Chemie ist schlecht für die Umwelt! So die Standardaussage. Tatsächlich ist die Chemie aber nicht immer so “böse”, sondern immer öfter unheimlich nützlich, wenn es darum geht, die Umwelt zu schonen. Was ihr tun könnt, damit sie möglichst wenig gefährlich und möglichst oft nützlich ist, erfahrt ihr hier!

Radioaktivität: Warnschild in Prypjat

Es ist der 26. April 1986, 0:30 osteuropäischer Zeit. An der nördlichen Grenze der späteren Ukraine – derzeit noch Teil der Sowjetunion – hat Alexander Fjodorowitsch Akimov Bauchschmerzen. Akimov ist Schichtleiter im Reaktorblock 4 des Kernkraftwerks Tschernobyl und betrachtet voller Unbehagen die Anzeigen im Kontrollraum “seines” Reaktors. Eigentlich sollte er längst damit beschäftigt sein, den Reaktor wieder auf Vordermann zu bringen – aber Genosse Djatlov besteht darauf, den geplanten Test innerhalb der nächsten Stunde durchzuführen. Und wenn der Chef sagt, es werde getestet, dann wird getestet. Denn Akimov ist nicht darauf aus, sich einen neuen Job zu suchen.

Es soll getestet werden, ob der Reststrom, den die Kraftwerksturbinen bei einem Stromausfall liefern, reicht, um die Zeit bis zum Anlaufen der Notstromgeneratoren zu überbrücken. Eigentlich hätte man das schon 1983 tun sollen, bevor man den Kasten für den Regelbetrieb freigab – und nun, nach 3 Jahren Bummelei, hatte man es plötzlich nur allzu eilig damit.

Der “Kasten” – der Reaktor in Block 4 – besteht aus einem Zylinder aus Graphit – reinem Kohlenstoff – 8 Meter hoch, 12 Meter im Durchmesser, durchzogen von etwa 1700 Kanälen für Brennstäbe, Steuerstäbe und hindurchfliessendes Kühlwasser. Die Anlage ist dazu gedacht, mit einer Nennleistung von 3200 MW Strom zu erzeugen, indem sie bei einer Betriebstemperatur von etwa 300°C – erzeugt durch Kernspaltung – Wasser erhitzt, um mit dem Dampf Turbinen anzutreiben. Der Graphit sorgt dabei als Moderator für die Aufrechterhaltung der Kernspaltungsreaktion.

Einen Gefahren-Test macht man allerdings nicht unter Volllast. Und da man einen Kernreaktor nicht einfach mal schnell runterfahren kann, hat man schon am vergangenen Morgen mit der langsamen Regelabschaltung begonnen. Dann aber brauchten die Genossen unbedingt mehr Strom im Netz, sodass sie noch einen halben Tag bei halber Last weiterproduziert hatten, ehe man weiter herunterfuhr. Und jetzt ist der ganze Kasten voller Xenon-Gift, das die Kernspaltung und damit die ganze Reaktorfunktion ausbremst – so sehr, dass der Reaktor gerade eben wegen irgendeinem Mist beinahe völlig abgeschmiert wäre.

Inzwischen haben Akimov und die Crew nahezu alle Steuerstäbe, die die Kernspaltung bremsen sollen, aus dem Reaktor entfernt, und der Kasten läuft so gerade eben stabil. Von den Vorschriften ist das jedoch weit entfernt! Und das bereitet Akimov umso mehr Bauchschmerzen, je weiter die Vorbereitungen für den Test voranschreiten.

Um 1:23:04 ist es schliesslich soweit: Der Test beginnt. Das Notkühlsystem ist abgeschaltet, damit es im Testverlauf nicht dazwischenfunkt, und Akimov verdrängt den Knoten in seinem Magen, als er die Schliessung der Turbinenschnellschlussventile anordnet – das Startsignal für den Test.

Dadurch wird der Kühlwasserdurchfluss gestoppt, und es wird binnen Sekunden wärmer im Reaktor. Die Wärme fördert die Reaktorleistung ungemein – nun rasch die Bremsstäbe wieder einfahren…wenn die nur nicht so quälend langsam wären! Indessen steigt die Reaktorleistung geradezu exponentiell weiter, denn der anfahrende Reaktor reinigt sich in Sekundenschnelle selbst, während dem Schichtleiter der Schweiss ausbricht: Das gerät ausser Kontrolle – Sofort Abschalten! Akimov betätigt rasch den Notabschaltungsknopf, und alle Bremsstäbe fahren – immer noch langsam! – gleichzeitig in den Reaktor zurück. Doch die Spitzen der Stäbe bestehen aus Graphit, der die Kernreaktion fördert und nicht bremst, bis das eigentliche Bremsmaterial in den Stabschäften tief in den Reaktor gelangt. Doch bis dahin sind die “Bremsen” wirkungslos: 40 Sekunden nach Testbeginn wird die Kernreaktion endgültig zum Selbstläufer.

So wird es unweigerlich zu heiss im Reaktorkern, und das Ganze fliegt Akimov und der Crew buchstäblich um die Ohren: Wasserleitungen brechen und Wasser kann mit heissem Graphit und Zirkonium aus den Brennstabmänteln reagieren. Es entsteht Wasserstoff, der mit Luft eine explosive Mischung bildet. Eine Knallgas-Explosion deckt schliesslich den Reaktordeckel und das Dach des Kastens ab. Indes fördert Graphit die Kernreaktion umso besser, je heisser er ist. So steigt die Temperatur im Reaktor bis über 2000°C. Die Brennstäbe und alles andere im Reaktorkern beginnen zu schmelzen. Durch das offene Dach kommt dabei Luft an das glühende Riesenbrikett, das vom Reaktor übrig ist, und Hunderte Tonnen Graphit brennen lichterloh. Eine radioaktive Rauchwolke steigt über 1000m hoch aus den Trümmern auf.

Es wird über zwei Wochen dauern, bis allein der Graphitbrand gelöscht und das Austreten des radioaktiven Rauchs unterbunden ist. Akimov erlebt dies nicht mehr. Er stirbt am 11.5.1986 an akuter Strahlenkrankheit.

havarierter Reaktor in Tschernobyl am 27. April 1986

Der havarierte Reaktorblock 4 am 27. April 1986 – rechts neben dem zerstörten Reaktor sind weitere Schäden am Dach der Turbinenhalle sichtbar. Helikopterpiloten und Fotograf sind während des Überflugs hochgefährlichen Strahlenmengen ausgesetzt. (Bild: Chernobyl NPP)

Wie man aus Atomen Energie gewinnt

Über Atome

Alle Materie der Welt besteht aus Atomen. Jedes Atom besteht aus einem Kern aus Protonen und Neutronen sowie aus einer Elektronenhülle. Auf der Erde sind 118 chemische Elemente bekannt, deren Atome sich durch ihre charakteristische Protonenzahl unterscheiden. Die Neutronenzahl ist hingegen für ein bestimmtes Element nicht festgelegt: Atome eines Elements mit verschiedener Neutronenzahl nennt man Isotope.

Wasserstoff-Isotope: Wasserstoff , Deuterium , Tritium

Die drei natürlichen Isotope des Wasserstoffs: Die Zahl links oben in der “Nuklidschreibweise” steht für die Summe aller Kernteilchen bzw. die Atommasse. Die Zahl links unten steht für die Zahl der Protonen, welche die Zugehörigkeit zu einem Element bestimmt: Atome aller Wasserstoff-Isotope haben ein Proton. Einfacher Wasserstoff (auch “Protium”) und Deuterium sind stabil, Tritium ist radioaktiv. (Bild: Dirk Hünniger (Own work) [GFDL or CC-BY-SA-3.0], via Wikimedia Commons)

 

Atome können sich zu chemischen Verbindungen – Moleküle, Salze und andere – “zusammentun”, wobei sich ihre Elektronenhülle verändert, die Kerne aber unverändert bleiben (das ist Chemie).

Jedoch können auch Atomkerne verändert werden: Wenn sich dabei die Protonenzahl ändert, entstehen Atomkerne anderer Elemente (das ist Kernphysik bzw. Nuklearphysik).

“Nucleus” ist übrigens das lateinische Wort für “Kern”. So hat alles, was in der Physik mit dem Begriff “nuklear” behaftet ist, irgendwie mit Atomkernen zu tun. So hat die Bezeichnung “Nuklear-” auch Eingang in die Sprache rund um die “Atomenergie” gefunden.

 

Energie dank Massendefekt

Die Bildung von Atomkernen aus Protonen und Neutronen funktioniert ähnlich wie die Bildung von Molekülen in der Chemie: Beim Zusammenfügen der Teilchen wird Energie frei. Und je mehr Teilchen im Atomkern zusammenkommen, desto mehr Energie wird frei. Das wird ersichtlich, wenn man Atomkerne wiegt: Ein Heliumkern wiegt nämlich weniger als je zwei einzelne Protonen und Neutronen: Die fehlende Masse wurde als Energie abgegeben! Und da der “zu leichte” Atomkern zu dem Gedanken verleitet, er sei irgendwie kaputt, nennt man diese Erscheinung “Massendefekt”.

Allerdings gilt das nur für Atomkerne, die höchstens so schwer sind wie ein Eisen-Kern. Um schwerere Kerne als die des Eisens zusammenzubauen, muss man Energie hinzufügen. So sind die Atomkerne der Elemente jenseits des Eisens tatsächlich schwerer als die Summe ihrer Protonen und Neutronen. Findige Physiker kamen so in der ersten Hälfte des 20. Jahrhunderts auf die Idee, schwere Atomkerne auseinanderzubauen, um an diese Energie heranzukommen und sie zu nutzen.

 

Der Coup mit der Kernspaltung:

Auf manche Kerne braucht man dazu bloss ein einzelnes Neutron zu schiessen: Sobald das Neutron von solch einem Kern aufgenommen wird, hält dieser nicht mehr zusammen: Er wird gespalten, d.h. er zerfällt in Stücke, darunter meist zwei Kerne leichterer Elemente und ein oder mehrere einzelne Neutronen. Zudem wird ein Teil seiner Kernbindungsenergie frei, teilweise als Bewegungsenergie der Bruchstücke, teilweise in Form von Gamma-Quanten (“Licht”) und teilweise in Form grosser Mengen Wärme.

Das Praktische daran ist: Die frei werdenden Neutronen können weitere Atomkerne treffen und spalten, sodass sich die Kernspaltung in einer Kettenreaktion in einem spaltbaren Material unter den richtigen Bedingungen selbst unterhält.

Zu diesen Bedingungen zählt unter anderem die passende Energie bzw. “Geschwindigkeit” der Neutronen-Geschosse: Zu schnelle Neutronen, wie sie bei einer Kernspaltung freigesetzt werden, prallen nämlich in den meisten Fällen wirkungslos von spaltbaren Kernen ab. Deshalb benötigt man für eine Kettenreaktion neben spaltbarem Material weitere Atome, von welchen schnelle Neutronen abprallen und dabei gebremst – “moderiert” – werden können. Dafür eignen sich zum Beispiel Wasserstoff-Atome (viele heutige Kernreaktoren enthalten Wasser als “Moderator”), oder Kohlenstoff-Atome, wie Graphit sie enthält.

 

Nutzung der Kernspaltung: Von Bomben und Steuerstäben

Die Kettenreaktion lässt sich auf zweierlei Weise ausnutzen: Wenn man möglichst viele “langsame” Neutronen gleichzeitig auf spaltbares Material loslässt, pflanzt sich eine Kettenreaktion in Sekundenschnelle fort und setzt ebenso schnell eine riesige Menge Energie frei, die zu der gewaltigen Explosion einer Atombombe führt.

In einer ausgeklügelten Anlage kann man hingegen die Menge der zur Kernspaltung nutzbaren Neutronen sehr genau steuern. Dazu verwendet man bewegliche “Steuerstäbe” aus einem Material, dessen Atome Neutronen aufnehmen können ohne gespalten zu werden. Je weiter diese Stäbe in einen Block aus spaltbarem Material und Moderator eingebracht werden, desto mehr Neutronen werden “verschluckt” und können nicht mehr an der Kettenreaktion teilhaben. Mit solch einem Reaktor, in dem kontrolliert Wärme durch Kernspaltung entsteht, kann man in einem Atomkraftwerk Strom erzeugen.

 

Und was ist mit der Strahlung?

Obwohl herumliegende Trümmer eindeutig eine andere Sprache sprechen, beharrt die Kraftwerksleitung in Tschernobyl bis zum Abend des 26. Aprils darauf, dass der Reaktor bei dem Unglück intakt geblieben sei. In Folge dessen wird die Bevölkerung der 5 km entfernten Siedlung Prypjat erst am 27. April evakuiert.

Erst, nachdem im 1200 km entfernten schwedischen Kernkraftwerk Forsmark am 28. April um 9:00 wegen erhöhter Radioaktivität Alarm ausgelöst wird, welche nach erfolgloser Suche nach eigenen Lecks auf einen Fallout aus (Wind-)Richtung Sowjetunion zurückgeführt wird, dringt die Nachricht von dem Unglück in Tschernobyl in den Westen durch.

Die Nachrichten von radioaktivem Niederschlag über weiten Teilen Europas schüren Verunsicherung und Ängste bei der Bevölkerung. Allein in Nordrhein-Westfalen werden Hunderte Naturwissenschaftler – “jeder, der irgendein chemisches Element buchstabieren konnte” – rekrutiert, um die Notfall-Hotline der Landesregierung zu besetzen und die Fragen zahlloser verängstigter Bürger zu beantworten.

Ich bin viereinhalb Jahre alt, als mein Vater – einer der Physiker, die an jener Hotline Dienst taten – uns erklärt, dass Mama meine Schwester und mich nicht im Garten spielen lasse, weil es nach einem schlimmen Unfall weit im Osten “Gift” geregnet habe.

Inzwischen sind die ersten der insgesamt 600.000 bis 800.000 “Liquidatoren” in Tschernobyl mit Aufräumarbeiten beschäftigt: Jene Männer, die Trümmer des zerstörten Block 4 vom Dach des benachbarten Blocks 3 räumen, dürfen sich der Strahlung wegen nur jeweils 40 Sekunden auf dem Dach aufhalten. Ein Mann für jede Schaufel Abraum. Andere werfen mit Hubschraubern Löschmittel auf den havarierten Reaktor ab, begraben tonnenweise Erde unter Beton, versuchen Staub an den Boden zu binden. Das Gebiet im Radius von über 30 Kilometern um das Kernkraftwerk wird evakuiert, dort lebende Tiere getötet, damit sie die Strahlung nicht aus der Sperrzone hinaustragen…

 

Aber was ist “radioaktive Strahlung” eigentlich, und warum ist sie so gefährlich?

Was ist Radioaktivität?

“Radioaktivität” ist eine Eigenschaft einiger Atomkerne: Nicht alle Kombinationen von Protonen und Neutronen in einem Atomkern halten fest zusammen. Solche instabilen Kerne sind radioaktiv, sie “bröckeln”: Früher oder später löst sich ein “Bröckel” aus dem Atomkern und fliegt – sofern er nicht von aussen beeinflusst wird – mit Geschwindigkeiten im Bereich von 10000 km/s [2] geradeaus davon.

Solche “Bröckel” können α- oder β-Teilchen sein (da diese Teilchen geradlinig vom Atomkern wegfliegen, erscheinen sie auf den ersten Blick wie “Strahlen” und werden oft auch so genannt). α-Teilchen sind nackte Helium-Atomkerne, bestehend aus je zwei Protonen und Neutronen, während β-Teilchen Elektronen (oder Anti-Elektronen, “Positronen”) sind, die entstehen, wenn ein Neutron im Kern zu einem Proton zerfällt und dabei ein Elektron abgibt (bzw. ein Proton ein Positron abgibt und als Neutron verbleibt). Die einzigen “echten” Strahlen sind γ-Strahlen: Dabei handelt es sich um sehr energiereiche “Licht”-Wellen, die von besonders energiereichen Atomkernen abgegeben werden können.

In der Natur gibt es viele derart instabile Kerne, die radioaktiv sind. Viele Elemente bestehen aus einem Gemisch aus stabilen und radioaktiven Isotopen, sodass Stoffe, die sich aus solchen Elementen zusammensetzen, automatisch diese verschiedenen Isotope enthalten. So findet man zum Beispiel in Bananen, die von Natur aus viel Kalium enthalten, auch Atome des radioaktiven Isotops  40K, und jeder Mensch, der naturgemäss aus Kohlenstoffverbindungen besteht, enthält Atome des radioaktiven Isotops 14C. Dass unsere Umgebung einschliesslich uns selbst “strahlt”, ist also erst einmal normal.

Einmal abgestrahlte α-Teilchen kommen jedoch nicht weit: Auf ihrem Weg stossen sie immer wieder gegen andere Teilchen und verlieren an Energie und damit an Geschwindigkeit. Schon nach ein bis zwei Millimetern Flugstrecke in Luft ergattern sie sich irgendwo zwei Elektronen und werden zu normalen Helium-Atomen. β-Teilchen (Elektronen) finden spätestens nach 10 Metern in Luft ein Atom als neue “Heimat”. γ-Strahlen verhalten sich hingegen wie fast alles durchdringendes Licht und breiten sich geradezu unendlich weit aus, wenn ihnen keine besonders dichte Materie, wie ein dicker Blei-Klotz, im Wege steht.

Das “Ende” von α- und β-Teilchen deutet es schon an: Wenn solch ein reisender “Bröckel” mit Volldampf auf ein Atom trifft, kann dieses “kaputtgehen”: Der Einschlag kann Elektronen aus der Hülle schleudern. Die “Strahlen” wirken ionisierend (auch γ-Strahlen haben diese verheerende Wirkung: Sie sind energiereicher als Licht (Lichtphänomene) und regen Elektronen so stark an, dass diese “ihr” Atom verlassen können!).

Der Begriff “Ionisierende Strahlung” beschreibt diese herumfliegenden Atomtrümmer also besser als der Pleonasmus “radioaktive Strahlung” (“radioaktiv” bedeutet nichts anderes als “strahlend”).

 

Wie misst man “radioaktive” bzw. ionisierende Strahlung?

Die ersten Wissenschaftler, die sich mit Radioaktivität beschäftigten, ahnten noch nichts von ihrer Gefährlichkeit. So interessierten sie sich vornehmlich für die Menge der Strahlung, die von einem radioaktiven Stoff ausging. Die Curies “erfanden” deshalb die später nach ihnen benannte erste Masseinheit für die Aktivität – den Vergleich mit der Aktivität von einem Gramm Radium.

In einem Gramm Radium zerfallen in jeder Sekunden 37 Milliarden Atome und geben “Strahlen” ab. Das entspricht einer Aktivität von einem Curie (Ci). Dieser enormen Strahlungsmenge sollte man jedoch tunlichst fern bleiben. So wird heute eine wesentlich “handlichere” Einheit für die Aktivität verwendet:

Eine Stoffmenge, in welcher im Mittel in jeder Sekunde ein Atom zerfällt, hat eine Aktivität von einem Becquerel (Bq).

 

Ein Gramm Radium hat also eine Aktivität von 37 Milliarden Becquerel! Ein Gramm Natur-Uran hätte hingegen eine Aktivität von 25.290 Becquerel, ein Gramm natürliches Kalium 31,2 Becquerel. [1]

Wer sich mit der Gefährlichkeit von ionisierender Strahlung beschäftigt, wird sich allerdings mehr dafür interessieren, wie viele Strahlen einen Menschen (oder anderen Organismus) tatsächlich treffen und in ihm Schaden anrichten. Und Schaden wird angerichtet, wenn die Atome des Körpers die (Bewegungs-)Energie einfallender Strahlung aufnehmen. Deshalb wird häufig eine Energiedosis für ionisierende Strahlung angegeben:

Ein Kilogramm Materie (zum Beispiel Körpermasse), die eine Energiemenge von einem Joule aus Strahlung aufnimmt, erhält eine Energiedosis von einem Gray (Gy).

 

Wir alle sind tagtäglich natürlicher ionisierender Strahlung aus dem Weltraum ausgesetzt. Jedes Kilogramm unserer Körper nimmt daher täglich 3*10-5 (drei Hunderttausendstel) Gray aus der Weltraumstrahlung auf [2]. Die 1000 Liquidatoren, die am ersten Tag nach dem Tschernobyl-Unglück in unmittelbarer Nähe von Reaktorblock 4 eingesetzt wurden, bekamen dort eine Energiedosis von etwa 2 bis 20 Gray ab [1].

Strahlung ist aber nicht immer gleich Strahlung. Wenn ein α-Teilchen mit hoher Geschwindigkeit auf ein Atom trifft, kommt das einem nuklearen Crash mit einem Lastwagen gleich, während sich die Begegnung mit einem ähnlich schnellen, aber rund 1000 mal leichteren β-Elektron im Vergleich dazu wie der Zusammenstoss mit einem Radfahrer ausnimmt. Zur Bestimmung der Gefährlichkeit der Strahlenarten muss ihre Energiedosis daher mit einem “Gefährlichkeitsfaktor” multipliziert werden. Wenn dieser Faktor für β-Teilchen und γ-Strahlen 1 ist, beträgt er für α-Teilchen 20.

Durch die Multiplikation der Energiedosis mit dem Gefährlichkeitsfaktor erhält man schliesslich die Äquivalentdosis in Sievert (Sv), die in Strahlenschutz-Belangen Verwendung findet.

 

Pro Jahr ist ein Mensch durchschnittlich zwei Tausendstel Sievert (2 mSv) aus natürlicher Strahlung ausgesetzt, in Gegenden mit besonderen Vorkommen radioaktiver Elemente im Boden sogar deutlich mehr. Im Fall einer kurzzeitigen(!) Begegnung mit starker Strahlung macht sich eine Dosis bis etwa 200 mSv durch keinerlei Symptome bemerkbar. Erst darüber treten Symptome der Strahlenkrankheit auf. Wenn Menschen in kurzer Zeit einer Strahlendosis von 4,5 Sv oder mehr ausgesetzt sind, stirbt jeder zweite innerhalb von vier Wochen. Eine Dosis von 6 Sv oder mehr in kurzer Zeit gilt als absolut tödlich – die gleiche Dosis innerhalb von 50 Jahren bleibt hingegen ohne messbare Folgen [2].

 

Was bewirkt ionisierende Strahlung?

Ionisierende Strahlung kann mit einem Geigerzähler (eigentlich: Geiger-Müller-Zählrohr) registriert werden: In dem Zählrohr befindet sich ein dünnes Gas aus Atomen, die von einfallender ionisierender Strahlung in Ionen und Elektronen gespalten werden und in einem elektrischen Feld zu zwei Polen hingezogen werden. Die wandernden geladenen Teilchen schliessen so einen Stromkreis, was sich im angeschlossenen Lautsprecher als “Knack” bemerkbar macht. Je mehr “Knacks” es gibt, desto mehr ionisierende Strahlen sind in das Gas im Zählrohr eingeschlagen.

