Wie wäscht Seife? Wie kann ein Helikopter fliegen? Warum hilft Streusalz gegen Eisglätte? Antworten auf spannende Fragen von kleinen und grossen Forschern findet ihr hier!

Zu niedrige Abgaswerte hier, zu viel CO2 dort – manipulierte Computerdaten und gewaltige Schadenssummen…in allen Medien liest man seit Wochen von skandalösen Praktiken rund um Abgasmessung und -deklarierung beim Autobauer VW und anderen. Aber was ist eigentlich das Problem mit dem Autoabgas, und was wird da so zweifelhaft gemessen, dass daraus ein weltumfassender Skandal erwachsen konnte?

Als ich vor den Sommerferien meine Probe-Lektion zum Einstieg in die berufspraktische Lehrerausbildung antrat, ahnte noch niemand etwas von all dem Aufruhr. In der Unterrichtsstunde, die ich halten sollte, waren Luftschadstoffe, wie sie auch in Autoabgasen zu finden sind, das Thema. Der Plan war, im Unterricht diese Schadstoffe im Abgas eines Autos nachzuweisen. Da ich selbst kein Auto besitze, war ein Car-Sharing-Fahrzeug die Abgasquelle meiner Wahl – und die Spannung war besonders gross, als sich das angemietete Auto gleich vor dem Schulhaus als VW Golf Variant mit Dieselmotor und „AdBlue“-Label entpuppte. Denn als Enkelin eines lebenslangen VW-Mitarbeiters habe ich eine besonders enge Beziehung zu Fahrzeugen dieser Marke (in meiner Familie wird seit ich denken kann keine andere Marke gefahren). Würde mir solch ein modernes Auto überhaupt genügend Schadstoffe für den Nachweis liefern?

Entsprechend habe ich mir alle Mühe gegeben, allem modernen Abgas-Management zum Trotz eine ausreichende Menge an Schadstoffen zu sammeln (ein Müllsack am Auspuff bei laufendem Motor leistet da gute Dienste). Der Versuch – eine Farbreaktion zum Nachweis von Stickstoffoxiden – lieferte dann auch ein überwältigendes Ergebnis: Was rosa werden sollte, präsentierte sich quietschpink: Es hatte Stickstoffoxide satt!

Erst über zwei Monate später, als der VW-Skandal Ende September die ersten Schlagzeilen machte, kam mir jener Versuch mit ganz neuer Brisanz versehen wieder in den Sinn: War der so gelungene Nachweis tatsächlich auf gute Planung und geschickte Probenentahme zurückzuführen, oder hatte ich es schlichtweg mit einer weniger effektiv gereinigten Abgasen zu tun als angenommen?

Aber fangen wir am Anfang an:

Verbrennungsvorgänge im Motor und was dabei entsteht

In den Fahrzeugen auf unseren Strassen findet man zwei Typen von Verbrennungsmotoren, die mit Flüssigtreibstoff laufen.

Der Ottomotor verbrennt Benzin, ein Gemisch aus relativ leichten Kohlenwasserstoffen – Molekülen mit rund um 7 Kohlenstoff-Atomen. Deshalb wird der Ottomotor in der Umgangssprache auch „Benzin-Motor“ genannt. Kohlenwasserstoffe sind hoch entzündlich und verbrennen, einmal angezündet, mit Luftsauerstoff im Idealfall zu Kohlenstoffdioxid und Wasserdampf:

Für einen vollständigen Reaktionsverlauf braucht es jedoch eine ideale Mischung der Ausgangsstoffe. Und die ist im engen Zylinder eines Ottomotors nicht gegeben. Dort gelangt nämlich nur eine vergleichsweise kleine Menge Sauerstoff hinein (mit voller Absicht, denn die Autobauer ziehen eine effiziente Motorleistung der perfekten Verbrennung vor). So werden nicht wenige der Kraftstoff-Moleküle auf „Sparflamme“ verbrannt, wobei anstelle des CO2 Kohlenstoffmonoxid, CO, entsteht.

Die Verbrennung des Kraftstoffs setzt so viel Energie frei, dass sie – für kurze Zeit in einem engen Raum stattfindend – einen Kolben aus einem  Zylinder drücken und damit den Motor in Bewegung versetzen kann. Leider wird dabei in der Enge des Zylinders zusätzlich eine grosse Menge Wärme erzeugt. Und leider ist der Sauerstoff nicht allein in unserer Atmosphärenluft. Einen sehr viel grösseren Anteil (70% der gesamten Luft) daran hat das Gas Stickstoff, N2, welches normalerweise sehr reaktionsträge ist und kein Problem darstellt. Im Ottomotor wird allerdings auf engem Raum so viel Energie freigesetzt, dass sogar der Luftstickstoff zu brennen anfängt. Und was dann entsteht, ist für Mensch und Umwelt höchst unangenehm. Um nicht zu sagen hoch giftig: Es entstehen Stickstoffoxide.

Im Dieselmotor wird anstelle von Benzin Dieselöl verbrannt. Auch dieses besteht aus Kohlenwasserstoffen und unterscheidet sich vom Benzin vor allem darin, dass seine Moleküle wesentlich grösser und schwerer sind: Sie enthalten um die 18 Kohlenstoffatome sowie entsprechend mehr Wasserstoff als die Bestandteile des Benzins. Die vollständige Verbrennung von Dieselöl liefert somit die gleichen Produkte wie die Verbrennung von Benzin, nur gibt ein Diesel-Molekül wesentlich mehr davon her – nachdem es mit wesentlich mehr Sauerstoff-Molekülen reagiert hat:

Um diese Reaktion mit dem nötigen Treibstoff zu versorgen wird der Kraftstoff im Dieselmotor mit wesentlich mehr Luft verbrannt als im Ottomotor. Mehr Luft bedeutet allerdings nicht nur mehr Sauerstoff, sondern auch mehr Stickstoff – also insgesamt mehr Moleküle, die zu Stickstoffoxiden reagieren können.

Warum diese Abgase giftig sind

Das Stickstoffmonoxid (NO) ist nicht sehr beständig – es reagiert schon bei „normalen“ Temperaturen mit weiterem Luftsauerstoff zu Stickstoffdioxid (NO2) weiter. Stickstoffdioxid  ist ein braunes Gas, das unangenehm chlorähnlich riecht. Und dieses Gas hat es in sich. Es löst sich nämlich in Wasser, um dann sofort mit diesem zu Salpetersäure bzw. salpetriger Säure zu reagieren:

Stickstoffdioxid ist das gemischte Anhydrid (d.h. die wasserfreie Ausführung) von salpetriger Säure (HNO2) und Salpetersäure (HNO3).

Salpetersäure ist eine starke Säure (und salpetrige Säure steht ihr da in wenig nach) und überdies ein starkes Oxidationsmittel – wo sie entsteht, wirkt Salpetersäure ätzend und geht zudem eine Vielzahl von Redox-Reaktionen ein.  Und Wasser gibt es in der Atmosphäre reichlich. Wenn Stickstoffdioxid auf die Wassertröpfchen in Wolken trifft, sind saure Wolken das Resultat, und aus sauren Wolken fällt saurer Regen. Dass der vielen Lebewesen nicht bekommt, wissen wir spätestens seit dem Waldsterben vor und in den 1980er Jahren.

Wenn Menschen (und Tiere) Stickstoffdioxid einatmen, trifft das Gas ebenfalls auf Wasser: Die Schleimhäute der Atemwege sind voll davon. Und wenn Stickstoffdioxid sich darin löst….niemand wird gern Säure in Bronchien und Lunge haben, zumal jeder sich vorstellen können wird, wie das beisst und kratzt und Husten auslöst (bei sehr hohen Konzentrationen eingeatmet führt das bis zu einem gefährlichen Lungenödem, weshalb Stickstoffdioxid als hochgiftig eingestuft wird!). Und dass Autoabgase genug Stickstoffdioxid enthalten können, um die Schleimhäute zu reizen, ist kein Geheimnis. Darüber hinaus gilt NO2 als krebserzeugend und ist an der Entstehung von Ozon in unserer Atemluft beteiligt. Es gibt also mehr als genügend Gründe, Stickstoffdioxid nach Möglichkeit zu meiden.

Kohlenstoffmonoxid (CO) ist ebenfalls giftig, wenn auch auf etwas andere Art und Weise. Dieses Gas kann nämlich – einmal eingeatmet – durch die Lunge in unser Blut gelangen (und davon merkt man in der Regel nichts, denn Kohlenstoffmonoxid ist farb- und geruchlos und wirkt nicht reizend). Dort bindet es an eben jene Bindungsstellen des roten Blutfarbstoffs, die für den Transport von Sauerstoff vorgesehen sind. Und anders als Sauerstoff lässt sich Kohlenstoffmonoxid so schnell nicht mehr davon lösen, sodass Sauerstofftransporter, die einmal Kohlenstoffmonoxid binden, für mehrere Stunden ausser Gefecht gesetzt sind. Bei einigen wenigen blockierten Bindungsstellen ist die Wirkung überschaubar – doch schon winzige Anteile an CO in der Atemluft genügen um die Sauerstoffzufuhr zu Zellen und Gewebe merklich lahm zu legen – im schlimmsten Fall mit Todesfolge.

Weitaus weniger unangenehm ist da des Kohlenstoffmonoxids nächster Verwandter, das Kohlenstoffdioxid. Dieses muss man schon in ausreichenden Mengen mit uns in einen engen Raum sperren, damit es den menschlichen Körper daran hindern kann sein selbst erzeugtes CO2 abzuatmen, sodass ein gefährlicher Rückstau im Atmungsvorgang entsteht. Viel grösser sind da die Schwierigkeiten, die uns Kohlenstoffdioxid in der Atmosphäre als Treibhausgas bereitet. Doch Treibhauseffekt und Klimaerwärmung sind langsame, langfristige Vorgänge, die weitaus weniger rasch zu bevölkerungsweiten Hilfeschreien führen als akute Vergiftungserscheinungen. So wird die Entstehung von Kohlenstoffdioxid anders als die Entstehung weitaus giftigerer Abgase in der Regel billigend in Kauf genommen.

Wie man die Freisetzung giftiger Abgase vermeidet

Im Laufe des 20. Jahrhunderts, als Strassenverkehr und industrielle Verbrennungsanlagen wie Kraftwerke immer zahlreicher wurden, bemerkte man rasch die Probleme, die eine allzu freizügige Abgabe giftiger Abgase mit sich brachte: Smog über Städten und Industriezentren, welcher besonders in Los Angeles berüchtigt war.

Aus Chemikersicht erscheint das Abgasproblem jedoch lösbar (zumindest weitgehend). Die verschiedenen giftigen Abgase, in den meisten Fällen Produkte „unvollständiger“ Reaktionen, haben nämlich eines gemeinsam: Ihre Moleküle enthalten nicht wenig Energie und würden durchaus weiterreagieren (und das nicht nur mit Blutfarbstoff und Körperwasser!), wenn sie denn könnten – d.h. wenn sie einen genügend energiereichen Tritt in den Hintern bekämen. Dieser „Tritt“, auch Aktivierungsenergie genannt, müsste jedoch stärker sein, als ein Verbrennungsmotor ihn bei wirtschaftlichem Betrieb leisten könnte (Energie ist schliesslich teuer). Für solche Fälle kennen die Chemiker (die vermutlich bei der Natur abgeschaut haben) jedoch ein wirksames Workaround: Wird unwilligen Reaktionspartnern der richtige Stoff beigegeben, eröffnet dieser Stoff ihnen neue Wege zur Reaktion – Wege, die so bequem sind, dass sie ohne zusätzlichen Energie-Tritt in den Hintern begangen werden können! Ein Stoff, der eine solche wegweisende Wirkung hat, wird Katalysator genannt.

Ein Katalysator ist ein Stoff, der Reaktionspartnern eine Reaktion auf einem alternativen Reaktionsweg bei verringerter Aktivierungsenergie ermöglicht.

Für Reaktionen mit Verbrennungsabgasen eignen sich Edelmetalle als Katalysatoren – das hatte man schon in den 1950er Jahren erkannt und ein Prinzip für die Reinigung von Autoabgasen entwickelt. Dummerweise verbot sich damals der Einsatz dieser Technik, da der damalige Ottokraftstoff Blei-Verbindungen zur Erhöhung der Klopffestigkeit enthielt – und Blei ist Gift für Edelmetallkatalysatoren: Es macht sie postwendend unbrauchbar. Erst als sich in den 1980er Jahren die Verwendung bleifreier Kraftstoffe zunehmend durchsetzte, begann der Abgaskatalysator seinen Siegeszug. Nachdem er Anfang der 1980er in den USA eingeführt worden war, war die Schweiz 1986 das erste europäische Land, das per Gesetz den flächendeckenden Einsatz von Katalysatoren vorschrieb. Deutschland setzte ein ähnliches Gesetz nach schrittweiser Einführung erst 1993 um.

Dass Abgaskatalysatoren, kurz KAT genannt, Mitte der 1990er neumodisch und im Rahmen der boomenden Umweltschutzbewegungen „in“ waren, mochte sich auch darin niedergeschlagen haben, dass eine Schulfreundin mir damals den Spitznamen „Kat Diesel“ verpasste (auch für Dieselmotoren gibt es Abgaskatalysatoren – die waren derzeit wohl noch neumodischer).

Gemeinsam ist allen Abgas-Katalysatoren die Art und Weise ihrer chemischen Hilfeleistung: Sie befinden sich hinter dem Motorenausgang in jenem Rohr, das letztendlich zum Auspuff führt, sodass die Abgase über das Edelmetall strömen können. Unerwünschte Moleküle können so mit den Atomen an der Metalloberfläche reagieren, bleiben daran haften und ihre Atome werden an Ort und Stelle neu zusammengefügt, ehe sie sich in harmloseren Verbindungen wieder auf den Weg durch den Auspuff nach draussen machen.

Katalysator im Auto

Im Einzelnen sind die verschiedenen Katalysatoren jeweils an „ihren“ Motorentyp angepasst.

Der Katalysator zum Ottomotor: Drei Wege zu sauberer(er) Luft

Die Abgase, welche aus einem Motor in Richtung Auspuff strömen, müssen innerhalb kurzer Zeit quasi im Vorbeiflug zu neuen Molekülen umgebaut werden. Da dieser Umbau nur an einer Edelmetall-Oberfläche stattfinden kann, liegt auf der Hand, dass diese Oberfläche grösstmöglich sein sollte, damit darauf möglichst viele Gasmoleküle gleichzeitig umgebaut werden können. Unglücklicherweise sind Edelmetalle sowohl unheimlich schwer als auch unheimlich teuer. Und weil weder zu hohe Kosten noch vermehrter Kraftstoffverbrauch durch zusätzliches Gewicht zu sauberer Luft beitragen, werden in einem Abgaskatalysator nur kleinstmögliche Mengen an Edelmetallen verbaut.

So ist das Herzstück des Katalysators ein Block aus Keramik, der aus wabenartig aneinander gelagerten Röhren besteht. Dieser Träger wird so in das Auspuffrohr eingebracht, dass das aus dem Motor strömende Abgas auf all diese Röhren verteilt den Block durchströmt. Um die überströmte Oberfläche weiter zu vergrössern ist die Innenfläche der Keramikröhren mit einer sandpapierartig rauen Schicht aus Aluminiumoxid bedeckt. Dieser Wash-Coat hat eine rund 7000 mal grössere Oberfläche als der Keramikträger als solcher. Das genügt um die durchströmenden Abgase in ausreichendem Umfang umzusetzen.  Die gewünschten Reaktionen finden an einer hauchdünnen Schicht aus Platin und Rhodium (evtl. auch Palladium) statt, welche auf den Wash-Coat aufgedampft ist. Diese katalytisch aktive Schicht eines einzelnen KATs besteht aus insgesamt nur 4 bis 9 Gramm der Edelmetalle.

Damit der spröde Keramikträger im fahrenden Auto nicht zerbricht, ist er in eine wärmeresistente Dämmung (die Abgase, die frisch aus dem Motor kommen, sind heiss und müssen auch heiss sein, damit der KAT funktionieren kann!) aus Drahtgestrick oder Keramikfasermatten eingehüllt und von einem Stahlgehäuse ummantelt.

Otto_Kat_Aufbau

Aufbau eines Drei-Wege-Katalysators: Die heissen Abgase aus dem Motor strömen von links ein, vorbei an der von oben eingeführten Lambda-Sonde. Nach dem Durchströmen des Keramik-Trägers (gelb) treten die aufbereiteten Gase rechts wieder aus. (nach: Vortrag: Autokatalysator von Karin Hotz und Johannes Bösch, www.swisseduc.ch)

An der katalytisch aktiven Schicht können unter diesen Voraussetzungen drei verschiedene Reaktionen ablaufen. Bei allen handelt es sich um Redox-, also Elektronen-Übertragungs-Reaktionen. Die Elektronenabgabe, also die Oxidation, wird dabei jeweils vom Platin katalysiert (auf den energiearmen Weg gebracht), die Reduktion jeweils vom Rhodium.

  1. Stickstoffdioxid kann mit nicht oder nur teilweise verbrannten Kraftstoffresten zu Kohlenstoffdioxid, Stickstoff und Wasser reagieren. Kraftstoffreste sind verschiedene Kohlenwasserstoffe oder Bruchstücke davon, die ihrem Namen gemäss Kohlenstoff und Wasserstoff enthalten. Sie sind starke Treibhausgase und gelten, besonders wenn es sich um Benzol und andere aromatische Moleküle handelt, als krebserzeugend. Stellvertretend für alle unverbrannten Kohlenwasserstoffe steht in der folgenden Reaktionsgleichung Methan (CH4):
  2.  Stickstoffdioxid reagiert mit Kohlenstoffmonoxid zu Kohlenstoffdioxid und Stickstoff:
  3. Kohlenstoffmonoxid kann mit verbleibendem Luftsauerstoff zu Kohlenstoffdioxid weiter oxidiert werden:

Diese drei Reaktions-„Wege“ haben dem Katalysator zum Ottomotor zu seinem Namen „3-Wege-Katalysator“ verholfen. Sie alle werden gleichzeitig begangen und führen dazu, dass der grösste Teil der giftigsten Abgase (rund 95%) zu harmloseren Stoffen umgesetzt wird. Der elementare Stickstoff N2 macht 70% unserer Atmosphäre aus, sodass sich neu entstehender Stickstoff nahtlos einfügt. Darüber hinaus bleiben die Produkte der vollständigen Verbrennung von Kohlenwasserstoffen.

Ein Abgas-Katalysator vermindert die Freisetzung von hochgiftigen Abgasen wie NO2 und CO, nicht aber die Freisetzung des Treibhausgases CO2!

Stattdessen wird die Verbrennung der Kohlenwasserstoffe quasi vervollständigt – so wie sie nach der Gleichung für den Idealfall ablaufen sollte.

