, die Verbrennung von Kraftstoffen aus Erdöl und -gas in Autos, Flugzeugen und Schiffen, durch das Abbrennen von Wäldern zur Gewinnung von Ackerflächen.

Strom wird wiederum produziert, weil er gebraucht wird: Zur Herstellung von Waren, um diese Waren von der Fabrik zu uns – die wir die Waren kaufen wollen – zu bringen und um sie benutzen (wenn es sich dabei um Elektrogeräte handelt). Deshalb wird heute für viele Dinge ein “CO2-Ausstoss” angegeben, obwohl sie selbst gar keinen Kohlenstoff verbrennen.

Methan, CH4, kommt aus unverbrannt freigesetztem Erdgas, den Darmgasen (“Furzen”) von Nutztieren und aus aufgrund der Erwärmung durch die anderen Ursachen auftauendem Methanhydrat.

Diese zusätzlichen Mengen Treibhausgase in der Atmosphäre werfen mehr langwellige Strahlung auf die Erde zurück – mehr Energie wird an der Oberfläche zwischengelagert: Es wird wärmer.

Wir Menschen tun auch Dinge, die der Erwärmung entgegen wirken

Winzige Staub- und Flüssigkeitspartikel (sogenannte Aerosole), die mit unseren Abgasen in die Atmosphäre gelangen, reflektieren mehr Sonnenstrahlen, bevor sie ihre Energie an die Erdoberfläche abgeben können. Die Veränderung von Landschaften – zum Beispiel durch das Abholzen von Wäldern – führen ausserdem dazu, dass die Erdoberfläche mehr Strahlen reflektiert, anstatt ihre Energie aufzunehmen.

Das Problem dabei: Wälder gehören zu den effektivsten CO2-Beseitigern unserer Erde. Die Pflanzen nehmen das Gas auf, verwenden den Kohlenstoff daraus für ihr eigenes Wachstum und scheiden den Sauerstoff wieder aus.

Alles in allem – so zeigen es die Beobachtungen der Klimawissenschaftler – überwiegt der wachsende Treibhauseffekt die anderen Auswirkungen unseres Treibens: Es wird schliesslich wärmer auf der Erde.


Wie wird sich das Klima weiter entwickeln?

Um diese Frage genau zu beantworten, müssten die Klimawissenschaftler alle Einzelheiten des ganzen komplexen Klimasystems in ihre Computer füttern und den bisherigen Verlauf der Klimaentwicklung für die Zukunft weiterrechnen lassen. Bevor sie aber so zu einem Ergebnis kämen, würde aber jeder Computer unweigerlich heiss laufen. Denn die ganze Wirklichkeit lässt sich unmöglich in all ihren Einzelheiten in einem unserer heutigen Computer abbilden.

Deshalb erschaffen die Wissenschaftler sogenannte Klimamodelle. Ein solches Klimamodell ist eine vereinfachte Version der Wirklichkeit, die genau genug ist, um wirkliche Verhältnisse passend zu beschreiben, aber einfach genug, um die Computer der Wissenschaftler nicht zu überfordern. Das kann erreicht werden, indem das Modell so geschaffen wird, dass es die Einzelheiten, die man damit zeigen will, besonders genau beschrieben werden – während weniger wichtige Details mitunter sehr ungenau gehalten werden.

Modelle fürs Klima sind wie Modelle in der Chemie

Wir Chemiker gehen auf die gleiche Weise vor, wenn wir Atommodelle verwenden: Wenn ich euch zeigen möchte, wie zwei Wasserstoffatome und ein Sauerstoffatom in einem Wassermolekül angeordnet sind, genügt es, sich die Atome als massive Kugeln vorzustellen, die miteinander verbunden sind. Wie genau diese Atome aussehen, ist dabei erst einmal uninteressant.

Möchte ich euch dagegen erklären, was Ionen sind, brauche ich dazu zumindest ein Modell, das Atomkern und Elektronenhülle kennt, und wenn ihr wissen möchtet, warum das Natrium-Ion im Kochsalz genau eine positive Ladung trägt, werde ich um das Schalenmodell für die Elektronenhülle nicht herum kommen.

Jedes dieser Modelle eignet sich dafür, einen Teil der chemischen Wirklichkeit zu beschreiben, auch wenn alle Modelle irgendwo ihre Grenzen haben. Deshalb haben die Chemiker ihre Modelle im Laufe der Geschichte auch immer wieder verfeinert.

Berechnung verschiedener Szenarien

Das Gleiche gilt für die Klimamodelle der Klimawissenschaftler. Die füttern ihre immer wieder verfeinerten Modelle mit zusätzlichen Annahmen wie der Entwicklung der Weltbevölkerung und dem mehr oder weniger klimafreundlichen Verhalten dieser Menschen. Dann lassen sie ihre Computer das Ganze durchrechnen.

Dabei heraus kommen Entwicklungen, die mit grosser Wahrscheinlichkeit so zu erwarten sind.

Klimawandel im Modell
Die durchgezogenen Linien sind globale Multimodell-Mittel der Erwärmung an der Erdoberfläche (relativ zu 1980–99) für die Szenarien A2, A1B und B1, dargestellt als Verlängerungen der Simulationen für das 20. Jahrhundert. Die Schattierung kennzeichnet die Bandbreite von plus/minus einer Standardabweichung der einzelnen Modell-Jahresmittel. Die orange Linie stellt das Resultat des Experiments dar, bei dem die Konzentrationen auf Jahr-2000-Werten konstant gehalten wurden. Die grauen Balken auf der rechten Seite zeigen die beste Schätzung (durchgezogene Linie innerhalb des Balkens) und die abgeschätzte wahrscheinliche Bandbreite für die sechs SRES-Musterszenarien. (Quelle: Vierter Sachstandsbericht des IPCC, 2007, AG1: Wissenschaftliche Grundlagen)

Besonders bemerkenswert ist, dass selbst wenn die Einflüsse auf den Strahlungsaustausch auf den Werten des Jahres 2010 festgehalten würde (was längst eine völlig utopische Annahme ist – dazu müssten wir per sofort komplett aufhören, CO2 zu produzieren (blaue Kurve)), die Erwärmung nicht mehr rückgängig zu machen wäre (graue Kurve).

Und selbst unter den günstigsten Voraussetzungen (Szenario B1: Weltbevölkerung nimmt “nur” bis 2050 zu und unsere Entwicklung und Nutzung von Technik entwickelt stark in eine klimafreundliche Richtung) lässt sich die globale Erwärmung allenfalls verringern – aber nicht mehr verhindern.

Welche Folgen hat der Klimawandel?