Wenn die ionisierende Wirkung ein Atom in einem Molekül trifft (zum Beispiel in einem Biomolekül wie DNA), kann das Molekül als solches Schaden nehmen. Da Radioaktivität eine ganz natürliche Sache ist, haben Zellen – auch menschliche – verschiedene Mechanismen entwickelt, um kaputte Biomoleküle, insbesondere DNA, bei Bedarf zu reparieren. Erst wenn die Zellen mehr ionisierende “Treffer” einstecken müssen, als sie reparieren können, entstehen spürbare Zell- und Gewebeschäden.

Bei sehr grossen Strahlenmengen äussert sich das als “Strahlenkrankheit”. Weniger grosse oder über längere Zeit ertragene Strahlenmengen spürt man hingegen nicht sofort – was sie so tückisch macht. Dauerhaft beschädigte DNA kann jedoch – auch lange nach der Begegnung mit der Strahlung – zu Erkrankungen wie Krebs und Leukämie führen.

 

Was hat Radioaktivität bzw. ionisierende Strahlung mit Atomkraftwerken zu tun?

Die wohl wichtigste Atomsorte, die für die Kernspaltung geeignet ist und in grösseren Mengen in der Natur vorkommt, ist das Uran-Isotop 235U. Deshalb findet 235U sowohl in ersten Atombomben als auch in Reaktoren Verwendung (eigentlich ist das Isotop 238U noch sehr viel häufiger, aber nicht spaltbar, sodass bei der Herstellung von Kernbrennstoff ein Teil des 238U  aufwändig vom Rest getrennt werden muss, um  für die Kettenreaktion ausreichend “anzureichern”).

Unglücklicherweise sind sowohl 235U als auch 238U  von Natur aus radioaktiv. Beide Isotope sind α-Strahler, d.h. sie zerfallen zu Heliumkernen und Isotopen des Elements Thorium – die wiederum radioaktiv sind. Die Halbwertszeit – also jene Zeitspanne, in welcher die Hälfte einer Portion einer Atomsorte zerfällt, beträgt für 235U 703,8 Millionen Jahre, für 238U  4,47 Milliarden Jahre (das entspricht etwa dem Alter der Erde!). Eine Portion Uran enthält also immer – grossteils radioaktive – Atome einer ganzen Reihe verschiedener Elemente, die im Zuge der Abfolge verschiedener Zerfälle entstehen.

Allein deshalb erfordert der Umgang mit Uran schon besondere Sicherheitsvorkehrungen. Der eigentliche Haken an der Sache kommt aber noch:

In den wenigen Wochen, die das Uran in einem Kernreaktor zubringt, entsteht eine Vielzahl von Spaltprodukten und sehr schweren Atomkernen, die oftmals ihrerseits radioaktiv sind, durch “Verschlucken” der herumfliegenden Neutronen.

Zu den Spaltprodukten zählt zum Beispiel das Xenon-Isotop 135Xe, das mit Vorliebe Neutronen schluckt und die Kettenreaktion ausbremst. Deshalb wird dieses Isotop als “Reaktor-Gift” (das ist der “Xenon-Müll” in der Einleitung) bezeichnet. Wenn ein Reaktor unter Volllast läuft, reagiert das 135Xe jedoch ebenso schnell weiter, wie es entsteht, sodass es sich nicht ansammelt. Während der Reaktor in Tschernobyl einen halben Tag lang nur mit halber Kraft lief, ist hingegen mehr 135Xe entstanden als abgebaut werden konnte, was die Kettenreaktion regelrecht ausgebremst und zu dem dramatischen Leistungseinbruch vor Beginn des fatalen Tests geführt hat.

Das Berüchtigste unter den entstehenden schweren Elementen, auch “Transurane” genannt, ist das Plutonium, dessen Isotop 239Pu ebenfalls spaltbar ist und sowohl als Reaktor-Brennstoff als auch für Atombomben taugt (deshalb werden Uran-Brennstäbe gemäss den Regeln der Internationalen Atomenergie-Behörde so lange im Reaktor belassen, bis das entstehende 239Pu zu nicht spaltbarem 240Pu weiterreagiert ist [2]).

Insgesamt strahlt die bunte Mischung von Atomkernen in “verbrauchten” Brennstäben rund 10 Millionen mal stärker als “frisches” Uran! Und dabei haben viele dieser Kerne solch lange Halbwertszeiten, dass die Brennstäbe selbst 10 Jahre nachdem sie ausrangiert wurden, noch rund eine Million mal stärker als “frisches” Uran strahlen [2]. Daraus ergibt sich die ungeheure Problematik bei der Lagerung dieses “Atommülls”: “Verbrauchtes” Brennmaterial sollte möglichst lange möglichst weit weg bzw. abgeschottet von allem lagern können, bis seine radioaktiven Bestandteile zerfallen sind. Und da “möglichst lange” viele Jahrtausende meint, gibt es noch keine Technologie, welche eine gefahrlose Lagerung auf der Erde über so lange Zeit wirklich sicherstellt.

 

Leser fragen zu Kernkraft und Radioaktivität:

Cornel van Bebber fragt auf Google+:

Was ist der Unterschied zwischen dem radioaktiven Zerfall im Kernkraftwerk in Tschernobyl und der Atombombe?

Im Grunde genommen gibt es keinen – denn der Brennstoff im Reaktor und Atombomben bestehen aus den gleichen Stoffen (allerdings muss das spaltbare Material für den Bau einer funktionierenden Bombe um einiges stärker angereichert werden als für den Kraftwerksbetrieb). Die Reaktionen, welche in einem Kraftwerk innerhalb von Wochen und Monaten ablaufen, finden bei der Explosion einer Atombombe in Sekunden statt – die Spalt- und Nebenprodukte sind aber weitestgehend die gleichen.

Besonders berüchtigt sind vor allem Cäsium-137 (137Cs), ein β-Strahler mit einer Halbwertszeit von 30 Jahren, und Iod-131 (131I), ein β-Strahler mit einer Halbwertszeit von 8 Tagen. Beide sind mögliche Bruchstücke, die bei der Spaltung von 235U entstehen, und somit sowohl aus einer Bombe als auch aus einem havarierten Reaktor freigesetzt werden können.

Cäsium-137 ist besonders gefährlich, weil es chemisch den anderen Alkalimetallen, vor allem dem Kalium, ähnelt und leicht an deren Stelle  einen Weg in Organismen findet, und weil es zu energiereichen, “angeregten” Barium-137-Kernen zerfällt, die wiederum γ-Strahlen abgeben, um zu nicht-strahlendem Barium-137 ( 137Ba ) zu werden. In der Medizin macht man sich diese γ-Strahlen bei der Strahlentherapie von Tumoren zunutze, aber in “freier Natur” können sie auch auf gesundes Gewebe eine verheerende Wirkung haben.

Iod-131 zerfällt zwar recht schnell, aber der menschliche Körper lagert Iod-Atome rasch in der Schilddrüse ein, um sie zu Hormonen verarbeiten zu können. Dabei unterscheidet der Organismus nicht zwischen verschiedenen Isotopen, da diese sich chemisch gleichen. So kann in der Schilddrüse gesammeltes Iod-131 in kurzer Zeit merkliche Schäden anrichten und beispielsweise Schilddrüsenkrebs auslösen. Deshalb sind in der Schweiz im Einzugsgebiet von Kernkraftwerden Iod-Tabletten mit nicht-strahlendem Iod ausgegeben worden, die die Bevölkerung im Falle einer Freisetzung von Iod-131 schnell einnehmen soll. Damit soll erreicht werden, dass die betroffenen Körper das Tabletten-Iod zuerst einlagern und für Iod-131 möglichst keinen Platz mehr lassen.

Der grosse Unterschied zwischen Bombe und Kernkraftwerk besteht letztlich darin, dass das radioaktive Material durch die Explosion einer Atombombe weit verteilt wird und schnell ein grosses Gebiet “verstrahlt”, während es im Kernkraftwerk samt seiner abgestrahlten Teilchen und Strahlen im Reaktor bleibt und niemandem direkt schadet – normalerweise jedenfalls.

Nach dem Unglück in Tschernobyl durften meine Schwester und ich unseren Physiker-Vater in den Garten begleiten, um Bodenproben aus dem Sandkasten, Mamas Beeten und vom Grund des Gartenteichs zu nehmen. Mit den Proben sind wir dann nach Düsseldorf in die Uni gefahren, wo es eine Zähl-Apparatur gab, mit welcher Papa die Strahlung aus dem “Gift” in unserem Garten messen und – so hofften wir zumindest – das Draussen-Spiel-Verbot allenfalls wieder aufheben konnte. Unsere und andere Messungen von Papas Kollegen ergaben allerdings, dass von den Böden in der Umgebung doch um einiges mehr Strahlung ausging als normal gewesen wäre.

 

Sichtbare Radioaktivität: Iod 131 in Gras aus Berlin, detektiert auf Planfilm 19 Tage nach dem Tschernobyl-Unglück

Schüler in West-Berlin legten am 15. Mai 1986 ein Büschel Gras von ihrem Schulhof für knapp 2 Tage auf einen Planfilm. Ionisierende Strahlung schwärzt, vergleichbar mit Licht, Filmmaterial. Auf dem hier gezeigten Negativ erscheinen stark strahlende Bereiche weiss. Der runde, schwarze Fleck rührt von einer Münze her, welche die gestreute Strahlung abschirmt. Wenn die weissen Flecken hier tatsächlich, wie von den Autoren angegeben, von Iod-131 herrühren, ist dem Datum nach davon auszugehen, dass hier allenfalls ein Viertel des ursprünglich in diesem Fallout freigesetzten Iod-131 “detektiert” wurde (bei einer Halbwertszeit von 8 Tagen hat sich die Menge des Isotops seit der Freisetzung schon zweimal halbiert). (Bild: ViolaceinB (Own work) [CC BY-SA 4.0], via Wikimedia Commons)

 

Cedric97 von itscedric.de fragt:

Block 4 ist ja in die Luft geflogen, aber die anderen drei Reaktoren liefen ja noch Jahre weiter. Meine Frage: Warum wurden die anderen Reaktoren weiter betrieben?

Laut der Wiener Umweltanwaltschaft, die auf Wikipedia zitiert wird, hat das Kernkraftwerk Tschernobyl – für die Sowjetunion eine “Vorzeige-Anlage” – seinerzeit ein Sechstel des Atomstroms auf dem Gebiet der Ukraine geliefert, was 4 bis 10% des Gesamtstroms entspricht. Darauf konnte oder wollte der Staat seinerzeit nicht von jetzt auf gleich verzichten. Tatsächlich war die Fertigstellung der im Bau befindlichen Blöcke 5 und 6 nach Absinken der Radioaktivität noch geplant. Erst nach dem Zusammenbruch der Sowjetunion konnte die Regierung der seither unabhängigen Ukraine gegen Ausgleichszahlungen seitens der EU dazu bewegt werden, die verbliebenen Blöcke 1 bis 3 des Kraftwerks endgültig abzuschalten (“Memorandum of Understanding” zwischen den G7-Staaten und der Ukraine vom 20.12.1995).

Gibt es bereits Vergleiche mit Tschernobyl zu den beschädigten Kernkraftanlagen in Belgien?

In meinen Augen wäre ein solcher Vergleich gar nicht sinnvoll: Die Kernkraftwerke Doel und Tihange in Belgien arbeiten mit Druckwasser-Reaktoren. Darin wird Wasser als Moderator und Wärmeüberträger verwendet, welches durch Überdruck im Reaktor-Druckbehälter am Verdampfen gehindert wird. Diese Druckbehälter einer bestimmten Baureihe weisen in Belgien nun eine grosse Anzahl Haarrisse auf. Würde ein solcher Behälter Leck schlagen, sodass es zu einem Druckabfall kommt, könnte das Wasser darin verdampfen und seine wärmeabführende Wirkung verlieren. Dann bestünde die Gefahr einer Kernschmelze.

Der Tschernobyl-Reaktor vom Typ RBMK-1000 war hingegen ein Siedewasser-Druckröhrenreaktor, der statt einem Druckbehälter viele unter Druck stehende Röhren mit Brennstoff sowie Graphit als Moderator enthielt. Auch weitere Sicherheitshüllen (“Containment”), wie sie die belgischen (und andere westliche) Reaktoren umgeben, haben die RBMK-Reaktoren nicht. Die Freisetzung des hoch radioaktiven Materials aus dem Reaktor-Kerns nach der einmal eingetretenen Kernschmelze ist demnach nicht zuletzt auf die baulichen Schwächen dieses Reaktor-Typs zurückzuführen.

Erstarrte "Lava" aus vormals geschmolzenem radioaktivem Reaktormaterial im Dampf-Ventil im Keller von Tschernobyl

Geschmolzenes radioaktives Material aus dem havarierten Reaktor ist im Keller von Block 4 in Tschernobyl aus einem Ventil zur Dampf-Ableitung ausgetreten und erstarrt. Hier gab es keine Sicherheitsbehälter, die die lavaartige Schmelze hätten zurückhalten können. (Bild: The Kurchatov Institute (Russia) and the ISTC-Shelter (Ukraine); Quelle: International Nuclear Safety Program)

Als Nicht-Kernkraft-Ingenieurin kann ich also nur hoffen, dass die Verantwortlichen in Belgien (wie auch in der Schweiz – das Kernkraftwerk Mühleberg verwendet einen Reaktor-Druckbehälter des gleichen Herstellers wie die Kraftwerke in Belgien) wissen, was sie tun, und sich anders als die Ingenieure in Tschernobyl an ihre Vorschriften halten, bis die betreffenden Reaktoren endgültig vom Netz genommen werden.

 

Renate Thormann schreibt auf Facebook:

Ich halte es für wichtig, dass man sich immer und immer wieder der Langzeitfolgen bewusst bleibt. Da wird nicht genug hingesehen und es ist auch mangels Erfahrung gar nicht bekannt, was alles geschieht, wenn man lange auf kontaminiertem Gebiet lebt. Im Staate Washington ist grade wieder eine Riesenkatastrophe mit nuklearem Material geschehen. Das Leck dort bestand schon seit 2011 .. jetzt leckt es mehr als massiv, nämlich katastrophal. Was hört man davon? Nix? Eben … darum finde ich es am wichtigsten so viel wie möglich zu informieren. Langzeitfolgen im Auge zu behalten und Erfahrungen mit Radioaktivität auszutauschen. Es gibt eine “Sarkophag” Seite, die immer über Tschernobyl berichtet ..

Innerhalb von 206 Tagen nach der Havarie von Tschernobyl umschliessen rund 90.000 Liquidatoren den gesamten Reaktorblock 4 mit einem zwanzig “Stockwerke” hohen Kasten aus Stahlbeton, in dem die verbliebenen Überreste des geschmolzenen Kerns seither ruhen wie in einem Sarkophag.

Dieses schon gewaltige Bauwerk war auf eine Lebensdauer von etwa 30 Jahren ausgelegt, doch der Zahn der Zeit zeigte seine Spuren schon weitaus früher – es gibt verschiedene Berichte von Undichtigkeiten oder gar Teil-Einstürzen. So ist im Augenblick ein zweiter Sarkophag im Bau, welcher noch über den ersten geschoben werden und 100 Jahre halten soll. Doch was kommt dann?

der neue Sarkophag für den Reaktor von Tschernobyl im März 2016

Der neue Sarkophag im März 2016: Nach seiner Fertigstellung soll er über den alten Sarkophag (links im Hintergrund) geschoben werden. Das macht ihn zum bis Dato grössten beweglichen Gebäude der Welt. (Bild: Tim Porter (Eigenes Werk) [CC BY-SA 4.0], via Wikimedia Commons)

 

Und die Reaktor-Ruine von Tschernobyl ist nicht die einzige unnatürliche Quelle ionisierender Strahlung. Moderne, nach allen Sicherheitsvorschriften betriebene Kernkraftwerke zählen meines Wissens nicht dazu. Stattdessen sind es Altlasten, die zunehmend Sorgen bereiten. Da ist die von Renate erwähnte Hanford Site in Washington State im Nordwesten der USA, ein ehemaliges Versuchsreaktoren-Gelände, auf welchem grosse Mengen radioaktiver Abfälle in Tanks lagern – Tanks, die altern und zunehmend Lecks aufweisen. Da ist der Reaktorunfall in Fukushima in Japan, der letztlich von Naturgewalten ausgelöst wurde. Die austretende Strahlung ist in der Natur dennoch nicht vorgesehen. Da sind die über Hiroshima und Nagasaki eingesetzten Atombomben und zahllose weitere Atomwaffentests

Nichts desto trotz ist das Atomzeitalter, wenngleich es sich nach der Meinung vieler dem Ende neigen sollte, noch jung – es zählt weniger als 100 Jahre. So sind unsere Kenntnisse der Langzeitfolgen durch das  Tschernobyl-Unglück und anderer unnatürlicher Strahlenquellen bestenfalls lückenhaft, in mancher Hinsicht noch gar nicht abzusehen, und sie werden nach wie vor kontrovers diskutiert.

So schliesse ich mich Renate von Herzen an: Erinnern wir uns an jene schicksalhafte Nacht auf den 26. April 1986, und an alle anderen schicksalhaften Augenblicke des Atomzeitalters und behalten wir ihre Folgen im Auge, um daraus für die Zukunft zu lernen.

Dieser Post enthält (nicht nur) meine Erinnerung und mag hoffentlich helfen zu verstehen, worum es bei Atomen, Kernkraft und Radioaktivität eigentlich geht.

 

Erinnert ihr euch noch an das Tschernobyl-Unglück? Wie habt ihr jene Tage vor 30 Jahren erlebt? Oder seid ihr erst “nachher” zur Welt gekommen? Welche Bedeutung haben die Ereignisse für euch?

Literatur:

[1] Es gibt einen ausführlichen Artikel zum Unglück von Tschernobyl auf Wikipedia:  https://de.wikipedia.org/wiki/Nuklearkatastrophe_von_Tschernobyl. Die Einleitung des Posts ist eine freie Nacherzählung anhand der dortigen Darstellung des Unfallhergangs.

[2] Rudolf Kippenhahn (1998): Atom.Forschung zwischen Faszination und Schrecken. Erweiterte Taschenbuchausgabe im Piper-Verlag GmbH, München. (Das Buch ist vergriffen, aber auf dem Gebrauchtmarkt und in Bibliotheken zu finden: Ein umfassendes, auch für den Laien verständliches Werk, das durch die Geschichte der Atome und ihrer Erforschung führt und schliesslich umfassende Informationen zu Kernenergie und Radioaktivität bereithält.

[3] Weitere Einzelheiten und Bilder rund um Tschernobyl und das Unglück in englischer Sprache gibt es auch auf http://chernobylgallery.com/

Tigerschnegel : Bekämpfung unnötig - ich bin ein Verbündeter!

Endlich grünt und blüht es überall, und immer wieder scheint die Sonne, lockt uns hinaus ins Freie, in den Garten und auf den Balkon. Lange genug haben unzählige fleissige Hobbygärtner darauf gewartet, ihrem Lieblingshobby wieder frönen und zu Schaufel und Hacke greifen zu können, um bald ihrem mit Liebe herangezogenen Grün beim Wachsen zusehen zu können.

Zu den Hobbygärtnern zählen gewiss auch meine “Schwiegereltern”, die im Garten ihres Wochenendhäuschens Erdbeeren, Kartoffeln und manches mehr anzubauen pflegen. Doch obgleich Haus und Garten gute 30 Kilometer vom Standort der Kiste entfernt liegen, glaube ich die Flüche der Schwiegermutter schon wieder hören zu können: “Oh, diese Schnecken!! Ich werfe sie schon eimerweise über den Gartenzaun (keine Sorge um die Nachbarschaft: dahinter befindet sich eine wilde Wiese), aber ich glaube, die kommen immer wieder zurück!”

Wie es scheint, leiden die Schwiegereltern – oder besser ihr Garten – jahrein, jahraus unter einer gehörigen Schneckenplage. “Und wenn wir sie nicht absammeln und hinaus befördern, fressen uns die Biester alles kahl!”

Da muss es doch Abhilfe geben, denke ich, und fange an mich schlau zu lesen. Dabei stosse ich auf einen für manchen womöglich überraschenden Aspekt des Schneckenproblems: Den Weg über den Gartenzaun finden womöglich genau die falschen Schnecken. Nämlich jene, die ihr Eigenheim auf dem Rücken mit sich herumtragen und sich daran schleimfrei anfassen und aufheben lassen. Diese Arten ernähren sich nämlich vornehmlich von welken Pflanzenresten oder Algen.

Schneckenarten

Gehäuseschnecken wie die Bänderschnecken (links oben, CC BY-SA by Reto Lippuner) und die Weinbergschnecke (links unten, CC BY 3.0 DE by C.Löser) sind für Kahlschlag im Garten nicht verantwortlich. Die eigentlichen Feinde unserer Pflanzen sind Nacktschnecken, darunter die gefürchtete spanische Wegschnecke (rechts oben, CC BY-SA 3.0 by Aiwok), die rote (rechts unten, CC BY-SA 3.0 by Guillaume Brocker) und schwarze Wegschnecke, aber auch die kleinere, nicht minder gefürchtete genetzte Ackerschnecke (s. Artikelbild,).

 

Unsere eigentlichen Widersacher sind hingegen obdachlos: Nacktschnecken, wie die Spanische Wegschnecke, tun sich eifrig an frischen Blättern gütlich und hinterlassen unschöne Löcher oder gleich kahle Pflanzentriebe. Und Nacktschnecken anzufassen oder gar aufzusammeln kostet manchen Menschen schon einiges an Überwindung.

Aber der Mensch hat doch längst etwas erfunden, um im Krieg gegen die immer hungrigen Schleimer die Oberhand zu behalten… dieser Gedanke führt mich ins Gartencenter, in dem Bestreben, die Schwiegereltern von dieser einen Sorge zu befreien.

 

In der Verkaufshalle des Gartencenters erstreckt sich ein wahres Chemiker-Paradies meterlang und überkopfhoch vor mir: Düngemittel und Giftstoffe aller Art, gegen nahezu alles was da kreucht und fleucht und unserem geliebten Grünzeug über Gebühr auf die Pelle rücken könnte… und ein ganzer Regalboden bietet eine breite Auswahl dessen, was ich suche: Schneckenkörner. Doch warum gleich ein ganzes Regalfach? Was ist Schneckenkorn eigentlich, und worin unterscheiden sich die verschiedenen Sorten?

Schneckenkorn ist ein Granulat aus einem porösen Trägermaterial, das mit einem oder mehreren Wirkstoffen getränkt ist. Die wirklich effektiven Schneckengifte unter diesen Wirkstoffen haben die “Nebenwirkung”, dass sie Schnecken wie magisch anziehen und im besten Fall dazu verleiten, die Körner sogar zu fressen.

Schneckenkorn: Grosse Auswahl zu nur einem Zweck

Eines haben alle Schneckenkörner gemeinsam: Sie sorgen dafür, dass jede Schnecke, die diese vermeintlichen Leckerbissen frisst, alsbald das Zeitliche segnet. Und zwar alle Schnecken, gleich ob mit oder ohne Haus. Und ein schönes Ende haben sie gewiss nicht – das verrät eine nähere Recherche der verschiedenen Giftstoffe.

Schneckenkorn : Der Warnfarbstoff markiert das Gift für Menschen deutlich.

Ausgestreute Schneckenkörner, hier mit blauem Warn-Farbstoff: Achtung, giftig!