Für den besten Umsatz: Vom ungeregelten zum Regel-KAT

Damit ebendies so reibungslos funktionieren kann, muss die Zusammensetzung des Abgasgemischs genau passend abgestimmt sein. Dazu ist am Eingang des Katalysator-Gehäuses die sogenannte Lambda-Sonde angebracht, eine Elektrode, die anhand der Gesetze der Elektrochemie den Sauerstoffgehalt des Abgases misst und über eine Elektronik an die Einspritzanlage des Motors meldet. So kann die Herstellung des Kraftstoff-Luft-Gemischs stets so geregelt werden, dass hinten genau das herauskommt, was der Katalysator für eine optimale Wirksamkeit braucht. Entsprechend werden mit einer Lambda-Sonde versehene Katalysatoren auch als „Regel-KAT“ bezeichnet.

Das Verhältnis von Kraftstoff zu Luft im Motor wird von den Automobil-Technikern übrigens Luftzahl genannt und mit dem griechischen Buchstaben λ (Lambda) abgekürzt – daran angelehnt erhielt die Sonde, die dieses Verhältnis regelt, ihren Namen.

Und für Dieselmotoren: DeNOx-Systeme

Um die schweren Diesel-Moleküle zu verbrennen, wird der Kraftstoff im Diesel-Motor mit einem wesentlich höheren Luft-Anteil als im Ottomotor verbrannt. Der darin enthaltene zusätzliche Sauerstoff wird aber wiederum nicht vollständig verbraucht, sodass auch im Abgas mehr Sauerstoff zu finden ist. Der „Marsianer“ Marc Whatney würde sagen: „Die Chemie ist eben eine unordentliche Schlampe…“. Und diese Schlamperei hat umständliche Folgen. Sauerstoff ist als Oxidationsmittel nämlich nicht nur für Verbrennungsreaktionen gut. In grösserer Menge sorgt er auch dafür, dass die Reduktion von Stickstoffdioxid zu  im Diesel-Abgas nicht funktioniert.

Deshalb müssen für die vollständige Aufbereitung von Diesel-Abgasen stets mehrteilige Systeme eingesetzt werden, die unter anderem unter dem etwas schwammigen Begriff DeNOx-Kat bekannt sind (NOx steht dabei für verschiedene Stickstoffoxide).

Eine mögliche Kombination besteht dabei aus einem Oxidations-Katalysator (Oxi-Kat), der Kohlenstoffmonoxid und unverbrannte Kohlenwasserstoffe zu Kohlenstoffdioxid und Wasser „fertig“ verbrennen kann, und einem SCR-Katalysator. Das SCR steht für „selektive katalytische Reduktion“ – dieser Katalysator fördert also die Reduktion eines ausgewählten (selektierten) Abgas-Bestandteils: Die der Stickstoffoxide. Zusätzlich kommen bei Dieselfahrzeugen Russpartikelfilter zum Einsatz, da die Verbrennung von Dieselöl nicht molekulare Kohlenwasserstoff-Reste hinterlässt, sondern auch grössere, stark kohlenstoffhaltige Rückstände, die gemeinhin als Russ bekannt sind und ebenfalls nicht in unsere Atemluft gehören.

DeNOx-System

Aufbau eines DeNOx-Systems: Die heissen Abgase aus dem Dieselmotor strömen von links zunächst durch den Oxidations-Katalysator. Von CO und unverbrannten Kohlenwasserstoffen befreit wird ihnen anschliessend verdampfende Harnstofflösung zugesetzt, aus welcher auf dem Weg zum SCR-Katalysator Ammoniak entsteht. Beim Durchströmen des SCR-Kats reduziert dieser Ammoniak die Stickstoffoxide, ehe die aufbereiteten Gase rechts wieder austreten. (nach: „Diesel tech“ von Hastdutoene – Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons.)

Die Reaktionen im Oxi-Kat entsprechen der vollständigen Verbrennung von Kohlenwasserstoffen sowie dem dritten Weg des 3-Wege-Kats zur Oxidation von Kohlenstoffmonoxid.

Im SCR-Katalysator werden schliesslich die Voraussetzungen geschaffen, um die Stickstoffoxide zu elementarem Stickstoff zu reduzieren. Da man den hinderlichen Sauerstoff nicht einfach verschwinden lassen kann, werden diese Voraussetzungen durch die Zugabe von Ammoniak als Reduktionsmittel geschaffen: Ammoniak drängt den Stickstoffoxiden die zu ihrer Reduktion nötigen Elektronen praktisch auf, ohne dass der überschüssige Luftsauerstoff ihn daran hindern könnte.

Entstickung mit Harnstoff

Da Ammoniak ein unangenehm riechendes, gesundheitsschädliches Gas ist, wird es nicht als solches im Auto mitgeführt. Stattdessen wird Harnstoff („Urea“, (NH2)2CO ) verwendet, ein ungefährlicher Feststoff, der bei Temperaturen über 133°C Ammoniak (NH3) freisetzt:

Das Nebenprodukt Isocyansäure (HNCO) reagiert mit anwesendem Wasserdampf weiter:

Harnstoff-Lösung in Wasser wird an Tankstellen unter dem Namen AdBlue verkauft (da Harnstoff bei der Düngemittelproduktion reichlich anfällt herrscht daran kein Mangel) und muss von Diesel-Fahrern, die einen SCR-Katalysator nutzen, regelmässig in einen gesonderten Tank nachgetankt werden.

AdBlue

Adblue tanken: Diesel-Zapfsäule mit Zusatz-Zapfhahn für Harnstofflösung (links) – und hier kommt die Lösung hinein… (rechts)(nach: „AdBlue Tankstelle“ von Beademung – Lizenziert unter CC BY-SA 3.0 de über Wikimedia Commons bzw. „Tankeinfuellstutzen AdBlue“ von Kickaffe (Mario von Berg) – Lizenziert unter CC-BY-SA 4.0 über Wikimedia Commons.

Das Ammoniak-Gas wird den Abgasen vor dem Eintritt in den SCR-Katalysator beigefügt, sodass es an der Oberfläche der katalytischen Schicht die Stickstoffoxide reduzieren kann:

Diese Reaktion läuft jedoch erst bei Temperaturen ab 250°C in nennenswertem Umfang ab. Bei zügiger Fahrt kommen die Abgase mit solch hohen Temperaturen aus dem Motor, sodass die Umsetzung im laufenden Fahrzeug kein Problem darstellt. Nach dem Anlassen eines kalten Motors muss dieser allerdings erst warm werden, ehe der SCR-Katalysator seine ganze Leistung bringen kann.

Genau darum wissend habe ich mich vor meinem Schulversuch bemüht, meine Abgase sofort nach dem Starten des Motors im Leerlauf zu sammeln (zur Erinnerung: Mein Test-Golf trug ein „AdBlue“-Label, welches das Vorhandensein eines SCR-Katalysators verrät). Das überragende Ergebnis bei dem Nachweis der Stickstoffoxide im gesammelten Abgas beweist daher zunächst, dass ich mich bei diesem Vorhaben ausreichend geschickt angestellt und meine Sammelaktion durchgeführt hatte, bevor Motor und Katalysator ihre Betriebstemperatur erreichen konnten.

Und worin besteht nun der Abgas-Skandal?

Der Teufel steckt in dem Computerprogramm, das die passende Zusammenstellung der Reaktionspartner in den Katalysatoren regelt. Diese Software ist in den betroffenen Fahrzeugen so geschrieben, dass sie erkennt, wenn das Auto auf dem Prüfstand einer Werkstatt einem Abgastest unterzogen wird. Daraufhin steuert die Software den  Motor so, dass möglichst wenig Stickstoffoxide entstehen – ohne dass er dabei die im Strassenverkehr optimale Leistung bringt.

Die „Fähigkeit“ der Software einen Testlauf auf dem Prüfstand zu erkennen ist eigentlich für Autos entwickelt worden, die mit einem elektronischen Stabilitätsprogramm (ESP) ausgerüstet sind. Diese Funktion, die die Gefahr des Schleuderns (und seit dem „Elchtest-Debakel“ mit der Mercedes-A-Klasse 1997 auch das Umkippen) von Fahrzeugen vermindern soll, muss für den reibungslosen Ablauf von Untersuchungen auf dem Prüfstand nämlich vorübergehend abgeschaltet werden. Die Verwendung einer solchen „Abschalteinrichtung“ zum „Doping“ von Katalysatoren ist hingegen und nachvollziehbarer Weise verboten!  Schliesslich sollen Abgastests ja die NO2-Freisetzung unter realen und nicht unter idealisierten Bedingungen prüfen.

Neben verbotenen, manipulativen Computerprogrammen ist jüngst ein zweiter Vorwurf laut geworden, bei welchem es um die CO2-Freisetzung geht. Dass der Einsatz von Katalysatoren die CO2-Entstehung bei der Kraftstoff-Verbrennung nicht vermindert, haben die Gleichungen für die katalysierten Reaktionen deutlich gezeigt. Da hilft auch Manipulation der Technik nicht weiter. So haben findige Rechen“genies“ offenbar schlichtweg falsche Angaben zur CO2-Freisetzung ihrer Fahrzeuge gemacht, um besser da zu stehen.

Das Problem dabei: In Deutschland fliesst die Freisetzung (Emission) des Treibhausgases Kohlenstoffdioxid (CO2) durch ein Fahrzeug in die Berechnung der dafür zu entrichtenden Kraftfahrzeug-Steuer ein. Fahrer, die sich ein vermeintlich emissionsarmes Auto angeschafft haben, müssen nach der Aufdeckung und Richtigstellung der entsprechenden Angaben nun mit unverhofft höheren Steuerabgaben rechnen. Da erscheint es mir nur recht und billig, dass VW sich bereit erklärt, diese Mehrkosten zu übernehmen.

Fazit

Abgas-Katalysatoren reinigen Verbrennungs-Abgase sehr effektiv von hochgiftigen Stoffen. Die Abgas-Freisetzung, insbesondere den CO2-Ausstoss, können sie jedoch nicht völlig verhindern. Eine möglichst effiziente Aufbereitung von Abgasen ist aufwändig und kostenintensiv. Immer strengere Auflagen für die Automobil-Hersteller und -Betreiber scheinen da geradezu zum „Schummeln“ zu verleiten.

Verbrennungsabgase entstehen übrigens auch bei der Herstellung von Strom und Komponenten für Fahrzeuge mit Elektromotoren. Der umweltbewussteste Weg von A nach B führt damit letztendlich über den Verzicht auf Kraftfahrzeuge wenn möglich, und damit über die Nutzung von Fahrgemeinschaften, öffentlichen Verkehrsmitteln oder der eigenen Füsse auf Velo und Gehweg.

Und welche Sorte Katalysator nutzt ihr?

Alias-Effekt: Keinsteins Kiste erklärts!

Der Volksmund pflegt zu sagen: „Physik ist, wo es knallt – Chemie ist, wo es stinkt. Ich pflege zu sagen: „Physik ist, wo man spielt (und da sich Physik und Chemie nicht immer trennen lassen, gilt das auch irgendwie für letztere). Denn die wohl spannendsten Spielzeuge sind mit erstaunlichen physikalischen Phänomenen behaftet, welchen sich kleine und grosse Spielende allzu häufig gar nicht bewusst sind.

Begeistert gespielt wird auch bei Emmygunde und ihrem Spatzeküken, und dabei höchst aufmerksam beobachtet – und die Beobachtungen fleissig auf Fotos und Film gebannt. Eine solche Filmaufnahme offenbarte neulich, als das Band – pardon, die Datei – bei seiner Inaugenscheinnahme etwas erstaunliches.

„Das habe ich gar nicht gesehen – nur in dem Film kann man es erkennen!“, mailte Emmygunde mir. Und sie meinte die funkelnden Lichterkreisel, die sie beim Kreiseln im Dunkeln gefilmt hatte:

Ein (Elektro-)Mechanismus sorgt dafür, dass die bei der Drehbewegung auftretenden Kräfte Lampen in den Kreiseln zum Leuchten bringen. Und da diese Lampen fest eingebaut sind, kreiseln sie fleissig mit. Wer das mit dem blossen Auge beobachtet, wird eine Lichtsäule über dem rotierenden (sich drehenden) Kreisel sehen.

Was man mit dem blossen Auge nicht sieht, sind die geisterhaften bewegten Spiralen, welche auf der Filmaufnahme über den Kreiseln erscheinen.

Wie kann etwas auf einem Film zu sehen sein, das in Wirklichkeit gar nicht da ist? Ist das einer dieser übersinnlichen Fälle für Agent Fox Mulder aus „Akte X“?

Ich habe die Ehre dieses Rätsel für Emmygunde und alle anderen faszinierten Kreisel-Beobachter lösen zu dürfen.

 

Die (Un)zulänglichkeit unserer Kameras

Zunächst einmal: Niemand muss das FBI verständigen und Agent Mulder über den grossen Teich bitten. Keine Kamera kann etwas aufzeichnen, das nicht da ist. Auch diese Spiralen sind in gewisser Weise wirklich da. Und sie drehen sich auch wirklich. Aber sehr, sehr viel schneller als der Film es zeigt. So schnell, dass unser Gehirn ihre Drehbewegung gar nicht im Detail verarbeiten kann. Stattdessen setzt es „was immer es da – ohne Kamera – sieht“ zu einer einzigen Lichtsäule zusammen.

Eine Kamera – und das gilt für jedes für Normalsterbliche zugängliche Gerät, nicht nur für Emmygundes „Fusselskamera“, ’sieht‘ dagegen nach einem einfachen technischen Prinzip: Sie schiesst ein Foto nach dem anderen und zeigt uns diese Fotos ebenso schnell wie sie sie aufgenommen hat. Unser Gehirn besorgt den Rest und rechnet diese rasante Diashow zu einem bewegten Bild zusammen.

Die ursprünglichen Kameras, die noch mit Zelluloid-Filmen arbeiteten, haben tatsächlich ein Bild unter das nächste gereiht, wie auf einem endlos langen Dia-Streifen. Dabei hatte jedes Einzelbild das gleiche Format, zeigte einen Bildausschnitt in einem stets gleichartigen „Rahmen“, welcher bei der Wiedergabe gerade auf die verwendete Leinwand passte. An diese Rahmen angelehnt heissen die Datenpakete, die bei einem digitalen Film den Einzelbildern entsprechen, auch heute noch „Frame“, entsprechend dem englischen Wort für ‚Rahmen‘.

Und die Framerate, die Anzahl aufgenommener Bilder pro Sekunde, ist je nach Modell der Kamera höher oder niedriger, aber stets begrenzt. Was immer sich also vor der Linse bewegt, wird nur in Form einer Reihe von Moment-Ausschnitten der Bewegung festgehalten. Als würde man eine Wellenlinie darstellen, indem man nur in regelmässigen Abständen ihre Schnittpunkte mit senkrechten Linien auf dem Bildschirm markiert. Unser Gehirn erkennt sofort, dass diese Ansammlung von Punkten eine Wellenlinie wiedergibt:

 

Punktkurve

Wiederkehrende Bewegung wird zum Problem: Der Alias – Effekt

Wenn man eine fortschreitende Bewegung – zum Beispiel eine Katze, die von links nach rechts durchs Bild läuft – filmen möchte, funktioniert die Darstellung in einzelnen Frames wunderbar. Auch eine Bewegung, die sich langsam in gleicher Weise wiederholt, zum Beispiel ein Kind auf einer Schaukel, lässt sich in Zusammenarbeit mit unserem Gehirn prima wiedergeben.

Wiederholt sich eine Bewegung jedoch zu schnell, ergeben sich aus der Aneinanderreihung der Moment-Ausschnitte seltsame Dinge, die in Wirklichkeit so nicht stattgefunden haben. Eine solche sich wiederholende Bewegung ist auch die Wellenlinie auf dem Bildschirm:

 

Von der Bewegung zum Alias-Effekt


(nach: „Aliasing mrtz“ by mrtz (Own work) [CC BY-SA 2.5], via Wikimedia Commons)

Diese Wellenlinie „bewegt“ sich fast ebenso schnell auf und ab (sie hat eine höhere Frequenz als die Wellenlinie im ersten Bild) wie senkrechte Linien aufeinander folgen. Aufgezeichnet werden aber nur die Schnittpunkte der Wellenlinie mit den Senkrechten, die mit einem kleinen Kreis markiert sind. Wenn wir uns diese Momentaufnahmen aneinandergereiht wieder ansehen, setzt unser Gehirn sie zu dem zusammen, was sie scheinbar zeigen – nämlich die rote Kurve! Auch die ist eine Wellenlinie, die zwar die gleiche Auslenkung wie die „wirkliche“ Welle, aber eine sehr, sehr viel kleinere Frequenz hat (anstelle von 20 „wirklichen“ Wellenbewegungen passt gerade einmal eine einzige in das Bild).

 

Diese „fehlerhafte“ Wiedergabe von solch zu schnellen Bewegungen in „zu wenigen“ Einzelbildern wird Alias-Effekt oder kurz Aliasing genannt.

 

Wenn man von der Welle auf dem Papier zu ‚richtigen‘ wiederkehrenden Bewegungen geht, nehmen Alias-Effekte oft skurrile Ausmasse an. Das berühmteste Beispiel ist wahrscheinlich die Drehung von Wagenrädern im Western-Film: Wenn ein Wagen mit Speichenrädern anfährt und immer schneller wird, nähert sich die Frequenz der Speichen, die z.B. eine genau senkrechte Position im Rad durchlaufen, immer weiter der Framerate (im Kinofilm sind das 24 Bilder in der Sekunde) an.

Sobald dabei mehr als halb so viele Speichen die Senkrechte durchlaufen wie Einzelbilder aufgenommen werden, wird die Sache seltsam: Es entsteht ein Alias-Effekt. Denn sobald sich die Räder sich zwischen zwei Einzelbildern um genau den halben Abstand zwischen zwei Speichen drehen, ist der Aneinanderreihung der Einzelbilder nicht mehr zu entnehmen, ob sich das Rad vor- oder rückwärts in die gezeigte Position (wechselweise Speiche und Zwischenraum) gedreht hat.

Drehen sich die Räder noch schneller, zeigt jedes Einzelbild die Speichen in einer scheinbar früheren Position als im vorangehenden Bild: Die Räder, welche der Film zeigt, drehen sich rückwärts (während der Wagen ordnungsgemäss vorwärts rollt)! Auch die rote Welle in der Abbildung oben schwingt „rückwärts“: Ihre Auslenkung erfolgt zuerst nach unten und dann nach oben, während die wirkliche Welle zuerst nach oben schwingt.