  • Durch die veränderte Verteilung von Niederschlägen verändert sich in den betroffenen Gebieten die Süsswasser- und damit die Trinkwasserversorgung. Zunehmend feuchte Gebiete mögen mehr, zunehmend trockene Gebiete weniger Trinkwasser für ihre Einwohner zu bieten haben.
  • Die lebenden Bewohner der Erde sind bis zu einem gewissen Grad in der Lage, sich Veränderungen ihrer Umwelt oder Naturereignissen anzupassen: Sie sind gegenüber solchen Unwägbarkeiten widerstandsfähig. Durch die relativ schnellen Veränderungen im Klimasystems wird diese Widerstandsfähigkeit aber hart auf die Probe gestellt. Die Gefahr, dass einzelne Lebewesen oder ganze Ökosysteme diese Probe nicht bestehen und aussterben, nimmt zu.
  • Durch das veränderte Klima verändert sich auch die Menge der Feldfrüchte, die in den betroffenen Regionen geerntet werden kann. Besonders in armen Regionen der Welt werden die Ernteerträge sinken und die geernteten Nahrungsmittel teurer werden. Was sich auf den Schweizer Äckern und Gärten verändern kann, könnt ihr bis Ende Mai 2019 im “Klimagarten2085” in der Hochschule Rapperswil mitverfolgen: Hier werden eine Klimaerwärmung um +3°C bzw. um +6,5°C und veränderte Niederschlagsmengen in öffentlich zugänglichen Gewächshäusern mit verschiedenen Nutz- und Gartenpflanzen simuliert.
  • Besonders gravierend verändern sich Küstenregionen: Durch einen steigenden Meeresspiegel werden Küsten abgetragen, für Landpflanzen unverträgliches Salzwasser in Küstenlandschaften gedrückt oder Gebiete gänzlich überflutet. Und viele bedeutende Städte, die direkt an der Meeresküste liegen, wären davon betroffen!
  • Der Gesundheitszuständ der Menschheit wird beeinträchtigt: Unterernährung und Wetterextreme tragen dazu bei, dass sich Krankheiten leichter verbreiten können.
  • Die zuvor genannten Folgen fallen auch der Wirtschaft zur Last: Land- und Forstwirtschaft müssen sich mit veränderter Wasserversorgung und Ertragsveränderungen auseinandersetzen, der Tourismus mit der Veränderung von Landstrichen, insbesondere von Küsten, das Gesundheitswesen mit Unterernährung und Krankheiten, Energieversorger, Verkehrs- und Bauwesen mit Wetterextremen und vielen weiteren Veränderungen. Gemäss des “Stern Review” könnten künftig weltweit 5-20% der Wirtschaftsleistung für die Bewältigung von “Klimaschäden” aufgewendet werden – wenn nichts getan wird, um ihnen vorzubeugen. Und die Wissenschaftler sind sich einig: Vorbeugen käme da in jedem Fall günstiger.

Was können wir dagegen tun?

Die Klimaveränderungen einzig verhindern oder auch nur bremsen zu wollen, wird nicht mehr genügen. Wir werden uns den unaufhaltsamen Veränderungen unweigerlich anpassen müssen. Nur gut, dass der Mensch grundsätzlich ein äusserst anpassungsfähiges Wesen ist!

Und den Klimawandel sowohl bremsen als auch sich anpassen können wir alle, jeder einzelne von uns: Indem wir unseren oftmals leichtfertigen Verbrauch von Energie und Gütern verringern und sparsame, klimafreundliche technische Neuentwicklungen und sogenannte erneuerbare Energien nutzen.

Wenn wir das tun, wird die Wirtschaft sich schliesslich uns anpassen: Die Wirtschaft stellt nämlich das her, was wir “auf dem Markt” suchen und kaufen. Dabei zu beachten ist allerdings, dass viele raffinierte Werbemenschen uns einzureden versuchen was wir suchen, damit wir kaufen, was sie herstellen! Sich klimafreundlich verhalten kann also auch heissen, darauf zu achten, sich nichts unnötiges einreden zu lassen.

Und wenn ihr zufällig raffinierte Werbemenschen seid, dann redet den Leuten doch ein, dass die klimafreundliche Dinge brauchen – damit wäre dann allen geholfen.

Denn der Wirtschaft wird ja gerne nachgesagt, dass sie die Politik bestimmt. Und wenn die Wirtschaft klimafreundliche Dinge tut und produziert, weil wir die haben wollen, werden sich die Politiker spätestens dann auch danach richten.

Was könnt ihr konkret machen, um das Klima zu schützen?

Es gibt unzählige Mittel und Wege, wie wir klimaschonend leben und Energie sparend leben können. Und jede Familie bzw. jeder Haushalt mag seine ganz eigenen Baustellen haben, an welchen jeweils mehr oder weniger bewegt werden.

Einige Schweizer Kantone haben dazu eine spannende Infoseite voller Tipps für euch zusammengestellt. Auch die folgenden, hier sehr kurz gehaltenen Vorschläge findet ihr darunter wieder:

  • Mit klimaschonenden bzw. energieeffizienten Verkehrsmitteln und in Massen reisen
  • Mit klimaschonenden bzw. energieeffizienten Verkehrsmitteln zur Arbeit/Schule pendeln
  • In der näheren Umgebung hergestellte Lebensmittel verwenden
  • Moderne, energieeffiziente Elektrogeräte und Lampen verwenden
  • Unnötigen Stromverbrauch vermeiden (nicht gebrauchte Geräte abschalten!)
  • Und wenn ihr Hausbesitzer, Vermieter oder Bauherren seid: energieeffizient bauen und renovieren

Und wie steht ihr zum Klimaschutz? Was macht ihr bereits? Was könntet/werdet ihr noch tun?

Wie Streusalz wirkt - Nutzen und Gefahren im Winterdienst

(Titelbild: CC BY-SA3.0 by Heidas)

Willkommen im neuen Jahr – mit viel Schnee bis in die Niederungen und entsprechend viel Streusalz auf den Strassen. Letzten Samstag habe ich zwei Schneepflügen zugesehen, die in aller Eile unseren Busbahnhof geräumt haben. Dabei fiel mir am Heck jedes Fahrzeugs gleich ein Streuteller ins Auge. Dieses runde Gerät dreht sich fortlaufend und verteilt – die Zentrifugalkraft ausnutzend – Streusalz auf die frisch geräumte Fläche.

Tatsächlich wird in der Schweiz im Vergleich zu anderen europäischen Ländern – besonders wenn man ihre Grösse und Bevölkerung berücksichtigt – nach wie vor ziemlich viel Salz gestreut. Aber warum machen die Städte und Gemeinden das? Wie kann Streusalz verhindern, dass es Glatteis gibt? Und wie sorgt es dafür, dass Eis und Schnee schmelzen?

Was ist Streusalz?

Das Salz, welches gegen Schnee- und Eisglätte gestreut wird, ist tatsächlich nichts anderes als gewöhnliches Kochsalz, also Natriumchlorid, NaCl. In Ländern wie Deutschland, die auf geniessbares Kochsalz eine Salzsteuer erheben, wird das Streusalz “vergällt”. Das heisst, es werden Stoffe hinein gemischt, die das Salz ungeniessbar machen. Deshalb ist Streusalz – das in grossen Mengen gebraucht wird – oft wesentlich preiswerter als Tafel- oder hochreines Labor-Salz.

Wenn das Streusalz auch bei sehr hartem Frost funktionieren soll, wird das Natriumchlorid zudem mit anderen Salzen wie Calciumchlorid, CaCl2, oder Magnesiumchlorid, MgCl2, vermischt. Diese Salze haben auch bei niedrigeren Temperaturen eine auftauende Wirkung.

All diese Salze bestehen aus Ionen, also elektrisch geladenen Atomen, die sich zu einem Gitter – einem Ionenkristall – zusammengelagert haben. In Wasser werden die Ionen jedoch voneinander getrennt: Jedes dieser Salze löst sich in Wasser. Aus Natriumchlorid entstehen dabei Natrium- und Chlorid-Ionen:

NaCl –(H2O)–> Na+(aq) + Cl(aq)

Wie kann Streusalz verhindern, dass Wasser gefriert?

Wenn flüssiges Wasser auf 0°C oder darunter abkühlt, lagern sich auch Wassermoleküle zu Eiskristallen zusammen. Allerdings sind Wassermoleküle nicht elektrisch geladen. Stattdessen sind die Elektronen in solchen Molekülen nicht gleichmässig verteilt, sodass ein Ende eines Wassermoleküls negativer, das andere positiver geladen ist.

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Das Sauerstoff-Ende (rot) eines H2O-Moleküls hat einen negativen, das Wasserstoff-Ende (weiss) einen positiven Ladungsüberschuss.

Das lässt sich übrigens mit diesem spannenden Experiment ganz einfach zeigen.