Methiocarb

Das wohl fieseste der Molluskizide – so werden Schneckengifte von Fachleuten genannt – werde ich in meinem Gartencenter in der Schweiz nicht finden: Es ist hierzulande gar nicht als Schneckenkiller zugelassen. In Deutschland auch nicht – dort ist es allerdings erst seit September 2014 verboten, sodass nur die deutschen Gärtner wissen mögen, ob und wieviel davon noch in ihren Schuppen und Kellern auf Vorrat lagert. In Österreich ist es hingegen durchaus möglich, Methiocarb in Schneckenkörnern anzutreffen. Deswegen soll es hier Erwähnung finden.

Methiocarb ist seines Zeichens ein sogenannter Acetylcholin-esterase-Hemmstoff.

Acetylcholin ist ein Neutrotransmitter – ein Molekül, dessen Aufgabe es ist, Nervensignale über den synaptischen Spalt, den Abgrund zwischen einer Nervenzelle und der nächsten zu “transportieren”: Wenn Acetylcholin die nächste Zelle erreicht, wird das Nervensignal innerhalb dieser auf elektrischem Wege weitergeleitet. Sobald das Acetylcholin diesen Job erledigt hat, kommt das Enzym Acetylcholinesterase zum Einsatz und zerlegt die Acetylcholin-Moleküle fachgerecht in wiederverwendbare Bruchstücke.

Unglücklicherweise (nicht nur) für die Schnecken finden Methiocarb-Moleküle und Acetylcholinesterase einander sehr anziehend und reagieren unwiederruflich miteinander. Allerdings kann das Enzym Methiocarb nicht zerlegen. Wenn die Acetylcholinesterase und Methiocarb zusammen finden, wirkt letzteres wie Sand im Getriebe: Nichts geht mehr, das Enzym-Molekül ist ausser Gefecht. Da hilft nur noch, das ganze Molekül zu verschrotten und neu zu bauen. Und das kann dauern – schliesslich ist solch ein Enzym ein ziemlich grosses und komplexes Protein.

Biochemiker sprechen von einer nicht-kompetitiven Inhibition der Cholinesterase. Dazu in der Lage sind z.B. auch das berühmte Insektizid Parathion “E 605” und Kampfstoffe wie Sarin oder Tabun. Andere Stoffe, die die Cholinesterase kompetitiv hemmen, d.h. durch ausreichend Acetylcholin wieder verdrängt werden können, werden hingegen als Medikamente gegen verschiedene Krankheiten eingesetzt (z.B. “ACE-Hemmer” gegen hohen Blutdruck).

 

Kommt schliesslich ein neues Nervensignal an den synaptischen Spalt, während die vorrätige Cholinesterase ausser Gefecht gesetzt ist, wird das ausgeschüttete Acetylcholin nach Erledigung seiner Aufgabe nicht abgebaut und sendet fröhlich weiter sein Signal, ungeachtet dessen, dass die nachfolgende Zelle unter dem Dauerfeuer völlig verrückt spielt.

Acetylcholin kommt an verschiedenen Übergängen zwischen Nerven- und anderen Zellen zum Einsatz, nicht zuletzt am Übergang von Nerven- zu Muskelzellen. Schnecken, die Methiocarb verspeisen, werden in Folge dessen geradezu rasend, sprich hyperaktiv, ehe die Muskelfunktion durch das synaptische Chaos gänzlich zum Erliegen kommt, sodass die Schnecken an Ort und Stelle verenden.

Das allein ist schon kein schönes Ende – hinzu kommt, dass man nach geschlagener Schlacht die herumliegenden Schneckenleichen noch beseitigen muss.

Der eigentliche Haken an der Sache kommt aber noch: Denn Acetylcholin findet nicht nur in Schnecken, sondern auch in den Körpern zahlreicher weiterer Tiere – Wasserlebewesen, Insekten, Vögel (die finden es jedoch alles andere als schmackhaft), Säugetiere, Menschen – als Neurotransmitter Verwendung. Wenn andere Gartenbewohner, Haustiere oder unbedarfte Exemplare unserer eigenen Spezies (Kinder!) die Schneckenkörner aufnehmen oder die verendeten Schnecken als Festmahl erachten, haben sie alsbald ebenfalls mit synaptischem Chaos zu tun: Erbrechen, Speichelfluss, Schwitzen, Durchfall, Atemnot und ein Lungenödem gehören zu den möglichen Symptomen einer Methiocarb-Vergiftung. Und besonders letzteres kann mitunter tödlich enden.

Da es einige Zeit dauert, bis Methiocarb im Boden abgebaut wird und es nur eine geringe Tendenz zum Versickern zeigt, können herumliegende oder gar fortgeschwemmte Methiocarb-Schneckenkörner oder verendete Schnecken schnell zur Gefahr für andere Lebewesen werden – und im schlimmsten Fall ganze Gewässer, in welche sie geraten, vergiften.

All das sind in meinen Augen wahrlich gute Gründe dafür, dass Methiocarb vielerorts nicht (mehr) gegen Schnecken eingesetzt werden darf.

Metaldehyd

Auch in der Schweiz erhältlich ist hingegen Schneckenkorn mit Metaldehyd. Dessen Molekül, das aufgrund seiner Symmetrie einer gewissen Schönheit nicht entbehrt, kann in vier Moleküle Acetaldehyd zerlegt werden, von welchem die eigentliche Giftwirkung ausgeht. Wer über den biochemischen  Katzenjammer gelesen hat, erinnert sich vielleicht, dass eben dieser Stoff, der auch beim Abbau von Alkohol im menschlichen Körper entsteht, einen guten Anteil an dessen Giftwirkung hat.

Acetaldehyd wirkt bei Schnecken vor allem auf jene Zellen in der Haut, die den glitschigen Schleim produzieren, welcher der Schnecke eigentlich unter anderem als Schutz gegen Austrocknung dient. Unter Acetaldehyd-Einfluss geraten diese Zellen jedoch völlig ausser Kontrolle und fabrizieren Schleim, Schleim und noch mehr Schleim, ohne Rücksicht darauf, dass die Schnecken bei all der Schleimerei früher oder später – eher früher – regelrecht dehydrieren und an Ort und Stelle an Wassermangel eingehen. Grössere Nacktschnecken erleiden auf diese Weise zuweilen jedoch “nur” einen gewaltigen Kater und gehen k.o., bis der nächste Regenguss sie wieder auf die Beine – halt: auf die Unterseite – bringt. Deshalb sollten sie, einmal ausgeknockt, unbedingt eingesammelt und fortgeschafft werden.

Wie bereits angedeutet hat Acetaldehyd auch auf Menschen und andere Säugetiere in entsprechender Dosis eine erhebliche Giftwirkung. Zwar schleimen weder diese Tiere noch wir uns tot, doch kann Metaldehyd bzw. Acetaldehyd zu Fieber und Krämpfen führen, die unbehandelt die gleiche Wirkung haben können. Bis es dazu kommt, müsste ein Mensch laut Velvart(1993)[1] jedoch eine ganze Menge Metaldehyd zu sich nehmen: Ein Kleinkind muss angeblich bei unter 100 Schneckenkörnern auf einmal nicht mit ernsteren Vergiftungen rechnen.

Andererseits ist gemäss dem “Praktischen Tierarzt“, da vor allem Hunde oft regelrecht von herumliegenden Schneckenkörnern verführt werden, jeder Haustierarzt gut beraten, über die Symptome einer Metaldehyd-Vergiftung im Bilde zu sein.

Metaldehyd ist im Boden relativ gut beständig. Wenn es aber doch einmal zu Acetaldehyd zersetzt wird, können zahlreiche Organismen es zu harmloser Essigsäure oxidieren und weiter zu Kohlendioxid und Wasser abbauen.

In der Schweiz scheinen sich Metaldehyd-Schneckenkörner übrigens trotz der grossen Schleimerei grösster Beliebtheit zu erfreuen: Im Regal für Metaldehyd-Schneckenkörner im hiesigen Gartencenter herrscht bei meinem Besuch gähnende Leere: Alles ausverkauft! Erst im Kram-Fach an der Kasse sind mir noch zwei Pakete in die Hände gefallen, sodass ich mich von ihrem fiesen Inhalt überzeugen konnte.

[1] Velvart J.: Toxikologie der Haushaltsprodukte. Verlag Hans Huber, Bern; Stuttgart; Toronto, 1993

 

Eisen(III)phosphat

Anders verhält es sich mit Eisen(III)phosphat. Mit diesem auch als Bio-Schneckenkiller zugelassenen Wirkstoff präparierte Schneckenkörner stapeln sich noch zentnerweise in den Regalen – sowohl in der herkömmlichen als auch in der Bio-Variante (mit etwas geringerer Wirkstoff-Konzentration).

Eisen(III)phosphat ist ein Salz – eine Verbindung (hier) aus zwei Ionensorten, Eisen3+ -Ionen und Phosphat(PO43-)-Ionen. Sowohl Eisen- als auch Phosphat-Ionen sind an sich natürliche Bestandteile unserer Umwelt und vieler Organismen, sodass Eisen(III)phosphat für die meisten Lebewesen ungefährlich ist. Schnecken, die dieses Salz aufnehmen, verlieren allerdings rasch ihren Appetit. In Folge dessen ziehen sie sich in ihre Schlupfwinkel zurück und verhungern langsam, da sie keinen Drang mehr empfinden, sich etwas zu Fressen zu suchen.

Der Haken an der Sache: Um die Appetitlosigkeit lange genug aufrecht zu erhalten, sodass die Schnecken auch wirklich den Hungertod erleiden, müssen je nach Anzahl und Grösse der “Ziele” erhebliche Mengen des Eisenphosphats ausgebracht werden. Die kosten natürlich Geld und wollen zu ihrem Bestimmungsort geschleppt werden. Ausserdem wird für grossflächigen Einsatz solcher Schneckenkörner, zum Beispiel im Ackerbau, die Phosphat-Belastung von Böden und Gewässern, wie man sie gemeinhin von Düngemitteln her kennt, diskutiert.

Schlussendlich habe ich alle Schneckenkörner im Regal gelassen. Nicht nur, dass mir jede der drei beschriebenen Todesarten nicht einmal schneckenwürdig erscheint – die möglichen Kollateralschäden bei dieser Art von Kriegsführung und die mangelnde Effektivität des Eisenphosphats lassen mich an der Zweckdienlichkeit der beschriebenen Mittel zweifeln.

 

Alternativen zu Schneckenkorn

Den Schwiegereltern kann ich nur empfehlen einfache Bretter im Garten auszulegen. Darunter verkriechen sich die Schnecken tagsüber mit Vorliebe, sodass man sie einfach absammeln und weiträumig “ausschaffen” kann (aber nur die Nacktschnecken!).

Des Weiteren können mechanische Barrieren errichtet werden: Schneckenzäune, Schneckenkragen für empfindliche Sprösslinge, trockenes und scharfkantiges bzw. spitzes Streugut, über welches Schnecken nicht gut kriechen können, und manches mehr. All das ist allerdings je nach Grösse des zu verteidigenden Areals relativ aufwändig in der Umsetzung.

Bier-Fallen gehören streng genommen ebenfalls zu den chemischen Keulen: Von Bier wie magnetisch angezogen können Schnecken in ein im Boden eingelassenes Gefäss stürzen und im Gerstensaft ertrinken. Leider funktioniert das nicht nur mit Nacktschnecken, sondern auch mit ihren haustragenden Verwandten und vielen anderen kleinen Nützlingen, wie Insekten und Mäusen, sodass auch hier mit beträchtlichen Kollateralschäden gerechnet werden muss.

Einige Pflanzen haben den gefrässigen Schnecken eigenständig den Kampf angesagt und produzieren Stoffe, die von ihren schleimigen Gegnern als höchst widerlich empfunden werden. Dazu zählen viele Gewürzpflanzen bzw. Kräuter, wie Salbei, Thymian, Rosmarin, Lavendel oder Knoblauch, die zwischen Schösslinge gepflanzt ihre Umgebung unattraktiv für Schnecken gestalten können. Das Abschreckungsmittel von bestimmten Moosen ist als Lebermoos-Extrakt sogar im Handel erhältlich und kann als wirksames, aber biologisches Spritzmittel die Schnecken von bespritzten Pflanzen fernhalten.

Der natürlichste Weg zur Schneckenbekämpfung ist wahrscheinlich, sich im Kampf gegen die Plagegeister mit deren Fressfeinden zu verbünden. Der Igel ist wohl der bekannteste Schneckenfeind, doch auch Kröten und einige Vögel zählen zu den potentiellen Verbündeten. Wer die Möglichkeit hat Geflügel zu halten, hat in Hühnern, Fasanen oder Indischen Laufenten (letztere kann man sogar für einen vorübergehenden “Kampfeinsatz” mieten!) schlagkräftige Kampfgefährten. Da viele dieser Tiere jedoch die – ursprünglich aus Südeuropa eingeschleppte – Spanische Wegschnecke als ungeniessbar erachten, gilt als einer der wichtigsten Fressfeinde dieser Art…

Tigerschnegel

Tigerschnegel: Dieser hübsche Geselle sollte ein willkommener Gast im Garten sein: Er ernährt sich unter anderem von anderen Nacktschnecken! (CC BY-SA 3.0 by G.U.Tolkiehn)

 

Eine Nacktschnecke: Der Tigerschnegel, eine bis zu 20 cm lange Nacktschnecke mit hübscher Leoparden-Zeichnung, ernährt sich neben welkem Pflanzenmaterial und Aas auch räuberisch von anderen Nacktschnecken – einschliesslich der Spanischen Wegschnecke. Wer diesen Gesellen in seinem Garten findet, muss sich nicht um seine Pflanzen sorgen, sondern kann sich über einen wertvollen Verbündeten im Kampf gegen die wirklichen Plagegeister freuen.

Mehr Spannendes zu den verschiedenen Schneckenarten gibt es übrigens in Robert Nordsiecks Seite “Die Lebende Welt der Schnecken“!

Fazit

Schneckenkörner sind wirksam, unterscheiden aber nicht zwischen Freund und Feind unter den Schnecken – und können auch für andere Lebewesen gefährlich werden. “Natürliche” Strategien im Kampf gegen Schnecken sind zwar oft aufwändiger, aber letztlich zielgenauer und richten weniger Kollateralschäden an.

Mein Lebenspartner und ich haben meinen Schwiegereltern übrigens ein Igel-Hotel geschenkt, das nun seinen angestammten Platz im Garten hat. Und verirrte Schnecken auf unserem heimischen Balkon im ersten Stock erhalten umgehend einen Freiflug ins Igel-Terrain im Erdgeschoss!

Und wie geht ihr mit Schnecken im Garten um?

Chemie im Osternest: Ostereier und Farbstoffe

Der Frühling kommt unaufhaltsam, und mit ihm rücken die Ostertage immer näher. Nach dem grauen Winter gibt es wohl kaum jemanden, der sich nicht nach dieser hellen Zeit voller Farben sehnt: Sonne, Frühlingsblumen, bunte Eier… doch bis es soweit ist, und wir uns an den Farben freuen können, steht noch Arbeit an. Im Supermarkt gibt es reichlich Hilfsmittel im Angebot, unter anderem eine breite Palette von Färbemitteln für die Eier. Das verspricht Mal- und Bastelspass für Gross und Klein!

Als ich mir die Packungen – bei den beiden bekanntesten Schweizer Grossverteilern von einem deutschen Hersteller – genauer ansah, war jedoch zunächst einmal meine Chemiker-Neugier geweckt: Das Verzeichnis der Inhaltsstoffe bestand durchweg aus einer umfangreichen Liste von E-Nummern. Nun, die sind für sich erst einmal nichts schlimmes, sind doch einer ganzen Reihe nützlicher und gesunder Substanzen – beispielsweise vielen Vitaminen – E-Nummern zugeordnet, die als Kurzschreibweise die gesetzliche Kennzeichnungspflicht auf kleinstmöglichem Raum erfüllen. Hier jedoch beschlich mich ein Verdacht. Und da ich kein wandelndes E-Nummern-Lexikon bin, habe ich die Zahlensammlung rasch ins Smartphone abgetippt, um sie später in Ruhe nachzuschlagen.

Und ich sollte recht behalten: Die Liste hält eine wahre Fülle synthetischer Farbstoffe bereit, die auf den ersten Blick klangvolle, optimistische Namen haben:

  • E 104 Chinolingelb
  • E 110 Gelborange S
  • E 122 Azorubin
  • E 124 Cochenillerot A
  • E 131 Patentblau V
  • E 132 Indigotin
  • E 133 Brilliantblau FCF
  • E 142 Grün S
  • E 151 Brilliantschwarz BN

All diese Stoffe sind organische Verbindungen, und die Stoffklassen, welchen sie angehören, sind mir (und wohl jedem anderen Chemiker) aus dem Studium wohlbekannt: Zu den sogenannten Triphenylmethan-Farbstoffen zählen viele bekannte Indikatoren, zum Beispiel das Phenolphthalein, aber auch Patentblau V, Brilliantblau FCF und Grün S (E 131, 133 und 142). Einen Vertreter der sogenannten Azofarbstoffe, zu welchen E 110, E 122, E124, E 132 und E 151 zählen, habe ich einst sogar selbst im Labor synthetisiert. Dabei sind mir als sicherheitsbewusster Chemikerin neben den strahlenden Farben besonders diese Eigenschaften dieser Stoffe in Erinnerung geblieben: giftig, potentiell krebserzeugend, überaus wasserlöslich und damit im Handumdrehen überall verteilt. Und sowas sollte für Lebensmittel zugelassen sein?

Aber welche organischen Verbindungen sind eigentlich farbig? Kann man Farbstoffe nach Wunsch “erfinden”? Und wie gesundheitsschädlich sind die synthetischen Ostereier-Farben wirklich? Sollte man sie meiden?

 

Welche organischen Moleküle sind farbig?

Unser Eindruck von Farbigkeit organischer Stoffe entsteht genauso wie bei allen anderen Stoffen auch. In “Farben, Licht und Glanz – Wie die Welt uns bunt erscheint” habe ich bereits vom Aufbau der Elektronenhülle von Atomen erzählt, innerhalb welcher Elektronen von Etage zu Etage “umziehen” können, indem sie Licht mit einer genau passenden Wellenlänge schlucken. Was dann vom einstmals weiss erscheinenden Gemisch aller Licht-Wellenlängen übrig bleibt, bestimmt die Farbe, die wir sehen – nämlich die Komplementärfarbe zur geschluckten Wellenlänge.

Farbig sind also solche Teilchen, in deren Elektronenhülle es Abstände zwischen Energieniveaus (“Etagen”) gibt, welche durch das Schlucken von Licht-Wellenlängen im sichtbaren Bereich überbrückt werden können. In einem Molekül, in welchem die Atome über Elektronenpaarbindungen miteinander verbunden sind, teilen die Atome gemeinsame Energieniveaus, welche ihrerseits in “Wohneinheiten”, sogenannte Orbitale, für je zwei Elektronen unterteilt sind. Und (nicht nur) für organische Moleküle gilt die Faustregel:

Die Abstände zwischen Energieniveaus liegen dann im sichtbaren Bereich, wenn sich viele Elektronen “Wohngemeinschaften”, also miteinander verbundene “Wohneinheiten” bzw. Orbitale teilen – in der Chemikersprache gesagt: wenn die Elektronen “delokalisiert” sind.

In den üblichen Einfach-Elektronenpaarbindungen bleibt allerdings jedes Elektronenpaar unter sich. Erst wenn Doppelbindungen vorkommen, wird die Sache interessant. Denn eine Doppelbindung kann man sich dergestalt vorstellen, dass eine zweite Bindung eine Einfachbindung zwischen zwei Atomen ähnlich einem Schlauch umgibt – und an beiden Enden ein gutes Stück darüber hinaus ragt. Wenn nun zwei Doppelbindungen auftreten, welche nur durch eine Einfachbindung voneinander getrennt sind, können die “überstehenden” Enden der beiden Doppelbindungen miteinander verschmelzen, sodass die darin enthaltenen vier Elektronen sich entlang aller vier beteiligten Atome bewegen können – also delokalisiert sind.

Sich abwechselnde Doppel- und Einfachbindungen entsprechen also einer für farbige Stoffe massgeblichen atomaren “Wohngemeinschaft”.

Das bedeutet: Es lässt sich an der Lewis- oder Strichformel eines organischen Stoffes abschätzen, inwieweit dieser farbig ist! Dabei gilt grundsätzlich: Je mehr sich abwechselnde Doppel- und Einfach-Bindungen ein Molekül enthält, d.h. je weiter die enthaltenen Elektronen delokalisiert sind, desto farbiger ist der entsprechende Stoff.

Darüber hinaus kann die Farbe eines Stoffes weiter intensiviert werden, wenn das Molekül bestimmte Atomgruppen enthält, die an und für sich schon farbig sind. Eine solche “Chromophor” genannte Atomgruppe ist die aus zwei Stickstoffatomen bestehende Azogruppe, -N=N-, welche den Azo-Farbstoffen ihren Namen gegeben hat.

 

Wie organische Farbstoffe aufgebaut sind

In einem typischen Farbstoffmolekül sind eine oder mehrere chromophore Gruppen in ein System aus sich abwechselnden Doppel- und Einfachbindungen eingegliedert. Nicht selten sind aromatische Ringe – meist sechseckige “Benzol-Ringe” aus sechs Kohlenstoff-Atomen – Teil dieses Systems, da diese in ganz besonderer Weise delokalisierte Elektronen aufweisen. Da eben diese Besonderheit die aromatischen Ringe jedoch in vielerlei Hinsicht unreaktiv macht, enthalten gute Farbstoff-Moleküle überdies besonders reaktionsfreudige Atomgruppen, die mit anderen Stoffen feste Bindungen eingehen und dem Farbstoff so erlauben, am zu färbenden Material – zum Beispiel Textilfasern oder Eierschalen – möglichst waschecht zu haften. Solche Gruppen werden “Auxochrome” – Farbhelfer – genannt.

Azorubin und Brilliantschwarz_BN

Azorubin (linke Formel) ist ein typischer Azofarbstoff, dessen Azogruppe (hellblau gerahmt) zwischen zwei aromatischen Ringen zu finden ist. Doppel- und Einfachbindungen wechseln sich in diesem System also über alle vier Ringe und die Azogruppe hinweg ab. Am Rand des Moleküls finden sich als Auxochrome mehrere Sulfonsäure-Gruppen (rosa gerahmt, dargestellt als Natrium-Salz). Eine Sulfonsäure-Gruppe ist nichts anderes als ein Teil eines Schwefelsäure-Moleküls, welcher mit dem Kohlenstoff-Gerüst des Farbstoffs verknüpft ist. Dementsprechend können diese Gruppen ähnlich wie Schwefelsäure sowohl Ionen- bzw. Säure-Base-Reaktionen eingehen, als auch Ester und andere feste Verknüpfungen über Elektronenpaar-Bindungen bilden. Sulfonsäuren, besser noch ihre Salze, sind also sowohl wasserlöslich als auch in der Lage, feste Bindungen einzugehen.