Sobald die Räder sich zwischen zwei Einzelbildern um genau eine Speiche weiter drehen (also 24 Speichen in der Sekunde), zeigt jedes aufgenommene Bild die Speichen in exakt der gleichen Position. Zusammengesetzt ergeben diese Bilder den Eindruck, dass die Räder stehen.

Erst wenn der Wagen dann noch schneller fährt, scheinen sich die Räder vorwärts weiter zu drehen, wenn auch zunächst viel zu langsam.

 

Das „Abtasttheorem“, eine mathematische Gesetzmässigkeit, besagt, dass eine wiederkehrende Bewegung höchstens halb so schnell ablaufen darf, wie die Einzelbilder eines Films aufgenommen werden können, wenn man einen Alias-Effekt vermeiden möchte. Anders gesagt: die Framerate der Kamera muss mindestens doppelt so hoch sein wie die Frequenz der aufzunehmenden wiederkehrenden Bewegung.

Lichterkreisel mit Alias-Effekt

Auch Emmygundes Lichtkreisel – und mit ihnen die eingebauten Lichter – drehen sich im Kreis wie die Radspeichen, bewegen sich also wiederkehrend. Und zwar sehr viel schneller als die Kamera Einzelbilder davon aufnehmen kann. Das führt dazu, dass wir anstelle der „wirklichen“ Lichterscheinung, welche die Kreisel erzeugen, auf dem Video „nur“ den Alias-Effekt zu sehen bekommen. (Dass wir das vom Kreisel nach oben abgestrahlte Licht, welches zu den Spiralen führt, überhaupt von der Seite sehen, ist dem Staub und allerlei Partikeln in der Luft zu verdanken, die das Licht auch in Seitenrichtung streuen.)

Wer dabei genau hinsieht, wird feststellen, dass auch die sich langsam drehenden Spiralen zwischendurch die Drehrichtung wechseln, während die Kreisel sich in die gleiche Richtung weiterdrehen – ein deutliches Zeichen für einen Alias-Effekt! Anders als der anfahrende Wagen im Western werden die Kreisel jedoch langsamer (aufgrund von Reibung an Luft und Fussboden), sodass sich die Kreiselfrequenz der kritischen halben Framerate von oben annähert, bis der Alias-Effekt schliesslich aufhört (bzw. aufhören würde, würde der Kreisel nicht vorher umkippen).

Um Alias-Effekte zu verhindern – vor allem bei Tonaufnahmen (auch Schall ist eine Wellenbewegung!) – werden gar zu hohe Frequenzen vor der Aufzeichnung häufig herausgefiltert: Ein sogenannter Tiefpassfilter lässt nur Töne auf die Aufnahme, deren Frequenz höchstens halb so hoch ist wie die Aufzeichnungsrate (denn auch bei Tonaufnahmen gibt es akustische „Frames“). Sehr hohe Töne können die meisten Menschen ohnehin nicht hören – aber auf einem tiefpassgefilterten Kreisel-Video würde man den eigentlichen Inhalt des Films, den Kreisel samt Lichterspiel, nicht mehr kreiseln sehen…und das wäre doch schade.

So wünsche ich weiterhin viel Spass mit ‚Fusselchens‘ Gabe zauberhafte Alias-Effekte zu erzeugen!

 

Und welchen „magischen“ Alias-Effekt konntet ihr schon beobachten?

Kürbis und Kaltes Feuer : Halloween

Dieser Beitrag erscheint anlässlich des ersten Blogging Day – organisiert vom wunderbaren Bloggerforum auf meinbloggerforum.de – und neu auch im Rahmen der Kürbis-Blogparade auf „Gesundheit lenkt Energie“

Halloween ist ein Inbegriff für lange, dunkle Nächte, für Grusel und Geistererscheinungen, die gemäss altem Brauch in der Nacht vor Allerheiligen auf Abstand gehalten werden sollen. In der heutigen Zeit bedeutet Halloween jedoch vielmehr Partyspass und angenehm-schauerliche Events.

Ob es  um historische Schreckgespenster oder neuzeitliche Party-Geister geht, beim nächtlichen Spuk sind rätselhafte Lichteffekte, geisterhaftes Leuchten und kaltes Feuer, unverzichtbar.

Diese ‚Geschichte‘ lüftet das Geheimnis von drei Sorten gespenstischer Lichtphänomene, mit welchen du auch deiner Halloween-Party einen magischen Gänsehauteffekt verleihen kannst.

Fluoreszenz

Kathi und Reto arbeiten eifrig an ihrer Halloween-Dekoration. Reto ist in der Küche beschäftigt, möchte einen Kürbis schnitzen, als plötzlich ein derber Fluch ertönt.

„Das Messer ist abgebrochen“, erklärt Reto, als Kathi aufgeschreckt herbeigestürzt kommt, „so wird das nichts mit dem Schnitzen…“

„Dann nimm doch den hier, und zeichne dem Kürbis das Gesicht einfach auf.“ Kathi drückt ihrem Freund einen Filzschreiber in die Hand und ist schon wieder im Wohnzimmer verschwunden.

Kurz darauf tönt es aus der Küche: „Was soll denn das? Die Tinte sieht man ja gar nicht!“

„Du wirst sie schon sehen!“, ruft Kathi zurück, während sie eben eine ziemlich schwarzviolette Glühbirne in die Lampe auf der Fensterbank schraubt, „zeichne einfach und dann bring den Kürbis hier rüber!“

Was hat Kathi vor?

Die dunkelblaue, fast schwarz erscheinende Lampe strahlt nur wenig sichtbares, dafür aber umso mehr ultraviolettes Licht ab. Die unsichtbare Tinte des Filzstifts, mit dem Reto das Kürbisgesicht zeichnen soll, enthält eine fluoreszierende Substanz. Das ultraviolette bzw. „Schwarz“-Licht kann diese Substanz zum Leuchten, zur Fluoreszenz anregen und das Gesicht auf dem Kürbis sichtbar machen.

Halloween einmal feuerfest: fluoreszierendes Kürbis-Gesicht - nur unter UV-Licht sichtbar!

Fluoreszenz: Dieses Kürbisgesicht wird erst unter UV-Licht (380 nm) offenbart!.

Was ist Fluoreszenz?

Das Leuchten unter Schwarzlicht, das man auch Fluoreszenz nennt, kommt im Prinzip genauso zu Stande wie die Farben, die wir bei sichtbarem Licht sehen: Auf den fluoreszierenden Stoff fällt Licht, einzelne Lichtquanten werden von Elektronen in der Elektronenhülle der Atome darin geschluckt und zum Umzug auf ein passendes, höheres Energieniveau ‚verwendet‘.

Die meisten Lichtquanten aus Kathis schwarzer Glühbirne haben jedoch besonders kurze Wellenlängen und sind damit für das menschliche Auge unsichtbar (man findet dieses Licht im Lichtspektrum jenseits des violetten sichtbaren Lichts, weshalb man es „ultraviolettes“, kurz UV-Licht nennt). Eine kürzere Wellenlänge bedeutet jedoch auch eine grössere Energie, mit welcher ein UV-Lichtquant ein Elektron auf eine besonders hohe Energie-Etage in der Elektronenhülle befördern kann.

Von dort kann das Elektron in zwei Schritten auf seine Ausgangsetage – in den Grundzustand – zurückkehren („die Treppe benutzen“). Das Geheimnis des Fluoreszierens beruht dabei auf der Länge dieser beiden Schritte.

In einem fluoreszierenden Molekül ist einer dieser Schritte nämlich so klein, dass das Elektron bei seiner Überwindung nur wenig Energie, also ein Lichtquant mit sehr langer Wellenlänge abgeben muss. Solches Infrarot-Licht ist für das menschliche Auge ebenfalls unsichtbar. Der andere Schritt ist folglich um einiges länger – so lang, dass das Elektron bei seiner Überwindung  ein sichtbares Lichtquant abgibt: Dessen Energie ist hoch genug, um nicht infrarot zu sein, aber klein genug, um auch nicht ultraviolett zu sein.

Fluoreszenz

Fluoreszenz: Elektronen werden mittels UV-Licht in einen hoch angeregten Zustand gebracht (1). Das Elektron kehrt in zwei Schritten in den Grundzustand (3) zurück Dabei entspricht ein Schritt der Abgabe eines unsichtbaren Infrarot-Lichtquants, der andere der Abgabe eines sichtbaren Lichtquants.

Retos Fluoreszenz-Filzschreiber-Farbstoff fluoresziert gelblich: Die Elektronen in dessen atomarem Hochhaus überwinden also auf ihrem Rückweg in den Grundzustand einen Abstand, der einem gelben Lichtquant entspricht. Andere Moleküle können jedoch andere Abstände haben. Ein Rubin (der nicht nur als Laser-Lichtquelle taugt), fluoresziert zum Beispiel rot, wieder andere Stoffe blau oder grün.

Welche Stoffe können fluoreszieren?

LED-Lampen (also Leuchtdioden, z.B. in Taschenlampen), die UV-Licht leuchten, bekommt man heute preiswert (in der Schweiz für unter 10 CHF) im Elektro-Handel. UV-Leuchtstoffröhren oder „Energiespar“-Lampen sind unter Umständen etwas teurer. Aber mit beiden lässt sich leicht herausfinden, welche Stoffe in UV-Licht fluoreszieren.

Einer der alltäglichsten fluoreszierenden Stoffe ist wahrscheinlich Kalk (Calciumcarbonat, CaCO3), der mit UV-Licht beleuchtet ebenso hellgelblich fluoresziert wie Retos Spezialtinte. So zeigt ein Rundgang mit der UV-Lampe durch das abgedunkelte Badezimmer deutlich, wo nachlässig geputzt wurde und enttarnt selbst bei normalem Licht unsichtbare Kalkablagerungen. Auch der Kalk in unseren Zähnen fluoresziert weisslich.

Waschmittel enthalten häufig sogenannte optische Aufheller. Das sind Stoffe, die bei der Wäsche in Textilien haften bleiben und in UV-Licht, zum Beispiel in der Disco, für das bläulich-weisse Leuchten weisser T-Shirts verantwortlich sind.

Mit Absicht werden fluoreszierende Stoffe in Geldscheine und Ausweisdokumente eingearbeitet um ihre Fälschungssicherheit zu erhöhen. Mit UV-Licht beleuchtet offenbaren sie häufig überraschendes (Geheimtipp: Der EU-Führerschein (die Plastikkarten-Version) ist besonders spektakulär!).

Fluoreszenz für dein Halloween:

Mit einem UV-Filzschreiber lässt sich nahezu alles zeichnen und mit UV-Leuchtmitteln („Schwarzlicht“) gespenstisch in Szene setzen – als künstlerische Bearbeitung der Dekoration im Partyraum oder als raffinierte Details auf Kostüm und Accessoires.

Nur die eigene Haut und zum Essen gedachte Lebensmittel sollten nicht auf diese Weise dekoriert werden: UV-Filzschreiber enthalten Lösungsmittel wie Xylol, die gesundheitsschädlich sein können (Reto und Kathi wollen die Schale ihres Kürbis‘ natürlich nicht essen, sodass sie die getrost bemalen können!).

Dafür gibt es eine breite Palette von Kosmetik- und Bodypainting-Produkten mit fluoreszierenden Farbstoffen, die für ein wahrhaft gruseliges Make-Up verwendet werden können, wenn eine Halloween-Party mit Schwarzlicht ansteht. Zudem dürfte dort auch das klassische Bettlaken-Gespenst zum geisterhaft-glühend weissen Blickfang werden.

 Phosphoreszenz

Da  UV-Leuchtmittel doch recht teuer sind und im Dauerbetrieb laufend Strom verbrauchen, hat Kathi sich noch etwas ausgedacht, um ihren Kürbis auch bei ausgeschalteter Lampe schaurig glühend in Szene zu setzen. In der Halloween-Ecke im Kaufhaus hat sie deshalb nach Artikeln mit der Kennzeichnung „glow in the dark“, zu Deutsch „leuchtet im Dunkeln“, gesucht.

Und das ganz ohne Stromanschluss. Zumindest fast – denn bevor solche Gegenstände im Dunkeln leuchten, müssen sie von einer hellen Lichtquelle – der Sonne oder einer Lampe – eine Zeit lang beleuchtet werden. Wenn man das Licht dann ausmacht, leuchten sie viele Minuten, wenn nicht sogar Stunden hell gelb-grünlich vor sich hin, ohne warm zu werden oder gar Strom zu brauchen.

Halloween einmal feuerfest: phosphoreszierende Kunststoff-Maden

Phosphoreszenz: Dieses Arrangement stand zuvor auf dem Balkon, um in der Sonne aufzuladen. Plötzlich tönte es von dort: „KAAATHII! Hast du den Kürbis gesehen? DEN willst du garantiert nicht mehr essen!! — Keine Sorge, Reto: Diese Maden sind aus Kunststoff und phosphoreszieren sogar im Dunkeln!.

Wie funktioniert das?

Diese Erscheinung, Phosphoreszenz genannt, ist wiederum eine besondere Eigenschaft bestimmter Stoffe. Auch in diesen schlucken Elektronen Lichtquanten (in diesem Fall sichtbares Licht aus der hellen Lichtquelle) und ziehen damit auf ein höheres Energieniveau um. Das besondere an diesen  Energieniveaus ist jedoch, dass die Elektronen extrem lange Zeit darin verbleiben können (Minuten oder gar Stunden, während sie in ’normalen‘ Atomen und Molekülen binnen winziger Sekundenbruchteile in den Grundzustand zurückkehren!).

So können die Elektronen phosphoreszierender Stoffe von sichtbarem Licht angeregt werden und die Energie der geschluckten Lichtquanten speichern, bis das Licht aus ist und die Party läuft, um sie dann im Laufe der Zeit in Form von Lichtquanten wieder abgeben, die die gleiche Wellenlänge haben wie das zuvor geschluckte Licht.

Phosphoreszenz

Phosphoreszenz: Elektronen werden durch sichtbares Licht angeregt (1). In einem phosphoreszierenden Stoff können Elektronen eine längere Zeit im angeregten Zustand verbleiben (2), ehe sie die zur Anregung geschluckte Energie wieder abgeben (3).

Welche Chemikalien/Stoffe phosphoreszieren?

Die „Phosphoreszenz“ ist nach dem Element Phosphor (genauer gesagt nach weissem Phosphor) benannt, welcher einen Glow-in-the-dark-Effekt zeigt. Dessen Entdecker ahnte jedoch nicht, dass es sich dabei vielmehr um eine Form der Chemolumineszenz (siehe unten) handelt. Die Leucht-Farbstoffe in Glow-in-the-Dark-Accessoires bestehen meist aus Kristallen, in welche einzelne Fremdatome eingebaut sind.

Phosphoreszenz für dein Halloween:

Ob als fiese Maden, geisterhafte Spinnen oder weithin sichtbares Vampir-Gebiss: Glow-in-the-dark-Accessoires gibt es zu Halloween in reichlicher Auswahl und kommen in möglichst dunkler Umgebung besonders gut zur Geltung. Für ganz Kreative gibt es sogar Malfarben, die phosphoreszierende Stoffe enthalten. In jedem Fall sollten sie unmittelbar vor ihrem Einsatz kräftig mit Lichtquanten aus einer Lampe „aufgeladen“ werden.

 Chemolumineszenz

„Und was machen wir mit dem anderen Kürbis, den ich schon ausgehöhlt habe?“, fragt Reto schliesslich. „Wenn wir da eine Kerze hineintun, wird immer einer von uns im Wohnzimmer aufpassen müssen, wenn sie brennt…“

„Ich weiss etwas Besseres“, wirft Kathi rasch ein, bevor Reto noch anfügen kann ‚…und ich weiss auch schon, wer das sein wird…‘.

„Das hier habe ich auch im Kaufhaus gefunden“, erklärt sie und hält einen kleinen Kunststoffstab in die Höhe, der mit einer knallroten Flüssigkeit gefüllt ist. „Einmal knicken, und wir haben – hoffentlich für ein paar Stunden – kaltes Feuer: Gruselig rot leuchtend und ganz ohne Strom und Brandgefahr!“

Halloween einmal feuerfest: Kürbis mit Chemolumineszenz

Chemolumineszenz: Ein Knicklicht (links im Vordergrund) sorgt für gruselige Kürbisbeleuchtung ganz ohne Feuergefahr!

Wie will Kathi das denn hinbekommen?

Was Kathi da in der Hand hält, ist ein sogenanntes Knicklicht – ein Leuchtstab. Der besteht eigentlich aus zwei Stäben ineinander. Der innere Stab ist aus dünnem Glas und enthält den Stoff Wasserstoffperoxid (H2O2). Darum herum ist eine durchsichtige Hülle aus flexiblem Kunststoff. Im Zwischenraum zwischen Glasstab und Kunststoffhülle sind ein Stoff mit dem Name Bis(2,4,5-trichlorphenyl-6-carbopentoxyphenyl)oxalat, kurz CPPO, und ein Farbstoff, der fluoreszieren kann, eingeschlossen. Da Kathis Knicklicht rot aussieht, ist der Farbstoff darin wahrscheinlich ein Rhodamin (es gibt auch passende Farbstoffe in fast allen anderen Farben).

Knicklicht_Aufbau

Aufbau eines Knicklichts: (1) Kunststoffröhre: schliesst die Chemikalien sicher ein (2) Wasserstoffperoxid im Glasröhrchen (3) CPPO und ein Fluoreszenzfarbstoff (4) Wasserstoffperoxid tritt aus (5) wenn alle Stoffe vermischt sind, leuchtet der Stab (by Pbroks13 (CC-BY 3.0) auf Wikimedia Commons))

Wenn Kathi das Kunststoffrohr knickt, wird es nachgeben, aber nicht kaputt gehen. Anders das Glasrohr in dessen Innerem: Es wird zerbrechen, sodass alle Stoffe miteinander vermischt werden.

Sobald das geschieht, reagiert CPPO mit Wasserstoffperoxid zu zwei neuen Stoffen: 1,2-Dioxetandion und Phenol.

Reaktion_Phosphoreszenz_1

Ein „erhellendes“ Molekül entsteht: CPPO reagiert mit Wasserstoffperoxid zu Phenol und 1,2-Dioxetandion (nach cyalume-reactions by Smurrayinchester (CC-BY-SA 3.0 auf Wikimedia Commons))

Das 1,2-Dioxetandion ist ein besonderes Molekül: Es enthält einen Ring aus nur 4 Atomen. Wer einen Molekülbaukasten hat und so etwas nachbauen will, wird feststellen, dass es einiges an Nachdruck und Fingerspitzengefühl braucht, um einen Ring aus 4 Atomen zusammen zu setzen. Wie in solch einem Modell steckt auch in dem wirklichen Molekül mit dem Vier-Ring eine ganze Menge Energie, die es zu einer speziellen chemischen Reaktion mit einem Fluoreszenz-Farbstoff befähigt: Es bringt den Farbstoff zum Leuchten!