Die negativ geladenen Enden wenden sich im Eiskristall den positiv geladenen Enden der nächsten Moleküle zu und umgekehrt. So bestimmen die Ladungsüberschüsse in den Wassermolekülen die Form des Eiskristallgitters.

Ein Modell eines Eiskristalls: Die schwarzen bzw. silbernen “Eckstücke” stellen Wassermoleküle dar, die Verbindungsstäbe stehen für Wasserstoffbrücken zwischen den unterschiedlichen Ladungsschwerpunkten benachbarter Moleküle.

Wenn man nun Kochsalzkristalle (“Salzkörner” sind ganz kleine Kristalle) in flüssiges Wasser mischt, lagern sich die Wassermoleküle mit dem jeweils entgegengesetzt geladenen Ende an die Natrium- und Chlorid-Ionen im Gitter an. Dabei drängen sich die Wassermoleküle derart heftig um die Ionen, dass diese schliesslich aus dem Ionengitter herausgelöst werden! Damit können die einzelnen Ionen vollständig von Wassermolekülen umlagert werden.

Natriumion mit Hydrathülle
Ein Natrium-Ion ist vollständig von Wassermolekülen umgeben, die dem positiv geladenen Ion ihre negativ geladenen Enden zuwenden. An diese innere Hülle lagern sich weitere Wassermoleküle an – das negative Ende wiederum dem Ion zugewandt – an, sodass eine Hydrat-Hülle sehr dick werden kann.

Chemiker sagen, die Ionen sind von einer “Hydrat-Hülle” umgeben, oder – kurz gesagt – “hydratisiert” (das “aq” in der Reaktionsgleichung oben meint genau diesen Zustand: Na+(aq) ist ein Natrium-Ion mit Hydrat-Hülle; “aq” steht dabei für das lateinische “aqua” für Wasser).

Wasser ist nicht multitaskingfähig

Damit sind die Wassermoleküle ziemlich schwer beschäftigt. Nicht einmal bei Temperaturen knapp unter 0°C können sie sich von den Ionen losreissen und ihre Plätze in einem Eiskristall einnehmen. Und da die Hydrathülle eines jeden Ions aus weit mehr als einer Molekül-Schicht besteht, ist schnell ein Grossteil aller Wassermoleküle zu beschäftigt, um zu gefrieren. Das Wasser mit den gelösten und hydratisierten Salz-Ionen bleibt also flüssig.

Erst bei Temperaturen unter -21°C (im Labor) bilden sich Mischkristalle, die aus Salz-Ionen und Wassermolekülen bestehen – kurz gesagt: Salzwasser-Eis. Das Kristallgitter von Salzwasser-Eis ist allerdings bei weitem nicht so regelmässig wie das von reinem Wasser-Eis. Das ganze Mischmasch hält einfach weniger gut zusammen. Deshalb ist der Gefrierpunkt von Salzwasser tiefer als der von reinem Wasser. Chemiker und Physiker nennen diesen Umstand “Gefrierpunkterniedrigung”.

Gefrierpunkterniedrigung auf der Strasse

Streut man also Kochsalz auf eine nasse Strasse, so bildet sich auch bei Temperaturen bis zu etwa -10°C kein Eis. Enthält das Streusalz zudem oder stattdessen Calcium- oder Magnesiumchlorid, kann das Wasser auf der Strasse auch bei bis zu -20°C flüssig bleiben. Diese Salze enthalten nämlich Ca2+– bzw. Mg2+-Ionen, die grösser als Na+-Ionen sind. Damit ist das Gitter von Calcium- bzw. Magnesium-Salzwasser-Eis noch unregelmässiger als das von Natrium-Salzwasser-Eis – und hält entsprechend noch weniger gut zusammen.

Und wenn es bereits friert: Wie kann Streusalz Eis schmelzen?

Eiswasser und Le Châtelier: Eine bewegliche Angelegenheit

Erreicht die Temperatur von Wasser (fest oder flüssig) den Gefrierpunkt (bei 0°C) können sich zuvor bewegliche Wassermoleküle zu einem festen Eiskristall zusammenlagern und sich daraus lösen und zu flüssigem Wasser werden. Das heisst: Während an einigen Orten an der Kristalloberfläche neue Moleküle hinzu kommen, werden an anderen Orten andere Moleküle wieder abgelöst. Ob dabei (mehr) Eis entsteht oder schmilzt, hängt davon ab, ob dem Wasser Energie zugeführt oder entzogen wird.

Sobald nämlich flüssiges Wasser und Eis miteinander vorhanden sind, ist das Ganze ein dynamisches (d.h. bewegliches) System, welches dem Gesetz von Le Châtelier gehorcht (das Le Châtelier höchstselbst uns hier am Flughafen erklärt).

Wird dem Eiswasser Energie entzogen (z.B. durch Kühlung), kommen mehr neue Moleküle zum Eis hinzu, als davon abgelöst werden, sodass irgendwann das ganze Wasser zu Eis erstarrt. Wird stattdessen Energie hinzugefügt (z.B. durch Erwärmen), verhält es sich umgekehrt: Es lösen sich mehr Moleküle vom Eis als hinzu kommen, bis das ganze Wasser flüssig ist.

Mit diesem spannenden Experiment könnt ihr feststellen, dass sich die Temperatur des Eiswassers durch Erwärmen tatsächlich nicht ändert, so lange Eis und Wasser miteinander vorhanden sind!

In einer Umgebung ohne sich verändernde äussere Einflüsse (insbesondere ohne Energie-Austausch, was im Alltag ziemlich unrealistisch ist), kann sich sogar ein dynamisches Gleichgewicht einstellen: Wenn stets ebenso viele Wassermoleküle zum Kristall hinzukommen wie sich davon lösen, gefriert und schmilzt das Wasser ständig – aber die Menge des Eises (und des flüssigen Wassers) ändert sich nicht!

Kochsalz übt einen Zwang auf das System aus

Bringt man nun Kochsalz (oder einen anderen Stoff mit “Auftauwirkung”) in ein solches Eiswasser-System, dann wird ein erheblicher Teil Moleküle des flüssigen Wassers mit der Bildung von Hydrat-Hüllen um die Ionen “beschäftigt”. Diese Moleküle “fehlen” dem Eiswasser-System damit regelrecht. Und gemäss dem Gesetz von Le Châtelier ist das System umgehend darum bemüht, diesen Verlust auszugleichen.

Das Fehlen der flüssigen Wassermoleküle führt also dazu, dass sich mehr Moleküle aus dem Eis lösen, um die Fehlenden zu ersetzen. Das sind mitunter so viel mehr Moleküle, dass insgesamt mehr Wasser flüssig wird als gefriert – obwohl ohne Salz mehr Wasser gefroren wäre! So kann die Gegenwart von Streusalz selbst bei Temperaturen unter 0°C Eis zum Schmelzen bringen.

Wie kommt man bei Frost zum dynamischen System?

Wenn ihr gut aufgepasst habt, werdet ihr jetzt vielleicht einwenden, dass das Auftauen nur funktionieren kann, wenn Eis und flüssiges Wasser vorhanden sind. Und letzteres gibt es bei Frost naturgemäss nicht!

Guter Einwand. Aber die Verwender von Streusalz wissen das natürlich auch. Deshalb streuen sie das Salz gleich mit flüssigem Wasser – als pflotschigen Salz-Matsch oder gar als mehr oder weniger flüssige Salzlösung – also als “Sole” wie die Fachleute so etwas nennen.

Ausprobieren könnt ihr das Ganze hingegen mit trockenem Salz – in eurer warmen Wohnung. Da beginnt Eis nämlich von selbst zu schmelzen und bekommt so eine feuchte Oberfläche. Wie könnt ihr das nutzen? Das zeige ich euch in dieser ganz herzigen Experimentier-Anleitung.

Wie schadet Streusalz der Umwelt?