Die rechte Formel lässt überdies die Bedeutung der Chromophore erahnen: Brilliantschwarz – Schwarz als intensivste “Farbe” ergibt sich, wenn sämtliche sichtbaren Lichtwellen geschluckt werden – enthält statt einer Azo-Gruppe gleich zwei – und der Stoff ist nicht bloss intensiv farbig, sondern schwarz.

Auch Triphenylmethan-Farbstoffe enthalten aromatische Ringe – wenn solch ein Ring an etwas anderes gebunden ist, nennen die Chemiker ihn “Phenyl-Gruppe” – aber keine weiteren chromophoren Gruppen. Das Grundgerüst dieser Farbstoffe entspricht also einem Methanmolekül (CH4), in welchem drei der Wasserstoff-Atome durch Phenyl-Gruppen ersetzt sind (links im Bild die Strukturformel für “Triphenylmethan”, welches diesen Farbstoffen ihren Namen gibt). Auch im rechts gezeigten Patentblau V finden sich Sulfonsäuregruppen als Auxochrome.

Triphenylmethan und Patent_blue_V

Die Eigenschaften solcher Farbstoffe lassen sich nicht nur auf diese Weise aus den Strukturformeln ablesen.  Die Regeln der Chemie zur Farberscheinung und zu anderen Eigenschaften sind gar so präzise, dass Chemiker die Farbe eines Moleküls ausrechnen – bzw. sich ein Molekül mit der gewünschten Farbe und weiteren Eigenschaften ausdenken können! Da liegt es nahe, für Ostereier und andere Lebensmittel Farbstoffe zu designen, die sowohl die gewünschten Farben haben, als auch unschädlich für den menschlichen Körper sind.

 

Aber wie gesundheits(un)schädlich sind diese Designer-Farbstoffe wirklich?

Aufnahme und Anreicherung von Lebensmittelfarbstoffen

Der ideale Lebensmittelfarbstoff wird auf seinem Weg durch den Verdauungstrakt gar nicht erst vom Körper aufgenommen und unverändert wieder ausgeschieden. An dieses Ideal kommen die Triphenylmethan-Farbstoffe unter den Ostereierfarben nahe heran: Sie werden weder vom Körper aufgenommen, noch im Verdauungstrakt gespalten oder anderweitig verändert. Die auxochromen Gruppen erweisen sich in diesem Zusammenhang wiederum als nützlich: Aufgrund der guten Wasserlöslichkeit der Moleküle besteht überdies kaum Gefahr, dass diese sich – über längere Zeit aufgenommen – irgendwo im Körper anreichern.

Etwas anders sieht es bei den Azofarbstoffen aus, da der menschliche Organismus in der Lage ist, die Azo-Gruppe solcher Moleküle zu spalten. Somit müssen also nicht nur die Moleküle selbst, sondern auch die Bruchstücke unbedenklich sein. Und unter den Bruchstücken von Azo-Farbstoffen sind aromatische Amine, also solche, die neben einem Benzol-Ring auch eine zusätzliche Stickstoff-Gruppe enthalten, für eine krebserzeugende Wirkung berüchtigt. Jener Azo-Farbstoff, den ich einst im Labor synthetisiert habe, mag ein solches Fragment enthalten haben. Die Lebensmittelfarbstoffe enthalten derlei jedoch aus gutem Grund nicht. Ihre Bruchstücke sind harmlos und werden problemlos wieder ausgeschieden.

Allergische Reaktionen

Nichts desto trotz sind alle “Designer-Stoffe”, zu welchen die synthetischen Lebensmittel-Farbstoffe zählen, aus Sicht des menschlichen Körpers “Fremdstoffe”, welche pseudoallergische Reaktionen auslösen können. Dabei handelt es sich um unspezifische Abwehrreaktionen auf die Gegenwart eines Fremdstoffs: Wie bei einer Allergie können Entzündungssymptome auftreten, von Hautauschlag (Neurodermitis) bis hin zu Asthma. Das Ausmass dieser Symptome hängt dabei von der jeweiligen Dosis des Auslösers ab. Das heisst, ausreichend geringe Mengen des Auslösers werden mitunter gar keine spürbare allergische Reaktion auslösen.

Im Unterschied dazu werden bei einer “echten” Allergie Antikörper gegen den Auslöser (das “Allergen”) gebildet, welche  das Immunsystem in Gang setzen und so die Abwehrreaktion auslösen. Da dieser Weg der Abwehr nach dem Alles-oder-Nichts-Prinzip funktioniert, können schon kleine Mengen eines Allergens eine heftige Reaktion nach sich ziehen.

Pseudoallergische Reaktionen auf Farbstoffe können also durch die Verwendung ausreichend kleiner Mengen weitgehend vermieden werden. Allerdings ist z.B. bei Personen, die auch auf den Aspirin-Wirkstoff Acetylsalicylsäure pseudoallergisch reagieren, häufig eine besondere Empfindlichkeit gegenüber Lebensmittelfarbstoffen beobachtet worden.

Hyperaktivität und Konzentrationsstörungen

Seit 2007 ist eine Studie populär, die einen Zusammenhang zwischen der Aufnahme von Lebensmittelfarben aus der Gruppe der Azo-Farbstoffe und Hyperaktivität bzw. Konzentrationsstörungen von Kindern festgestellt haben will. Nach dem Arbeitsort ihrer Autoren wird diese Studie kurz als “Southhampton-Studie” bezeichnet. Sie führte dazu, dass in der EU in jüngster Zeit eine Kennzeichnungspflicht für Lebensmittel mit Azo-Farbstoffen eingeführt worden ist: Solche Produkte müssen neuerdings eine Aufschrift “kann Aktivität und Aufmerksamkeit bei Kindern beeinträchtigen” tragen. Ostereier-Farben sind übrigens davon ausgenommen – die bunten Eierschalen werden schliesslich nicht verzehrt, heisst es – weshalb ich auf den Verpackungen “meines” deutschen Herstellers auch keinen solchen Hinweis gefunden habe.

Das Schweizer Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV) bezeichnet die Southampton-Studie allerdings in vielen Punkten als unwissenschaftlich (die Kritikpunkte reichen von der Erhebung von Daten durch ungeschultes, nicht neutrales Personal bis zu unklaren Messgrössen und Untersuchungsgegenständen) und die Schlussfolgerungen daraus als widerlegt. Aus diesem Grund, so das BLV, gibt es in der Schweiz keine entsprechende Kennzeichnungspflicht.

Das Verhalten von Kindern bzw. Schülern ist ebenfalls Forschungsgegenstand in der Erziehungswissenschaft und Didaktik. So habe ich aus meiner Literatur aus der Lehrerausbildung den Eindruck gewonnen, dass wohl kaum ein Forschungsgegenstand schwieriger zu erfassen ist, als Einflüsse von Massnahmen – seien es Chemikalien oder Unterrichtsmethoden – auf das Verhalten von Kindern. Deshalb erfordern der Entwurf, die Durchführung und nicht zuletzt die Auswertung derartiger Studien in meinen Augen allerhöchste Sorgfalt und Vorsicht, sodass ich dazu neige, dem BLV und seinen Kritikpunkten in Sachen Lebensmittelfarbstoffen bei zu pflichten.

Insbesondere einen Zusammenhang zwischen Lebensmittelfarbstoffen und dem als ADHS (Aufmerksamkeits-Defizit-/Hyperaktivitäts-Syndrom) bezeichneten Syndrom, welches gerne in diesem Kontext genannt wird, kann ich nicht nachvollziehen. Viel einleuchtender erscheint mir da, dass pseudoallergischer Juckreiz und ähnliche Reaktionen Kinder unruhig und unaufmerksam werden lassen.

 

Welche Alternativen gibt es zu synthetischen Ostereier-Farben?

Es liegt mir fern, die synthetischen Ostereier-Farben als “gut” oder “schlecht” abzustempeln. Vielmehr möchte ich Hintergrundwissen liefern, anhand dessen jeder selbst entscheiden mag, was für ihn, sie oder seine/ihre Kinder das Beste ist. Auf diesem Grundsatz – jeder hat das Recht selbst zu entscheiden, was er verwendet oder gar zu sich nimmt – basiert in meinen Augen auch unser Lebensmittelrecht, sowohl in der Schweiz als auch in der EU, welches die Auflistung von Inhaltsstoffen auf der Verpackung von Lebensmitteln und anderen Waren vorschreibt.

Nach allem, was ich nun gelesen habe, sehe ich keinen Grund zu der Annahme, dass synthetische Ostereier-Farben per se gefährlich sein bzw. unweigerlich krank machen sollten. Ganz und gar unbedenklich sind sie deshalb aber noch lange nicht – nicht zuletzt, weil jeder Körper anders auf einen Stoff reagieren kann. Das gilt übrigens für viele sogenannte Naturstoffe ebenso wie für synthetische Verbindungen, denn auch die meisten Naturstoffe sind aus Sicht des menschlichen Körpers letztlich Fremdstoffe. Und Allergien – auch “echte” – auf “ganz normale” Lebensmittelbestandteile sind uns zu Genüge bekannt.

Wer sich schliesslich für die Naturstoff-Variante für seine Ostereier entscheidet, kann eine ganze Reihe wunderschöner Naturfarbstoffe in Lebensmittel-Pflanzen wie Rote Bete (in der Schweiz “Rande”) (rot), Curcuma (gelb), Spinat (grün), Zwiebelschalen (braungelb) oder Rotkohl bzw. Blaukraut (blauviolett) finden.

Eine tolle Anleitung zum Färben mit diesen Farbstoffen und Verzieren der Eier mit Essig-Mustern gibt es auf der Website von GEOLino. Und die dort gezeigten Eier sind fast so strahlend bunt wie die synthetischen Designerfarben – der wärmeren Farbtöne wegen finde ich sie sogar schöner als jene, die auf den Verpackungen der synthetischen Färbemittel abgebildet waren!

Ob nun synthetisch oder mit Naturstoff-Eiern: Ich wünsche euch frohe, farbenreiche Ostern!

Und womit färbt ihr eure Ostereier?

Photovoltaik : Solarpanel im Detail

Wie funktioniert eine Solarzelle? Welche Stoffe können aus Sonnenlicht Strom erzeugen? Und inwieweit ist die Photovoltaik umweltverträglich?

Diese Geschichte ist Peter Lustig gewidmet, der mit seiner Sendung “Löwenzahn” (und später auch “mittendrin”) zu meinen grossen Vorbildern gehört. In meiner Kindheit vor dem Internet-Zeitalter, als Wissen ausserhalb der Schule noch fast ausschliesslich in der Stadtbibliothek zu finden war, weckte “Löwenzahn” nicht nur meine Begeisterung für die Wissenschaft(en) als solche, sondern legte ebenso einen Grundstein für mein Bestreben, gesammeltes Wissen verständlich und alltagsnah weiterzugeben.

Schon 1989 nutzte Peter Lustig die Sonnenkraft, um den joggenden Energie-Baron Rauch und seine Zuschauer gleichsam zu begeistern:

Was damals noch exotisch, wenn nicht gar futuristisch erschien, ist heutzutage für relativ kleines Geld bei jedem Elektronikhändler erhältlich: Solarmodule in allen Grössen, die aus Sonnenlicht Strom erzeugen. Auf unserem Balkon betreiben sie die abendliche Beleuchtung und einen Springbrunnen, während eine tragbare “Powerbank” im Hosentaschenformat bei sonnigem Wetter einen endlos gefüllten Handy-Akku ermöglicht. Und auf dem Dach meines Elternhauses erzeugt ein richtiges kleines Photovoltaik-Kraftwerk seit vielen Jahren schon einen guten Teil des Stroms, den die zwei verbliebenen Hausbewohner verbrauchen. Ich mag mir vorstellen, dass Peter diese atemberaubende Entwicklung in den letzten 17 Jahren mit Begeisterung verfolgt hat – und weiter verfolgt hätte, wenn ihm mehr Zeit beschieden gewesen wäre.

In diesen 17 Jahren habe auch ich zahlreiche weitere Fragen und Antworten rund um die Photovoltaik gefunden und bin auf die Zukunft dieser Technik zur Nutzung der Sonne als schier unerschöpflicher Energiequelle nicht minder gespannt als damals.

Eines verrät Peter Lustig über seine solarbetriebenen Erfindungen allerdings nicht: Wie sie im Einzelnen funktionieren. Die spannenden Vorgänge, welche aus Sonnenenergie elektrischen Strom entstehen lassen, bilden jedoch die Grundlage für alle Gedanken um den Nutzen von Solarmodulen und Aussichten in die Zukunft. Deshalb erzählt dieser Artikel in erster Linie davon, wie Photovoltaik, die Gewinnung von Strom aus Sonnenlicht, im Einzelnen funktioniert und von den Stoffen, welche dafür verwendet werden. Nutzen und Gefahren für die Umwelt, welche diese Technik mit sich bringen, sollen dabei schliesslich nicht zu kurz kommen.

Wie entsteht in Solarzellen Strom?

Elektrischer Strom im Bändermodell

Elektrischer Strom ist ein Strom geladener Teilchen, im Hausgebrauch meist Elektronen, welcher durch ein leitendes Material strömt wie Wasser durch ein Flussbett. Strom erzeugen bedeutet also bewegliche Teilchen bereit zu stellen und sie an den Ort ihrer Bestimmung zu leiten.

Nun sind Elektronen für gewöhnlich fester Bestandteil von Atomen, die unsere Materie bilden. In Farben, Licht und Glanz – Warum die Welt uns bunt erscheint findet ihr die Beschreibung der Elektronenhülle einzelner Atome, in welcher die Elektronen wie auf Etagen eines Hochhauses ihre “Wohnungen” bzw. Energieniveaus beziehen. Zwei Dinge habe ich dort jedoch verschwiegen, weil sie nicht für die Entstehung von Farben, aber umso mehr für die Entstehung von Strom von Belang sind.

  1. Wenn mehrere Atome zu einer Verbindung zusammenfinden, entsteht aus den einzelnen Elektronenhüllen-Häusern eine wahre Vielfalt von bezugsfertigen Energieniveaus – je mehr Atome beteiligt sind, desto mannigfaltiger geht es in der gemeinsamen Elektronenhülle zu. In besonders grossen Atom-Verbünden, wie den Metallen, aber auch in sogenannten Molekülkristallen wie einem Diamanten (ja, jeder Diamant ist ein einziges, riesengrosses Molekül!), kann man sich eine wahre Grossstadt aus Energieniveaus vorstellen.
  2. Wie eine Grossstadt mit ihren Stadtvierteln kann auch der bunte Haufen der Energieniveaus in Bereiche mit unterschiedlichen Eigenschaften eingeteilt werden. Die Chemiker nennen diese Bereiche “Bänder” und sprechen vom Bändermodell, wenn sie damit die komplexen Verhältnisse in den Stoffen einfach beschreiben wollen.

Die unteren Geschosse einer Elektronenhüllen-Grossstadt werden darin zu einem Bereich zusammengefasst, in dem es gesittet zugeht, wie in der Geschichte zu den Farben beschrieben: Jedes Elektron hat seinen festen Platz in seinem Atom und kann mit Energiezufuhr allenfalls die Etage wechseln. Dieser Bereich wird “Valenzband” genannt. In einem anderen Bereich werden die bezugsfertigen Energieniveaus jedoch so zahlreich und liegen so dicht beieinander und nebeneinander, dass Elektronen sich darin von einem Atom zum anderen bewegen können, wie durch eine mit Türen verbundene Zimmerflucht. Weil durch dieses Band demnach ein Strom fliessen kann, wird es “Leitungsband” genannt.

Bändermodell : Leiter und Nichtleiter

Darstellung der Elektronenhülle von nichtleitenden und leitenden Stoffen im Bändermodell (nach: Energy Band Model (DE) by Cepheiden (Own work) [GFDL or CC BY-SA 3.0], via Wikimedia Commons)

In den Stoffen, die aus Nichtmetallen bestehen – wie zum Beispiel Diamant, findet man das Leitungsband nun bei wesentlich höherer Energie als das Valenzband. Dazwischen liegt ein Bereich, in dem es keine besetzbaren Energieniveaus gibt – die sogenannte Bandlücke.  Die Elektronen solcher Stoffe besetzen allesamt Energieniveaus im Valenzband und haben unter normalen Umständen keine Möglichkeit, die Bandlücke zu überwinden und ins Leitungsband zu gelangen: Diamant und andere Nichtmetallverbindungen leiten keinen Strom – sie sind Nichtleiter.

In Metallen hingegen, die aus besonders dicht gepackten Atomen bestehen, sind die Energien von Valenz- und Leitungsband sich so ähnlich, dass sich die beiden Bänder mindestens teilweise überlappen, d.h. es gibt keine Bandlücke. So haben Elektronen im Valenzband gleichsam die Möglichkeit, sich entlang des Leitungsbandes durch das Metall zu bewegen: Metalle sind elektrische Leiter. Wenn man an ein Metall also eine Spannung – sprich einen Elektronenüberschuss an einem und einen Elektronenmangel am anderen Ende – anlegt, werden die beweglichen Elektronen ähnlich Wassermassen im Flussbett durch das Leitungsband geschoben.

Wie aus Licht Strom entstehen kann

Um jedoch aus Licht elektrischen Strom zu erzeugen, braucht man einen Stoff, dessen Bandlücke so schmal ist, dass Elektronen aus dem Valenzband sie durch Aufnahme von Lichtquanten (Photonen), überwinden und ins Leitungsband gelangen können. Solch ein Stoff wird Halbleiter genannt: Er leitet nur bei ausreichender Energiezufuhr Strom.

Halbleiter : Bändermodell

Darstellung der Elektronenhülle eines Halbleiters im Bändermodell: Durch Anregung, beispielsweise mittels Lichtenergie, können Elektronen (-) vom Valenz- ins Leitungsband wechseln. Die zurückbleibenden unbesetzten Stellen (Defektelektronen oder “Löcher”) können sich im Valenzband ebenso bewegen wie die Elektronen im Leitungsband. (nach: Energy Band Model (DE) by Cepheiden (Own work) [GFDL or CC BY-SA 3.0], via Wikimedia Commons)

Wenn ein solcher Halbleiter erst einmal ins Leiten kommt, gelangen nicht nur Elektronen ins Leitungsband und werden dort beweglich, sondern auch die unbesetzt zurückbleibenden Energieniveaus im Valenzband ziehen die Elektronen der Nachbaratome gehörig an. Sobald ein Elektron dieser Anziehung nachgibt, hinterlässt es seinerseits ein anziehendes, unbesetztes Niveau ein Atom weiter. So können sich unbesetzte Niveaus, kurz “Löcher”, ebenso durch das Valenzband bewegen, wie die angeregten Elektronen durch das Leitungsband.

Der Trick, welcher die Stromerzeugung in Halbleitern ermöglicht, besteht darin, in das Netz der Halbleiteratome Fremdatome eines anderen Elements einzuschmuggeln, die etwas andere Energieniveaus als ihre Umgebung haben.  Solche “fremden” Energieniveaus können innerhalb der Bandlücke des Halbleiters liegen und somit “Trittstufen” für anzuregende Elektronen bilden. Das Einschmuggeln von Fremdatomen in Halbleiter nennt man Dotierung (englisch “doping”).

Liegen solche besetzten Energieniveaus im oberen Bereich der Bandlücke, also nahe dem Leitungsband, können die Elektronen daraus leicht ins Leitungsband übergehen – während das in der Bandlücke verbleibende Loch mangels Nachbarn unbeweglich bleibt. Da auf diese Weise mehr negativ geladene Elektronen als Löcher beweglich werden, spricht man von einer n-Dotierung.

Liegen unbesetzte fremde Energieniveaus hingegen im unteren Bereich der Bandlücke, nahe dem Valenzband, können Elektronen aus dem Valenzband leicht auf diese Niveaus angeregt werden, bleiben darin jedoch unbeweglich. Anders verhält es sich mit den so entstehenden Löchern, die gemeinsam mit allen “gewöhnlichen” Löchern durch das Valenzband wandern können. Da ein Loch einer positiven Ladung entspricht, spricht man hier von einer p-Dotierung.

Halbleiter: n-Dotierung vs. p-Dotierung

Dotierung von Halbleitern: Durch das Einbringen von Fremdatomen in sonst gleichförmiges Halbleitermaterial entstehen zusätzliche Energieniveaus, die innerhalb der Bandlücke des ursprünglichen Halbleiters liegen. Ladungen, die darin zu liegen kommen, sind unbeweglich und können sich zu grossflächigen elektrischen Polen (–> Raumladungszone) aufsummieren. (nach: Energy Band Model (DE) by Cepheiden (Own work) [GFDL or CC BY-SA 3.0], via Wikimedia Commons)

Legt man nun einen n-dotierten Halbleiter direkt auf einen p-dotierten Halbleiter, können die überschüssigen Elektronen aus dem n-Halbleiter ungehindert in den p-Halbleiter einwandern und dort Löcher füllen, ebenso wie überschüssige Löcher aus dem p-Halbleiter in den n-Halbleiter gelangen und gefüllt werden können. Die unbeweglichen Löcher und Elektronen innerhalb der Bandlücke, auch “Raumladungen” genannt, bleiben jedoch wo sie sind. So entsteht auf der n-Seite alsbald ein Überschuss an unbeweglichen Löchern, also ein positiv geladener Bereich, während auf der p-Seite ein Überschuss an Elektronen entsteht, also ein negativ geladener Bereich – kurz gesagt: ein elektrischer Pluspol und ein elektrischer Minuspol wie in einer Batterie!

Alle weiteren beweglichen Ladungen, die innerhalb des Wirkungsbereichs dieser Pole – der Raumladungszone – entstehen oder durch Diffusion in diese hinein geraten, werden von den Polen angezogen und voneinander getrennt: Elektronen wandern in Richtung des Pluspols auf die n-Seite, Löcher in Richtung des Minuspols auf die p-Seite. Sind die Halbleiter, die solch eine Raumleitungszone teilen, Teil eines Stromkreises, können die sortierten Ladungen entlang dieses Kreises fliessen und genutzt werden.

Kurzum: Sonnenlicht-Quanten, die auf einen zweilagigen dotierten Halbleiter fallen können Elektronen über bzw. in die Bandlücke des Halbleitermaterials befördern und somit bewegliche Elektronen bzw. Löcher erzeugen. Wenn dabei eine Raumladungszone zwischen unterschiedlich geladenen, unbeweglichen Polen entsteht, können darin Elektronen und Löcher voneinander getrennt und genutzt werden. Der sonnenbeschienene Halbleiter wird damit zu einer schier endlos funktionierenden Batterie.

Welche Stoffe können das: Woraus bestehen Solarzellen?

Es wird euch wahrscheinlich wenig überraschen, dass unter den chemischen Elementen die Halbmetalle – jene Stoffe, die Eigenschaften von Metallen und Nichtmetallen in sich vereinen – auch als Halbleiter taugen. Denn die Anordnung ihres Valenz- und Leitungsbandes liegt irgendwo zwischen den typischen Anordnungen für Metalle und Nichtmetalle.

Halbmetalle

Halbmetalle: Die hier orange, gelb bzw. gelbgrün dargestellten Elemente haben (in mindestens einer ihrer Erscheinungsformen) teils Metall-, teils Nichtmetall-Eigenschaften. Dementsprechend weisen sie kleine Bandlücken auf, was sie zu Halbleitern macht.