Man nimmt an, 1,2-Dioxetandion „nimmt“ sich dazu ein einzelnes Elektron aus der Hülle eines Farbstoff-Moleküls und „gibt“ es anschliessend zurück – allerdings auf eine höhere Etage im atomaren Hochhaus. Das 1,2-Dioxetandion betätigt sich also als „Aufzug“, der ein Elektron des Farbstoffs mit Energie ausstatten und in einen angeregten Zustand versetzen kann. Es übernimmt damit die Rolle des UV-Lichts bei der Fluoreszenz.

Reaktion_Phosphoreszenz_2

Chemolumineszenz: 1,2-Dioxetandion nimmt ein Elektron eines Fluoreszenzfarbstoffs („dye“) und gibt es auf ein höheres Energieniveau zurück. Dabei zerfällt 1,2-Dioxetandion in zwei Moleküle Kohlendioxid. Der Farbstoff im angeregten Zustand („dye*“) gibt die so erhaltene Energie in Form eines sichtbaren Lichtquants („hv“) ab: Der Farbstoff „fluoresziert“ ohne dass UV-Licht zur Anregung nötig ist. (nach cyalume-reactions by Smurrayinchester (CC-BY-SA 3.0 auf Wikimedia Commons))

So kehrt ein angeregtes Elektron wie bei der Fluoreszenz alsbald in den Grundzustand zurück und strahlt dabei ein sichtbares Lichtquant ab. Ein Knicklicht „fluoresziert“ also ohne Bestrahlung mit UV-Licht. Da es die Energie für sein Leuchten stattdessen aus einer chemischen Reaktion bezieht, nennt man diesen Vorgang „Chemolumineszenz“.

Chemolumineszenz für dein Halloween:

Knicklichter in allen Farben gibt es für wenige Rappen oder Cent zu kaufen. So lange du sie sachgemäss verwendest, d.h. ihre Kunststoffhülle nicht beschädigst oder sie grosser Hitze (offenes Feuer) aussetzt, sind die darin eingeschlossenen Chemikalien auch nicht gefährlich (entgegen mancher Gerüchte enthalten Knicklichter schliesslich KEINE radioaktiven Stoffe!).

Bedenke aber: Einmal geknickt wird ein Knicklicht bestenfalls einige Stunden leuchten, bis das enthaltene CPPO verbraucht ist – die Reaktion lässt sich, einmal gestartet, nicht mehr anhalten.  Dafür leuchten verbrauchte Knicklichter in UV-Licht weiter: Der enthaltene Farbstoff wird schliesslich nicht aufgebraucht und kann auch „normal“ fluoreszieren!

Fazit

Ob mit Schwarzlicht, Glow-in-the-Dark oder erleuchtender Chemie: Zahlreiche geisterhafte Lichteffekte können uns eine gruselige Zeit bescheren. In diesem Sinne: Happy Halloween!

Und mit welchem gespenstischen Lichtzauber sorgst du für ein echt gruseliges Halloween-Erlebnis? 

Laser - Farbenfrohe Technik

Ein normaler Tag voller Laser

Eigentlich war es ein Tag wie jeder andere. Und wie jeder andere Tag war dieser Tag in Kathis Leben von einer faszinierenden Licht-Technologie geprägt, die den meisten von uns nur allzu selbstverständlich erscheint.

Kathi fuhr an diesem Tag mit dem Tram durch Zürich, ihre volle Einkaufstasche auf den Knien. Die Waren, welche nun schwer in ihren Schoss drückten, hatte sie im Einkaufszentrum mit den modernen Kassenautomaten erstanden, an welchen die Kunden ihre Einkäufe Stück für Stück selbst über das gläserne Feld mit dem roten Laserstrahl zogen.

Unter Kathis Einkäufen befand sich eine DVD-Box mit Folgen der Fernsehserie „The Big Bang Theory“, die sie ansehen wollte, sobald sie zu Hause wäre. Das DVD-Abspielgerät würde die Daten auf den Discs mit einem Laser abtasten und die verrückte Nerd-Clique auf dem Fernsehschirm zum Leben erwecken. Mit einem Schmunzeln auf den Lippen dachte Kathi an die Folge, in welcher die Jungs auf dem Dach ihres Mietshauses einen leistungsstarken Laser auf einen Spiegel auf dem Mond richten und den reflektierten Laserstrahl mit einem Detektor wieder auffangen – zum grossen Erstaunen von Nachbarin Penny und ihrem einfältigen Freund Zak…

Abrupt wurde Kathi aus ihren Gedanken gerissen. „S’Billett, bitte!“ Ein Fahrkartenkontrolleur ragte vor ihr auf, seinen Handcomputer abwartend gezückt. Rasch kramte Kathi ihr Billett hervor, das der Kontrolleur sogleich unter den Laser-Scanner seines Computers beförderte. Ein Piep und ein „Beschtä Dank!“ später war sie schon wieder allein.

Doch die Ruhe währte nicht lange. Ganz plötzlich kam das Tram mit einem heftigen Ruck zum Stehen. „Unsere Weiterfahrt verzögert sich um mehrere Minuten. Grund ist ein unvorhergesehener Zwischenfall – wir entschuldigen die Unannehmlichkeiten“, lautete die sogleich folgende Durchsage. Was Kathi nicht wusste: Soeben war der Fahrer ihres Trams von irgendwelchen Rowdies mit einem Laser-Pointer geblendet worden – was in jüngerer Zeit leider viel zu oft vorkam – und hatte eine Notbremsung ausgelöst.

Kathi seufzte und liess ihren Blick umher wandern, während sie auf die Weiterfahrt wartete. Dabei blieb sie an der Werbetafel einer Augenklinik hängen: Klare Sicht dank Laser-OP zum günstigen Preis…

‚Ohne Laser geht es heute wirklich nicht mehr‘, ging es Kathi durch den Kopf. Aber was macht das Licht eines Lasers eigentlich so besonders?

 

Das Wort LASER ist ein Akronym für den englischen Ausdruck „light amplification by stimulated emission of radiation“, also „Lichtverstärkung durch stimulierte Abgabe von Strahlung“.

 

Das klingt sehr wissenschaftlich für eine so alltägliche Technologie, doch es beschreibt die ‚besondere‘ Funktionsweise einer Laser-Lichtquelle sehr gut. Da wird also Licht verstärkt durch die Abgabe von Strahlung…also Licht. Und Licht, das sich selbst verstärkt, erhält damit einige besondere Eigenschaften, die es von „normalem“ Licht unterscheiden – und so spannend für die Technik machen.

Laserlicht strahlt parallel

In „Farben, Licht und Glanz – Warum die Welt und bunt erscheint“ habe ich bereits beschrieben, wie Licht aus der Elektronenhülle von Atomen abgestrahlt wird: Lichtquanten (auch Photonen genannt) werden von angeregten Elektronen abgegeben, die von den oberen Etagen eines atomaren Hochhauses nach unten, in den Grundzustand, zurückkehren. Diese spontan abgegebenen Lichtquanten breiten sich willkürlich in alle Richtungen aus: Eine nackte Glühbirne erhellt Wände, Boden und Decke eines Raumes, eine Taschenlampe, deren Glühbirne von einem Hohlspiegel umgeben ist, erzeugt immerhin noch einen immer weiter werdenden Lichtkegel.

Das Lichtbündel, das aus einem Laser kommt, strahlt jedoch schnurgeradeaus ohne merklich breiter zu werden – im Fall des Experiments der Jungs aus „Big Bang Theory“ sogar von der Erde bis zum Mond und wieder zurück! Alle Lichtquanten oder -wellen, die einen Laser verlassen, breiten sich also in genau dieselbe Richtung aus.

In einem Laser wird nämlich ausgenutzt, dass Lichtquanten, die von Elektronen auf dem Rückweg in den Grundzustand abgegeben werden, andere Elektronen dazu stimulieren sich ebenfalls auf den Rückweg zu machen und den Stimulierenden gleiche Lichtquanten abzugeben. Das stimulierende und das neue Lichtquant setzen ihre Reise daraufhin gemeinsam in die ursprüngliche Richtung des stimulierenden Lichtquants fort.

Wenn sich also genügend Elektronen im gleichen angeregten Zustand aufhalten – also bereit für den gleichen Rückweg sind um ein gleiches Lichtquant abzugeben – können einige wenige Lichtquanten eine regelrechte Kettenreaktion auslösen, da durch Anregung neu entstandene Lichtquanten wiederum die Abgabe weiterer Lichtquanten stimulieren können. Und alle breiten sich in die gleiche Richtung aus.

stimulierte_Emission

Stimulierte Licht-Abgabe: Elektronen werden aus dem Grundzustand in einen angeregten Zustand „gepumpt“ (1). Ein vorbei kommendes Lichtquant (2) kann das Elektron zur Rückkehr in den Grundzustand (3) unter Abgabe eines gleichartigen Lichtquants stimulieren.

In einer Laser-Lichtquelle geht es also zu wie auf einem Platz voller Menschen, über welchen jemand nach Osten läuft und einzelnen erzählt, am Ostende gebe es etwas umsonst. Diese einzelnen machen sich nach Osten auf und erzählen auf ihrem Weg die gute Nachricht weiter. Andere schliessen sich ihnen daraufhin an und verbreiten die Nachricht ihrerseits, und so fort, sodass sich binnen kurzer Zeit ein Grossteil der Menschenmasse nach Osten bewegt.

Damit es soweit kommt, muss der Platz jedoch erst einmal gefüllt, also Elektronen der Atome in der Laser-Lichtquelle (auch Lasermedium genannt) zum Umzug auf die gewünschte obere Etage bewegt werden. Damit sich die gute Nachricht vom Freibier im Osten durch die ganze Menschenmasse ausbreiten kann, muss diese Menge gross und dicht genug sein. Für die Elektronen im Lasermedium heisst das: Es müssen genügend Elektronen im angeregten Zustand sein (diesen Umstand nennen die Physiker „Besetzungsinversion“).

Um eine Besetzungsinversion zu erreichen wird Energie von aussen in das Lasermedium gespeist, zum Beispiel durch eine „normale“ Blitzlichtquelle, die die Atome ‚beleuchtet‘, oder in Form von elektrischer Energie aus einer Stromquelle. Ganz allgemein wird diese Energiequelle von aussen „Pumpe“ genannt: sie pumpt die Elektronen in den Atomen des Lasermediums nach ‚oben‘.

So füllt die Pumpe das Lasermedium nicht nur mit Elektronen in den oberen Etagen, sie sorgt im Dauerbetrieb auch für stetigen Nachschub, sodass stets genügend Elektronen in Bereitschaft für den Rückweg verfügbar sind.

Laser-Strahlen sind phasengleich

Die Lichtquanten bzw. -wellen, welche ihren „Verursachern“ auf ihrem Weg folgen, breiten sich nicht nur in die gleiche Richtung wie diese aus. Sie beginnen ihren Weg auch in der gleichen ‚Phase‘: Mit einem Wellenberg macht sich ein neuer Wellenberg auf den Weg, mit einem Wellental ein neues Wellental. So breiten sich wohlgeordnet stets Wellenberge mit Wellenbergen und Wellentäler mit Wellentälern aus. Derart geordnete (phasengleiche oder kohärente) Lichtwellen eignen sich dafür, Interferenzmuster, also Erscheinungen, die durch Überlagerung von Wellen entstehen, zu erzeugen und damit zu beweisen, dass Licht aus sich ausbreitenden Wellen besteht.

Phasenverschiebung

Phasenverschiebung und Phasengleichheit: Alle gezeigten Sinus-Wellen haben die gleiche Wellenlänge und Auslenkung. Die oberen drei Wellen sind jedoch phasenverschoben: Die senkrechte Linie würde bei einer Bewegung nach rechts die Wellenberge bzw. -täler zu unterschiedlichen Zeitpunkten durchlaufen. Die beiden unteren Wellen sind phasengleich (kohärent): Wellenberge bzw. -täler stehen übereinander, sodass die Senkrechte die Wellen stets bei der gleichen Auslenkung schneidet. In der Lasertechnik gibt es bei der Phasengleichheit ein wenig Spielraum: Auch nur annähernd phasengleiche Laser-Lichtwellen gelten als „kohärent“ – allerdings ist die Ausbreitungsstrecke, über welche diese Nachlässigkeit ohne messbare Folgen bleibt (die „Kohärenzlänge“), begrenzt.

Laser-Strahlen sind einfarbig

Damit irgendeine „Pumpe“ ausreichend Elektronen gleichzeitig in den angeregten Zustand befördern kann, um eine Rückkehr-Kaskade auszulösen (und aufrecht zu erhalten), muss jedes Elektron für sich lang genug im oberen Stockwerk bleiben. Das tun die Elektronen jedoch meistens nicht: Sie kehren nur zu schnell von selbst in den Grundzustand zurück und geben ihr Lichtquant dabei ungerichtet ab.

Deshalb bestehen Lasermedien aus besonderem Material: Darin gibt es knapp unterhalb der oberen Etage noch ein Zwischengeschoss, das ein Elektron von oben klammheimlich erreichen kann, ohne ein Strahlungsquant abzugeben (stattdessen wird der zugehörige Energieanteil in Form von Wärme frei). In dem so erreichten Zwischengeschoss kann das Elektron wesentlich länger verbleiben, bevor es endgültig in den Grundzustand zurückkehrt und dabei das gewünschte Lichtquant abgibt.

Rubinlaser_termschema

Lasermedium mit „Zwischengeschoss“: Dieses Schema zeigt zwei mögliche angeregte Zustände (F1 und F2), von welchen ein Elektron ohne Abgabe von Strahlung schnell in das Zwischengeschoss (E) gelangen kann. Dort verbleibt es länger, meist, bis ein Lichtquant der Wellenlänge 694,3 nm vorbei kommt und das Elektron zur Rückkehr in den Grundzustand (A) und damit zur Abgabe eines zusätzlichen Lichtquants der selben Wellenlänge stimuliert. (by Markus Köhler, CC-BY-SA 2.5 auf Wikimedia Commons)

Der Abstand vom Zwischengeschoss zum Grundzustand ist bei allen Atomen im Lasermedium, die an der Lichtkaskade beteiligt sind, der selbe. So haben alle in der Kaskade erzeugten Lichtquanten die gleiche Energie, also die gleiche Wellenlänge bzw. Farbe. Laser, deren Medium nur einen möglichen Energie-Abstand zur Lichtverstärkung bietet, sind folglich einfarbig oder monochromatisch. Es gibt jedoch auch Laser, deren Medium mit mehreren Energie-Abständen funktioniert. Diese strahlen ein Gemisch von Lichtquanten verschiedener Wellenlängen aus und sind damit streng genommen nicht ganz einfarbig.

Laser-Strahlen schneiden durch Dinge

Das ist keine Science-Fiction. Laser-Strahlen können genug Energie haben um Augen-Hornhaut abzutragen, Karies aus Zähnen zu bohren und sogar durch Stahl zu schneiden. Aber wie kommt Laser-Licht zu derart gebündelter Energie?

Leberzellen unter dem Laser-Scanning-Mikroskop

Laser-Licht kann Gewebe zerstören:Die Bilder zeigen Leberzellen einer Ratte in einem Zellkulturgefäss. Die Zellkultur ist mit Farbstoffen geimpft worden, die unter einem „Laser-Scanning-Mikroskop“ von einem Laser zum Leuchten (Fluoreszieren) angeregt werden. Das abgestrahlte Licht wird durch die vergrössernde Optik von einem Detektor aufgefangen und das Signal per Computer zu einem Bild umgerechnet. Der grüne Farbstoff (Calcein) befindet sich in der Zellflüssigkeit, im Zellkern (grosse runde Flecken) und einigen weiteren Zell-Organellen (hellgrüne Flecken). Der rote Farbstoff (TMRM) befindet sich in den Mitochondrien. Die besonders helle Zelle links wurde unmittelbar vor den Aufnahmen mit dem Laser bei höherer Leistung „beschossen“. In Folge dessen sind die Mitochondrien dieser Zelle beschädigt worden, sodass der rote Farbstoff hinaus und der grüne Farbstoff hinein gelangen konnte (der fein verteilte rote Farbstoff wird in der Zellflüssigkeit vom grünen Farbstoff „überdeckt“). Auf der vergrösserten Aufnahme rechts (ohne die rote Farbspur: die Mitochondrien erscheinen hier schwarz) ist der „Schatten“ des quadratischen Querschnitts dieses Laserstrahls gut zu erkennen. Die Kantenlänge des Querschnitts beträgt nur 20 Tausendstel eines Millimeters! – Der Schaden an den Mitochondrien hat letztendlich zum Zelltod geführt. (Aufnahmen aus dem Spezialisierungspraktikum Medizinisch-Biologische Chemie 2006 am Universitätsklinikum Essen)

Zum Einen entspricht schon die Lichtquanten-Kaskade im Lasermedium einer gebündelten Menge Energie.

Zum anderen ist die röhrenartige Laserlichtquelle vorn und hinten mit einem Spiegel versehen. Die in Längsrichtung abgestrahlten Lichtquanten werden so zwischen den beiden Spiegeln hin- und her reflektiert, sodass ein Lichtquant viele Male an den Atomen des Mediums vorbei kommt und weitere Lichtquanten ‚mitreissen‘ kann. So kann die Lichtkaskade um ein Vielfaches ihres gewöhnlichen Ausmasses verstärkt werden.

Darüber hinaus ist der vordere Spiegel für das Licht teilweise durchlässig. Er wirft nur einen Teil der eintreffenden Lichtquanten zurück in das Lasermedium, während der andere Teil einfach durch den Spiegel hindurch und aus dem Laser hinaus geht. Dieser Teil ist der Laserstrahl, den wir sehen und benutzen können (tatsächlich sehen wir Laserstrahlen nur, wenn sie direkt in unser Auge gerichtet sind oder ihr Licht an irgendetwas (meist Staub oder Nebel) aus ihrer Ausbreitungsrichtung hinaus gestreut wird).

Um eine bestmögliche Verstärkung des Laser-Lichts bei Erhaltung der Phasengleichheit zu erreichen, wird der Abstand zwischen den Spiegeln (und damit die Länge des Lasermediums) so gewählt, dass er einem ganzzahligen Vielfachen der halben Wellenlänge der erzeugten Lichtquanten entspricht. So bleiben nicht nur die gewünschten Lichtwellen bei der Reflektion in der gleichen Phase, sondern unerwünschte Lichtwellen, die z.B. durch Streuung entstehen, werden quasi aussortiert.

Die so verstärkte Energie reicht allerdings noch nicht ganz um durch harte Materialien wie Stahl zu schneiden. Laserstrahlen, die dazu fähig sind, werden nach ihrer Erzeugung durch ein Linsensystem geleitet, welches sie bündelt, sodass in ihrem Brennpunkt genügend Energie auf engstem Raum zusammenkommt, um die gewünschte Schneidwirkung zu erzeugen.