So nützlich Auftausalz auch ist, bringt es doch eine ganze Reihe von Problemen für die Umwelt, in die es ausgebracht wird, mit sich.

Beeinträchtigung von Gewässern

Die grossen Mengen an Salzen, die auf Strassen und Wege gestreut werden, lösen sich äussert gut in Wasser. Das sollen sie ja auch, denn sonst würde das Ganze nicht funktionieren. Die Salzlösung, die aus Schneematsch und tauendem Eis entsteht, kann jedoch ebenso leicht wie ablaufendes Wasser in umliegende Gewässer geraten. Und Salzwasser hat eine höhere Dichte als das normalerweise dort vorhandene Süsswasser: Ein Volumen an Salzwasser ist schwerer als das gleiche Volumen Süsswasser!

Ein natürliches Gewässer, das aus mehreren Wasserschichten unterschiedlicher Temperatur und Dichte besteht (die Dichteanomalie des Wassers führt dazu, dass reines Wasser bei rund 4°C die grösste Dichte hat), kann durch den Zufluss von Salzwasser von gestreuten Strassen eine oder mehrere neue Schicht/en erhalten. Solche neuen oder veränderten alten Schichten bringen die natürliche, temperaturgesteuerte Umwälzung der Wassermassen im Gewässer durcheinander, was die Verteilung von Sauerstoff und Nährstoffen beeinträchtigt und damit die Lebewesen im Gewässer gefährdet.

Schädigung von Bäumen und anderen Pflanzen

Die Gewächse im Binnenland und in Süssgewässern sind daran angepasst, dass sie Süsswasser “trinken” und ihre Nährstoffe daraus beziehen können. Das heisst, der Austausch von Wasser und darin gelösten Stoffen zwischen Wurzeln oder Blättern und ihrer Umgebung, der auf Osmose beruht (die ihr hiermit genauer erforschen könnt) ist fein auf einen geringen Salzgehalt abgestimmt.

Kurz gesagt nehmen viele Pflanzen- (und andere) Zellen um so mehr Wasser auf, je mehr Salze sie enthalten – und geben Wasser ab, wenn draussen mehr Salze sind als in ihrem Inneren. Das gilt jedoch nicht für Wurzeln, die Wasser mitsamt der darin enthaltenen Mineralstoffe (die nichts anderes als Salz-Ionen sind) aufnehmen sollen, von welchen die Pflanze sich ernährt.

Geraten diese Pflanzen nun unverhofft an Salzwasser von gestreuten Strassen, “trinken” sie das Wasser mitsamt dem vielen Salz. Das wiederum wird in die verschiedenen Pflanzenzellen verteilt und zieht weiteres Wasser nach sich: Die Zellen schwellen an und funktionieren nicht mehr richtig. In Folge dessen kränkeln die Pflanzen und gehen im schlimmsten Fall ein.

Tiere bekommen wunde Pfoten

Wer schon einmal mit einem Kratzer in der Haut im Meer gebadet hat, wird es selbst erfahren haben: Salzlösung tut weh! Sie kann die Haut reizen, besonders an empfindlichen vorgeschädigten Stellen. Wie zum Beispiel in den Zehenzwischenräumen von Säugetieren. Wenn es uns Menschen juckt oder zwickt, dann kratzen wir – die Tiere hingegen lecken solche wunden Stellen mit der Zunge. Im Speichel der Tiere wiederum lauern Keime, die so an die wunden Stellen geraten und Infektionen hervorrufen können, welche zu stärkeren Entzündungserscheinungen führen. Und mehr Salz in diesen Wunden tut wiederum weh, sodass mehr geleckt wird…

Mit dem Haushund oder der Katze können wir zum Tierarzt gehen, Salben auftragen und eine Halskrause anlegen, um das Lecken zu unterbinden – begeistert werden die Haustiere davon aber nicht sein. Und Wildtiere wie Füchse können in der Regel nicht einmal auf diese Hilfe zählen.

Korrosion von Metall- und Betonbauteilen

Vielleicht ist euch ja auch schon einmal aufgefallen, dass man in Häfen oder allgemein an der Meeresküste besonders viel Rost antrifft – tatsächlich rostet Eisen, das Kontakt mit Salzwasser hat, deutlich schneller als Eisen fernab vom Meer.

Das rührt daher, dass Wasser mit darin gelösten Salz-Ionen wesentlich besser elektrischen Strom leitet als Süsswasser oder gar reines Wasser. Und elektrische Leitfähigkeit ist für das Rosten und ähnliche Prozesse, die die Chemiker als “Korrosion” zusammenfassen, unverzichtbar. Korrosion ist nämliche eine Folge chemischer Reaktionen, bei welchen zwischen den Reaktionspartnern Elektronen ausgetauscht werden. Und Elektronen (oder andere geladene Teilchen) auf Wanderschaft sind…elektrischer Strom.

So können durch salzhaltiges Wasser Elektronen vom Eisen direkt zu dessen Reaktionspartnern wandern, was die Korrosion – das Rosten – besonders einfach macht. Was genau dabei geschieht, könnt ihr übrigens hier in meiner Rostparade nachlesen.

Autos, die über gesalzene Strassen fahren, rosten also ebenso schneller wie Brücken und andere Bauwerke aus Eisen, Stahl oder Stahlbeton, die rund um solche Strassen stehen.

Gibt es Alternativen zum Streusalz?

Da die Probleme, welche das Streuen mit Salz mit sich bringt, den Winterdiensten wohlbekannt sind, gibt es verschiedene Alternativen, die jedoch alle ihren eigenen Haken haben:

Harnstoff oder Ammoniumsulfat

Diese beiden Verbindungen haben eine ähnliche auftauende Wirkung wie Kochsalz und seine schwereren Verwandten. Allerdings enthalten sie Stickstoff (Harnstoff ist CO(NH2)2,Ammoniumsulfat ist (NH4)2SO4 !) in Verbindungen, die für viele Pflanzen sehr nahrhaft sind. Massenweise auf Strassen ausgebracht und im umliegenden Boden versickert können sie daher zu Überdüngung führen. Ausserdem ist auch Ammoniumsulfat eine Ionenverbindung und bringt die gleichen Probleme mit sich wie alle anderen Salze auch.

Abstumpfendes Streugut: Split, Sand, Blähton und ähnliches

Solche Streugüter sind im Prinzip nichts anderes als zerkleinerte Steine – weitgehend wasserunlöslich und unreaktiv. Damit gefährden sie zwar nicht den Stoffwechsel von Pflanzen und Tieren, müssen nach der Verwendung aber wieder eingesammelt und entsorgt werden. Würde man das nicht tun, würden Sand und Steinsplitter irgendwann Rinnsteine und Abflüsse verstopfen.

Und die Entsorgung oder gar Wiederaufbereitung von Streugut ist alles andere als einfach. Nachdem nämlich unzählige Autos darüber gefahren sind, ist das Streugut von Reifenabrieb und anderem Schmutz verunreinigt. Der müsste erst vom Streugut abgeschwaschen und dann seinerseits umweltschonend entsorgt werden.

Was ihr tun könnt, wenn euer Gehweg überfriert

Wenn ihr in Deutschland oder Österreich wohnt, werdet ihr keine grosse Wahl haben. Hier ist nämlich der Einsatz von Streusalz für Privatpersonen verboten (die Winterdienste der Kommunen streuen hingegen bei extremen Wetterbedingungen Salz auf den Strassen).

In der Schweiz gibt es dagegen kein generelles Verbot, sodass ihr hierzulande selbst entscheiden könnt, ob und womit ihr eure Gehwege streut.

Auf eurem privaten Garten- oder Fussweg, fernab von zahllosen Gummireifen, ist abstumpfendes Streugut eine gute Wahl für Pflanzen und Tiere. Ihr werdet es bloss immer wieder nachstreuen und schliesslich wieder einsammeln müssen, sobald Schnee und Eis geschmolzen sind.