Die meisten dieser Halbmetalle sind auf und in der Erde allerdings ziemlich selten zu finden. Die grosse Ausnahme bildet allerdings das Silicium: Dieser chemische Verwandte des Kohlenstoffs ist das dritthäufigste Element des Planeten Erde (nur Eisen und Sauerstoff sind häufiger). Es gibt kaum ein Gestein oder Sandkorn, das nicht Quarz – Siliciumdioxid – enthält, und die Silikate machen die mit Abstand grösste Gruppe unter den Mineralien aus. Gar 26% der Materie unserer Erdkruste setzen sich aus Silicium zusammen.

Da wundert es nicht, dass 92% der heute produzierten und verwendeten Solarzellen aus Silicium bestehen, denn anders als bei Elementen wie Gallium, Selen oder Tellur, die ebenfalls als Solarzellen-Material taugen, müssen wir uns nicht sorgen, dass das Silicium uns eines Tages ausgehen könnte.

Aus Quarzsand wird zunächst geschmolzenes Silicium gewonnen, welchem sehr kleine Mengen Bor (zur p-Dotierung) bzw. Phosphor (zur n-Dotierung) beigegeben. Aus der fertig aufbereiteten Schmelzen können somit bereits dotierte Silicium-Kristalle “gezüchtet” werden. Diese Kristalle können in dünne Scheiben, sogenannte Wafer, gesägt werden, sodass möglichst viel Oberfläche dem Sonnenlicht ausgesetzt werden kann.

Elementares Silizium : (noch) Rohstoff Nr.1 für die Photovoltaik

Elementares Silicium: oben links: Polykristallines Silicium am Stück, unten links: polykristalliner Silicium-Wafer (Solarzellen erhalten ihre typische blaue Färbung erst durch eine Deckschicht), rechts: Silicium-Einkristall, der in monokristalline Wafer zersägt werden kann. (oben links und rechts: by Stahlkocher[GFDL or CC BY-SA 3.0], via Wikimedia Commons, unten links: by Armin Kübelbeck (own wafer scanned on a Canon Pixma MP 800) [GFDL oder CC-BY-SA-3.0], via Wikimedia Commons

Ein funktionierendes Solarmodul enthält neben solchen Wafern eine zusätzliche Kontaktschicht zur Abnahme des erzeugten Stroms, welche bei heute betriebenen Solarzellen meist aus teurem weil seltenem Silber besteht. Kupfer und Aluminium erfüllen jedoch den gleichen Zweck, sodass es nun an den Herstellern ist, diese günstigeren Materialien zum Einsatz zu bringen.

Wie effektiv ist die Stromgewinnung mit Solarzellen?

Wenn eine Energieform in eine andere umgewandelt wird, so erklärt es die Energie höchstselbst in ihrem Brief an die Menschheit, wird aus einem Teil der ursprünglichen Energie praktisch immer Wärme, ob man das nun will oder nicht. Der prozentuale Anteil der Sonnenenergie, welcher nicht in Wärme, sondern in die angestrebte elektrische Energie umgewandelt werden kann, wird deshalb als Wirkungsgrad einer Solaranlage bezeichnet. Da ist selbstredend, dass Solarzellenhersteller einen möglichst hohen Wirkungsgrad für ihre Module anstreben.

Deswegen werden Solarzellen in verschiedenen Bauweisen entwickelt und hergestellt:

Wer sich die Mühe macht grosse Silicium-Einkristalle zu züchten und daraus Wafer zu schneiden, kann daraus monokristalline Zellen herstellen, die einen Wirkungsgrad von über 20% erreichen können. Das bedeutet, nur 20% der eingefangenen Sonnenenergie wird zu Strom, die übrigen 80% gehen als Wärme verloren.

Preiswerter sind polykristalline Zellen, die aus einem Verbund vieler Siliciumkristalle gesägt werden. Solche sind an ihrer an Eisblumen erinnernde Oberflächenstruktur gut zu erkennen. Sie erreichen jedoch nur einen Wirkungsgrad von 16-18,6%.

Darüber hinaus gibt es sogenannte Dünnschicht-Zellen, die durch Aufdampfen von Siliciumatomen auf eine Trägerfläche geschaffen werden. Solche Zellen finden vornehmlich in Kleinstgeräten, wie z.B. einem Solartaschenrechner, Verwendung. Denn solchen genügt ihr vergleichsweise geringer Wirkungsgrad von 5-7% bis 15% je nach Bauweise.

Eine Alternative zum Silicium stellen Module aus Cadmiumtellurid dar. Diese sind jedoch wegen ihres Gehalts an dem giftigen Schwermetall Cadmium umstritten und haben einen Wirkungsgrad von nur mehr 10%. Aus diesen Gründen werden solche Module in der Schweiz gar nicht erst eingesetzt.

Den wohl höchsten Wirkungsgrad haben aktuell aber wohl Galliumarsenid-Module mit bis zu 41,1%. Da ihre Hauptbestandteile Gallium und Arsen aber relativ selten vorkommen und letzteres zudem giftig ist, sind Module dieser Bauart nicht für den Alltagseinsatz geeignet. In der Raumfahrt hingegen, wo jedes Gramm an zu transportierendem Material Unsummen kostet, ist Galliumarsenid das Material der Wahl für die Solarmodule von Satelliten und Raumfahrzeugen.

Inwiefern belastet die Herstellung  von Solarmodulen die Umwelt?

Der Schmelzpunkt von Silicium liegt bei 1414°C, sodass zur Gewinnung von geschmolzenem Silicium Quarzsand mit Kohle im Lichtbogenofen auf Temperaturen darüber erhitzt werden muss. Um das so entstehende Rohsilicium zu reinigen, wird es bei 300°C mit Chlorwasserstoff (HCl) zu Trichlorsilan (auch bekannt als Silicochloroform oder TCS) (SiHCl3) umgesetzt.

Entstehung_TCS

Trichlorsilan wird schon ab 32°C gasförmig, sodass es sich leicht von den Chlorverbindungen von Verunreinigungen, die allesamt einen viel höheren Siedepunkt haben, trennen lässt. An glühenden Stäben aus reinstem Silicium kann aus dem Trichlorsilan das elementare Silicium wieder zurückgewonnen werden.

Abbau_TCS

Wer aus dem so entstehenden polykristallinen Silicium grosse Einkristalle für monokristalline Wafer gewinnen möchte, muss das Silicium noch einmal schmelzen um daraus die gewünschten Kristalle wachsen zu lassen.

Lohnt sich dieser Energieaufwand?

Die Herstellung von Silicium-Wafern verschlingt also eine ganze Menge Energie in Form von elektrischem Strom, mit welchem die verschiedenen Heizöfen und Maschinen betrieben werden. Da es sich empfiehlt für die Herstellung “umweltfreundlicher” Solarzellen erneuerbare Energien zu verwenden, waren wasserkraftreiche Länder wie Norwegen und Brasilien lange Zeit führend in der Produktion von Rohsilicium, während heute China ganz vorne mit dabei ist.

Das Ergebnis ist jedoch die Mühe wert: Ein modernes Solarmodul braucht zwar circa zwei Jahre, um den für seine Herstellung verbrauchten Strom neu zu gewinnen, kann jedoch (von den Herstellern garantiert!) 20 bis 30 Jahre lang arbeiten. Damit können Solarmodule mindestens 10 mal mehr Strom erzeugen, als ihre Herstellung kostet!

Hinzu kommt, dass reines Silicium nicht nur für Solarmodule, sondern auch für Halbleiterbausteine in Computern gebraucht wird. Der ganze Aufwand lohnt sich also gleich doppelt. Und dazu muss dieses Silicium noch um ein Vielfaches reiner sein als das Solar-Silicium. Was also den hohen Ansprüchen der Chip-Hersteller nicht genügt, kann gut und gerne zur Herstellung von Solarzellen verwendet werden, ehe es auf dem Abfall landet.

Wie giftig ist die ganze Chemie dahinter?

Silicium selbst ist ein lebenswichtiges Spurenelement, das in fast allen Lebewesen einschliesslich des Menschen vorhanden ist. Sowohl elementares Silicium als auch Quarz, Kieselsäure und ihre Salze, die Silicate, sind somit fast völlig ungiftig.

Das bei der Gewinnung des Reinstsilicium zwischenzeitlich entstehende Trichlorsilan ist ebenfalls ungiftig, bezogen auf die Fähigkeit von Giften sich in Organismen oder der Umwelt anzureichern und Langzeitschäden zu verursachen. Dafür ist es äusserst hoch entzündlich und wirkt, ebenso wie Chlorwasserstoff, der mit Wasser Salzsäure bildet, stark ätzend. So müssen in Anlagen, die mit Trichlorsilan arbeiten, entsprechende Sicherheitsvorkehrungen getroffen werden. Sind diese gegeben, ist der Umgang mit diesen Stoffen weitgehend sicher. Vor allem aber entstehen dabei keinerlei giftige Abfälle, wie sie beispielweise die Crux der Kernkraft sind!

Beim Einbau der Silicium-Bauteile in Solarmodule kamen bis in die jüngste Vergangenheit Silber und kleinere Mengen Blei zum Einsatz. Diese beiden Schwermetalle können inzwischen jedoch durch preiswerteres und unproblematischeres Kupfer bzw. Aluminium ersetzt werden.

Die Glasscheiben, die schlussendlich die Solarzellen vor Umwelteinflüssen schützen sollen, dürfen nach Möglichkeit kein Licht über den sichtbaren Bereich hinaus absorbieren (in Wie du dank UV-Filtern deine Ferien geniessen kannst könnt ihr nachlesen, dass “normales” Glas durchaus nicht alles Licht durchlässt), sodass möglichst alles Licht die eigentlichen Solarzellen erreichen kann. Deshalb enthalten manche Solarzellen-Gläser das Halbmetall Antimon (Formelzeichen Sb), welches dem Glas die gewünschte Durchlässigkeit verleiht, wegen seiner chemischen Verwandtschaft zum Arsen aber nicht ganz unumstritten ist. Aus dem Glas austreten kann das Antimon aber nicht so leicht. Anfassen ist also durchaus erlaubt und ungefährlich. Erst wenn Solar-Gläser auf Deponien herumliegen, kann mit der Zeit Antimon ins Grundwasser gelangen.

Was wir tun können: Recycling

Der genannten Schwermetalle wegen und weil sich Solar-Silicium durchaus wiederverwenden lässt, sind Rücknahme und Recycling von Solarmodulen in der europäischen Union mittlerweile gesetzlich vorgeschrieben. Demnach sind Hersteller von Solarmodulen verpflichtet, mindestens 85% ihrer Module zurückzunehmen und zu recyceln. Auch die Schweiz orientiert sich an der WEEE-Direktive der EU. Hier organisiert die Stiftung SENS als Partner des europäischen Verbandes PV Cycle die Rücknahme der Photovoltaik-Module.

Für uns heisst das: Defekte Solarzellen bzw. Photovoltaik-Module gehören, ähnlich wie Elektronik-Schrott, an die dafür vorgesehenen Sammelstellen zurückgebracht!

Wie das Recycling im Einzelnen funktioniert, könnt ihr auf SolarContact nachlesen.

Zu guter Letzt: Wie sehr dient die Nutzung der Sonnenkraft dem Klimaschutz?

Besonders verlockend ist an der Photovoltaik, wie schon Peter Lustig wusste, dass die Gewinnung von Strom aus Sonnenstrahlen, die auf eine Halbmetallplatte fallen, so vollkommen ohne Erzeugung von ungeliebten Abgasen vonstattengeht. Tatsächlich muss aber auch jener “Dreck” mit eingerechnet werden, welcher bei der Herstellung der Solarmodule anfällt.

Zu diesem Zweck wird für die verschiedenen Kraftwerkstypen der Ausstoss von CO2-Äquivalenten berechnet, der einen direkten Vergleich zwischen verschiedenen Wegen der Energiegewinnung möglich macht.

Nach dieser Rechnung wurden früher – wohl zu Peter Lustigs Zeiten – für eine Kilowattstunde (kWh) Photovoltaik-Strom 97g des Treibhausgases CO2 freigesetzt. Mit den heutigen Modulen kommt man hingegen nur mehr auf 42g CO2 je kWh.

Im Vergleich dazu erzeugt ein Gaskraftwerk 452g CO2 pro kWh, während ein Braunkohlekraftwerk sage und schreibe 1347g CO2 pro kWh in die Luft schleudert! Ähnlich “sauber” wie Photovoltaik-Strom sind damit allenfalls der Strom aus Wind- und Wasserkraft sowie der Atomstrom (welcher jedoch mit den bekannten Umweltrisiken behaftet ist).

Im Mittel werden für den in Europa erzeugten und genutzten Strom zur Zeit 552g CO2 pro kWh freigesetzt. Da ist also noch einiges an Verbesserung durch die vermehrte Nutzung von Sonnenkraft, aber auch jener von Wind und Wasser, vorhanden!

Diese Zahlen und viele weitere interessante Fakten rund um Solarmodule hat das Fraunhofer-Institut für Solare Energiesysteme (ISE) zum Nachlesen zusammengetragen.

Hier heisst es bis zur nächsten Geschichte jedoch erstmal “Abschalten” – oder eure Gedanken in einen Kommentar fassen, zum Beispiel zu:

Welche Rolle spielen Photovoltaik bzw. Solarzellen in eurem Alltag?

Zu niedrige Abgaswerte hier, zu viel CO2 dort – manipulierte Computerdaten und gewaltige Schadenssummen…in allen Medien liest man seit Wochen von skandalösen Praktiken rund um Abgasmessung und -deklarierung beim Autobauer VW und anderen. Aber was ist eigentlich das Problem mit dem Autoabgas, und was wird da so zweifelhaft gemessen, dass daraus ein weltumfassender Skandal erwachsen konnte?

Als ich vor den Sommerferien meine Probe-Lektion zum Einstieg in die berufspraktische Lehrerausbildung antrat, ahnte noch niemand etwas von all dem Aufruhr. In der Unterrichtsstunde, die ich halten sollte, waren Luftschadstoffe, wie sie auch in Autoabgasen zu finden sind, das Thema. Der Plan war, im Unterricht diese Schadstoffe im Abgas eines Autos nachzuweisen. Da ich selbst kein Auto besitze, war ein Car-Sharing-Fahrzeug die Abgasquelle meiner Wahl – und die Spannung war besonders gross, als sich das angemietete Auto gleich vor dem Schulhaus als VW Golf Variant mit Dieselmotor und “AdBlue”-Label entpuppte. Denn als Enkelin eines lebenslangen VW-Mitarbeiters habe ich eine besonders enge Beziehung zu Fahrzeugen dieser Marke (in meiner Familie wird seit ich denken kann keine andere Marke gefahren). Würde mir solch ein modernes Auto überhaupt genügend Schadstoffe für den Nachweis liefern?

Entsprechend habe ich mir alle Mühe gegeben, allem modernen Abgas-Management zum Trotz eine ausreichende Menge an Schadstoffen zu sammeln (ein Müllsack am Auspuff bei laufendem Motor leistet da gute Dienste). Der Versuch – eine Farbreaktion zum Nachweis von Stickstoffoxiden – lieferte dann auch ein überwältigendes Ergebnis: Was rosa werden sollte, präsentierte sich quietschpink: Es hatte Stickstoffoxide satt!

Erst über zwei Monate später, als der VW-Skandal Ende September die ersten Schlagzeilen machte, kam mir jener Versuch mit ganz neuer Brisanz versehen wieder in den Sinn: War der so gelungene Nachweis tatsächlich auf gute Planung und geschickte Probenentahme zurückzuführen, oder hatte ich es schlichtweg mit einer weniger effektiv gereinigten Abgasen zu tun als angenommen?

Aber fangen wir am Anfang an:

Verbrennungsvorgänge im Motor und was dabei entsteht

In den Fahrzeugen auf unseren Strassen findet man zwei Typen von Verbrennungsmotoren, die mit Flüssigtreibstoff laufen.

Der Ottomotor verbrennt Benzin, ein Gemisch aus relativ leichten Kohlenwasserstoffen – Molekülen mit rund um 7 Kohlenstoff-Atomen. Deshalb wird der Ottomotor in der Umgangssprache auch “Benzin-Motor” genannt. Kohlenwasserstoffe sind hoch entzündlich und verbrennen, einmal angezündet, mit Luftsauerstoff im Idealfall zu Kohlenstoffdioxid und Wasserdampf:

Für einen vollständigen Reaktionsverlauf braucht es jedoch eine ideale Mischung der Ausgangsstoffe. Und die ist im engen Zylinder eines Ottomotors nicht gegeben. Dort gelangt nämlich nur eine vergleichsweise kleine Menge Sauerstoff hinein (mit voller Absicht, denn die Autobauer ziehen eine effiziente Motorleistung der perfekten Verbrennung vor). So werden nicht wenige der Kraftstoff-Moleküle auf “Sparflamme” verbrannt, wobei anstelle des CO2 Kohlenstoffmonoxid, CO, entsteht.

Die Verbrennung des Kraftstoffs setzt so viel Energie frei, dass sie – für kurze Zeit in einem engen Raum stattfindend – einen Kolben aus einem  Zylinder drücken und damit den Motor in Bewegung versetzen kann. Leider wird dabei in der Enge des Zylinders zusätzlich eine grosse Menge Wärme erzeugt. Und leider ist der Sauerstoff nicht allein in unserer Atmosphärenluft. Einen sehr viel grösseren Anteil (70% der gesamten Luft) daran hat das Gas Stickstoff, N2, welches normalerweise sehr reaktionsträge ist und kein Problem darstellt. Im Ottomotor wird allerdings auf engem Raum so viel Energie freigesetzt, dass sogar der Luftstickstoff zu brennen anfängt. Und was dann entsteht, ist für Mensch und Umwelt höchst unangenehm. Um nicht zu sagen hoch giftig: Es entstehen Stickstoffoxide.

Im Dieselmotor wird anstelle von Benzin Dieselöl verbrannt. Auch dieses besteht aus Kohlenwasserstoffen und unterscheidet sich vom Benzin vor allem darin, dass seine Moleküle wesentlich grösser und schwerer sind: Sie enthalten um die 18 Kohlenstoffatome sowie entsprechend mehr Wasserstoff als die Bestandteile des Benzins. Die vollständige Verbrennung von Dieselöl liefert somit die gleichen Produkte wie die Verbrennung von Benzin, nur gibt ein Diesel-Molekül wesentlich mehr davon her – nachdem es mit wesentlich mehr Sauerstoff-Molekülen reagiert hat:

Um diese Reaktion mit dem nötigen Treibstoff zu versorgen wird der Kraftstoff im Dieselmotor mit wesentlich mehr Luft verbrannt als im Ottomotor. Mehr Luft bedeutet allerdings nicht nur mehr Sauerstoff, sondern auch mehr Stickstoff – also insgesamt mehr Moleküle, die zu Stickstoffoxiden reagieren können.

Warum diese Abgase giftig sind

Das Stickstoffmonoxid (NO) ist nicht sehr beständig – es reagiert schon bei “normalen” Temperaturen mit weiterem Luftsauerstoff zu Stickstoffdioxid (NO2) weiter. Stickstoffdioxid  ist ein braunes Gas, das unangenehm chlorähnlich riecht. Und dieses Gas hat es in sich. Es löst sich nämlich in Wasser, um dann sofort mit diesem zu Salpetersäure bzw. salpetriger Säure zu reagieren:

Stickstoffdioxid ist das gemischte Anhydrid (d.h. die wasserfreie Ausführung) von salpetriger Säure (HNO2) und Salpetersäure (HNO3).

Salpetersäure ist eine starke Säure (und salpetrige Säure steht ihr da in wenig nach) und überdies ein starkes Oxidationsmittel – wo sie entsteht, wirkt Salpetersäure ätzend und geht zudem eine Vielzahl von Redox-Reaktionen ein.  Und Wasser gibt es in der Atmosphäre reichlich. Wenn Stickstoffdioxid auf die Wassertröpfchen in Wolken trifft, sind saure Wolken das Resultat, und aus sauren Wolken fällt saurer Regen. Dass der vielen Lebewesen nicht bekommt, wissen wir spätestens seit dem Waldsterben vor und in den 1980er Jahren.

Wenn Menschen (und Tiere) Stickstoffdioxid einatmen, trifft das Gas ebenfalls auf Wasser: Die Schleimhäute der Atemwege sind voll davon. Und wenn Stickstoffdioxid sich darin löst….niemand wird gern Säure in Bronchien und Lunge haben, zumal jeder sich vorstellen können wird, wie das beisst und kratzt und Husten auslöst (bei sehr hohen Konzentrationen eingeatmet führt das bis zu einem gefährlichen Lungenödem, weshalb Stickstoffdioxid als hochgiftig eingestuft wird!). Und dass Autoabgase genug Stickstoffdioxid enthalten können, um die Schleimhäute zu reizen, ist kein Geheimnis. Darüber hinaus gilt NO2 als krebserzeugend und ist an der Entstehung von Ozon in unserer Atemluft beteiligt. Es gibt also mehr als genügend Gründe, Stickstoffdioxid nach Möglichkeit zu meiden.

Kohlenstoffmonoxid (CO) ist ebenfalls giftig, wenn auch auf etwas andere Art und Weise. Dieses Gas kann nämlich – einmal eingeatmet – durch die Lunge in unser Blut gelangen (und davon merkt man in der Regel nichts, denn Kohlenstoffmonoxid ist farb- und geruchlos und wirkt nicht reizend). Dort bindet es an eben jene Bindungsstellen des roten Blutfarbstoffs, die für den Transport von Sauerstoff vorgesehen sind. Und anders als Sauerstoff lässt sich Kohlenstoffmonoxid so schnell nicht mehr davon lösen, sodass Sauerstofftransporter, die einmal Kohlenstoffmonoxid binden, für mehrere Stunden ausser Gefecht gesetzt sind. Bei einigen wenigen blockierten Bindungsstellen ist die Wirkung überschaubar – doch schon winzige Anteile an CO in der Atemluft genügen um die Sauerstoffzufuhr zu Zellen und Gewebe merklich lahm zu legen – im schlimmsten Fall mit Todesfolge.

Weitaus weniger unangenehm ist da des Kohlenstoffmonoxids nächster Verwandter, das Kohlenstoffdioxid. Dieses muss man schon in ausreichenden Mengen mit uns in einen engen Raum sperren, damit es den menschlichen Körper daran hindern kann sein selbst erzeugtes CO2 abzuatmen, sodass ein gefährlicher Rückstau im Atmungsvorgang entsteht. Viel grösser sind da die Schwierigkeiten, die uns Kohlenstoffdioxid in der Atmosphäre als Treibhausgas bereitet. Doch Treibhauseffekt und Klimaerwärmung sind langsame, langfristige Vorgänge, die weitaus weniger rasch zu bevölkerungsweiten Hilfeschreien führen als akute Vergiftungserscheinungen. So wird die Entstehung von Kohlenstoffdioxid anders als die Entstehung weitaus giftigerer Abgase in der Regel billigend in Kauf genommen.