Woraus baut man also einen Laser?

Der erste Laser, der je gebaut wurde, enthielt einen zylinderförmigen Rubin. Rubine, eine besondere Form des Minerals Korund, bestehen aus Aluminiumoxid (Al2O3), das im Idealfall farblos ist. Ein Rubin-Kristall enthält jedoch zusätzlich Chrom-Atome, die ihm seine rote Farbe verleihen – und eine Kombination von Energie-Niveaus haben, die zur Erzeugung einer Besetzungsinversion und damit einer Licht-Kaskade geeignet sind. Mit einer Blitzlicht-Hülse rund um den Rubin werden die Elektronen der Chrom-Atome in den gewünschten angeregten Zustand gepumpt und wechseln auf das ‚Zwischengeschoss‘, bis sie unter Abgabe roter (694,3 nm) Lichtquanten in den Grundzustand zurückkehren, um erneut ‚hinauf‘ gepumpt zu werden.

Lasermedien können aber ebenso gut flüssig oder gasförmig sein, und Laser-Licht kann heutzutage in praktisch jeder Farbe/Wellenlänge beziehungsweise jedem Wellenlängenbereich erzeugt werden.

In welcher Weise diese Farbenvielfalt zur Unterhaltung eingesetzt werden kann, zeigt dieses Video aus einer Lasershow, die ich vor vielen Jahren in einem bekannten Freizeitpark besuchen durfte (heute gibt es diese Show dort leider nicht mehr).

 

Besonderes Licht lässt sich vielfältig verwenden

Ein Lichtstrahl, der über lange Strecken einen fast beliebig kleinen Durchmesser behält, lässt sich sowohl zum Abtasten feinster Strukturen – seien es die Linien eines Barcodes oder einzelne Zellen unter dem Mikroskop – als auch als hoch präzises Schneide- oder Fräs-Werkzeug einsetzen – in der Augenchirurgie ebenso wie in der Stahlverarbeitung. Ebenso lassen sich schmal bleibende Laserstrahlen von kleinen Lichtsensoren vollständig wieder auffangen, sodass sie als Lichtschranke Verwendung finden – oder man setzt das punktförmige „Ende“ eines Laserstrahls als beliebig langen „Zeigefinger“ auf der Präsentationsfläche bei einem Vortrag ein.

Physiker gewinnen mit einfarbigen, kohärenten Lasern spannende Einsichten in die Wellennatur des Lichtes, oder mit extrem kurzen Laser-Pulsen die „schnellsten“ Zeitlupenaufnahmen der Welt.

Laserstrahlen sind ausserdem immer wieder schön anzusehen, ob sie als bunte Fächer zu Musik arrangiert oder gar zum „Zeichnen“ von Bildern verwendet werden.

Und wo ist dir zuletzt ein Laser oder Laserstrahl begegnet?

 

(Artikelbild: nach LASER by 彭家杰 , CC-BY-SA 2.5 auf Wikimedia Commons)

Farben, Licht und Glanz: Wie Stoffe zu ihrem Aussehen kommen

Es ist Herbst geworden. Die Blätter an den Bäumen färben sich leuchtend gelb, orange oder rot. Am zurückliegenden herrlichen Oktober-Wochenende schien die Sonne vom strahlend blauen Himmel, und wir haben braune Walnüsse aus dem noch saftig grünen Gras unter den Nussbäumen gesammelt.

Aber warum sind all diese Dinge eigentlich bunt? Unter welchen Umständen erscheinen Stoffe uns farbig? Und warum sind andere Stoffe farblos oder sogar durchsichtig, wie Glas? Und warum glänzen wieder andere wie ein blanker Spiegel?

 

Wie wir Farben sehen

Um zu erfahren wie Farben, Transparenz und Glanz entstehen, solltest du wissen wie der menschliche Sehsinn funktioniert. Unsere Augen funktionieren nämlich ganz ähnlich wie eine Kamera: Wir „sehen“ Licht, welches durch unsere Augäpfel (deren Innenleben im Normalfall durchsichtig ist) auf die Netzhaut fällt und dort chemische Reaktionen auslöst. Die Produkte dieser Reaktionen führen zu elektrischen Signalen, die über den Sehnerv an das Gehirn weitergeleitet und dort zu einem Bild interpretiert werden. Die Ausgangsstoffe für die Reaktionen zur Erzeugung eines einfachen „Hell“-, aber auch von Farb-Signalen sind Abkömmlinge von Vitamin A bzw. Retinol, Varianten des „Seh-Stoffs“ Retinal.

Licht ist aber nicht gleich Licht, sondern kommt in unterschiedlichen Wellenlängen, d.h. mit unterschiedlicher Energie daher. Die Bandbreite möglicher Wellenlängen reicht dabei von extrem langwelligen (und energiearmen) Radiowellen bis zu energiereicher Röntgen- oder gar Gamma-Strahlung mit extrem kurzen Wellenlängen. Das menschliche Auge ist in der Lage einen kleinen Teil dieses Spektrums (eine grafische Darstellung des gesamten Licht-Spektrums findest du hier), das „sichtbare Licht“, wahrzunehmen und nach Wellenlängen zu unterscheiden.

Dazu gibt es in der Netzhaut drei verschiedene Arten von Zapfen-Zellen, welche nach ihrer jeweiligen Licht-Empfindlichkeit benannt sind. In den K-Zapfen reagiert eine Retinal-Variante mit kurzwelligem (violetten bis blauen), in den M-Zapfen mit mittelwelligem (blaugrünen bis gelben), und in den L-Zapfen mit langwelligem (orangegelben bis roten) Licht.

Das erinnert nicht umsonst an das gängige RGB-Farbschema zur Darstellung von Farben auf dem Computerbildschirm. Dieses nutzt schliesslich aus, was unser Gehirn tut: Es mischt sich aus den „blau“-, „grün“- und „rot“-Signalen der Netzhaut-Zapfen die gesehenen Farben zusammen. Da sich die Wellenlängenbereiche, die in den jeweiligen Zapfen Reaktionen auslösen, überlappen, erzeugt jede Wellenlänge ihre ganz eigene Kombination von Signalen, die das Gehirn auf 1 bis 2 Nanometer Licht-Wellenlänge genau bestimmen kann. Wir können damit 200 verschiedene Farbtöne sehen, jeden für sich in unterschiedlichen Sättigungen (Grau-Beimischungen).

Wenn die Netzhaut alle möglichen Farben gleichzeitig, oder zumindest die Signale für zwei „komplementäre“ Farben zusammen empfängt, macht das Gehirn daraus die Information „weiss“.

Farbenkreis: Komplementärfarben liegen einander gegenüber

Im Farbkreis liegen Komplementärfarben einander gegenüber. Nebeneinander nehmen wir sie grösstmöglicher Kontrastwirkung wahr, während das Gehirn ihre Überlagerung als ‚weiss‘ interpretiert. (by Benutzer:Golden arms (von mir erstellt) CC-BY-SA-3.0 via Wikimedia Commons])

Weiss entspricht also keiner eigenen Licht-Wellenlänge, sondern einer Zusammenstellung verschiedener Wellenlängen. Wenn man eine Farbe also als bestimmte Wellenlänge sichtbaren Lichts definiert, ist Weiss keine Farbe.

 

Warum sehen Stoffe bunt aus?

Das Licht, das unseren Tag erhellt, kommt üblicherweise von der Sonne oder von elektrischen Leuchtmitteln und erscheint uns weiss. Tatsächlich ist dieses Tagelicht ein Gemisch von Lichtwellen aller Wellenlängen (nicht nur) im sichtbaren Bereich (für Sonnenlicht gelten einige Ausnahmen, aber das ist eine andere Geschichte!). Wer dafür einen Beweis möchte, besorge sich ein Prisma – das ist ein durchsichtiger, symmetrischer Gegenstand, der das weisse Licht in seine farbigen Bestandteile „bricht“.

Prisma : zerlegt das Licht in seine Farben

Weisses Licht besteht aus Lichtwellen aller Farben: Das weisse Lichtbündel kommt von links unten und wird an der Oberfläche des Prismas teilweise reflektiert (ein kleineres Lichtbündel geht nach oben ab). Der Rest wird beim Austritt aus dem Prisma rechts abhängig von der jeweiligen Wellenlänge gebrochen: Die unterschiedlichen Farben der Lichtwellen werden sichtbar. (by Spigget (Own work) [CC BY-SA 3.0via Wikimedia Commons])

Wenn wir direkt in eine Lampe (aber niemals direkt in die Sonne!!) schauen, sehen unsere Augen das Licht, wie es aus der Glüh- (oder Leuchtstoff-)birne kommt: alle Wellenlängen miteinander, und das Gehirn interpretiert „weiss“. Wenn das weisse Tageslicht aber zunächst auf einen Rasen fällt und dann unser Auge erreicht, nehmen wir „grün“ wahr. Was ist mit dem Licht passiert?

Elektronen bewegen sich im atomaren Hochhaus

Gras enthält Moleküle des Stoffs Chlorophyll, die aus verschiedenen Atomen zusammengesetzt sind. Diese Atome sind (wie alle Atome) mit „Wolken“ umgeben, welche ihre Elektronen enthalten. Im Molekül sind diese Wolken teilweise miteinander verbunden (die Atome „teilen“ ihre Elektronen miteinander, was sie zusammenhält: eine chemische Bindung entspricht solch einer „Gemeinschaftswolke“).

Jedes Elektron, das sich in solch einer Wolke befindet, hat eine ganz bestimmte, der Position „seiner“ Wolke entsprechende Energie, sodass die Elektronenhülle eines Atoms mit einem Hochhaus mit vielen von Elektronen bewohnten (und unbewohnten) Etagen vergleichbar ist. Analog zur klassischen Mechanik, gemäss der jemand, der nach oben will, Energie aufnehmen muss (die Treppe raufgehen ist anstrengend!), entsprechen die „oberen“ Wolken (oder „Orbitale“) im atomaren Hochhaus viel Energie, während „darunter“ Wolken mit weniger Energie zu finden sind.

Fällt nun ein Lichtquant (eine elementare Portion einer Lichtwelle) mit passender Energie auf ein Elektron in einer niedrigen Wolke, kann das Elektron mit dieser Energie in eine höher gelegene, leere Etage umziehen. Das Lichtquant entspricht also einer Schlüsselkarte für den Fahrstuhl, welche diesen veranlasst eine bestimmte Strecke nach oben zu fahren. Wenn sich genau dort eine Fahrstuhltür zu einer leeren Etage öffnet, kann das Elektron aussteigen und einziehen (wenn nicht, d.h. wenn der Fahrstuhl an seinem Ziel vor einer Wand halten würde, tritt es die Fahrt erst gar nicht an).

Anregung von Elektronen durch Lichteinfall: Das Schema stellt stark vereinfacht die Besetzung von Energieniveaus bzw. „Etagen“ im atomaren Hochhaus durch Elektronen (blaue Kreise) dar. Die Energie von sichtbarem Licht, das auf ein Atom im Grundzustand (1) fällt, entspricht genau dem markierten Abstand zum übernächsten Energieniveau (blauer Pfeil). Das Elektron absorbiert das Licht und zieht um in den angeregten Zustand (2). Der Weg zurück in den Grundzustand (3) verläuft für dieses Elektron in zwei Schritten über das Zwischengeschoss: Die entsprechenden Energien bzw. Licht-Wellenlängen liegen im Infrarot-Bereich und sind damit nicht sichtbar.

 

Die Energie des Lichtquants wird bei einem erfolgreichen Umzug vom Elektron absorbiert, also „geschluckt“, und wird erst wieder abgegeben, wenn das Elektron wieder in seine vorherige, tiefer gelegene Etage zurückkehrt (da es dazu häufig die „Treppe“ benutzt und die Energie auf dem Weg über Zwischengeschosse in kleineren, also langwelligeren, für uns unsichtbaren Portionen (im Infrarot-Bereich) abgibt, sehen wir das einmal absorbierte Licht oft nicht mehr wieder).

Das Farben-Hochhaus des Chlorophylls

Die Abstände zwischen den Wolken-Etagen eines Chlorophyll-Moleküls sind nun genau so beschaffen, dass vornehmlich „rote“ Lichtquanten die Elektronen zu einer höher gelegenen Aufzugtür und damit auf ein höheres Energieniveau befördern können. Wenn also weisses Licht auf das Chlorophyll im Gras fällt, werden darin enthaltene rote Lichtwellen von aufzugfahrenden Elektronen geschluckt. Alle übrigen Wellen werden unverrichteter Dinge wieder zurückgeschickt (reflektiert) und können in unser Auge gelangen und als „alles ausser rot“ empfangen werden. Und das Signal für „alles ausser rot“ entspricht für das Gehirn „grün“.

Wenn wir einen farbigen Gegenstand sehen, weil er von weissem Licht beleuchtet wird, sehen wir also den Rest des weissen Lichts, der nicht von den Elektronen im Gegenstand geschluckt bzw. absorbiert worden ist.

Manche Stoffe haben genügend verschiedene Wolken-Etagen, um Lichtwellen aller sichtbaren Wellenlängen zu schlucken, sodass keine davon unser Auge erreicht. Solche Stoffe erscheinen uns schwarz. Damit ist Schwarz streng genommen auch keine Farbe, sondern einfach „dunkel“ bzw. „kein Licht“. Andere Stoffe, die (mangels passender Etagen-Abstände) gar kein sichtbares Licht absorbieren können, erscheinen uns dagegen weiss.

Was farbig leuchtet

Selbst leuchtende Stoffe funktionieren übrigens genau umgekehrt. Die orange-gelb strahlenden Strassenlaternen, die man mancherorts findet, enthalten zum Beispiel Natrium-Atome, deren Elektronen mittels der Energie aus elektrischem Strom nach „oben“ umziehen, d.h. angeregt werden. Anschliessend fahren sie mit dem Fahrstuhl wieder nach „unten“ auf ihre Ausgangs-Etage (den Grundzustand) und geben dabei je ein Lichtquant mit der zugehörigen „gelben“ Wellenlänge ab (genauer gesagt gibt es im Natrium-Atom zwei sehr ähnliche „gelbe“ Abstände, die so überbrückt werden können).

Wenn wir etwas farbig leuchten sehen, nehmen wir Licht mit genau den Wellenlängen wahr, die von angeregten Elektronen bei der Rückkehr in den Grundzustand abgegeben bzw. emittiert worden sind.

Dass wir auch im gelben Licht einer Natrium-Lampe erkennen, dass ein Stück Papier weiss ist, obwohl es nur gelbes Natrium-Licht an unser Auge weiterschicken kann, haben wir übrigens der Photoshop-Software unseres Gehirns zu verdanken, die weiss, dass das Papier weiss zu sein hat und das empfangene Bild entsprechend bearbeitet.

 

Warum glänzen Metalle?

Ein Stück Metall besteht aus einem einzigen Riesenverbund gleichartiger Atome, die sich allesamt eine Riesen-Elektronenwolke teilen (Chemiker sprechen hier gern von einem „Elektronen-Gas“). Solch eine Wolke, die Etagen aller daran beteiligten Atome umfasst, kommt auf so viele dicht beieinander liegende Wolken-Etagen bzw. Energieniveaus, dass sich diese gar nicht mehr auseinanderhalten lassen.  Entsprechend können sich die Elektronen des Metalls frei in der Riesenwolke bewegen und jede sichtbare Licht-Wellenlänge zum Umziehen absorbieren.

Demnach sollten Metalle also schwarz sein (nur sehr wenige Metalle, vornehmlich Gold und Kupfer, haben dennoch eine Farbe). Die freie Beweglichkeit erlaubt den Elektronen jedoch auch, ebenso leicht mit dem Fahrstuhl nach unten zu fahren wie sie nach oben gekommen sind, sodass sie ein absorbiertes Lichtquant bei ihrer Rückkehr in die untere Etage unverändert wieder abgeben können. Wenn das an einer polierten, d.h. gleichförmigen Oberfläche aus gleichartigen Atomen passiert, kommt das Licht genauso wieder zurück, wie es auf die Oberfläche getroffen ist.

Fällt solches Licht von einer Lichtquelle zuerst auf unser Gesicht, dann auf eine glatte Metalloberfläche und schliesslich zurück in unser Auge, sehen wir uns selbst in einem „Spiegel“. Deshalb wird „Metallglanz“ auch „Spiegelglanz“ genannt. Manche Mineralien (besonders solche, die viele Metallatome enthalten), sind reinen Metallen in ihrem Aufbau übrigens so ähnlich, dass sie ebenfalls Spiegelglanz zeigen, obwohl sie chemisch keine Metalle, sondern Ionenverbindungen sind.

Pyrite-49354

Pyrit oder „Katzengold“ ist ein Mineral, das aus Eisen- und Schwefel-Ionen besteht. In seinem Aufbau ist es einem Metall dennoch so ähnlich, dass die glatte Oberfläche der Kristalle das Licht spiegelt. (by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC BY-SA 3.0], via Wikimedia Commons)

Metalle glänzen, weil ihr „Elektronen-Gas“ sichtbares Licht nicht nur uneingeschränkt absorbieren, sondern ebenso wieder abgeben kann. An einer glatten, gleichförmigen Oberfläche wird das Licht somit genauso reflektiert, wie es gekommen ist.

 

Warum ist Glas durchsichtig?

Ein Stück Glas ist chemisch ähnlich aufgebaut wie ein Quarzkristall (der ist auch durchsichtig). Beide bestehen aus Silizium- und Sauerstoff-Atomen (in dem Glas, das wir im Alltag nutzen, kommen noch verschiedene andere Elemente dazu, die dem Glas weitere erwünschte Eigenschaften geben), die zu einem einzigen Riesenmolekül verbunden sind.

Im Kristall sind Atome und Bindungen in einem regelmässigen, sich stetig wiederholenden Gitter angeordnet (das macht einen Kristall aus), während die Atome im Glas zu einem ungeordneten Netzwerk verknüpft sind: Glas ist eine Flüssigkeit, die erstarrt ist, ohne dass die Teilchen darin sich zu einem Kristall hätten ordnen können – eine „unterkühlte Schmelze“.

Quarz_vs_Glas

Aufbau von Quarzkristall und Quarzglas: Im Quarzkristall sind Silizium- (rot) und Sauerstoffatome (blau) regelmässig angeordnet. Im Glas bilden sie ein ungeordnetes Netzwerk. In beiden Stoffen sind die Elektronen fest an ihre jeweiligen Atome gebunden, sodass sie mit sichtbarem Licht nicht wechselwirken können.