Die beste Massnahme gegen Eisglätte auf Wegen und Strassen ist letztendlich das Schneeschippen. Denn was einmal geräumt ist, kann nicht mehr überfrieren und schmilzt im Frühjahr rückstandslos weg. Einzig bei überfrierendem Regen hilft das Schaufeln auch nicht weiter. Aber meiner Erfahrung nach ist das selbst hier in der Schweiz eine Ausnahme-Wettererscheinung.

Bevor ihr irgendetwas streut, empfehle ich euch, erst einmal zu schaufeln was das Zeug hält. Denn ganz ohne den Einsatz von Streugut wird es im heutigen Strassenverkehr kaum mehr gehen. Aber die Menge des dabei verwendeten Streusalzes kann so gering wie möglich gehalten werden. Und dabei könnt ihr alle mitmachen!

Und wie geht ihr gegen Schnee- und Eisglätte vor?

Seit April 2019 ist dieser Beitrag Teil der Blogparade “Dein krassestes Müll-Erlebnis” auf www.aktiv-durch-das-leben.de . Denn allein die Recherche für diesen Beitrag als solche war schon krass!

Rauchen schadet der Gesundheit – das weiss jeder, denn es steht schliesslich auf jeder Tabak-Packung. Dass Zigarettenabfälle ebenso der Umwelt schaden, wird dabei jedoch verschwiegen. Und wer kennt sie nicht, die in Bahngleisen, an Strassenrändern, in Parks und an Stränden herumliegenden Zigarettenkippen, die viele Leute achtlos in die Gegend werfen. Selbst in der deutschsprachigen Schweiz findet man sie noch. Und hier sei das achtlose Wegwerfen von Zigarettenkippen innerhalb Europas noch am meisten verpönt.

 

Wie ein winziger Stummel zum Problem wird

Einze Zigarettenkippe ist doch winzig, oder nicht? Die Weltgesundheitsorganisation WHO schätzt das Gewicht eines Filters, 5x5x15mm, auf 0,17g. Was kann so ein kleines Ding schon stören? Die Menge machts: Von 5 bis 6 Billionen (das ist eine 5 oder 6 mit 12 Nullen!) Zigaretten, die weltweit in einem Jahr geraucht werden, landeten laut WHO im Jahr 2014 bis zu 4 Billionen Filter irgendwo in der Gegend – und nicht im vorgesehenen Aschenbehälter. Das sind bis zu 680’000 Tonnen Zigarettenkippen!

Und wir alle wissen, wie abstossend es aussieht, wenn die überall herumliegen. Dabei ist der äussere Eindruck noch das kleinste Problem.

 

Warum gibt es Zigarettenfilter, wenn die so viel Abfall machen?

Bis in die 1950er Jahre bestanden Zigaretten nur aus Tabak und einer Papierhülse, die weitestgehend verbrannten. Dann fand man heraus, dass der Tabakrauch neben dem Nicotin, auf das man es abgesehen hatte, reihenweise (weitere) gesundheitsschädliche Stoffe enthält: Schwermetalle, Verbrennungsrückstände wie aromatische Kohlenwasserstoffe, Teer und viele mehr… und die alle atmeten die Raucher ungehindert ein – und wurden all zu schnell krank davon.

Nun tragen krankmachende Produkte nicht gerade zum guten Ruf eines Industriezweigs bei. Deshalb ersannen die Hersteller eine Vorrichtung, um die gesundheitsschädlichen Stoffe (zumindest teilweise) vom übrigen Rauch abzutrennen, bevor der Raucher ihn einatmet: Einen Filter.

Wie ein Filter funktioniert

Ein Filter ist ein poröses – also ein von winzigen Öffnungen durchzogenes – Material, durch welches der Rauch hindurchströmt. Dabei bleiben bestimmte Partikel – weil sie zu gross für die Öffnungen sind – in dem Material hängen, während kleine Moleküle ungehindert hindurch gelangen können.

Ein ganz einfacher Filter ist das Spielzeugsieb im Sandkasten: Feiner Sand gelangt hindurch, gröbere Kiesel bleiben in den Maschen hängen. Auch ein Kaffeefilter funktioniert so: Wasser mit darin gelösten Farb- und Aromastoffen gelangt hindurch, während die groben Kaffeesatz-Partikel im Filter zurückbleiben.

Das passende Material, um Billionen handliche, möglichst leichte Filter für Zigarettenrauch herzustellen, war seinerzeit und bis heute ein Kunststoff namens Celluloseacetat.

 

Was ist Celluloseacetat?

Cellulose: Ein Naturstoff

Cellulose ist ein Biopolymer, d.h. ein riesenlanges Kettenmolekül, das von Lebewesen hergestellt wird. Und zwar in diesem Fall von Pflanzen. Die speichern nämlich ihre energiereichen Zucker – speziell Glucose, die sie per Fotosynthese herstellen – indem sie die kleinen Zucker-Moleküle zu langen Ketten aneinander knoten: Cellulose ist damit ein Vielfachzucker, ein Polysaccharid. Die Rohform, in welcher Cellulose in der Industrie aus Pflanzen gewonnen wird, ist besser als “Zellstoff” bekannt. Sie dient unter anderem zur Herstellung von Papier.

Ein Ausschnitt aus einem Cellulose-Molekül - dem Rohstoff für die Herstellung von Zigarettenfiltern

Zellulose – ein Biomolekül. Die Zeichnung zeigt ein sich immer wiederholendes Kettenglied.

Es gibt reichlich Mikroorganismen, die sich von lebenden oder toten Pflanzenteilen ernähren. Die leben entweder eigenständig oder besiedeln den Verdauungstrakt verschiedener pflanzenfressender Tiere (und des Menschen!). Dort übernehmen sie für ihre grossen Wirte die Verarbeitung der Cellulose zu verwertbaren Einfach- oder Zweifachzuckern. Damit ist Cellulose gut biologisch abbaubar.

Essigsäure: Ein weiterer Naturstoff kommt dazu

Wenn man die Cellulose aber mit reiner Essigsäure (und einem passenden Katalysator) zusammenbringt, können die Essigsäure-Moleküle mit den OH-Gruppen der Glucose-Ringe in der Cellulose reagieren. Die Reaktion wird Veresterung genannt: Aus einer Säure (hier Essigsäure) und einem Alkohol (ein Stoff mit OH-Gruppen, hier die Cellulose – ja, Zucker sind chemisch gesehen Alkohole) entsteht ein sogenannter Ester.

Chemiker benennen solche Stoffe als [Säure][Alkohol]-Ester (hier so etwas wie “Essigsäurecellulosyl-Ester”) oder als [Alkohol][Salz/Rest der Säure] (hier: “Celluloseacetat” – denn die Salze und andere Verbindungen der Essigsäure heissen “Acetate”). Da die Cellulose an diesem Molekül den Löwenanteil hat, ist der zweite Name treffender. Deshalb hat sich “Celluloseacetat” als Name für diesen Ester allgemein durchgesetzt.

Celluloseacetat: In dieser Ausführung sind zwei von drei OH-Gruppen der Zucker-Ringe mit Essigsäure verestert.

Celluloseacetat für Zigarettenfilter: Zwei von drei OH-Gruppen der Cellulose sind nun mit je einem Essigsäurerest (CH3COO-) verestert.

Je nachdem, wie viele OH-Gruppen der Cellulose so verestert sind, haben die verschiedenen Celluloseacetate leicht unterschiedliche Eigenschaften. Für die Herstellung von Fasern – auch für Zigarettenfilter – eignet sich die Sorte mit zwei von drei veresterten OH-Gruppen pro Glucose-Ring besonders gut.