Wie man die Freisetzung giftiger Abgase vermeidet

Im Laufe des 20. Jahrhunderts, als Strassenverkehr und industrielle Verbrennungsanlagen wie Kraftwerke immer zahlreicher wurden, bemerkte man rasch die Probleme, die eine allzu freizügige Abgabe giftiger Abgase mit sich brachte: Smog über Städten und Industriezentren, welcher besonders in Los Angeles berüchtigt war.

Aus Chemikersicht erscheint das Abgasproblem jedoch lösbar (zumindest weitgehend). Die verschiedenen giftigen Abgase, in den meisten Fällen Produkte “unvollständiger” Reaktionen, haben nämlich eines gemeinsam: Ihre Moleküle enthalten nicht wenig Energie und würden durchaus weiterreagieren (und das nicht nur mit Blutfarbstoff und Körperwasser!), wenn sie denn könnten – d.h. wenn sie einen genügend energiereichen Tritt in den Hintern bekämen. Dieser “Tritt”, auch Aktivierungsenergie genannt, müsste jedoch stärker sein, als ein Verbrennungsmotor ihn bei wirtschaftlichem Betrieb leisten könnte (Energie ist schliesslich teuer). Für solche Fälle kennen die Chemiker (die vermutlich bei der Natur abgeschaut haben) jedoch ein wirksames Workaround: Wird unwilligen Reaktionspartnern der richtige Stoff beigegeben, eröffnet dieser Stoff ihnen neue Wege zur Reaktion – Wege, die so bequem sind, dass sie ohne zusätzlichen Energie-Tritt in den Hintern begangen werden können! Ein Stoff, der eine solche wegweisende Wirkung hat, wird Katalysator genannt.

Ein Katalysator ist ein Stoff, der Reaktionspartnern eine Reaktion auf einem alternativen Reaktionsweg bei verringerter Aktivierungsenergie ermöglicht.

Für Reaktionen mit Verbrennungsabgasen eignen sich Edelmetalle als Katalysatoren – das hatte man schon in den 1950er Jahren erkannt und ein Prinzip für die Reinigung von Autoabgasen entwickelt. Dummerweise verbot sich damals der Einsatz dieser Technik, da der damalige Ottokraftstoff Blei-Verbindungen zur Erhöhung der Klopffestigkeit enthielt – und Blei ist Gift für Edelmetallkatalysatoren: Es macht sie postwendend unbrauchbar. Erst als sich in den 1980er Jahren die Verwendung bleifreier Kraftstoffe zunehmend durchsetzte, begann der Abgaskatalysator seinen Siegeszug. Nachdem er Anfang der 1980er in den USA eingeführt worden war, war die Schweiz 1986 das erste europäische Land, das per Gesetz den flächendeckenden Einsatz von Katalysatoren vorschrieb. Deutschland setzte ein ähnliches Gesetz nach schrittweiser Einführung erst 1993 um.

Dass Abgaskatalysatoren, kurz KAT genannt, Mitte der 1990er neumodisch und im Rahmen der boomenden Umweltschutzbewegungen “in” waren, mochte sich auch darin niedergeschlagen haben, dass eine Schulfreundin mir damals den Spitznamen “Kat Diesel” verpasste (auch für Dieselmotoren gibt es Abgaskatalysatoren – die waren derzeit wohl noch neumodischer).

Gemeinsam ist allen Abgas-Katalysatoren die Art und Weise ihrer chemischen Hilfeleistung: Sie befinden sich hinter dem Motorenausgang in jenem Rohr, das letztendlich zum Auspuff führt, sodass die Abgase über das Edelmetall strömen können. Unerwünschte Moleküle können so mit den Atomen an der Metalloberfläche reagieren, bleiben daran haften und ihre Atome werden an Ort und Stelle neu zusammengefügt, ehe sie sich in harmloseren Verbindungen wieder auf den Weg durch den Auspuff nach draussen machen.

Katalysator im Auto

Im Einzelnen sind die verschiedenen Katalysatoren jeweils an “ihren” Motorentyp angepasst.

Der Katalysator zum Ottomotor: Drei Wege zu sauberer(er) Luft

Die Abgase, welche aus einem Motor in Richtung Auspuff strömen, müssen innerhalb kurzer Zeit quasi im Vorbeiflug zu neuen Molekülen umgebaut werden. Da dieser Umbau nur an einer Edelmetall-Oberfläche stattfinden kann, liegt auf der Hand, dass diese Oberfläche grösstmöglich sein sollte, damit darauf möglichst viele Gasmoleküle gleichzeitig umgebaut werden können. Unglücklicherweise sind Edelmetalle sowohl unheimlich schwer als auch unheimlich teuer. Und weil weder zu hohe Kosten noch vermehrter Kraftstoffverbrauch durch zusätzliches Gewicht zu sauberer Luft beitragen, werden in einem Abgaskatalysator nur kleinstmögliche Mengen an Edelmetallen verbaut.

So ist das Herzstück des Katalysators ein Block aus Keramik, der aus wabenartig aneinander gelagerten Röhren besteht. Dieser Träger wird so in das Auspuffrohr eingebracht, dass das aus dem Motor strömende Abgas auf all diese Röhren verteilt den Block durchströmt. Um die überströmte Oberfläche weiter zu vergrössern ist die Innenfläche der Keramikröhren mit einer sandpapierartig rauen Schicht aus Aluminiumoxid bedeckt. Dieser Wash-Coat hat eine rund 7000 mal grössere Oberfläche als der Keramikträger als solcher. Das genügt um die durchströmenden Abgase in ausreichendem Umfang umzusetzen.  Die gewünschten Reaktionen finden an einer hauchdünnen Schicht aus Platin und Rhodium (evtl. auch Palladium) statt, welche auf den Wash-Coat aufgedampft ist. Diese katalytisch aktive Schicht eines einzelnen KATs besteht aus insgesamt nur 4 bis 9 Gramm der Edelmetalle.

Damit der spröde Keramikträger im fahrenden Auto nicht zerbricht, ist er in eine wärmeresistente Dämmung (die Abgase, die frisch aus dem Motor kommen, sind heiss und müssen auch heiss sein, damit der KAT funktionieren kann!) aus Drahtgestrick oder Keramikfasermatten eingehüllt und von einem Stahlgehäuse ummantelt.

Otto_Kat_Aufbau

Aufbau eines Drei-Wege-Katalysators: Die heissen Abgase aus dem Motor strömen von links ein, vorbei an der von oben eingeführten Lambda-Sonde. Nach dem Durchströmen des Keramik-Trägers (gelb) treten die aufbereiteten Gase rechts wieder aus. (nach: Vortrag: Autokatalysator von Karin Hotz und Johannes Bösch, www.swisseduc.ch)

An der katalytisch aktiven Schicht können unter diesen Voraussetzungen drei verschiedene Reaktionen ablaufen. Bei allen handelt es sich um Redox-, also Elektronen-Übertragungs-Reaktionen. Die Elektronenabgabe, also die Oxidation, wird dabei jeweils vom Platin katalysiert (auf den energiearmen Weg gebracht), die Reduktion jeweils vom Rhodium.

  1. Stickstoffdioxid kann mit nicht oder nur teilweise verbrannten Kraftstoffresten zu Kohlenstoffdioxid, Stickstoff und Wasser reagieren. Kraftstoffreste sind verschiedene Kohlenwasserstoffe oder Bruchstücke davon, die ihrem Namen gemäss Kohlenstoff und Wasserstoff enthalten. Sie sind starke Treibhausgase und gelten, besonders wenn es sich um Benzol und andere aromatische Moleküle handelt, als krebserzeugend. Stellvertretend für alle unverbrannten Kohlenwasserstoffe steht in der folgenden Reaktionsgleichung Methan (CH4):
  2.  Stickstoffdioxid reagiert mit Kohlenstoffmonoxid zu Kohlenstoffdioxid und Stickstoff:
  3. Kohlenstoffmonoxid kann mit verbleibendem Luftsauerstoff zu Kohlenstoffdioxid weiter oxidiert werden:

Diese drei Reaktions-“Wege” haben dem Katalysator zum Ottomotor zu seinem Namen “3-Wege-Katalysator” verholfen. Sie alle werden gleichzeitig begangen und führen dazu, dass der grösste Teil der giftigsten Abgase (rund 95%) zu harmloseren Stoffen umgesetzt wird. Der elementare Stickstoff N2 macht 70% unserer Atmosphäre aus, sodass sich neu entstehender Stickstoff nahtlos einfügt. Darüber hinaus bleiben die Produkte der vollständigen Verbrennung von Kohlenwasserstoffen.

Ein Abgas-Katalysator vermindert die Freisetzung von hochgiftigen Abgasen wie NO2 und CO, nicht aber die Freisetzung des Treibhausgases CO2!

Stattdessen wird die Verbrennung der Kohlenwasserstoffe quasi vervollständigt – so wie sie nach der Gleichung für den Idealfall ablaufen sollte.

Für den besten Umsatz: Vom ungeregelten zum Regel-KAT

Damit ebendies so reibungslos funktionieren kann, muss die Zusammensetzung des Abgasgemischs genau passend abgestimmt sein. Dazu ist am Eingang des Katalysator-Gehäuses die sogenannte Lambda-Sonde angebracht, eine Elektrode, die anhand der Gesetze der Elektrochemie den Sauerstoffgehalt des Abgases misst und über eine Elektronik an die Einspritzanlage des Motors meldet. So kann die Herstellung des Kraftstoff-Luft-Gemischs stets so geregelt werden, dass hinten genau das herauskommt, was der Katalysator für eine optimale Wirksamkeit braucht. Entsprechend werden mit einer Lambda-Sonde versehene Katalysatoren auch als “Regel-KAT” bezeichnet.

Das Verhältnis von Kraftstoff zu Luft im Motor wird von den Automobil-Technikern übrigens Luftzahl genannt und mit dem griechischen Buchstaben λ (Lambda) abgekürzt – daran angelehnt erhielt die Sonde, die dieses Verhältnis regelt, ihren Namen.

Und für Dieselmotoren: DeNOx-Systeme

Um die schweren Diesel-Moleküle zu verbrennen, wird der Kraftstoff im Diesel-Motor mit einem wesentlich höheren Luft-Anteil als im Ottomotor verbrannt. Der darin enthaltene zusätzliche Sauerstoff wird aber wiederum nicht vollständig verbraucht, sodass auch im Abgas mehr Sauerstoff zu finden ist. Der “Marsianer” Marc Whatney würde sagen: “Die Chemie ist eben eine unordentliche Schlampe…”. Und diese Schlamperei hat umständliche Folgen. Sauerstoff ist als Oxidationsmittel nämlich nicht nur für Verbrennungsreaktionen gut. In grösserer Menge sorgt er auch dafür, dass die Reduktion von Stickstoffdioxid zu  im Diesel-Abgas nicht funktioniert.

Deshalb müssen für die vollständige Aufbereitung von Diesel-Abgasen stets mehrteilige Systeme eingesetzt werden, die unter anderem unter dem etwas schwammigen Begriff DeNOx-Kat bekannt sind (NOx steht dabei für verschiedene Stickstoffoxide).

Eine mögliche Kombination besteht dabei aus einem Oxidations-Katalysator (Oxi-Kat), der Kohlenstoffmonoxid und unverbrannte Kohlenwasserstoffe zu Kohlenstoffdioxid und Wasser “fertig” verbrennen kann, und einem SCR-Katalysator. Das SCR steht für “selektive katalytische Reduktion” – dieser Katalysator fördert also die Reduktion eines ausgewählten (selektierten) Abgas-Bestandteils: Die der Stickstoffoxide. Zusätzlich kommen bei Dieselfahrzeugen Russpartikelfilter zum Einsatz, da die Verbrennung von Dieselöl nicht molekulare Kohlenwasserstoff-Reste hinterlässt, sondern auch grössere, stark kohlenstoffhaltige Rückstände, die gemeinhin als Russ bekannt sind und ebenfalls nicht in unsere Atemluft gehören.

DeNOx-System

Aufbau eines DeNOx-Systems: Die heissen Abgase aus dem Dieselmotor strömen von links zunächst durch den Oxidations-Katalysator. Von CO und unverbrannten Kohlenwasserstoffen befreit wird ihnen anschliessend verdampfende Harnstofflösung zugesetzt, aus welcher auf dem Weg zum SCR-Katalysator Ammoniak entsteht. Beim Durchströmen des SCR-Kats reduziert dieser Ammoniak die Stickstoffoxide, ehe die aufbereiteten Gase rechts wieder austreten. (nach: „Diesel tech“ von Hastdutoene – Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons.)

Die Reaktionen im Oxi-Kat entsprechen der vollständigen Verbrennung von Kohlenwasserstoffen sowie dem dritten Weg des 3-Wege-Kats zur Oxidation von Kohlenstoffmonoxid.

Im SCR-Katalysator werden schliesslich die Voraussetzungen geschaffen, um die Stickstoffoxide zu elementarem Stickstoff zu reduzieren. Da man den hinderlichen Sauerstoff nicht einfach verschwinden lassen kann, werden diese Voraussetzungen durch die Zugabe von Ammoniak als Reduktionsmittel geschaffen: Ammoniak drängt den Stickstoffoxiden die zu ihrer Reduktion nötigen Elektronen praktisch auf, ohne dass der überschüssige Luftsauerstoff ihn daran hindern könnte.

Entstickung mit Harnstoff

Da Ammoniak ein unangenehm riechendes, gesundheitsschädliches Gas ist, wird es nicht als solches im Auto mitgeführt. Stattdessen wird Harnstoff (“Urea”, (NH2)2CO ) verwendet, ein ungefährlicher Feststoff, der bei Temperaturen über 133°C Ammoniak (NH3) freisetzt:

Das Nebenprodukt Isocyansäure (HNCO) reagiert mit anwesendem Wasserdampf weiter:

Harnstoff-Lösung in Wasser wird an Tankstellen unter dem Namen AdBlue verkauft (da Harnstoff bei der Düngemittelproduktion reichlich anfällt herrscht daran kein Mangel) und muss von Diesel-Fahrern, die einen SCR-Katalysator nutzen, regelmässig in einen gesonderten Tank nachgetankt werden.

AdBlue

Adblue tanken: Diesel-Zapfsäule mit Zusatz-Zapfhahn für Harnstofflösung (links) – und hier kommt die Lösung hinein… (rechts)(nach: „AdBlue Tankstelle“ von Beademung – Lizenziert unter CC BY-SA 3.0 de über Wikimedia Commons bzw. „Tankeinfuellstutzen AdBlue“ von Kickaffe (Mario von Berg) – Lizenziert unter CC-BY-SA 4.0 über Wikimedia Commons.

Das Ammoniak-Gas wird den Abgasen vor dem Eintritt in den SCR-Katalysator beigefügt, sodass es an der Oberfläche der katalytischen Schicht die Stickstoffoxide reduzieren kann:

Diese Reaktion läuft jedoch erst bei Temperaturen ab 250°C in nennenswertem Umfang ab. Bei zügiger Fahrt kommen die Abgase mit solch hohen Temperaturen aus dem Motor, sodass die Umsetzung im laufenden Fahrzeug kein Problem darstellt. Nach dem Anlassen eines kalten Motors muss dieser allerdings erst warm werden, ehe der SCR-Katalysator seine ganze Leistung bringen kann.

Genau darum wissend habe ich mich vor meinem Schulversuch bemüht, meine Abgase sofort nach dem Starten des Motors im Leerlauf zu sammeln (zur Erinnerung: Mein Test-Golf trug ein “AdBlue”-Label, welches das Vorhandensein eines SCR-Katalysators verrät). Das überragende Ergebnis bei dem Nachweis der Stickstoffoxide im gesammelten Abgas beweist daher zunächst, dass ich mich bei diesem Vorhaben ausreichend geschickt angestellt und meine Sammelaktion durchgeführt hatte, bevor Motor und Katalysator ihre Betriebstemperatur erreichen konnten.

Und worin besteht nun der Abgas-Skandal?

Der Teufel steckt in dem Computerprogramm, das die passende Zusammenstellung der Reaktionspartner in den Katalysatoren regelt. Diese Software ist in den betroffenen Fahrzeugen so geschrieben, dass sie erkennt, wenn das Auto auf dem Prüfstand einer Werkstatt einem Abgastest unterzogen wird. Daraufhin steuert die Software den  Motor so, dass möglichst wenig Stickstoffoxide entstehen – ohne dass er dabei die im Strassenverkehr optimale Leistung bringt.

Die “Fähigkeit” der Software einen Testlauf auf dem Prüfstand zu erkennen ist eigentlich für Autos entwickelt worden, die mit einem elektronischen Stabilitätsprogramm (ESP) ausgerüstet sind. Diese Funktion, die die Gefahr des Schleuderns (und seit dem “Elchtest-Debakel” mit der Mercedes-A-Klasse 1997 auch das Umkippen) von Fahrzeugen vermindern soll, muss für den reibungslosen Ablauf von Untersuchungen auf dem Prüfstand nämlich vorübergehend abgeschaltet werden. Die Verwendung einer solchen “Abschalteinrichtung” zum “Doping” von Katalysatoren ist hingegen und nachvollziehbarer Weise verboten!  Schliesslich sollen Abgastests ja die NO2-Freisetzung unter realen und nicht unter idealisierten Bedingungen prüfen.

Neben verbotenen, manipulativen Computerprogrammen ist jüngst ein zweiter Vorwurf laut geworden, bei welchem es um die CO2-Freisetzung geht. Dass der Einsatz von Katalysatoren die CO2-Entstehung bei der Kraftstoff-Verbrennung nicht vermindert, haben die Gleichungen für die katalysierten Reaktionen deutlich gezeigt. Da hilft auch Manipulation der Technik nicht weiter. So haben findige Rechen”genies” offenbar schlichtweg falsche Angaben zur CO2-Freisetzung ihrer Fahrzeuge gemacht, um besser da zu stehen.

Das Problem dabei: In Deutschland fliesst die Freisetzung (Emission) des Treibhausgases Kohlenstoffdioxid (CO2) durch ein Fahrzeug in die Berechnung der dafür zu entrichtenden Kraftfahrzeug-Steuer ein. Fahrer, die sich ein vermeintlich emissionsarmes Auto angeschafft haben, müssen nach der Aufdeckung und Richtigstellung der entsprechenden Angaben nun mit unverhofft höheren Steuerabgaben rechnen. Da erscheint es mir nur recht und billig, dass VW sich bereit erklärt, diese Mehrkosten zu übernehmen.

Fazit

Abgas-Katalysatoren reinigen Verbrennungs-Abgase sehr effektiv von hochgiftigen Stoffen. Die Abgas-Freisetzung, insbesondere den CO2-Ausstoss, können sie jedoch nicht völlig verhindern. Eine möglichst effiziente Aufbereitung von Abgasen ist aufwändig und kostenintensiv. Immer strengere Auflagen für die Automobil-Hersteller und -Betreiber scheinen da geradezu zum “Schummeln” zu verleiten.

Verbrennungsabgase entstehen übrigens auch bei der Herstellung von Strom und Komponenten für Fahrzeuge mit Elektromotoren. Der umweltbewussteste Weg von A nach B führt damit letztendlich über den Verzicht auf Kraftfahrzeuge wenn möglich, und damit über die Nutzung von Fahrgemeinschaften, öffentlichen Verkehrsmitteln oder der eigenen Füsse auf Velo und Gehweg.

Und welche Sorte Katalysator nutzt ihr?

Polylactid - Werkstoff mit Potential in Sachen Umweltschutz

Kürzlich haben Reto und ich im Urlaub eine spannende Entdeckung gemacht. An einem heissen Tag im den Denver Botanic Gardens im US-Bundesstaat Colorado trieb uns der Durst in die dortige Freilicht-Cafeteria. Wir erstanden dort handgebrauten Eistee in grossen, durchsichtigen Plastikbechern – und diese Becher waren das Spannende – besonders für Chemiker, Science-Begeisterte und Umweltfreunde. Sie trugen nämlich eine aufgedruckte grüne Banderole mit der grossen Aufschrift “100% compostable – please discard in marked containers” – also “100% kompostierbar – bitte in vorgesehene (beschriftete) Abfallbehälter entsorgen”.

Kompostierbarer Kunststoff als Mittel gegen Müllberg und Erdöl-Krise?

Ein kompostierbarer Plastikbecher? Der sich zudem noch wie ein ganz normaler Plastikbecher anfühlt und zu verhalten scheint? Meine wissenschaftliche Neugier war sofort geweckt. Als der Eistee seiner Bestimmung zugeführt worden war, entdeckte ich auf dem Boden des Bechers ein vertrautes Symbol: Ein Dreieck aus drei umlaufenden Pfeilen mit der Ziffer 7 in der Mitte. Und den drei Buchstaben “PLA”.

Das Pfeildreieck ist heutzutage auf praktisch allen Kunststoff-Verpackungen zu finden und gibt Auskunft über die Art des Kunststoffs, und in welchen Recyclingweg er einfliessen soll. Dafür wird den verbreitetsten Kunststoff-Typen je eine Ziffer zugeordnet. Die Ziffer 7 steht dabei für “sonstige Kunststoffe” – eben jene, die noch nicht so verbreitet sind. Die Buchstaben darunter geben die genaue Kunststoffsorte an. “PLA” steht für Polymilchsäure (engl. Poly Lactic Acid), oder auch Polylactid. Beide Namen stehen für den gleichen Stoff und beziehen sich auf zwei verschiedene Herstellungswege.

Bei Milchsäure klingeln bei Biochemikern und Medizinern, aber auch bei Molkereimitarbeitern die Glocken: Das (oder besser das Anion der Milchsäure, Lactat) ist ein Stoff, der im Stoffwechsel fast jedes Lebewesens produziert wird und dort häufig als “Abfall” anfällt. Und aus diesem Naturstoff hat jemand ein Polymer gemacht und Plastikbecher hergestellt, die sich wieder zu Naturstoffen kompostieren lassen? Lässt sich mit solch einem Biokunststoff etwa das immer rarer werdende Erdöl als Rohstoff für herkömmliche Kunststoffe ersetzen? Könnten damit unsere stetig wachsenden Müllberge bald der Vergangenheit angehören?

Aber fangen wir am Anfang an:

Was ist ein Polymer?

Die Vorsilbe “Poly” ist aus dem Altgriechischen abgeleitet und steht für “viel”. Und Polymere sind in der Tat Moleküle mit viel drin: nämlich mit vielen Atomen. Im Chemieunterricht in der Schule bekommt man es häufig mit sehr kleinen Molekülen mit zwei bis zehn Atomen zu tun. Für die organischen Chemiker sind diese Moleküle geradezu winzig. Sie bezeichnen nämlich auch noch Moleküle wie unsere Vitamine mit (ca. 50) Atomen als klein. Dahingegen sind Polymere wahre Riesenmoleküle mit tausenden von Atomen, die lange Ketten und manchmal richtige Netzwerke bilden.