Sowohl im Kristall als auch im Glas sind die Elektronen den einzelnen Atomen und Bindungen fest  zugeordnet. Daraus ergeben sich grosse Abstände zwischen den Orbitalen bzw. „Wolken-Etagen“, die vornehmlich mit der Energie von UV-Licht überwunden werden können (tatsächlich ist Glas für UV-Licht „undurchsichtig“: Hinter Glas bekommt man so schnell keinen Sonnenbrand!). Licht mit Wellenlängen im sichtbaren Bereich kann hingegen keine Elektronen im Glas anregen (zum Umziehen bewegen) und geht somit unverändert hindurch.

Anders als in weissen, undurchsichtigen Stoffen wird das Licht in Glas zudem nicht nennenswert gestreut: Eine gleichmässige Streuung von Licht verschiedener Wellenlängen findet nur an Strukturen statt, deren Grösse in der Grössenordnung dieser Wellenlängen liegt – für sichtbares Licht sind das einige hundert Nanometer. Atome und kleine Moleküle, aber auch Atomgruppen in einem Kristall oder Glas sind hingegen mindestens 1000 mal kleiner.

Glas ist also durchsichtig, weil sichtbares Licht weder die richtige Wellenlänge hat, um von den fest verorteten Elektronen des Materials absorbiert, noch um darin gestreut zu werden.

Während es draussen zunehmend grauer und dunkler wird, werden die Oktober-Geschichten in Keinsteins Kiste ganz im Zeichen von Licht und Farben stehen. Macht euch auf spannende Entdeckungen und Phänomene gefasst!

 

Und was ist deine Lieblingsfarbe? Oder bist du vielleicht sogar farbenblind?

 

26.9.2016: Diese Geschichte ist nun auch ein Beitrag zur Blogparade „Wertvolle Frischekicks für den Morgen danach“ auf Barbertrends.me!

In der laufenden Oktoberfest-Saison ist ein ganz besonderes Tier einmal mehr weit verbreitet zu beobachten. Auch nach der grossen Hochzeitsfeier in der letzten Woche hat ER so manchen Gast am Ende heimgesucht: Der „Kater“. Überhaupt nicht flauschig bringt dieses spezielle Exemplar der Gattung Felis Kopfschmerz, Übelkeit und manch andere Symptome – einen regelrechten Katzenjammer – über jeden, der im Vorfeld allzu reichlich Alkoholisches genossen hat.

Nur wer ist bloss auf die Idee gekommen diese ungeliebten Symptome nach unseren schnurrenden Hausgenossen zu benennen?

Tatsächlich sind Katzen damit nicht weiter verbunden als durch eine Ähnlichkeit bei der Aussprache von Begriffen: So ist dereinst im Studentenjargon der morgendliche „Katarrh“ (wenngleich dieses Wort eigentlich eine Erkältungskrankheit meint) zum ähnlich klingenden „Kater“ umgemünzt worden. Der Katzenjammer ist noch älter: Er entstand in der Zeit Goethes aus dem gar zu ordinären „Kotzen-Jammer“.

Was wir seit Jahrhunderten, oder besser seit Jahrtausenden nach dem Konsum von alkoholischen Getränken erleben, sind letztlich nichts anderes als Vergiftungserscheinungen. Und die reichen je nach Dosis von Enthemmung über zunehmende körperliche und geistige Beeinträchtigungen bis zum Tod. Ausserdem ist eine chronische Vergiftung möglich, die durch regelmässige Aufnahme von Alkohol über lange Zeiträume entsteht.

Aber was läuft in unserem Körper schief, wenn wir Alkohol zu uns nehmen? Warum ist ein „Kater“ so unangenehm? Und was hilft wirklich dagegen?

 

Ethanol ist giftig

Ethanol, wie der „Trinkalkohol“ unter Chemikern genannt ist, wird von Gefahrstoff-Experten nicht als Gift gekennzeichnet. Das ist Substanzen vorbehalten, die schon in kleinsten Mengen gefährliche Wirkung zeigen.

Dennoch ist Ethanol, in ausreichender Menge eingenommen, in vielfältiger Weise giftig. Am schnellsten bekommen das unerwünschte Mikroorganismen zu spüren, denen wir mit alkoholhaltigen Desinfektionsmitteln den Garaus machen. Doch auch für den Menschen ist Ethanol alles andere als gesund. In erster Linie ist er als Nerven- und Lebergift bekannt, wirkt sich darüber hinaus aber auch auf andere Bereiche des Lebens aus.

Einmal getrunken gelangt der Ethanol so gut wie vollständig in den menschlichen Körper hinein, aber auf direktem Weg praktisch nicht mehr wieder hinaus. Nur weniger als 10% können unverstoffwechselt abgeatmet oder mit dem Harn wieder ausgeschieden werden. Ethanol ist nämlich hervorragend mit Wasser mischbar, sodass er sich rasch und ungehindert in alle Körpergewebe (ausser Fettgewebe) verteilen kann. Dazu zählen auch die Plazenta und die Mutterbrust, sodass, was eine werdende oder stillende Mutter trinkt, auch dem Ungeborenen bzw. dem Säugling schaden kann.

 

Aufnahme und Direktwirkung von Ethanol

Etwa 20% des Ethanols, den wir trinken, gelangt direkt vom Magen in das Blut, während rund 80% erst im Dünndarm aufgenommen werden. Damit bleibt dem Fremdstoff Ethanol genügend Zeit um die Magenschleimhaut zu reizen. Das kann wehtun, zu Übelkeit beitragen und damit die erste Abwehr unseres Organismus‘ gegen Giftstoffe fördern: Erbrechen.

So habe ich auf den ersten Schüler-Partys beobachten können, wie die Körper von Mitschülern, die in ihrer Unerfahrenheit zu eilig tranken, eine Flut von Ethanol postwendend auf dem gleichen Weg zurückschickten, den sie gekommen war.

Der im Verdauungstrakt verbleibende Ethanol gelangt rasch durch die Magen- bzw. Dünndarmwand in die Blutbahn und wird darin weiter verteilt. So hemmt Ethanol die Freisetzung der Hormone ADH (AntiDiuretisches Hormon) und Vasopressin, die dafür sorgen, dass der Organismus stets genügend Wasser bei sich behält. Sind diese Hormone Mangelware, zieht es uns alsbald ungehemmt auf die Toilette. Wenn wir auf einer heissen Party ausserdem noch schwitzen, macht sich der unkontrollierte Flüssigkeitsverlust rasch bemerkbar: Durst, Kopfschmerzen, trockene Schleimhäute, Schwindel, Schwächegefühl, Benommenheit können die Folgen sein.

Dazu bewirkt Ethanol eine Erweiterung der äusseren Blutgefässe – vornehmlich in der Haut. Gerötete Wangen und eine „Schnapsnase“ sind offensichtliche Folgen davon. Allerdings wird durch die rege Durchblutung, die auch in kalter Umgebung nicht abnimmt, reichlich Körperwärme abgegeben. Zum Warmhalten taugen alkoholische Getränke entgegen zahlreicher Mythen daher nicht (im Gegenteil: im angetrunkenen Zustand droht die Gefahr einer Unterkühlung!).

All das nehmen jedoch erstaunlich viele Menschen gerne auf sich – womöglich weil Ethanol sich im Hirn ebenso leicht verteilt wie in allen anderen Geweben und dort als Nervengift in Erscheinung tritt. Dabei scheint die erste Wirkung kleiner Mengen als durchaus angenehm empfunden zu werden: Enthemmung, vermindertes Gefahrenbewusstsein…alles scheint leichter zu gehen. Von den unweigerlich damit einhergehenden Störungen der Nerven- und Muskelfunktionen – verlangsamte Reaktionszeit, undeutliche Sprache – Koordinationsschwierigkeiten,… – bekommt man da häufig nicht viel mit.

 

Ethanol wird oxidiert

Der Organismus hingegen bemerkt das schon. Und Funktionsstörungen, bzw. deren Ursache, werden stets schnellstmöglich beseitigt. Da Ethanol allerdings nicht einfach wieder ausgeschieden werden kann, muss er verstoffwechselt, das heisst in chemischen Reaktionen abgebaut werden. Das übernimmt die Leber. Der Ethanol, der dort angeschwemmt wird, wird in den Leberzellen oxidiert (Auf unserer Grillparty erfährst du mehr über diese Art der chemischen Reaktion).

Dazu wird ein Oxidationsmittel benötigt, das Elektronen an Ethanol abgeben kann. Das allgemein gebräuchliche Oxidationsmittel im Körper ist das Molekül-Ion Nicotinamidadenindinucleotid, kurz „NAD+„: Das Enzym Alkohol-Dehydrogenase (ADH) katalysiert die Oxidation des Ethanols durch NAD+ zu Acetaldehyd:

 

 

Bei dieser Reaktion werden also zwei Elektronen und ein Wasserstoffkern (H+) vom Ethanol auf NAD+ übertragen und ein weiterer Wasserstoffkern (H+) „freigesetzt“.

Unglücklicherweise ist Acetaldehyd (CH3CHO) auch giftig. Wie fast alle Gifte kann es Erbrechen auslösen, führt zudem zu Kopfschmerzen und Pulsrasen und schädigt umliegendes Gewebe. Deshalb wird das Acetaldehyd in den Mitochondrien der Leberzellen weiter oxidiert. Das Enzym Aldehyd-Dehydrogenase (AlDH) katalysiert dort die Oxidation des Acetaldehyds zu Essigsäure (CH3COOH):

 

 

Essigsäure, bzw. ihr Anion, das Acetat, ist Bestandteil unseres natürlichen Stoffwechsels und damit fürs Erste unproblematisch.

Für die Oxidation eines Ethanol-Moleküls zu Essigsäure werden zwei Moleküle NAD+ benötigt, die aus dem Vitamin Niacin hergestellt werden und damit nur begrenzt verfügbar sind. Je mehr Ethanol aufgenommen wird, desto mehr NAD+ wird verbraucht und desto mehr NADH sammelt sich an. Das bringt den sonst ausgeglichenen Stoffwechsel gehörig in Schieflage.

 

Redox-Stau und seine Folgen

Normalerweise werden das Oxidationsmittel NAD+ und das Reduktionsmittel NADH im Zuckerstoffwechsel gebraucht: Bei der Glykolyse, die zum Beispiel in arbeitenden Muskeln oder im Gehirn abläuft, wird in mehreren Reaktionsschritten aus Glucose (Traubenzucker) Energie in Form von energiereichen ATP-Molekülen gewonnen. Einer dieser Schritte ist eine Oxidation mit NAD+. Das dabei als „Abfall“ entstehende Pyruvat wird anschliessend mit NADH zu Lactat (dem Anion der Milchsäure) reduziert und NAD+ in diesem Zuge zurückgewonnen.

Das Lactat wird in der Blutbahn in die Leber transportiert, wo es mit NAD+ zu Pyruvat oxidiert und zur Gluconeogenese, einer Folge von Reaktionen zur Herstellung von Glucose, unter welchen eine Reduktion mit NADH  zu finden ist, verwendet. So nimmt die Leber den Muskeln etwas Stoffwechsel-Arbeit ab und gewinnt das dazu nötige Oxidationsmittel gleich selbst zurück.

Cori-Zyklus


Vereinfachte Darstellung des Glucose-Stoffwechsels: Das Oxidationsmittel NAD+ wird sowohl im Rahmen der Gluconeogenese in der Leber als auch im Rahmen der Glykolyse laufend wieder zurückgewonnen.
Wird durch den Abbau von Ethanol in der Leber (links) NAD+ ohne direkten Ersatz reduziert, wird die Oxidation von Lactat zu Pyruvat und damit die Glucose-Erzeugung gehemmt, während die Lactat-Produktion zunächst weiterläuft. Die Folgen sind ein Lactat-Überschuss im Blut (Lactatacidose) und ein zunehmend niedriger Blutzuckerspiegel (Hypoglykämie)

 

Bei der Oxidation von Ethanol funktioniert die Rückgewinnung des Oxidationsmittels jedoch nicht. Sobald die Leber Ethanol abbauen muss, wird NAD+ verbraucht und nicht ersetzt. So fehlt bald das Oxidationsmittel für die Lactat-Oxidation, sodass in der Leber nicht genügend Pyruvat für die Glucose-Herstellung bereitgestellt werden kann.

Das vom Rest des Körpers angelieferte Lactat staut sich so bis in die Blutbahn zurück, sodass der pH-Wert im Blut absinkt (Mediziner nennen diesen Zustand „Lactatacidose“). Dass das unangenehm ist, weiss jeder, der sich schon einmal beim Sport so sehr verausgabt hat, dass seine Muskeln schmerzten. Eine nicht ausreichende Versorgung der Muskeln mit Sauerstoff kann nämlich auch zum Lactat-Stau führen – der allerdings innerhalb von Sekunden behoben wird, sobald man eine Pause macht und wieder zu Atem kommt.

Ein Lactat-Stau durch Alkoholgenuss wird sich hingegen erst wieder auflösen, wenn der Ethanol weitgehend abgebaut und die Stoffwechselwege damit wieder frei sind. Hinzu kommt, dass ohne Glucose aus der Leber der Blutzuckerspiegel absinken kann, sodass andere Organe Energiemangel zu beklagen haben und dies mit verminderter Leistungsfähigkeit quittieren.

 

Eine Laus auf der Leber: Folgen der Essigsäure-Entstehung

Essigsäure bzw. Acetat wird gleich am Ort seiner Entstehung mit dem Hilfsstoff Coenzym A zu dem Molekül Acetyl-CoA zusammengesetzt, welches normalerweise im Citratzyklus zu zwei Molekülen CO2 abgebaut wird, die abgeatmet werden können (das Coenzym A bleibt dabei übrig und wird wiederverwendet). Dieser Essigsäure-Abbau im Citratzyklus erfordert aber NAD+ und erzeugt NADH, sodass der Mangel an ersterem (wie auch der Überschuss an zweiterem) den Abbau von Acetyl-CoA ausbremst. Überschüssige Essigsäure wird daraufhin in sogenannte „Ketonkörper“ verpackt. Das sind Moleküle, die zum Abtransport ins Blut gelangen können, dort aber unglücklicherweise den pH-Wert weiter senken.

Citratzyklus: Rückstau im "Kreisverkehr" trägt zum Kater bei


Abbau von Essigsäure im Citratzyklus (vereinfachte Darstellung): Eine Essigsäure- bzw. Acetylgruppe (enthält 2 C-Atome: C2) ist an Coenzym A gebunden (Acetyl-CoA) und wird von diesem auf Oxalacetat übertragen. Das entstehende Citrat (mit insgesamt 6 C-Atomen) wird im Folgenden oxidiert, wobei Kohlendioxid (CO2) abgespalten wird, ehe der verbleibende Molekülrest mit 4 C-Atomen zu Oxalacetat recycelt wird.
Ein Mangel am Oxidationsmittel NAD+ führt zu einem Rückstau entgegen der gezeigten Reaktionsrichtung, bis über die Entstehung und Einspeisung von Acetyl-CoA hinaus, sodass überschüssige Essigsäure in Ketonkörpern untergebracht werden muss.
nach: TCA cycle By Yikrazuul (Own work) [CC BY 3.0]

Da sich die meisten Stoffwechselreaktionen selbst regulieren, entsteht darüber hinaus weiterer Rückstau: Ein Überschuss an Essigsäure bremst so die Oxidation von Acetaldehyd. Dieses erhält so die Gelegenheit, unkontrolliert mit verschiedenen Proteinen in seiner Umgebung zu reagieren und diese funktionslos zu machen. Im schlimmsten Fall gehen die betroffenen Zellen daran ein, was zu Entzündungserscheinungen im Lebergewebe führt. Wiederholt oder gar dauerhaft auftretend kann eine solche „alkoholische Hepatitis“ die gleichen Langzeitfolgen wie eine Virus-Hepatitis haben.

 

Noch eine Laus: Entgiftung durch Cytochrom P450

Die Leber ist ein auf Entgiftung spezialisiertes Organ. So kann Ethanol auch mit Hilfe des Proteins Cytochrom P450, einer recht universellen Entgiftungsvorrichtung der Leber, abgebaut werden: Dabei wird NADPH, ein dem NADH-ähnliches Molekül, zu NADP+ oxidiert um das Protein zu aktivieren, welches den Ethanol mit molekularem Sauerstoff zu Acetaldehyd und weiter zu Essigsäure oxidieren kann.

Allerdings entstehen dabei auch freie Radikale, also Atome oder Kleinmoleküle, denen einzelne Elektronen fehlen. Solche Teilchen reagieren auf ihrer Suche nach Elektronen blindlinks (radikal eben) mit allem, was ihnen in die Quere kommt, was wiederum zur Schädigung von Biomolekülen, Zellen und Gewebe führt.

Zum Schutz vor Radikalen enthalten Zellen leicht oxidierbare, also Elektronen spendende Moleküle wie Glutathion, die Radikale abfangen und damit unschädlich machen können. Allerdings muss Glutathion nach getaner Arbeit durch Reduktion mit NADPH zurückgewonnen werden. Und NADPH wird bereits durch den Ethanol-Abbau an Cytochrom P450 in Beschlag genommen. So sorgen neben dem Acetaldehyd-Rückstau auch zunehmend nicht-abgefangene Radikale für Stress im Lebergewebe.

Cytochrom P450 erledigt ausserdem den Abbau von vielen Medikamenten und anderen Drogen: Wenn der Alkoholstoffwechsel das Protein in Beschlag nimmt, müssen andere Stoffe warten: Wirkungen von Medikamenten und Drogen können so erheblich verlängert bzw. verstärkt werden.

 

Was hilft wirklich gegen einen Kater?

Da ein „Kater“ nichts anderes ist als eine Vergiftungserscheinung ist, sollte man ihn meiner Meinung nach auch wie eine Vergiftung behandeln und den Körper bei der Entgiftung auf natürlichem Weg unterstützen. Kurz gesagt: „Abwarten und Tee trinken“.

Länger gesagt: Dem Flüssigkeitsverlust kann durch reichliches Trinken (aber keinen Alkohol!) entgegengewirkt werden. Wer mehr als Wasser bei sich behält, kann möglichen Elektrolytverlust durch Erbrechen oder Durchfall mit Salzigem (z.B. klarer Brühe) ausgleichen. Wem das bekannt vorkommt: Tatsächlich ist eine Magen-Darm-Grippe auch nichts anderes als eine Vergiftung: Hierbei entstammen die Giftstoffe jedoch den Krankheitserregern. So ist beim Kater wie bei der Grippe zudem Ruhe an einem gemütlich warmen Ort von Nutzen.