Aber: Aus zwei Naturstoffen wird ein Kunststoff

Und da auch Essigsäure ein Naturstoff ist, könnte man meinen, Celluloseacetat trage seine Bezeichnung als “Biokunststoff” zu Recht. Es gibt allerdings ein Problem damit:

Die Essigsäurereste an den Zuckerketten sind so sperrig, dass die massgeschneiderten Enzyme von cellulosefressenden Mikroben die Acetylcellulose kaum mehr spalten können. Und da Acetylcellulose ein Kunststoff ist, hält die Natur dafür keine (bekannten) massgeschneiderten Enzyme bereit. Somit hat Acetylcellulose eine unliebsame Eigenschaft mit den Erdölkunststoffen gemein: Sie ist nur schwerlich biologisch abbaubar (das dauert mindestens 15 Jahre, in Salzwasser angeblich sogar bis 400 Jahre!).

Das mag den Herstellern von Textilfasern vielleicht gefallen: Wer möchte schon Kleidung oder Regenschirme, die sich bei Wind und Wetter langsam auflösen? Wenn es um Wegwerfprodukte wie Zigarettenfilter geht, wird die mangelnde oder fehlender Abbaubarkeit aber zum Problem. Denn einmal weggeworfen bleibt so ein Kunststoff viel zu lange unbehelligt liegen.

 

Kann man Celluloseacetat recyceln?

Mit vielen Kunststoffen kann man das. Auch mit Celluloseacetat dürfte das nicht all zu schwer sein. Ester sind nämlich empfindlich gegenüber basischen Stoffen. Eine Base katalysiert nämlich die sogenannte Ester-Verseifung (mit dieser Reaktion wird auch Seife hergestellt, deshalb heisst sie so!) : Aus einem Ester werden in basischer Umgebung wieder Säure und Alkohol – also Essigsäure und Cellulose. Und die mag man voneinander trennen, um die Cellulose weiter abzubauen oder wiederzuverwerten…

Oder man verwendet zur Herstellung von Zigarettenfiltern statt Acetylcellulose einen anderen, biologisch abbaubaren Stoff. Dann müsste man die Billionen von Kippen nicht einmal wieder einsammeln, um sie zu recyceln…

Schön wäre es, wenn das so einfach wäre. Leider wird dabei nicht berücksichtigt, welchem Sinn und Zweck Zigarettenfilter dienen: Die filtern giftige Stoffe aus dem Rauch. Die dann zwangsläufig im Filter hängen. Und die vor dem Recycling da wieder raus zu bringen wäre aufwändig und teuer – und sie in abbaubaren Filtern liegen zu lassen nicht weniger gefährlich.

 

Das eigentliche Problem mit Zigarettenfiltern

… ist somit nicht der Kunststoff, aus dem sie bestehen. Sondern das, was nach dem Rauchen darin ist. Und in Zigarettenrauch lassen sich bis zu 9600 verschiedene Stoffe nachweisen, von welchen laut WHO mindestens 7000 gefährlich sind.

Im Zigarettenfilter bleiben davon vor allem jene hängen, die zu grösseren Partikeln zusammen klumpen und so nicht mehr durch die Poren passen.

Dazu gehören unter anderem

  • Kohlenwasserstoffe (“Teer”: sowohl langkettige, wie man sie auch als Erdölbestandteile kennt, als auch ringförmige (“cyclische”) und aromatische Kohlenwasserstoff, darunter Benzol, Toluol und die ebenso als krebserregend bekannten PAK bzw. PAH (Polyaromatischen Kohlenwasserstoffe bzw. polyaromatic hydrocarbons)
  • Phenol und damit verwandte Stoffe, die ebenfalls zu den aromatischen Verbindungen zählen und giftig sind
  • Nicotin und andere Giftstoffe aus der Gruppe der Alkaloide
  • Schwermetallionen z.B. von Cadmium, Quecksilber, Kupfer, Arsen, Nickel, Blei
  • Rückstände von Pflanzenschutzmitteln (aus dem Tabak-Anbau)
  • Spuren radioaktiver Isotope wie Polonium 210 (die werden von der Tabakpflanze besonders eifrig aus der Luft gesammelt)

 

Neue Zigarette im Vergleich mit Zigarettenkippe: Rückstände aus dem Zigarettenrauch färben den gebrauchten Filter bräunlich.

Links: Filter einer neuen Zigarette – das saubere Zelluloseacetat ist weiss.
Rechts: Filter einer gerauchten Zigarette: Rückstände aus dem Rauch färben den Filter gelblich braun (By Akroti [CC BY-SA 2.5 ], from Wikimedia Commons)

Achtung! Zigarettenfilter halten nicht was sie versprechen!

All diese Stoffe werden vom Zigarettenfilter höchstens zur Hälfte abgefangen, sodass sie auch im eingeatmeten Rauch enthalten sind! Passivraucher bekommen überdies den ungefiltert aufsteigenden Rauch vom anderen Ende der Zigarette mit!

 

Welcher Schaden durch weggeworfene Zigarettenkipppen entsteht

Das ist eine stattliche Liste als Umweltgifte und als gesundheitsschädlich berüchtigter Stoffe. Und sie alle landen tagtäglich dort, wo wir zur Arbeit gehen, wo unsere Kinder spielen, wo wir unsere Ferien geniessen möchten. Und dort will sie wirklich niemand haben. Denn Wind und Wetter ausgesetzt lösen sich die Schadstoffe mit der Zeit aus den Kippen, gelangen in Böden und Gewässer.

Besonders das Nicotin und andere Stoffe aus der Gruppe der Alkaloide sind akut giftig. Und das nicht nur für Kleinlebewesen (deshalb wurde Nicotin als Pflanzenschutzmittel im Ackerbau verwendet, bis es in den 1970er Jahren als zu giftig verboten wurde!). Ebenso können sich kleine Kinder, die Zigarettenkippen finden und verschlucken, daran vergiften.

Schon ein bis drei Kippen können bei Kleinkindern Vergiftungserscheinungen wie Übelkeit, Durchfall und Erbrechen auslösen. Und das passiert gar nicht so selten. Allein der Giftnotruf Berlin hat im Jahr 2008 921 Fälle von verschluckten Tabakabfällen bei Kleinkindern gezählt. Anfang der 2000er Jahre waren es noch rund 260 Fälle im Jahr.

 

Was wird gegen den Sondermüll auf den Strassen getan?

Kein Wunder, treiben Städte, Gemeinden und Tourismusbetriebe einen Riesenaufwand, um die Kippen zu beseitigen. Allein in der “sauberen” Schweiz legen Städte und Gemeinden Jahr für Jahr 55 Millionen Franken nur für das Beseitigen von Zigarettenkippen hin!

Andere Länder greifen zu wahrhaft drakonischen Massnahmen: In Singapur, das wir bald besuchen werden, gibt es schmerzhaft hohe Bussgelder für das Wegwerfen von Zigarettenkippen (und anderen Abfällen). Sogar mit Stockschlägen oder Gefängnisstrafen muss man laut den Reiseinformationen des Eidgenössischen Departements für auswärtige Angelegenheiten EDA rechnen.

Selbst das hilft jedoch nur so lange, wie konsequent überwacht und bestraft wird. Dass viele Stoffe in Zigarettenkippen eigentlich als Sonderabfall entsorgt gehören, ist zu vielen Menschen rund um den Globus nicht bewusst. Auch in Mitteleuropa.