Das Besondere dabei ist, dass diese Ketten aus sich immer wiederholenden Kettengliedern bestehen. Es gibt nämlich bestimmte sehr kleine Moleküle, die unter den richtigen Umständen miteinander reagieren und sich wie Glieder zu einer Kette verbinden können. Ein bekanntes Beispiel dafür ist das Gas Ethen – auch als Ethylen bekannt. Das kann man in Gasflaschen füllen und herumtransportieren und bei Bedarf verbrennen – es ist nämlich sehr reaktionsfreudig. Wenn man allerdings ein Ethylen-Molekül auf die richtige Weise reaktiv macht, d.h. “aktiviert”, kann es ein anderes Ethylen-Molekül angreifen, sich mit diesem verbinden und es wiederum aktivieren. So entsteht Glied für Glied ein lange Kettenmoleküle, aus denen ein fester, reaktionsträger Kunststoff hergestellt werden kann: Polyethylen.

Ein Polymer ist also Stoff, der aus kettenartigen Riesenmolekülen besteht, die wiederum aus miteinander verbundenen kleinen Molekülen aufgebaut sind. Diese kleinen Moleküle werden vor der Reaktion zur Kette Monomere genannt.

Und eine solche Polymerisationsreaktion, oder kurz Polymerisation kann man auch mit Milchsäure machen. Das Schöne daran ist: Milchsäure kann man billig in einem weit verbreiteten Verfahren herstellen. Oder besser, man lässt sie herstellen.

Milchsäureherstellung mittels Fermentierung

Fast jedes Lebewesen kann Glucose – Traubenzucker – zu Milchsäure (bzw. ihrem Anion Lactat) abbauen. Damit können diese Lebewesen Energie gewinnen. Im Zuge das Abbaus wird chemische Energie aus dem Zucker frei, welche in einem sehr vielseitigen Molekül, genannt ATP (Adenosintriphosphat), zwischengespeichert wird. ATP wiederum dient als “Kraftstoff” für vielerlei Reaktionen und Prozesse in einem Organismus, die Energie benötigen.

Milchsäuregärung


Schema für die Milchsäuregärung: Der Abbau von Glucose zu Pyruvat ist eine Redox-Reaktion. Das hierfür benötigte Oxidationsmittel NAD+ wird im Zuge der Weiterreaktion des Pyruvats zu Lactat (dem Anion der Milchsäure) zurückgewonnen.

Der Abbau von Glucose zu Lactat zwecks ATP-Erzeugung wird von verschiedenen Enzymen katalysiert. Der gesamte Prozess wird Fermentierung oder auch Milchsäure-Gärung genannt. Es gibt eine ganze Reihe von Bakterienstämmen, deren Lebensinhalt darin besteht Zucker zu Milchsäure (und nichts anderem) zu vergären. Diese Bakterien der Gattung Lactobacillus werden seit je her zur Herstellung von Milchprodukten wie Käse, Joghurt oder Kefir eingesetzt. So liegt nahe, dass diese Bakterien für den Menschen nicht gefährlich sind. Im Gegenteil: Bestimmte Lactobacillus-Arten besiedeln unsere Schleimhäute und sorgen dafür, dass Krankheitserreger dort keinen Platz finden um sich zu vermehren.

Und eben diese Bakterien werden genutzt, um Milchsäure als Rohstoff für Polylactid-Kunststoff zu gewinnen. Dazu muss man die Bakterien mit Glucose füttern. Und Glucose findet man reichlich in Pflanzen, zum Beispiel in Stärke (Stärke ist nämlich nichts anderes als ein Polymer aus Zuckermolekülen). Deshalb wird in den USA Mais angebaut um Bakterienfutter für die Milchsäuregärung zu gewinnen (andere Pflanzen tun es aber mindestens genauso, wie z.B. Zuckerrohr). Aktuell wird sogar daran geforscht, Pflanzenabfälle, die beim Ackerbau entstehen, als Bakterienfutter zu verwenden (Assoziation Ökologischer Lebensmittelhersteller (AÖL), 2014).

Von der Milchsäure zum Plastik

Die fertig gegorene Milchsäure kann auf zwei Wegen zu dem Polylactid genannten Kunststoff verarbeitet werden.

Zum einen kann Polymilchsäure (chemisch dasselbe wie Polylactid) durch eine Polykondensation von Milchsäure-Monomeren hergestellt werden. Wer die drei organischen Reaktionstypen an unserer Grillparty kennengelernt hat, weiss, dass bei der chemischen Reaktion namens Kondensation zwei Moleküle (bei der Polykondensation sind das die angefangene Kette und das jeweils nächste Monomer) zu einem grösseren Molekül reagieren und stets ein neues, kleines Molekül übrig bleibt. Bei der Polykondensation von Milchsäure ist dies ein Wassermolekül für jedes angehängte Monomer. Und all diese Wassermoleküle müssen irgendwo hin.

Polykondensation von Milchsäure


Polykondensation von Milchsäure: Der grüne Rahmen markiert ein Milchsäure-Kettenglied, die roten Rahmen markieren die Atome, die als Wassermolekül übrig bleiben. Anfang und Ende der Kette aus n Milchsäure-Molekülen entstehen aus einem weiteren (n + 1) Milchsäure-Molekül.

Deshalb muss die Polykondensation von Milchsäure in einem Lösungsmittel durchgeführt werden, in welchem sich das Wasser löst. Und dieses Lösungsmittel muss anschliessend vom Kunststoff getrennt und bestenfalls aufbereitet und wiederverwendet werden. Das ist im industriellen Massstab aufwändig und relativ teuer.

So geht man bevorzugt den zweiten Weg.

Polylactid kann nämlich zum anderen durch eine ringöffnende Polymerisation von Lactid-Monomeren gewonnen werden. Ein Lactid-Molekül besteht aus zwei Milchsäure-Molekülen, die miteinander zu einem Ring aus sechs Atomen verbunden sind. Solch ein Lactid-Ring kann eine Komplexreaktion mit bestimmten metallorganischen Verbindungen (also organischen Molekülen, die mindestens ein Metall-Atom enthalten) eingehen und im Zuge dessen geöffnet werden. Das so aktivierte Lactid kann einen weiteren Lactid-Ring öffnen und ihn zwischen sich und dem Metall-Atom einfügen (wie das genau vor sich geht ist noch nicht ganz geklärt). Dabei bleibt, anders als bei der Polykondensation, kein kleines Molekül übrig.

Ringöffnungspolymerisation zur Herstellung von Polylactid


Ringöffnungs-Polymerisation von Dilactid: Die metallorganische Verbindung XiM-OR (M steht für ein Metallatom, Xi für i weitere daran gebundene Atome, R für einen organischen Rest) bildet mit Dilactid einen Komplex. Anschliessend binden das Metall und der organische Rest in noch ungeklärter Weise an die markierten Atome und nehmen den geöffneten Ring in die Mitte. Das C-Atom rechts oben steht in der zweiten Zeile ganz links neben dem RO, und die Atome des Rings gegen den Urzeigersinn gelesen finden sich von links nach rechts in der unteren Zeile wieder. So werden n weitere Ringe (n LA) geöffnet und in die Kette eingefügt, ehe das Metall-Atom am Kettenende gegen ein Wasserstoff-Atom ausgetauscht wird.

So kann die ringöffnende Polymerisation ohne Lösungsmittel durchgeführt werden. Allerdings muss die metallorganische Verbindung in kleinen Mengen als Katalysator dazugegeben werden. Zudem neigen die Polylactid-Ketten dazu miteinander zu reagieren, sodass man weitere Stoffe (Radikalfänger) beimengt, um eben dies zu verhindern.

Alles in allem können zur industriellen Herstellung von Polylactid auf diesem Weg lange, schraubenartige Reaktoren, sogenannte Extruder, eingesetzt werden, an deren einem Ende die Monomere samt Katalysator und Zusätzen hineingegeben werden, während am anderen Ende das Polymer in Form von Kunststoff-Fäden oder -Folie hinauskommt. Die Polymerisation findet während des Durchlaufs durch die Maschine statt.

Wofür kann man PLA benutzen?

In der Medizintechnik ist Polylactid schon lange als Werkstoff beliebt. Da der menschliche Körper selbst Lactat erzeugt, werden Polylactid und seine Abbauprodukte (letztlich Lactat) vom Organismus nicht als Fremdstoffe wahrgenommen. Darüber hinaus kann Polylactid im menschlichen Körper abgebaut werden. So werden schon seit 1966 bei Operationen Nähfäden aus Polylactid verwendet, die nach ein paar Wochen im Körper zersetzt sind und somit nicht gezogen werden müssen. Eine andere Anwendung in dieser Richtung ist die Herstellung von Knochenprothesen, die aufgrund ihrer Abbaubarkeit mit der Zeit durch nachwachsendes Knochengewebe ersetzt werden können.

Im Botanischen Garten in Denver haben wir das Polylactid jedoch in einer viel alltäglicheren Anwendung kennengelernt: Als Einweggeschirr bzw. Verpackungsmaterial (denn nicht nur die Becher, auch Trinkhalme, Plastik-Teller und -besteck – eigentlich alles, was in der Cafeteria ausgegeben wurde, war mit dem Hinweis auf Kompostierbarkeit versehen).

Bei der Verwendung eines Kunststoffs ist man jedoch gut beraten, auf seine besonderen Eigenschaften zu achten. Reines Polylactid nämlich wird schon ab 50-60 °C sehr weich und verformt sich. Deshalb muss es mit Zusatzstoffen hitzebeständig gemacht werden, bevor man heisse Speisen und Getränke darin servieren kann.

Kunststoff auf dem Komposthaufen?

Die Aufschrift “100% compostable” verleitet in der Tat dazu anzunehmen, wir könnten unsere Becher nun einfach auf den Komposthaufen werfen und warten, bis sie von selbst verrotten. Mit bestimmten anderen Biokunststoffen klappt das wirklich, aber mit Polylactid ist das leider nicht ganz so einfach.

Um Polylactid zu kompostieren muss man es nämlich in industriellen Anlagen in 95% Luftfeuchtigkeit auf 60°C warm halten und passende Mikroorganismen dazugeben, die bei solch hohen Temperaturen leben können (AÖL, 2014). Kompostierung ist nämlich der von Enzymen katalysierte Abbau von organischem Material – idealerweise zu nährstoffreichem Humus. Und Enzyme werden von Lebewesen bereitgestellt und genutzt. Für den Abbau von Polylactid übernehmen das thermophile, also wärmeliebende Bakterien.

Es ist also keine gute Idee Polylactid-Verpackungen einfach in die Landschaft zu werfen. Dort werden sie nicht von selbst verrotten. Deshalb hatte der Betreiber des Botanischen Gartens rund um die Cafeteria Abfalleimer mit dem Hinweis “nur für kompostierbare Kunststoffabfälle” aufgestellt um das gebrauchte Geschirr zu sammeln und in seine eigene oder eine externe Kompostieranlage zu schaffen.

Wie umweltfreundlich ist das Ganze?

Wenn man bestimmen möchte, wie umweltfreundlich ein Kunststoff tatsächlich ist, gibt es eine ganze Reihe von Faktoren zu berücksichtigen, die von der Erzeugung und Verwendung bis hin zur Entsorgung des Kunststoffs eine Rolle spielen. Wichtige solche Faktoren sind:

Landnutzung und Nahrungsmittelkonkurrenz

Zur Herstellung von Milchsäure, dem Ausgangstoff für die Erzeugung von Polylactid, müssen (zumindest heute) Pflanzen angebaut werden, um daraus Bakterienfutter zu gewinnen. Die dazu nötige Ackerfläche nimmt Platz ein, und der Mais oder andere Pflanzen, die als Bakterienfutter dienen, können nicht als Nahrungsmittel für Menschen genutzt werden.

Im Augenblick wird noch so wenig PLA produziert, dass der Platzbedarf verschwindend ist und der Ackerbau zwecks Erzeugung von Biogas und Biosprit eine vielfach grössere Konkurrenz zum Nahrungsmittelanbau darstellt. Für die Zukunft stehen für einen vollständigen Ersatz unserer Kunststoffe durch Biokunststoffe Schätzungen von 1 bis 12% der weltweit verfügbaren Ackerfläche für den dafür notwendigen Rohstoffanbau im Raum (AÖL, 2007).

Umweltverträglichkeit des Rohstoff-Anbaus

Bei jeder Art von Ackerbau ist kritisch abzuwägen, inwieweit Monokulturen und der Einsatz von chemischen Pflanzenschutzmitteln sich schädlich auswirken und minimiert werden können. Zudem werfen gentechnisch veränderte Nutzpflanzen (der in den USA zur PLA-Herstellung angebaute Mais ist in der Regel gentechnisch verändert) immer wieder heftige Diskussionen auf.

Sozialverträglichkeit

Werden die Rohstoffe für die PLA-Herstellung unter “fairen” Bedingungen angebaut und verarbeitet? Wie bei allen Ackerbau- und anderen Produkten ist hier oft massgeblich, in welchen Ländern mit welcher Gesetzgebung die Rohstoffe angebaut werden.

Umweltverträglichkeit von Zusatzstoffen

Nicht nur der Katalysator, der zur Herstellung des Polylactids erforderlich ist, bleibt ein Teil des entstehenden Kunststoffs. Auch zur Vermeidung von unerwünschten Quervernetzungen, zur Erhöhung der Biegsamkeit (reines PLA ist relativ spröde) und der Wärmebeständigkeit werden Zusätze verwendet, deren Auswirkungen auf die Umwelt in die Bewertung des fertigen Kunststoffprodukts mit einfliessen. Denn wieviel nützt ein vollständig kompostierbares Polymer, wenn der Hitzeschutz-Stoff darin am Ende übrig bleibt und auch noch Schwierigkeiten bereitet?

Sicherheit

Neben der Sicherheit beziehungsweise der Schonung unserer Umwelt legen wir mindestens genauso viel Wert auf unsere eigene, gesundheitliche Sicherheit. Da PLA aus Milchsäure, einem in unserem Organismus allgegenwärtigen Stoff, aufgebaut ist, gilt es als gesundheitlich unbedenklich. Aber wie sieht das mit den Zusatzstoffen aus?

Recycling/Kompostierung

PLA lässt sich industriell herstellen und vielseitig anwenden…aber wohin damit, wenn man es nicht mehr braucht? Der Kunststoff ist kompostierbar, allerdings nur in speziellen industriellen Anlagen. Die müssen zuerst gebaut und dann unterhalten werden, zumal eine gemeinsame Entsorgung mit vergleichbaren herkömmlichen Kunststoffen wie PET nicht möglich ist. Denn die von PET abweichenden Eigenschaften des Polylactids würden in auf PET ausgerichteten Maschinen zu erheblichen technischen Problemen führen (AÖL, 2014).

Ökobilanz

Anbau und Transport von Rohstoffen, Herstellung und Entsorgung von Produkten gehen mit der Entstehung von teils umweltbelastenden Abfallstoffen einher. Da Pflanzen ihre Glucose und andere Kohlenstoffverbindungen letztlich mittels Fotosynthese aus Kohlendioxid (CO2) gewinnen, welches sie der Atmosphäre entnehmen, kann bei der Entsorgung (Kompostierung, Verbrennung,…) von Pflanzen und reinen Pflanzenprodukten nicht mehr CO2 entstehen, als sie zuvor aufgenommen haben.

Das deutsche Bundesumweltamt äussert in einer Broschüre aus dem Jahr 2009, dass durch die Nutzung von Biokunststoffen wie PLA anstelle von herkömmlichen Kunststoffen, die aus Erdöl hergestellt werden, fossile Rohstoffvorkommen geschont werden, da diese durch nachwachsende Rohstoffe ersetzt werden. Darüber hinaus kann der CO2-Ausstoss dank der oben beschriebenen CO2-Bilanz verringert werden.

Die Gesamt-Umweltbelastung, die die Nutzung von PLA-Bechern wie unseren im Botanischen Garten mit sich bringt, entspreche jedoch jener, die PET-Becher mit sich bringen. Das bedeutet, Mehrweg-Becher seien in ökologischer Hinsicht auch kompostierbaren Kunststoffen deutlich überlegen.

Fazit

Polylactid, kurz PLA, zählt zu den Biokunststoffen und ist – unter industriell herstellbaren speziellen Bedingungen – biologisch abbaubar. Da PLA aus nachwachsenden Rohstoffen hergestellt wird, trägt seine Verwendung zur Schonung begrenzter fossiler Rohstoffe wie Erdöl bei und mindert den CO2-Ausstoss.

Allerdings sind PLA laut dem Bundesumweltamt ganzheitlich (also unter Berücksichtigung aller genannter Faktoren) betrachtet (noch) nicht umweltfreundlicher als der gängige Kunststoff PET. Ein System mit Mehrweg-Getränkebehältern ist also immer noch um Längen schonender.

In einem Betrieb wie dem Botanischen Garten Denver, der seinen PLA-Abfall zentral sammelt und kompostiert oder recycelt, finde ich diesen und andere Biokunststoffe nichts desto trotz spannend. Zumal gerade ein Gartenbetrieb den anfallenden Kompost wiederum weiterverwenden kann. Und wenn die Forschung bezüglich der Vergärung von Pflanzenabfällen zu Ergebnissen führt, tut sich hier womöglich ein attraktiver Ersatz für unsere Kunststoffe aus Erdöl auf. Die Zukunft wird es zeigen.

Und wo hattet ihr schonmal mit kompostierbaren oder anderen Biokunststoffen zu tun?

Der Blogtour Fahrplan

07.09. pyramideneulehttp://welt.pyramideneule.de Thema: Wildvögel füttern
08.09. Kathi Keinsteinhttps://www.keinsteins-kiste.ch/ Thema: Kompostierbare Kunststoffe
09.09. MrAndroid http://www.mrmrs-android.de/ Thema: Jedes Jahr ein neues da – Wieso du dein Smartphone behalten solltest
10.09. Zaxumo – http://zaxumo.blogspot.de/ Thema: Umweltfreundliche Kosmetik

12.09. Lilyanahttp://www.buecherfunke.de/ Thema: Ebooks
13.09. Lebenslounge – http://www.lebenslounge.com/ Thema: Recycling im Haushalt

 

Ozon als LEbensretter

Das vielseitige Gas Ozon ist ebenso begehrt wie es ungeliebt ist. Im ersten Teil dieses Artikels erfährst du, was Ozon eigentlich ist und warum es in unserer Atemluft in grösseren Mengen nichts zu suchen hat. Dieser Teil beschäftigt sich mit Ozon, ohne welches wir nicht leben könnten und mit den Möglichkeiten dieses Gases uns zu heilen.

Wann und wo ist Ozon für uns lebenswichtig?

Im Jahre 1985 versetzte die Entdeckung eines wachsenden Ozonlochs über der Antarktis, der südlichsten Region der Erde, die Menschheit in Aufruhr. Denn schon damals wusste man, dass Ozon in der Stratosphäre für uns lebenswichtig ist, und Wissenschaftler (z.B. Crutzen und Molina&Rowland) hatten bereits seit 15 Jahren eine Ausdünnung der Ozonschicht aufgrund von menschlichen “Hinterlassenschaften” vorausgesagt. Mit einem Loch hatte hingegen niemand gerechnet. Aber wie kann eine Luftschicht, noch dazu in einer mittleren Schicht der Atmosphäre, ein Loch haben?

Für die Antwort müssen wir uns in grosse Höhe begeben: In der etwa 500km dicken Erdatmosphäre nimmt die Stratosphäre den Bereich von etwa 15 bis 50 Kilometern Höhe ein. Direkt darunter liegt die Troposphäre, jene Luftschicht, die wir atmen. Beide Schichten sind aus physikalischen Gründen relativ scharf voneinander getrennt, d.h. Inhaltsstoffe einer Schicht können nur unter erschwerten Bedingungen in die andere Schicht gelangen.

Die Schichten oberhalb der Stratosphäre sind so dünn, dass energiereiche UV-C-Strahlung (etwas über UV-Strahlung und ihre Einteilung findest du in diesem Artikel) hindurchdringt und in der Stratosphäre Ozon erzeugt. UV-C-Strahlung kann nämlich Sauerstoff-Moleküle spalten:

Aus dem ersten Teil weisst du ja bereits, dass Sauerstoff-Atome nicht lange allein bleiben, sondern sich schnellstens etwas zum Reagieren suchen:

Genauso kann Ozon durch UV-B-Strahlung, die in der Stratosphäre auch reichlich vorhanden ist, gespalten werden:

Die Energie der UV-Strahlung wird dabei teilweise für die Umgruppierung der Atome verwendet, teilweise durch Anschubsen eines beliebigen dritten Moleküls als Wärme weitergegeben. So führt allein das Vorhandensein von Sauerstoff (O2) zum Spalten in der Stratosphäre dazu, dass die UV-C-Strahlung die Erdoberfläche gar nicht erreicht, während das Ozon den entscheidenden Teil der UV-B-Strahlung aufhält. Nur deshalb können wir uns an der Erdoberfläche bewegen, ohne innerhalb kürzester Zeit einen Sonnenbrand zu bekommen oder schlimmere Hautschäden zu erleiden.

Zwischen der Entstehung und dem Abbau von Ozon stellt sich bei UV-Lichteinfall ein Gleichgewicht ein. In der mittleren Stratosphäre gibt es noch genug UV-C-Strahlung, die Ozon entstehen lässt, während ein Teil der UV-B-Strahlung bereits vom Ozon darüber aufgehalten worden ist. So liegt hier das Gleichgewicht am weitesten auf der Seite des Ozons: Die Ozon-Konzentration ist in der mittleren Stratosphäre am höchsten.

Können wir die Ozonschicht in der Stratosphäre direkt wahrnehmen?

Manchmal können wir das Ozon in der Stratosphäre sogar sehen. Bei Tag ist der klare Himmel blau, weil das einfallende Sonnenlicht vom Luftsauerstoff O2 so gestreut wird, dass hauptsächlich blaues Licht bei uns ankommt. Morgens vor Sonnenaufgang und abends nach Sonnenuntergang, wenn kein direkt einfallendes Licht mehr gestreut wird, zeigt sich, dass Ozon auch sichtbares Licht, vornehmlich im gelben, orangen und roten Bereich, absorbiert. Das blaue Licht bleibt übrig und beschert uns regelmässig im ersten und letzten Licht des Tages eine “blaue Stunde”.

Neben zahlreichen Poeten hat sich der Geophysiker Edward O. Hulburt, der diesen Zusammenhang 1952 erstmals erkannte, voll Staunen geäussert:

„Der nichtsahnende Beobachter, der während des Sonnenuntergangs auf dem Rücken liegend in den klaren Himmel schaut, sieht nur, dass der Himmel über ihm, der vor dem Sonnenuntergang blau war, dasselbe leuchtende Blau beibehält, während die Sonne untergeht und es anschließend während der Dämmerung immer dunkler wird. Er ist sich nicht bewusst, dass die Natur, um dieses anscheinend so selbstverständliche und naheliegende Ergebnis zu produzieren, recht großzügig ganz tief in die optische Trickkiste gegriffen hat.“

 

Warum hat die Ozonschicht ein Loch?

Sauerstoff gibt es in der Stratosphäre stets genug, sodass wir uns hier unten in der Troposphäre wegen UV-C-Strahlung keine Sorgen machen müssen. UV-B-Strahlung wird hingegen nur absorbiert, wenn es auch Ozon hat! Deshalb wird die Dicke – oder besser Dichte – der Ozonschicht in der Stratosphäre seit einigen Jahrzehnten vermessen und genau überwacht.