Beim Alkohol spielen zusätzlich der Stoffwechsel-Stau in der Leber und häufige Kopfschmerzen eine Rolle. Sofern Flüssigkeitsausgleich und Ruhe dem Kopfweh nicht ausreichend entgegenwirken, können Kopfschmerztabletten helfen. Allerdings reizen Aspirin, Paracetamol und Co die Magenschleimhaut noch zusätzlich und müssen in der Leber unter den beschriebenen erschwerten Umständen abgebaut werden. Wer keinen Durchfall hat, kann mit Fieberzäpfchen den Magen schonen oder das Erbrechen von Tabletten umgehen – die Leberbelastung bleibt so jedoch die gleiche wie durch Tabletten.

So erachte ich auch alle weiteren Medikamente und Fremdstoffe, die über die Leber verstoffwechselt werden, eher als hinderlich denn als hilfreich. Stattdessen nutze ich das Wirksamste aller Mittel gegen einen Kater: Ich trinke keinen Alkohol.

 

Und wenn es ganz schlimm kommt?

Sollte euch einmal jemand begegnen, der nach übermässigem Alkohol-Genuss schwerwiegende Symptome (Bewusstlosigkeit, Unterkühlung, Dehydrierung, Schock-Anzeichen,…) zeigt oder zu entwickeln droht, sind lebensrettende Sofortmassnahmen und ein Notruf angesagt. Eine schwerwiegende „Alkoholvergiftung“, die Extremform von Rausch und Kater, kann zum Tod (meist durch Atemlähmung – Ethanol ist ein Nervengift!) führen!

 

Und was tut ihr gegen einen Kater?

 

Literatur: 

J.M. Berg, John L.Tymoczko, L.Stryer: Biochemie. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin 2003

E.Oberdisse, E.Hackenthal, K.Kuschinsky: Pharmakologie und Toxikologie. Springer Verlag, 2013

Der Augenblick der Zeugung

Diese Geschichte ist meiner Schwester Sonja und meinem Schwager Lutz gewidmet, die sich heute ihr Ja-Wort gegeben haben. Ich habe lange nach passenden Geschichten aus Natur und Alltag für diesen grossartigen Anlass gesucht, Ideen gesammelt und wieder verworfen. Übrig geblieben ist die perfekte Geschichte von der natürlichsten Sache der Welt – und gleichzeitig dem in meinen Augen grössten Wunder (nicht nur) in der Biologie: Der Zeugung neuen Lebens.

Die Liebe funktioniert letztlich im Grossen ebenso wie im Kleinen. Man trifft sich, sucht sich eine lauschige Ecke, kommt sich näher… was dann im Grossen geschieht, ist euch vermutlich hinlänglich bekannt. Doch wenn ein paar Monate später die Frage laut wird, wie denn das Baby in Mamas runden Bauch gekommen ist, gerät manch einer in Erklärungsnöte. Aber die Liebe funktioniert auch im Kleinen ebenso wie im Grossen. Also wird irgendwie eine weibliche Eizelle ins Spiel gebracht, und Spermien, die sich auf den Weg machen, um die Eizelle zu befruchten, sodass daraus neues Leben entsteht.

Wie die Spermien auf den Weg zu ihrem Liebesabenteuer gebracht werden, würde hier den Rahmen sprengen und sei eurer Phantasie überlassen. Aber früher oder später wird dieser Weg in eine lauschige Höhle führen, in der – hoffentlich – eine liebesbedürftige Eizelle auf ihre Verehrer wartet…

Den/die Richtige/n finden

Die grosse Liebe will zu Anfang erst einmal erobert sein. Eizellen auch. Und die Konkurrenz ist riesig! 300 Millionen menschliche Spermien gehen gemeinsam (also bei jedem einzelnen Akt!) auf Brautschau, und davon erhalten nur etwa 200 vor Ort die Chance auf die grosse Liebe. Da hilft es, wenn man einander vorgestellt, verkuppelt wird. Eine befruchtungsbereite Eizelle wird von Follikelzellen umgeben wie von einem Schwarm verkupplungswilliger Freundinnen, die chemische Signalstoffe aussenden, entlang derer die liebessuchenden Spermien zu ihrer Angebeteten finden.

Aber die erweist sich als überaus wählerisch. Es will ja niemand eine wiehernde Kuh oder eine eierlegende Wollmilchsau (oder etwa doch?), nur weil jemand all sein Vieh im gleichen Stall hält. Deshalb hüllt sich die begehrte Eizelle in ihre Zona pellucida, einen Mantel aus verschiedenen Glykoproteinen (Eiweissen mit Zucker-Dekor), die ausschliesslich Bewerber von der richtigen Spezies an ihre Trägerin heran lässt. Diese kleben dafür geradezu an der süssen Umhüllung ihrer Angebeteten, und es folgt das Übliche: Anmache mit allem, was das Akrosomenvesikel hergibt.

Brautwerbung

Dieser „Frachtraum“ im Spermienkopf ist randvoll mit Enzymen, deren Sinn und Zweck es ist die attraktive Aussenhülle zu knacken und bis zur eigentlichen Eizelle durchzudringen. Sobald ein Bewerber an der Zona pellucida festhängt, veranlasst die Nähe zu seinem Ziel ihn den Frachtraum zu öffnen und loszulegen. Da wird von allen Seiten geworben und gebohrt was das Zeug hält. Aber nur der hartnäckigste Kandidat wird schliesslich von der Liebsten erhört.

Wer die Zona pellucida überwunden hat, darf kuscheln: Zellmembran an Zellmembran, bis man ganz dicht aneinander haftet. Unausweichlich muss es dabei irgendwann funken – und auch die Molekularbiologen haben den Zauber der Liebe noch nicht durchschauen können. So ist nicht ganz klar wie, aber schliesslich wird aus zwei Verliebten ein Paar, aus zwei Zellen wird eine mit gemeinsamer, verschmolzener Membran. Eine Zygote im siebten Himmel. Für alle übrigen Bewerber ist damit Schicht im Schacht. Die Dame wird schlagartig blind und taub für ihr Werben, und die Chemie ihrer vormals so anziehenden Umhüllung verändert sich so, dass sie hart und undurchdringlich wird.

Zellulärer Honeymoon

Der Zellkern aus dem Spermienkopf teilt das Zytosol der gemeinsamen Zelle nun mit dem Kern der Eizelle. Damit fängt die eigentliche Arbeit aber erst an. Eine gute, fruchtende Beziehung will gepflegt werden. Jeder steuert seine Eigenheiten bei, und die wollen erst einmal überein gebracht werden, bevor aus zwei Persönlichkeiten eine Einheit wird. Das heisst, genau genommen aus zwei halben Persönlichkeiten. Denn Eizellen und Spermien haben es an sich, dass sie nur die Hälfte dessen haben, was man zum Leben braucht. Und zwei Hälften, verpackt in Ei-Vorkern und Spermien-Vorkern, ergeben schlussendlich ein Ganzes.

Im Zentrum der Zelle findet man eine gemeinsame Mitte: Ei-Vorkern und Spermien-Vorkern durchleben dort ihren Honeymoon eng umschlungen, während in ihrem Innern für die Zukunft geplant und fleissig DNA verdoppelt wird. Schliesslich möchten beide Liebenden am Ende den gleichen Anteil am Ganzen haben.

Zurück zum Alltag: Mitose

Irgendwann wird aber irgendjemand eine Ansage machen müssen, wie es weitergeht. Säugetierzellen sind da etwas altmodisch. Neben dem Erbgut bringt das Spermium nämlich ein Centriol mit in die Ehe, ein kleines Organell, das den Mittelpunkt eines Centrosoms bildet und im Folgenden für Ordnung sorgt.

Die zelluläre Ehe wird nämlich damit besiegelt, dass  die Kernhüllen der verschlungenen Vorkerne (zer)fallen, sodass die Liebenden auch im Allerinnersten – den Kernen – verschmelzen können. Und dieser letzte Schritt zur Ehe ist gleichzeitig der erste Schritt zur Zellteilung. Also zum zellulären Alltag.

Die Chromosomen im Zellkern bilden für gewöhnlich ein grosses, ziemlich wirres Knäuel von DNA-Strängen. Erst wenn es an die Zellteilung geht, werden diese Stränge von fleissigen Helferlein zu jenen knotigen Stäbchen verdichtet, die von Mikroskopaufnahmen oder Skizzen im Biologiebuch bekannt sind und sich wesentlich besser sortieren lassen als ein Knäuel von Fäden .

Bevor das Chromosomenchaos beim Verschmelzen der Kerne zum ersten Zankapfel in der jungen Ehe werden kann, wird das Centrosom samt mitgebrachtem Centriol verdoppelt. So kann nach dem Zerfall der Kernmembranen zwischen den beiden Centrosomen ein ganzes Bündel von Mikrotubuli – Proteinfasern, die sich von einem Centriol zum anderen erstrecken – enstehen, an welchen die verdichteten Chromosomenpaare säuberlich angeordnet werden, ganz wie Wäsche auf der Leine.

Auf dem Weg zum Glück

Der gemeinsame Haushalt ist damit geregelt, sodass nun gerecht geteilt werden kann. Also gerade in der Mitte durch, sodass jeder den gleichen Anteil am Erbgut der Beziehung hat: Jeder der beiden neuen Zellkerne erhält von jedem Chromosomenpaar die Hälfte. Denn nur wer auf gleicher Ebene miteinander verkehren kann, wird auf lange Sicht und wirklich glücklich.

In gleicher Weise und mit allem ausgestattet, was sie zum Glücklichsein brauchen, teilen sich die beiden neuen Kerne am Ende der Kernteilung, der Mitose, das gemeinsame Zytosol ihrer Zygote und stehen damit am Anfang des Lebens eines neuen vielzelligen Organismus‘.

Und dann die Scheidung?!

Um Himmels willen, nein! Die in Biologie Bewanderten unter euch wissen wohl, was kommt: Die Zellteilung wird durch die Abschnürung der Zellmembran beendet, sodass aus einer Zelle schliesslich zwei werden. Aber diese beiden gehören unweigerlich zusammen und bilden fortan ein Ganzes, ebenso wie die vier, die darauf folgen, und die acht, und…

Liebe Sonja, lieber Lutz,

Ich wünsche euch von ganzem Herzen, dass ihr euch auch im Hafen der Ehe auf Augenhöhe begegnen könnt und miteinander glücklich werdet. Und wer weiss, vielleicht steht ihr gar am Anfang einer neuen, eigenen Familie?

Eure Schwester und Schwägerin Kathi

Nachtrag: Am 11.5.2016 ist meine Nichte Fiona zur Welt gekommen (wer nachrechnet wird feststellen, dass die Biologie am Ende schneller war als ich mit dem Geschichten schreiben)! Herzlich willkommen auf unserer spannenden, bestaunenswerten Welt!

 

Wahrheit über Energie : Ihre Erscheinungsformen in Formeln

Dieser Artikel ist ein Beitrag zum ScienceBlogs Blog-Schreibwettbewerb 2015. Deshalb gibt es ihn für einmal auswärts zu lesen – und eure Mitwirkung ist gefragt!

Was ist Energie? Wie tritt Energie in Erscheinung? Wie können wir Energie erschaffen? Wie sieht die Zukunft der Energie aus?

Die Energie selbst hat sich mit einigen Antworten an die Menschheit gewandt:

 

Werte Menschen,

Ihr kennt mich alle – oder glaubt vielmehr mich zu kennen: Ich bin die Energie. Keine eurer Naturwissenschaften kommt heute ohne mich aus, ich beschäftige ganze Parlamente, und die Spirituellen unter euch haben oft eine ganz eigene Vorstellung von mir. Wer ich bin, erscheint da geradezu simpel und selbstverständlich. Aber kennt ihr mich wirklich so gut?

 

Ob ihr die Energie wirklich so gut kennt, könnt ihr in meinem Wettbewerbsbeitrag auf Astrodicticum Simplex nachlesen und eure eigene Stimme beim Leser-Voting hinterlassen. Die Einzelheiten zu Ablauf und Abstimmung sind am Anfang des Wettbewerbsbeitrags verlinkt!

Polylactid - Werkstoff mit Potential in Sachen Umweltschutz

Kürzlich haben Reto und ich im Urlaub eine spannende Entdeckung gemacht. An einem heissen Tag im den Denver Botanic Gardens im US-Bundesstaat Colorado trieb uns der Durst in die dortige Freilicht-Cafeteria. Wir erstanden dort handgebrauten Eistee in grossen, durchsichtigen Plastikbechern – und diese Becher waren das Spannende – besonders für Chemiker, Science-Begeisterte und Umweltfreunde. Sie trugen nämlich eine aufgedruckte grüne Banderole mit der grossen Aufschrift „100% compostable – please discard in marked containers“ – also „100% kompostierbar – bitte in vorgesehene (beschriftete) Abfallbehälter entsorgen“.

Kompostierbarer Kunststoff als Mittel gegen Müllberg und Erdöl-Krise?

Ein kompostierbarer Plastikbecher? Der sich zudem noch wie ein ganz normaler Plastikbecher anfühlt und zu verhalten scheint? Meine wissenschaftliche Neugier war sofort geweckt. Als der Eistee seiner Bestimmung zugeführt worden war, entdeckte ich auf dem Boden des Bechers ein vertrautes Symbol: Ein Dreieck aus drei umlaufenden Pfeilen mit der Ziffer 7 in der Mitte. Und den drei Buchstaben „PLA“.

Das Pfeildreieck ist heutzutage auf praktisch allen Kunststoff-Verpackungen zu finden und gibt Auskunft über die Art des Kunststoffs, und in welchen Recyclingweg er einfliessen soll. Dafür wird den verbreitetsten Kunststoff-Typen je eine Ziffer zugeordnet. Die Ziffer 7 steht dabei für „sonstige Kunststoffe“ – eben jene, die noch nicht so verbreitet sind. Die Buchstaben darunter geben die genaue Kunststoffsorte an. „PLA“ steht für Polymilchsäure (engl. Poly Lactic Acid), oder auch Polylactid. Beide Namen stehen für den gleichen Stoff und beziehen sich auf zwei verschiedene Herstellungswege.

Bei Milchsäure klingeln bei Biochemikern und Medizinern, aber auch bei Molkereimitarbeitern die Glocken: Das (oder besser das Anion der Milchsäure, Lactat) ist ein Stoff, der im Stoffwechsel fast jedes Lebewesens produziert wird und dort häufig als „Abfall“ anfällt. Und aus diesem Naturstoff hat jemand ein Polymer gemacht und Plastikbecher hergestellt, die sich wieder zu Naturstoffen kompostieren lassen? Lässt sich mit solch einem Biokunststoff etwa das immer rarer werdende Erdöl als Rohstoff für herkömmliche Kunststoffe ersetzen? Könnten damit unsere stetig wachsenden Müllberge bald der Vergangenheit angehören?

Aber fangen wir am Anfang an:

Was ist ein Polymer?

Die Vorsilbe „Poly“ ist aus dem Altgriechischen abgeleitet und steht für „viel“. Und Polymere sind in der Tat Moleküle mit viel drin: nämlich mit vielen Atomen. Im Chemieunterricht in der Schule bekommt man es häufig mit sehr kleinen Molekülen mit zwei bis zehn Atomen zu tun. Für die organischen Chemiker sind diese Moleküle geradezu winzig. Sie bezeichnen nämlich auch noch Moleküle wie unsere Vitamine mit (ca. 50) Atomen als klein. Dahingegen sind Polymere wahre Riesenmoleküle mit tausenden von Atomen, die lange Ketten und manchmal richtige Netzwerke bilden.

Das Besondere dabei ist, dass diese Ketten aus sich immer wiederholenden Kettengliedern bestehen. Es gibt nämlich bestimmte sehr kleine Moleküle, die unter den richtigen Umständen miteinander reagieren und sich wie Glieder zu einer Kette verbinden können. Ein bekanntes Beispiel dafür ist das Gas Ethen – auch als Ethylen bekannt. Das kann man in Gasflaschen füllen und herumtransportieren und bei Bedarf verbrennen – es ist nämlich sehr reaktionsfreudig. Wenn man allerdings ein Ethylen-Molekül auf die richtige Weise reaktiv macht, d.h. „aktiviert“, kann es ein anderes Ethylen-Molekül angreifen, sich mit diesem verbinden und es wiederum aktivieren. So entsteht Glied für Glied ein lange Kettenmoleküle, aus denen ein fester, reaktionsträger Kunststoff hergestellt werden kann: Polyethylen.

Ein Polymer ist also Stoff, der aus kettenartigen Riesenmolekülen besteht, die wiederum aus miteinander verbundenen kleinen Molekülen aufgebaut sind. Diese kleinen Moleküle werden vor der Reaktion zur Kette Monomere genannt.

Und eine solche Polymerisationsreaktion, oder kurz Polymerisation kann man auch mit Milchsäure machen. Das Schöne daran ist: Milchsäure kann man billig in einem weit verbreiteten Verfahren herstellen. Oder besser, man lässt sie herstellen.

Milchsäureherstellung mittels Fermentierung

Fast jedes Lebewesen kann Glucose – Traubenzucker – zu Milchsäure (bzw. ihrem Anion Lactat) abbauen. Damit können diese Lebewesen Energie gewinnen. Im Zuge das Abbaus wird chemische Energie aus dem Zucker frei, welche in einem sehr vielseitigen Molekül, genannt ATP (Adenosintriphosphat), zwischengespeichert wird. ATP wiederum dient als „Kraftstoff“ für vielerlei Reaktionen und Prozesse in einem Organismus, die Energie benötigen.

Milchsäuregärung


Schema für die Milchsäuregärung: Der Abbau von Glucose zu Pyruvat ist eine Redox-Reaktion. Das hierfür benötigte Oxidationsmittel NAD+ wird im Zuge der Weiterreaktion des Pyruvats zu Lactat (dem Anion der Milchsäure) zurückgewonnen.

Der Abbau von Glucose zu Lactat zwecks ATP-Erzeugung wird von verschiedenen Enzymen katalysiert. Der gesamte Prozess wird Fermentierung oder auch Milchsäure-Gärung genannt. Es gibt eine ganze Reihe von Bakterienstämmen, deren Lebensinhalt darin besteht Zucker zu Milchsäure (und nichts anderem) zu vergären. Diese Bakterien der Gattung Lactobacillus werden seit je her zur Herstellung von Milchprodukten wie Käse, Joghurt oder Kefir eingesetzt. So liegt nahe, dass diese Bakterien für den Menschen nicht gefährlich sind. Im Gegenteil: Bestimmte Lactobacillus-Arten besiedeln unsere Schleimhäute und sorgen dafür, dass Krankheitserreger dort keinen Platz finden um sich zu vermehren.