 

Was ihr gegen die Kippenflut tun könnt

  1. Ihr alle könnt dazu beitragen, dass weniger Zigarettenkippen eure Umwelt verdrecken. Und zwar so:
  2. Nicht (mehr) rauchen: Die wirkungsvollste Methode – und sowieso besser für eure Gesundheit. Auch wenn es oft leichter gesagt als getan ist.
  3. Wenn ihr doch (noch) raucht: Nicht dort rauchen, wo Kinder spielen oder ihr die Natur geniessen möchtet
  4. Ganz wichtig: Wenn ihr raucht, entsorgt Asche und Kippen in einen dafür vorgesehenen Abfallbehälter! Werft sie niemals einfach weg!
  5. Wenn ihr dort rauchen möchtet, wo es keine fest angebrachten Aschenbehälter gibt: Nehmt einen verschliessbaren Aschenbecher mit, damit ihr Asche und Kippen später richtig entsorgen könnt!
  6. Wenn ihr andere beobachtet, die ihre Kippen einfach in die Gegend werfen: Weist sie auf die Gefährlichkeit der Zigarettenabfälle und allenfalls vorhandene Ascheimer hin.
  7. Sprecht mit euren Kindern offen und eindringlich darüber, dass auch Zigarettenkippen “richtig giftig” sind. Dass sie nicht in den Mund genommen werden dürfen oder auch nur herumliegen sollten. Im besten Fall bleibt etwas davon hängen, wenn sie später einmal als Jugendliche unter sich sind.
  8. Nehmt die Säuberung “eures” Spielplatzes, Dorfplatzes, Seeufers oder Lieblings-Naherholungsgebietes selbst in die Hand – am besten mit der ganzen Familie. Sammelt herumliegende Kippen ein, um sie ordnungsgemäss zu entsorgen. Nicht vergessen: Schutzhandschuhe tragen!

 

Sind E-Zigaretten eine Lösung für das Kippenproblem?

Warum steht “Steigt auf E-Zigaretten um” nicht auf der Liste oben? Diese handlichen elektrischen Geräte erzeugen Wärme, welche eine Flüssigkeit mit oder ohne Nikotin aus Tabak oder anderen Erzeugnissen zum Verdampfen bringt. Der Dampf kann dann anstelle von Zigarettenrauch eingeatmet werden.

Sollte das nicht alle Probleme mit giftigem Rauch und Kunststoff-Filtern lösen?

Auch E-Zigaretten bestehen aus Kunststoffen, Metallen, Elektronik, enthalten Batterien und müssen mit Patronen – Behältern für die zu verdampfenden “Liquids” – bestückt werden.

Eine E-Zigarette der vierten Generation: ein hochtechnisches Stück Elektronik

Eine E-Zigarette wie diese ist ein hochtechnisches elektronisches Gerät, das aus einer Vielzahl von Stoffen besteht und alle Umweltprobleme von Elektronik und ihrer Herstellung mit sich bringt. (By Jacek Halicki [CC BY-SA 4.0 ], from Wikimedia Commons)

Laut WHO ist der noch junge E-Zigaretten-Markt weitgehend unreguliert. Das heisst vor allem, er ist in seiner Vielfalt unüberschaubar. Viele Produkte sind für den Einweggebrauch bestimmt oder von beschränkter Lebensdauer. Die Zusammensetzung der Liquids unterscheidet sich zudem stark zwischen verschiedenen Marken und Herkunftsländern.

Darüber, was nun wo genutzt wird und welche Folgen für Umwelt und Gesundheit das haben mag, gibt es noch wenig Daten. Und die Vielfalt der Produkte macht einheitliche Aussagen darüber schwer.

Laut WHO sei jedoch abzusehen, dass das Umsatteln von Tabak auf E-Zigaretten das Abfallproblem nicht löst. Dazu müsste sich nämlich erst etwas an der laxen Einstellung der Raucher bzw. Dampfer zur Umweltverschmutzung ändern. An die Stelle der Zigarettenkippen von heute würden sonst leere Liquid-Behälter und Überreste ausgedienter E-Zigaretten treten – mit Resten der Liquids und aller Stoffe, die in den Geräten verarbeitet sein mögen.

Somit ist das Umsteigen auf E-Zigaretten in meinen Augen kein sicherer Weg, um die Umweltbelastung durch “Zigarettenabfälle” zu vermindern. Zumindest keiner, der nicht auch durch umweltbewussten Umgang mit Rauchwaren begangen werden könnte.

 

Fazit

Weggeworfene Zigarettenkippen verschandeln nicht nur den Anblick unserer Umwelt. Sie enthalten überdies eine bunte Sammlung gefährlicher Stoffe, die aus den Filtern in die Umgebung freigesetzt werden. Eine Kippe mag bedeutungslos klein wirken – weltweit kommen aber bis zu 680’000 Tonnen schadstoffbeladener Kippen pro Jahr zusammen!

Der übliche Zigarettenfilter besteht aus dem biologisch schwer abbaubaren Kunststoff Celluloseacetat. Der ist für sich nicht giftig, kann aber über Jahrzehnte in der Umwelt verbleiben. Ein biologisch abbaubarer Ersatzstoff würde sich zwar schneller auflösen, ändert aber an der “Beladung” des Filters mit Schadstoffen nichts. Deshalb sind biologisch abbaubare Zigarettenfilter keine Lösung.

E-Zigaretten sind ebenfalls keine Lösung, so lange das Bewusstsein für die Gefährlichkeit von Rauch- bzw. Dampf-Abfällen fehlt.

Deshalb mein Aufruf an euch: Lasst das Rauchen wie das Dampfen. Und wenn das keine Option ist, entsorgt eure Abfälle dort, wo sie hingehören: In den Aschenbecher bzw. Ascheimer! Und wenn ihr andere dabei beobachtet, wie sie ihre Kippen (oder Liquid-Behälter) achtlos in die Gegend werfen: Weist sie auf die Gefährlichkeit hin!

Und hier der Bericht “Tobacco and its environmental impact” der WHO, 2017 , aus welchem ich die Weltgesundheitsorganisation im Artikel zitiert habe.

Bilderbuch-Rezension: Richtig giftig - Richtiger Umgang mit Chemie im Alltag!

Dieser Artikel enthält Affiliate-Links aus dem Affilinet-Partnerprogramm des Orell-Füssli-Verlags (gekennzeichnet mit (*) – (*) ) – euch kosten sie nichts, mir bringen sie vielleicht etwas für meine Arbeit ein. Ich habe für diese Rezension vom Orell Füssli Verlag ein Rezensionsexemplar des Buches  erhalten. Herzlichen Dank dafür! Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

 

Eine alltägliche Geschichte

Emma ist vier Jahre alt und langweilt sich. Draussen regnet es und Mama hat keine Zeit. Sie muss das Wohnzimmer putzen. Nicht einmal etwas Süsses hat Emma ihr abschwatzen können. Dabei wollte sie sich doch mit ihrer Puppe Berta zum Tee in der Puppenküche treffen… Aber halt! Der Schrank im Flur steht ja ein Stück offen! Und da ist noch eine Flasche mit leuchtend blauer Flüssigkeit. Hat Papa nicht neulich so eine leckere blaue Limonade gekauft? Die wäre jetzt genau richtig für die Teestunde mit Berta!

Emma holt die Flasche aus dem Schrank und nimmt sie mit ins Kinderzimmer. Dort füllt sie für Berta und sich selbst die blaue “Limonade” in eine Puppentasse. Etwas dickflüssiger als die von Papa ist sie schon. Aber was solls. Während sie mit Berta den neuesten Klatsch austauscht, hebt Emma ihre Tasse, um zu trinken…

Diese oder eine ähnliche Geschichte könnte in jedem Haushalt passieren. Die Flasche aus dem Putzschrank enthält natürlich keine Limonade, sondern ein scharfes Reinigungsmittel. Wenn die Mutter nicht auf das Geschehen aufmerksam wird, bevor Emma von der Flüssigkeit trinkt, kann das Kind sich gefährlich verletzen oder gar vergiften. Das tut furchtbar weh, bringt eine Riesenaufregung mit sich und endet nicht selten im Spital.