Die Dicke der Ozonschicht wird in Dobson-Units (DU) gemessen, einer Einheit, die nach Gordon Dobson, dem Erfinder des zur Messung der Schichtdicke verwendeten Spektralphotometers, benannt ist. 100 DU entsprechen dabei einer 1 mm dicken Schicht aus reinem Ozon auf Meereshöhe, die sich in Wirklichkeit aber auf die ganze Stratosphäre verteilt [1]. Das “Loch” in der Ozonschicht ist somit auch kein Loch im eigentlichen Sinne, sondern vielmehr ein Bereich, in dem weniger Ozon in der ganzen Stratosphäre zu finden ist. Die durchschnittliche “gesunde” Ozonschicht der Erde hat übrigens eine Dichte in der Grössenordnung von 300 – 500 DU.

Die Ozonschicht ist aber weder gleichmässig noch gleichbleibend dick.
Da Ozon erst durch (UV-)Licht entsteht, ist die Ozonschicht immer da, wo die Sonne ist. Und die scheint am intensivsten am Äquator, sodass dort am meisten Ozon gebildet wird. Von da aus wird das Ozon in Richtung der Pole verteilt: Im Frühling auf der Nordhalbkugel vornehmlich in Richtung Nordpol, im Herbst der Nordhalbkugel, wenn auf der Südhalbkugel Frühling herrscht, dem Licht folgend in Richtung Südpol. So ist absehbar, dass die Ozonschicht nahe der Pole schon von Natur aus dünner ist als über dem Äquator.

Was die Antarktis anfällig für ein Ozonloch macht
Am Südpol bildet sich zudem im Polarwinter ein wirklich sehr kalter Luftwirbel. Dieser Polarwirbel kreist über der Antarktis weitgehend ungestört vor sich hin, sodass seine Temperatur ohne Zustrom wärmerer Luft von aussen auf bis zu -80°C sinken kann. Am Nordpol gibt es einen ähnlichen Wirbel, doch da es rund um die Arktis viele Berge gibt, die die Luftströmung aufmischen und so den Zustrom wärmerer Luft ermöglichen, wird dieser längst nicht so kalt.

Bei den extrem niedrigen Temperaturen im Süd-Polarwirbel können in der Stratosphäre Salpetersäure (HNO3) und Wasser zu Eiswolken gefrieren (normalerweise ist die Stratosphäre zu trocken für die Entstehung von Wolken). An diesen Wolken sammeln sich Stickstoff- und Chlorverbindungen wie Chlornitrat (ClONO2) und hypochlorige Säure (HClO) an. Stickstoff- und Chlorverbindungen, aus welchen diese Stoffe entstehen können, werden in der Natur von aktiven Vulkanen oder Pflanzen freigesetzt (aber das ist eine andere Geschichte). In den Stratosphärenwolken können Chlornitrat und hypochlorige Säure den langen, lichtlosen Polarwinter ohne Reaktion überdauern.

Erst wenn im Süd-Frühling die Sonne aufgeht (und dann geht sie für Monate nicht mehr unter!) und UV-Licht auf die Wolken fällt, werden die darin gelagerten Stoffe schnell gespalten:

Teilchen wie das ClO• nennt man Radikale, und das völlig zu Recht. Der Punkt in der Formel bedeutet ein einsames Elektron in der Elektronenhülle des Teilchens. Und da die Elektronen eines Atoms oder Moleküls sehr viel lieber zweisam sind, sucht sich das Teilchen mit radikalem Eifer etwas zum Reagieren, um ein weiteres Elektron zu erhalten. Und dabei lassen sie nicht selten andere Radikale zurück:

Richtig: Atomarer Sauerstoff ist auch ein Radikal, das z.B. durch Abspaltung von einem NO2-Molekül durch UV-Strahlung (s. Teil 1 dieses Artikels) entsteht.

Die so entstehenden Chlor-Radikale greifen wiederum Ozon an:

Es entsteht ein neues ClO•-Radikal, welches wiederum zu einem Chlor-Radikal reagieren und ein neues Ozon-Molekül angreifen kann! Chlor-Radikale reagieren also nicht nur leicht mit Ozon. Zudem können wenige Chlor-Radikale, die immer wieder in den Reaktionen Verwendung finden, viele Ozon-Moleküle abbauen. Chlor-Radikale wirken als Katalysator auf den Ozonabbau!

Die extreme Kälte des Polarwirbels im Polarwinter fördert also die Anreicherung von Stoffen in der Stratosphäre, die bei Einwirkung von Sonnenlicht Radikale bilden, welche als Katalysator auf den Abbau von Ozon wirken. Deshalb ist die Ozonschicht über der Antarktis im Süd-Frühling schon seit Beginn der Messungen etwas dünner als anderswo.

Wie haben wir uns daraus ein Problem geschaffen?

Ab den 1930er Jahren wurden sogenannte FCKW technisch hergestellt und vermehrt als Kältemittel in Kühlschränken und als Treibgas für Sprühdosen eingesetzt. FluorChlorKohlenWasserstoffe, bzw. nach den Spielregeln der Chemiker, die ihre Stoffe in alphabetischer Reihenfolge benennen, CFKW, sind Kohlenwasserstoffe, bei denen einige oder alle Wasserstoff-Atome durch Fluor- bzw. Chloratome ersetzt sind. Solche Verbindungen sind unter normalen Umständen reaktionsträge, weshalb sie damals als ungefährlich galten. Daran, dass solch unreaktive Moleküle in der Luft auch nicht abgebaut werden können und so lange erhalten bleiben, bis sie den beschwerlichen Weg in die Stratosphäre meistern, hat damals noch niemand gedacht.

So geraten die FCKW in der Stratosphäre an UV-C-Strahlung, die selbst Moleküle spaltet, die sonst nicht reagieren, wie zum Beispiel:

Es entstehen also reichlich zusätzliche Cl•-Radikale, die den Ozonabbau beschleunigen. Und so weit gingen die Voraussagen der Wissenschaftler schon in den 1970er Jahren. Nur hat damals niemand darauf gehört. Erst als 1985 bekannt wurde, dass die minimale Dicke der Ozonschicht über der Antarktis, die jeden Süd-Frühling durchlaufen wird, innerhalb von drei Jahrzehnten von rund 300 DU auf unter 100 DU abgesunken war, war das Erschrecken gross. Denn mit einem so schnellen Abbau hatten nicht einmal die Wissenschaftler gerechnet.

So hat die Weltpolitik für einmal phänomenal schnell reagiert und schon 1987 die Verwendung von FCKW mit der Unterzeichnung des Montrealer Protokolls eingeschränkt und in der Londoner Konferenz 1990 bis zum Jahr 2000 ganz verboten. In Folge dessen wird das Ozonloch wieder kleiner – Simulationen sagen voraus, dass die Ozonschicht sich wieder ganz erholen wird, wenn wir uns weiterhin beflissen an die genannten Protokolle halten.

Das Ozon-Loch 1979 bis 2011

Das Ozonloch im Laufe der letzten Jahrzehnte: vor seiner “Entdeckung” (peinlich für die NASA: sie hatten es bereits registriert und bis 1985 für fehlerhafte Messwerte gehalten), zum Zeitpunkt des Montrealer Protokolls, bei seiner maximalen Ausdehnung 2006 und sichtlich kleiner im Jahre 2011 (Bildquelle: NASA)

Damit hat das Schreckgespenst Ozonloch, das erst durch das Zusammenwirken des kalten Polarwirbels mit den von Menschenhand freigesetzten FCKW entstanden ist, uns vor dem eigentlichen Problem bewahrt: Dem weltweiten und längerfristigen Abbau der Ozonschicht durch solche Stoffe.

Gibt es weitere Gefahren für die Ozonschicht?
Nun rückt allerdings eine zweite Einflussmöglichkeit auf die Ozonschicht zunehmend in den Fokus der Öffentlichkeit, nämlich die Freisetzung von Lachgas (N2O). Lachgas entsteht in grösseren Mengen beim Einsatz von stickstoffhaltigen Düngern oder als Abgas von Kraftfahrzeugen und Kraftwerken. Es kann mit atomarem Sauerstoff zu Stickstoffmonoxid reagieren, welches sich dann am Ozonabbau beteiligen kann:

Im Vergleich zur Wirkung der FCKW ist die ozonabbauende Wirkung von Lachgas aber verschwindend (man erwartet einen Ausdünnung der Ozonschicht von 2,6DU bis Ende des Jahrhunderts durch Lachgas). Viel bedeutender ist, dass Lachgas ein hochwirksames Treibhausgas ist…aber das ist eine andere Geschichte.

Was Ozon noch kann

Ozon in unmittelbarer Nähe ist nicht nur für uns giftig (siehe Teil 1 dieses Artikels), sondern es tötet auch Keime, wirkt entzündungshemmend und sogar durchblutungsfördernd. So findet es vielfältigen Einsatz in der Medizin. Zahnärzte nutzen Ozon zur Karies-Frühbehandlung oder zum Desinfizieren ausgeräumter Wurzelkanäle sowie – in Wasser gelöst – als desinfizierende Mundspülung. In der Komplementärmedizin werden Wunden und andere Hautschäden zur Desinfektion mit Ozon “begast” (in einem Beutel oder unter einer Glocke, damit das Gas dort bleibt, wo es hin soll und nicht eingeatmet wird).

Ausserdem wird Ozon im eigenen, zuvor entnommenen Blut des Patienten gelöst sogar als Infusion gegeben oder gespritzt um Durchblutungsstörungen und ihre Folgen zu behandeln. Allerdings haben auch andere Gase ebenso durchblutungsfördernde Wirkung. Weitere heilsame Wirkungen des Ozons gelten zudem als nicht wissenschaftlich belegt.

Zu guter Letzt findet Ozon oft als Ersatz für das giftigere Chlor-Gas (Cl2) Verwendung. “Chlorfrei gebleichte” oder anderweitig “chlorfrei” behandelte Produkte, von Papier bis hin zu keimfrei aufbereitetem Trinkwasser sind meist mit Ozon behandelt – denn Chlor wirkt ähnlich wie Ozon oxidierend. Aber das ist eine andere Geschichte.

Fazit: Ozon ist ein Gas mit vielen Gesichtern

Ozon in der Stratosphäre bewahrt uns vor Schaden durch UV-Strahlung, während Ozon in unserer direkten Umgebung giftig für viele Lebewesen ist. Während wir unsere Ozonschicht hüten und mit dem vielgesichtigen Gas gezielt Keime töten, haben wir viel daran zu tun, unsere Atemluft möglichst frei von überschüssigem Ozon zu halten.

Und wo ist dir zuletzt Ozon begegnet?

[1] S.Brönnimann (2002): Ozon in der Atmosphäre. Verlag Paul Haupt, Bern, Stuttgart, Wien.

Ozon im Smog: Vom Sauerstoff zum Luftschadstoff

Was ist Ozon? Wie entsteht schädliches Ozon? Wann kann Ozon uns schaden? Wann (und wo) ist Ozon für uns lebenswichtig? Und wann ist Ozon ein Heilmittel?

Von Ozon hat sicher jeder schon gehört, und es wurden haufenweise Bücher darüber geschrieben. Warum also über Ozon schreiben? Während der Recherche für diesen Artikel bin ich in der Zentralbibliothek in Zürich gewesen und habe festgestellt, dass der Recherchecomputer mich auf der Suche nach Ozon fast immer ins Magazin mit den Erscheinungen vor 2010 hinunter schickt. Ist das Thema demnach in den letzten Jahren tatsächlich ins Abseits unseres Gedächtnisse geraten? Dabei sind gerade heute die unangenehmen Auswirkungen von Ozon in unserer Atemluft wieder einmal spürbar.

So dreht sich der erste Teil dieses Doppel-Artikels um Ozon als Luftschadstoff, während der zweite Teil euch die nützlichen und sogar für uns lebenswichtigen Eigenschaften dieses Stoffs mit zwei Gesichtern näherbringen soll.

An einem heissen Tag im Juli…

Es ist der 2.7.2015, die Sonne strahlt ungetrübt auf Mitteleuropa hinab. Heute ist ein Werktag. Die Städte sind belebt, es wird gearbeitet, die Strassen sind voller Autos. Und die Tageshöchsttemperaturen reichen in der Region Zürich bis 34°C. Ich habe das Glück in einem Dorf am Zürichsee zu sitzen und mir die Live-Messdaten für Schadstoffe in der Luft in Zürich und vielen Städten Deutschlands im Netz ansehen zu können. Da muss ich mir wegen dem, was ich da sehe, eigentlich weniger Gedanken machen. Die Leute, die in der Stadt unterwegs sind, aber schon.

In Zürich werden heute um die Mittagszeit Stundenmittelwerte von bis zu 174 μg Ozon pro m³ gemessen. In vielen Städten in West- und Südwestdeutschland sind gestern bereits Spitzenwerte um die 200 μg Ozon pro m³ gemessen worden. In Baden-Baden ganz im Süden Baden-Württembergs ist bei über 240 μg Ozon pro m³ sogar Ozon-Alarm ausgelöst worden!

Wer sich bei solchen Konzentrationen draussen bewegt, kann mit Kratzen und Brennen im Hals, Kopfschmerzen und Augenbrennen zu tun bekommen. Diese Symptome haben nicht unbedingt mit einer Sommergrippe zu tun, sondern mit einer Anreicherung des Gases Ozon in der Luft. Denn wir sind für Ozon-Konzentrationen von nur 40 – 80 μg Ozon pro m³ geschaffen…. Aber von Anfang an:

Was ist Ozon?

Ozon ist eine besondere Form (Chemiker sagen “Allotrop” dazu) des Elements Sauerstoff. Während die üblichen Sauerstoff-Moleküle (O2), die wir atmen, aus je zwei Sauerstoff-Atomen bestehen, besteht ein Ozon-Molekül aus drei Sauerstoffatomen (O3). Deshalb wird Ozon manchmal auch “Trisauerstoff” genannt.

Sauerstoff_vs_Ozon


Die Strukturformeln von Luftsauerstoff (links) und Ozon (rechts).
Die wahre Struktur des Ozon-Moleküls liegt in der Mitte zwischen den beiden gezeigten Formeln, d.h. beide Bindungen sehen gleich aus und das Molekül ist symmetrisch! Da man in der Formelsprache aber keine 1,5-fach-Bindungen zeichnen kann, geben die Chemiker solche mesomeren Grenzformeln an und meinen “die Wahrheit ist in der Mitte”.
Das Ozon-Molekül ist zudem elektrisch ungeladen. Die gezeigten Formalladungen ergeben sich aus den chemischen Spielregeln für die Verteilung der Elektronenpaare (Striche) auf die Atome und ergeben beim Ozon in der Summe eine Ladung von Null.
Allerdings deutet das Vorhandensein von Formalladungen in der Strukturformel schon darauf hin, dass wir es mit einem reaktionsfreudigen Molekül zu tun haben.

 

Ozon ist, ähnlich wie der Atem-Sauerstoff, ein farbloses bis bläuliches Gas. Dass Ozon nicht zum Atmen taugt, merkt man bei grösseren Mengen allerdings schnell, denn es hat einen unangenehm stechenden, chlorähnlichen Geruch, wie du ihn vielleicht von älteren Fotokopierern oder Laserdruckern kennst. Dieser Geruch kommt nicht von ungefähr, denn Ozon wirkt stark oxidierend und ist dabei alles andere als wählerisch: Es geht mit vielen Stoffen Redox-Reaktionen ein – auch mit den Bestandteilen von Menschen bzw. ihrer Atemwege. Deshalb wird Ozon von den Gefahrstoffexperten als sehr giftig gekennzeichnet.

Nichts desto trotz ist Ozon ein natürlicher Bestandteil unserer Atemluft. Allerdings kommen in der Troposphäre, genauer der planetaren Grenzschicht, dem untersten Teil der Atmosphäre, den wir atmen, in der Natur nur 40 – 80 μg Ozon pro m³ Luft vor. Das entspricht an einem angenehm warmen Tag 40 bis 80 Millionstel Gramm in rund 1,2 Kilogramm Luft!

An diese kleinen Mengen haben sich unsere Körper im Lauf der Jahrhunderttausende langen Geschichte unserer Entwicklung angepasst. Steigt die Ozon-Konzentration jedoch in kurzer Zeit auf über etwa 100 bis 120 μg/m³, wird es unangenehm, und ab etwa 180 bis 200 µg/m³ über mehrere Stunden zunehmend gesundheitsschädlich. Deshalb können wir Ozon in der Atemluft gar nicht brauchen. Deshalb hat die Schweizer Regierung bestimmt, dass die Ozon-Konzentration in der Atemluft nicht über 120 µg/m³ liegen darf. In den EU-Staaten sind sogar nur 110 µg/m³ erlaubt. Und trotzdem werden diese Grenzwerte immer noch sehr oft überschritten.

Wie entsteht Ozon in der Troposphäre?

Wie es dazu kommt, dass sich Ozon in unserer Atemluft ansammelt? Das haben wir uns selbst zuzuschreiben. Zumindest dann, wenn wir mit einem Auto oder anderen Kraftfahrzeug mit Verbrennungsmotor durch die Gegend fahren (oder fliegen), oder unseren Strom mit einem Dieselaggregat herstellen. Denn damit diese Motoren laufen und etwas antreiben können, muss es in ihnen so heiss werden, dass neben dem Treibstoff auch der Stickstoff aus der Luft (und die besteht zu 70% aus Stickstoff!) verbrannt wird. Dabei entsteht aus Stickstoff, der mit Sauerstoff reagiert, das Gas Stickstoffmonoxid (NO):

Normalerweise ist Stickstoff sehr reaktionsträge, d.h. er reagiert freiwillig gar nicht gerne und brennt deshalb auch nur, wenn man ihm ordentlich einheizt. (Wer sich bereits am Flughafen mit Le Châtelier unterhalten hat, dem kommt das vielleicht bekannt vor: Ja, die Reaktion ist Teil eines Gleichgewichts, das im Kolben eines Motors durch einen Zwang, die hohe Temperatur, auf die rechte Seite verschoben wird!) Entsteht dabei erst einmal Stickstoffmonoxid, dann reagiert dieses Gas auf dem Weg durch den Auspuff nach draussen mit mehr Sauerstoff schnell zu Stickstoffdioxid (NO2) weiter.

Das Gas Stickstoffdioxid ist nicht nur seinerseits sehr giftig (das ist eine andere Geschichte…), seine Moleküle sind auch empfindlich gegen Sonnenlicht. So kann ein NO2-Molekül, das von Licht getroffen wird, auseinander fallen:

Wer im Chemie-Unterricht aufgepasst oder sonst Ahnung von Chemie hat, mag jetzt protestieren: Sauerstoff-Atome kommen doch nicht einzeln vor! Deshalb sucht sich dieses Sauerstoff-Atom auch schleunigst ein neues Molekül, mit dem es reagieren kann. Und da Luft zu 78% aus reaktionsträgem Stickstoff und zu gut 20 Prozent aus molekularem Sauerstoff (O2) besteht, ist dieses neue Molekül in der Regel Sauerstoff:

Dies ist der einzige, aber reichlich begangene Weg, auf dem in unserer Atemluft Ozon entsteht. Deshalb steigt die Ozon-Konzentration im Laufe des Vormittags, nachdem sich zahllose Auto- und Lastwagenfahrer auf den Weg zur Arbeit gemacht und reichlich Stickstoffdioxid hinterlassen haben, an sonnigen Tagen schnell an. Und diese Ozon-Ansammlung bleibt uns erhalten, bis die Sonnenstrahlung nachlässt und die Motoren im Feierabendverkehr reichlich neues Stickstoffmonoxid erzeugen, welches statt mit Sauerstoff auch mit dem reaktionsfreudigeren Ozon reagieren kann:

Stickstoffoxide aus Autoabgasen führen zur Entstehung von Ozon


Stickstoffoxide aus Autoabgasen führen zur Entstehung von Ozon:
(1) Kraftfahrzeuge stossen Stickstoffmonoxid aus. Im Berufsverkehr am Morgen und am Abend entsteht besonders viel Stickstoffmonoxid.
(2) Stickstoffmonoxid wird vom Luftsauerstoff oxidiert: Es entsteht Stickstoffdioxid.
(3) Wenn es warm ist, spalten Sonnenstrahlen ein Sauerstoffatom aus dem Stickstoffdioxid ab.
(4) Das Sauerstoffatom reagiert mit Luftsauerstoff zu Ozon.
(5) Wenn Ozon auf Stickstoffmonoxid trifft, reagieren sie miteinander: Es entstehen Sauerstoff und Stickstoffdioxid.

 

Wie du dich vor Ozonbelastung schützen und die Ozonentstehung verhindern kannst

Deshalb empfehlen Umweltbehörden, wie z.B. das deutsche Umweltbundesamt, an Ozon-reichen Tagen erst am späten Nachmittag und Abend Sport zu treiben. Wer darüber hinaus der Ozonbelastung entkommen möchte, sollte sich z.B. im Wald aufhalten: Dort sind meistens wenig bis keine Autos und es ist schattig.

Richtig problematisch wird das Ozon in der Atemluft allerdings, wenn zu allen genannten Umständen eine Inversionswetterlage kommt: Dann liegt eine wärmere Luftschicht über der Schicht, die wir atmen, und hält diese förmlich in Bodennähe fest. Die in den Städten entstehenden Luftschadstoffe – auch das Ozon – können sich nun nicht einmal mehr nach oben hin verteilen. Dieses so angestaute, dunstig-giftige Luftgemisch wird als Sommersmog bezeichnet. Der Begriff kommt aus den USA und setzt sich aus den englischen Wörtern “smoke” (Rauch) und “fog” (Nebel) zusammen. In den 1940er-Jahren, als man noch kaum etwas über Ozon wusste, mussten die Bewohner von Los Angeles als erste dieses Phänomen erleben: Der höchste damals dort gemessene Spitzenwert betrug sage und schreibe 1160 μg Ozon pro m³ !

Um solche gemeingefährlichen Ozon-Konzentrationen erst gar nicht mehr entstehen zu lassen, stattet man heute die Autos mit einem 3-Wege- oder einem Denox-Katalysator aus. In so einem Gerät laufen Reaktionen ab, welche einen grossen Teil der Stickstoffoxide aus dem Abgas entfernen, bevor es nach draussen gelangt und zur Ozonentstehung führen kann (Aber das ist eine andere Geschichte….).

Da jedoch auch solche Katalysatoren niemals perfekt arbeiten, kannst du selbst den wirksamsten Beitrag zur Verminderung der Ozon-Konzentration leisten: Fahre -besonders an warmen Sommertagen- nur wenn unbedingt nötig Auto. Mit den öffentlichen Verkehrsmitteln kommt man im Stadtverkehr ohnehin meist viel entspannter durch.

Warum wir trotz allem nicht ohne Ozon leben können

Wie Ozon in die Stratosphäre kommt und uns vor gefährlicher UV-Strahlung schützt, was das Ozonloch ist, und in welcher Weise Ozon heilsam sein kann, erfährst du im zweiten Teil dieses Doppel-Artikels!

Und was tust du bei oder gegen Ozon-Belastung?

(Titelbild: Bearbeitung von Creator:Fidel Gonzalez (Eigenes Werk) [CC BY-SA 3.0 oder GFDL], via Wikimedia Commons)