Hätte Emma die weisse Raute mit rotem Rand und dem schwarzen Symbol darin auf der Flasche erkannt, wäre es wahrscheinlich gar nicht so weit gekommen. Dieses Zeichen bedeutet nämlich: “Achtung, gefährlich!” Und das steht nur auf den wirklich gefährlichen Sachen. Die sicher keine Limonade (und auch sonst kein Spielzeug) sind.

Damit sich solche Unfälle nicht mehr wiederholen, hat das Schweizerische Bundesamt für Gesundheit BAG mit dem Autor Lorenz Pauli und der Illustratorin Claudia de Weck ein Bilderbuch entwickelt, das schon Kindern im Vorschulalter die Gefährlichkeit von Chemieprodukten im Alltag und die Bedeutung der Warnsymbole näher bringt. Der perfekte Inhalt für Keinsteins Bücherkiste!

Zum Inhalt des Buches

Die neugierigen Schulkinder Mona und Aaron stellen Fragen zum Sinn und Unsinn von Warnhinweisen und Verbotsschildern. Auf der Suche nach Antworten geraten sie in ein rasantes Abenteuer. Darüber vergessen sie völlig, dass sie eigentlich Schule hätten. Macht aber nichts – denn unterwegs lernen sie äusserst Wichtiges über den Umgang mit Gefahren und die GHS-Gefahrstoff-Kennzeichnen (die weissen Rauten mit rotem Rand und schwarzen Piktogrammen), die man auf der Verpackung von gefährlichen Stoffen findet. Und das nicht nur im Labor, sondern auch überall im Haushalt.

Mit dem neuen Wissen kann Aaron sogar seinem Papa helfen, die eigene Wohnung für seinen kleinen Bruder Finn sicher zu gestalten. Denn der soll schliesslich nicht einfach an Putzmittel und Spülmaschinen-Tabs herankommen, wenn mal keiner hinschaut.

Wenn Mona und Aaron auf ihrem Streifzug einen giftigen Strauch entdecken, hält das Buch eine kleine Liste in der Schweiz verbreiteter Giftpflanzen bereit. Um deren Gefährlichkeit sollten Kinder wissen, wenn sie draussen in der Natur spielen. Natürlich ist die Liste bei weitem nicht vollständig, enthält aber solche Arten, deren bunte Blüten oder Früchte besonders anziehend wirken können.

Am Ende des Bandes finden grosse und kleine Leser eine Übersicht über alle GHS-Gefahrensymbole mit ihren Bedeutungen, typischen Gefahren, die von “ihren” Stoffen ausgehen, passenden Sicherheitsmassnahmen und Beispiele für Produkte, auf denen sie zu finden sind.

Die Geschichte von Aaron und Mona wird in farbenfrohen Bildern erzählt, auf welchen es unheimlich viel zu entdecken und beim Vorlesen mit den Kindern zu diskutieren gibt. Zudem bestehen die grossflächigen Bilder auf den Klappen-Innenseiten nur aus Konturen und laden zum Selbstausmalen ein.

Mein Eindruck vom Buch

“Richtig giftig” bringt Kindern (und Grossen) auf farbenfrohe und humorvolle Weise ein Thema nahe, das nicht nur beim Experimentieren überaus wichtig ist.

“Bei Unfällen mit chemischen Produkten in Haushaltungen sind in der Hälfte der Fälle Kinder unter 5 Jahren betroffen. Deshalb ist es wichtig, Kinder möglichst früh auf die Gefahren von chemischen Produkten hinzuweisen”, schreibt auf das Schweizerische Bundesamt für Gesundheit.

Chemische Produkte gibt es in Haushalt und Alltag überall (schliesslich ist alles irgendwie Chemie). Dank der Bildsprache der GHS-Kennzeichnungen können auch Kinder vor dem Lesealter solche Gefahren erkennen lernen. Mit Mona und Aaron gelingt das, ohne unnötige Ängste zu schüren.

Denn: Gefährliche Stoffe sind in der Regel erst dann gefährlich, wenn man nicht richtig mit ihnen umgeht.

Das Bilderbuch “Richtig giftig” ist in meinen Augen zum gemeinsamen Lesen und Entdecken geschaffen. Die Beschäftigungsmöglichkeiten mit diesem Buch gehen weit über das blosse Vorlesen hinaus. Die Illustrationen bieten nämlich reichlich Anlass, mit dem Kind bzw. den Kindern Einzelheiten zu entdecken. Davon ausgehend können Kinder und Erwachsene wunderbar die in der Geschichte und den Abbildungen dargestellten Situationen und Inhalte sprechen und diskutieren.

Und mich haben sie zu einer ganz persönlichen Anregung inspiriert: Tut es doch Aaron und seinem Papa gleich und überprüft gemeinsam euren eigenen Haushalt darauf, ob alles, was gefährlich sein kann, ordentlich und kindersicher untergebracht ist!

Relativ kurze Sätze in grosser Druckschrift ermöglichen Grundschulkindern mit einem gewissen Grundwortschatz zudem, die Geschichte selbst zu lesen. So ist dieses Bilderbuch nicht nur in der Vorleseecke zu Hause gut aufgehoben, sondern auch ein wertvoller möglicher Bestandteil jeder Schulzimmer- oder Kindergarten-Bibliothek.

Eckdaten zum Buch

(*)
Richtig giftig. Wo es echt gefährlich ist.


(*)
Von Lorenz Pauli /Claudia de Weck
In Zusammenarbeit mit dem Bundesamt für Gesundheit BAG
Atlantis-Verlag, Imprint Orell Füssli Verlag AG, Schweiz 2018
Hardcover, grosses Format, 32 Seiten
ISBN 978-3-7152-0755-1

Das Buch ist zudem auch auf Italienisch (Edizioni Casagrande, ISBN 978-88-7713-802-6) und auf Französisch (Editions Rossolis, ISBN 978-2-940585-20-5) erschienen.

Mein Fazit

“Richtig giftig” ist ein thematisch aussergewöhnliches Bilderbuch, das aber in keiner Bücherkiste fehlen sollte. Auch und besonders dann nicht, wenn im Haushalt gerne experimentiert wird. Denn besonders dabei gilt: Damit keine Unfälle mit Gift passieren, muss man vorsorgen. Und dabei muss ein Erwachsener helfen.

Wenn alle Regeln für die Vorsorge eingehalten werden, muss man vor Chemieprodukten jedoch keine Angst haben. Und genau das bringt dieses Bilderbuch mit seinem Humor, der mich manches Mal schmunzeln liess, wunderbar mit zur Geltung.

Im Übrigen gebe ich auch bei meinen Experimenten in Keinsteins Kiste die zugehörigen GHS-Warnsymbole und Sicherheitshinweise an, wenn ein gefährlicher Stoff dabei zum Einsatz kommt. So könnt ihr schon vorsorgen, bevor ihr das Experiment durchführt, und schlimmere Unfälle verhindern.

Falls trotz allem doch einmal etwas passieren sollte und ihr nicht sicher seid, was zu tun ist, könnt ihr jederzeit die Nummer des Giftnotrufs wählen und schildern, was geschehen ist. Die Fachleute am anderen Ende der Leitung werden euch anleiten und euch Rat geben, ob und wann ihr beim Arzt oder im Spital/Krankenhaus Hilfe suchen solltet.

In der Schweiz betreibt ToxinfoSuisse die Notfallnummer 145 .

In Deutschland sind die Giftnotrufzentralen auf die verschiedenen Bundesländer verteilt. Eine Liste der jeweiligen Telefonnummern gibt es hier.

In Österreich ist die Vergiftungsinformationszentrale unter +43 1 406 43 43 zu erreichen.

Und jetzt wünsche ich euch viel Spass beim Lesen, Stöbern und sicheren Experimentieren!