Und eben diese Bakterien werden genutzt, um Milchsäure als Rohstoff für Polylactid-Kunststoff zu gewinnen. Dazu muss man die Bakterien mit Glucose füttern. Und Glucose findet man reichlich in Pflanzen, zum Beispiel in Stärke (Stärke ist nämlich nichts anderes als ein Polymer aus Zuckermolekülen). Deshalb wird in den USA Mais angebaut um Bakterienfutter für die Milchsäuregärung zu gewinnen (andere Pflanzen tun es aber mindestens genauso, wie z.B. Zuckerrohr). Aktuell wird sogar daran geforscht, Pflanzenabfälle, die beim Ackerbau entstehen, als Bakterienfutter zu verwenden (Assoziation Ökologischer Lebensmittelhersteller (AÖL), 2014).

Von der Milchsäure zum Plastik

Die fertig gegorene Milchsäure kann auf zwei Wegen zu dem Polylactid genannten Kunststoff verarbeitet werden.

Zum einen kann Polymilchsäure (chemisch dasselbe wie Polylactid) durch eine Polykondensation von Milchsäure-Monomeren hergestellt werden. Wer die drei organischen Reaktionstypen an unserer Grillparty kennengelernt hat, weiss, dass bei der chemischen Reaktion namens Kondensation zwei Moleküle (bei der Polykondensation sind das die angefangene Kette und das jeweils nächste Monomer) zu einem grösseren Molekül reagieren und stets ein neues, kleines Molekül übrig bleibt. Bei der Polykondensation von Milchsäure ist dies ein Wassermolekül für jedes angehängte Monomer. Und all diese Wassermoleküle müssen irgendwo hin.

Polykondensation von Milchsäure


Polykondensation von Milchsäure: Der grüne Rahmen markiert ein Milchsäure-Kettenglied, die roten Rahmen markieren die Atome, die als Wassermolekül übrig bleiben. Anfang und Ende der Kette aus n Milchsäure-Molekülen entstehen aus einem weiteren (n + 1) Milchsäure-Molekül.

Deshalb muss die Polykondensation von Milchsäure in einem Lösungsmittel durchgeführt werden, in welchem sich das Wasser löst. Und dieses Lösungsmittel muss anschliessend vom Kunststoff getrennt und bestenfalls aufbereitet und wiederverwendet werden. Das ist im industriellen Massstab aufwändig und relativ teuer.

So geht man bevorzugt den zweiten Weg.

Polylactid kann nämlich zum anderen durch eine ringöffnende Polymerisation von Lactid-Monomeren gewonnen werden. Ein Lactid-Molekül besteht aus zwei Milchsäure-Molekülen, die miteinander zu einem Ring aus sechs Atomen verbunden sind. Solch ein Lactid-Ring kann eine Komplexreaktion mit bestimmten metallorganischen Verbindungen (also organischen Molekülen, die mindestens ein Metall-Atom enthalten) eingehen und im Zuge dessen geöffnet werden. Das so aktivierte Lactid kann einen weiteren Lactid-Ring öffnen und ihn zwischen sich und dem Metall-Atom einfügen (wie das genau vor sich geht ist noch nicht ganz geklärt). Dabei bleibt, anders als bei der Polykondensation, kein kleines Molekül übrig.

Ringöffnungspolymerisation zur Herstellung von Polylactid


Ringöffnungs-Polymerisation von Dilactid: Die metallorganische Verbindung XiM-OR (M steht für ein Metallatom, Xi für i weitere daran gebundene Atome, R für einen organischen Rest) bildet mit Dilactid einen Komplex. Anschliessend binden das Metall und der organische Rest in noch ungeklärter Weise an die markierten Atome und nehmen den geöffneten Ring in die Mitte. Das C-Atom rechts oben steht in der zweiten Zeile ganz links neben dem RO, und die Atome des Rings gegen den Urzeigersinn gelesen finden sich von links nach rechts in der unteren Zeile wieder. So werden n weitere Ringe (n LA) geöffnet und in die Kette eingefügt, ehe das Metall-Atom am Kettenende gegen ein Wasserstoff-Atom ausgetauscht wird.

So kann die ringöffnende Polymerisation ohne Lösungsmittel durchgeführt werden. Allerdings muss die metallorganische Verbindung in kleinen Mengen als Katalysator dazugegeben werden. Zudem neigen die Polylactid-Ketten dazu miteinander zu reagieren, sodass man weitere Stoffe (Radikalfänger) beimengt, um eben dies zu verhindern.

Alles in allem können zur industriellen Herstellung von Polylactid auf diesem Weg lange, schraubenartige Reaktoren, sogenannte Extruder, eingesetzt werden, an deren einem Ende die Monomere samt Katalysator und Zusätzen hineingegeben werden, während am anderen Ende das Polymer in Form von Kunststoff-Fäden oder -Folie hinauskommt. Die Polymerisation findet während des Durchlaufs durch die Maschine statt.

Wofür kann man PLA benutzen?

In der Medizintechnik ist Polylactid schon lange als Werkstoff beliebt. Da der menschliche Körper selbst Lactat erzeugt, werden Polylactid und seine Abbauprodukte (letztlich Lactat) vom Organismus nicht als Fremdstoffe wahrgenommen. Darüber hinaus kann Polylactid im menschlichen Körper abgebaut werden. So werden schon seit 1966 bei Operationen Nähfäden aus Polylactid verwendet, die nach ein paar Wochen im Körper zersetzt sind und somit nicht gezogen werden müssen. Eine andere Anwendung in dieser Richtung ist die Herstellung von Knochenprothesen, die aufgrund ihrer Abbaubarkeit mit der Zeit durch nachwachsendes Knochengewebe ersetzt werden können.

Im Botanischen Garten in Denver haben wir das Polylactid jedoch in einer viel alltäglicheren Anwendung kennengelernt: Als Einweggeschirr bzw. Verpackungsmaterial (denn nicht nur die Becher, auch Trinkhalme, Plastik-Teller und -besteck – eigentlich alles, was in der Cafeteria ausgegeben wurde, war mit dem Hinweis auf Kompostierbarkeit versehen).

Bei der Verwendung eines Kunststoffs ist man jedoch gut beraten, auf seine besonderen Eigenschaften zu achten. Reines Polylactid nämlich wird schon ab 50-60 °C sehr weich und verformt sich. Deshalb muss es mit Zusatzstoffen hitzebeständig gemacht werden, bevor man heisse Speisen und Getränke darin servieren kann.

Kunststoff auf dem Komposthaufen?

Die Aufschrift „100% compostable“ verleitet in der Tat dazu anzunehmen, wir könnten unsere Becher nun einfach auf den Komposthaufen werfen und warten, bis sie von selbst verrotten. Mit bestimmten anderen Biokunststoffen klappt das wirklich, aber mit Polylactid ist das leider nicht ganz so einfach.

Um Polylactid zu kompostieren muss man es nämlich in industriellen Anlagen in 95% Luftfeuchtigkeit auf 60°C warm halten und passende Mikroorganismen dazugeben, die bei solch hohen Temperaturen leben können (AÖL, 2014). Kompostierung ist nämlich der von Enzymen katalysierte Abbau von organischem Material – idealerweise zu nährstoffreichem Humus. Und Enzyme werden von Lebewesen bereitgestellt und genutzt. Für den Abbau von Polylactid übernehmen das thermophile, also wärmeliebende Bakterien.

Es ist also keine gute Idee Polylactid-Verpackungen einfach in die Landschaft zu werfen. Dort werden sie nicht von selbst verrotten. Deshalb hatte der Betreiber des Botanischen Gartens rund um die Cafeteria Abfalleimer mit dem Hinweis „nur für kompostierbare Kunststoffabfälle“ aufgestellt um das gebrauchte Geschirr zu sammeln und in seine eigene oder eine externe Kompostieranlage zu schaffen.

Wie umweltfreundlich ist das Ganze?

Wenn man bestimmen möchte, wie umweltfreundlich ein Kunststoff tatsächlich ist, gibt es eine ganze Reihe von Faktoren zu berücksichtigen, die von der Erzeugung und Verwendung bis hin zur Entsorgung des Kunststoffs eine Rolle spielen. Wichtige solche Faktoren sind:

Landnutzung und Nahrungsmittelkonkurrenz

Zur Herstellung von Milchsäure, dem Ausgangstoff für die Erzeugung von Polylactid, müssen (zumindest heute) Pflanzen angebaut werden, um daraus Bakterienfutter zu gewinnen. Die dazu nötige Ackerfläche nimmt Platz ein, und der Mais oder andere Pflanzen, die als Bakterienfutter dienen, können nicht als Nahrungsmittel für Menschen genutzt werden.

Im Augenblick wird noch so wenig PLA produziert, dass der Platzbedarf verschwindend ist und der Ackerbau zwecks Erzeugung von Biogas und Biosprit eine vielfach grössere Konkurrenz zum Nahrungsmittelanbau darstellt. Für die Zukunft stehen für einen vollständigen Ersatz unserer Kunststoffe durch Biokunststoffe Schätzungen von 1 bis 12% der weltweit verfügbaren Ackerfläche für den dafür notwendigen Rohstoffanbau im Raum (AÖL, 2007).

Umweltverträglichkeit des Rohstoff-Anbaus

Bei jeder Art von Ackerbau ist kritisch abzuwägen, inwieweit Monokulturen und der Einsatz von chemischen Pflanzenschutzmitteln sich schädlich auswirken und minimiert werden können. Zudem werfen gentechnisch veränderte Nutzpflanzen (der in den USA zur PLA-Herstellung angebaute Mais ist in der Regel gentechnisch verändert) immer wieder heftige Diskussionen auf.

Sozialverträglichkeit

Werden die Rohstoffe für die PLA-Herstellung unter „fairen“ Bedingungen angebaut und verarbeitet? Wie bei allen Ackerbau- und anderen Produkten ist hier oft massgeblich, in welchen Ländern mit welcher Gesetzgebung die Rohstoffe angebaut werden.

Umweltverträglichkeit von Zusatzstoffen

Nicht nur der Katalysator, der zur Herstellung des Polylactids erforderlich ist, bleibt ein Teil des entstehenden Kunststoffs. Auch zur Vermeidung von unerwünschten Quervernetzungen, zur Erhöhung der Biegsamkeit (reines PLA ist relativ spröde) und der Wärmebeständigkeit werden Zusätze verwendet, deren Auswirkungen auf die Umwelt in die Bewertung des fertigen Kunststoffprodukts mit einfliessen. Denn wieviel nützt ein vollständig kompostierbares Polymer, wenn der Hitzeschutz-Stoff darin am Ende übrig bleibt und auch noch Schwierigkeiten bereitet?

Sicherheit

Neben der Sicherheit beziehungsweise der Schonung unserer Umwelt legen wir mindestens genauso viel Wert auf unsere eigene, gesundheitliche Sicherheit. Da PLA aus Milchsäure, einem in unserem Organismus allgegenwärtigen Stoff, aufgebaut ist, gilt es als gesundheitlich unbedenklich. Aber wie sieht das mit den Zusatzstoffen aus?

Recycling/Kompostierung

PLA lässt sich industriell herstellen und vielseitig anwenden…aber wohin damit, wenn man es nicht mehr braucht? Der Kunststoff ist kompostierbar, allerdings nur in speziellen industriellen Anlagen. Die müssen zuerst gebaut und dann unterhalten werden, zumal eine gemeinsame Entsorgung mit vergleichbaren herkömmlichen Kunststoffen wie PET nicht möglich ist. Denn die von PET abweichenden Eigenschaften des Polylactids würden in auf PET ausgerichteten Maschinen zu erheblichen technischen Problemen führen (AÖL, 2014).

Ökobilanz

Anbau und Transport von Rohstoffen, Herstellung und Entsorgung von Produkten gehen mit der Entstehung von teils umweltbelastenden Abfallstoffen einher. Da Pflanzen ihre Glucose und andere Kohlenstoffverbindungen letztlich mittels Fotosynthese aus Kohlendioxid (CO2) gewinnen, welches sie der Atmosphäre entnehmen, kann bei der Entsorgung (Kompostierung, Verbrennung,…) von Pflanzen und reinen Pflanzenprodukten nicht mehr CO2 entstehen, als sie zuvor aufgenommen haben.

Das deutsche Bundesumweltamt äussert in einer Broschüre aus dem Jahr 2009, dass durch die Nutzung von Biokunststoffen wie PLA anstelle von herkömmlichen Kunststoffen, die aus Erdöl hergestellt werden, fossile Rohstoffvorkommen geschont werden, da diese durch nachwachsende Rohstoffe ersetzt werden. Darüber hinaus kann der CO2-Ausstoss dank der oben beschriebenen CO2-Bilanz verringert werden.

Die Gesamt-Umweltbelastung, die die Nutzung von PLA-Bechern wie unseren im Botanischen Garten mit sich bringt, entspreche jedoch jener, die PET-Becher mit sich bringen. Das bedeutet, Mehrweg-Becher seien in ökologischer Hinsicht auch kompostierbaren Kunststoffen deutlich überlegen.

Fazit

Polylactid, kurz PLA, zählt zu den Biokunststoffen und ist – unter industriell herstellbaren speziellen Bedingungen – biologisch abbaubar. Da PLA aus nachwachsenden Rohstoffen hergestellt wird, trägt seine Verwendung zur Schonung begrenzter fossiler Rohstoffe wie Erdöl bei und mindert den CO2-Ausstoss.

Allerdings sind PLA laut dem Bundesumweltamt ganzheitlich (also unter Berücksichtigung aller genannter Faktoren) betrachtet (noch) nicht umweltfreundlicher als der gängige Kunststoff PET. Ein System mit Mehrweg-Getränkebehältern ist also immer noch um Längen schonender.

In einem Betrieb wie dem Botanischen Garten Denver, der seinen PLA-Abfall zentral sammelt und kompostiert oder recycelt, finde ich diesen und andere Biokunststoffe nichts desto trotz spannend. Zumal gerade ein Gartenbetrieb den anfallenden Kompost wiederum weiterverwenden kann. Und wenn die Forschung bezüglich der Vergärung von Pflanzenabfällen zu Ergebnissen führt, tut sich hier womöglich ein attraktiver Ersatz für unsere Kunststoffe aus Erdöl auf. Die Zukunft wird es zeigen.

Und wo hattet ihr schonmal mit kompostierbaren oder anderen Biokunststoffen zu tun?

Der Blogtour Fahrplan

07.09. pyramideneulehttp://welt.pyramideneule.de Thema: Wildvögel füttern
08.09. Kathi Keinsteinhttps://www.keinsteins-kiste.ch/ Thema: Kompostierbare Kunststoffe
09.09. MrAndroid http://www.mrmrs-android.de/ Thema: Jedes Jahr ein neues da – Wieso du dein Smartphone behalten solltest
10.09. Zaxumo – http://zaxumo.blogspot.de/ Thema: Umweltfreundliche Kosmetik

12.09. Lilyanahttp://www.buecherfunke.de/ Thema: Ebooks
13.09. Lebenslounge – http://www.lebenslounge.com/ Thema: Recycling im Haushalt

 

Schmelzwärme und ein AHA-Erlebnis

Dies ist eine wahre Geschichte um das rätselhafte Verschwinden von Wärme und davon, wie dieses Rätsels Lösung mein Leben prägte und zur Entstehung von Keinsteins Kiste führte. Zu all dem hat vor 20 Jahren das AHA-Erlebnis meines Lebens geführt, welches ich – ursprünglich im Rahmen einer Blogparade um AHA-Erlebnisse auf einem Blog, der heute nicht mehr existiert – hier mit euch teilen möchte.

 

Ein Versuch vor 20 Jahren

Als ich mit knapp 13 Jahren in meine erste Chemie-Stunde am Gymnasium ging, war meine Welt noch einfach. In der Physik war die Mechanik noch klassisch, und wenn man Dinge auf eine laufende Herdplatte stellte, wurden sie warm. Und zwar je länger man heizt, desto wärmer. Das hatte ich bis anhin bloss noch nicht mit Eiswasser probiert.

Genau das tat jedoch unser Chemielehrer in besagter erster Chemie-Stunde. ‚Eiswasser‘ meint einen Topf voll Eiswürfel, der mindestens bis zur Hälfte mit Leitungswasser aufgefüllt wird. Der Topf samt Eiswasser wurde unter stetem Rühren gleichmässig erhitzt. Ein Quecksilber-Thermometer zeigte dabei laufend die Temperatur des Topfinhaltes an.

Begonnen hat der Versuch mit einer Temperatur von vielleicht -5°C, welche für Eiswürfel in Wasser nicht ungewöhnlich ist. Und anfangs ist sie dann auch ganz wie erwartet angestiegen. Bei 0°C war dann aber unvermittelt Schluss mit dem Anstieg. Die Temperatur des Eiswassers blieb bei 0°C, von geringfügigen Schwankungen (nichts und niemand rührt perfekt gleichmässig ) einmal abgesehen. Da konnte der Lehrer so viel heizen, wie er wollte, es nützte gar nichts. Nur die Eiswürfel schmolzen immer weiter dahin.

 

Die Welt aus den Angeln gehoben: Wohin verschwindet die Wärme?

Schon bald wurde mir bei der Sache ziemlich unbehaglich. Wohin verschwand die Wärme, die eigentlich von der Herdplatte in Topf und Inhalt übergehen sollte? Einen Energie-Erhaltungssatz, der das grundlose Verschwinden und Entstehen von Wärme verbietet, hatte es zu jener Zeit in meiner Welt schon gegeben ( spätestens nach „Jim Knopf und die wilde 13“ hatte mein Vater mir die Hauptsätze der Thermodynamik darlegen müssen, um mich vom Nachbau des „Perpetumobils“ abzubringen – aber das ist eine andere Geschichte).

So nagte in mir die Frage, was mit der verschwindenden Wärme geschah. Hatte das Ganze mit dem Schmelzen der Eiswürfel zu tun? Würde die Welt wieder in Ordnung kommen, wenn alles Eis geschmolzen wäre? Die Unterrichtsstunde reichte nicht aus, um so lange zu warten. Aber als der Lehrer anbot, mit einem Freiwilligen in der grossen Pause noch einmal nachzusehen, wenn er den Versuch bis dahin weiterlaufen liesse, war ich auf der Stelle mit dabei.

Und zu meiner grossen Freude war die Welt in der Pause tatsächlich wieder in Ordnung: Das Eis war geschmolzen und die Temperatur im Topf stieg langsam wieder an. Erklärt war die verschwundene Wärme damit aber noch lange nicht. Meine Neugier war hingegen geweckt.

 

Wie Entwicklungs-Psychologen das AHA-Erlebnis beschreiben

Eineinhalb Jahrzehnte später sollte ich dann erfahren, was damals Bewegendes in mir vorgegangen ist, und weshalb mir jener Versuch zeitlebens in Erinnerung geblieben ist: In der Vorlesung zur pädagogischen Psychologie im Rahmen meiner Lehrerausbildung haben wir zwei unterschiedliche Lernwege kennengelernt.

Der übliche Lernweg besteht darin, dass eine neue Information, die in unser bestehendes Konzept unserer Welt passt, darin eingeordnet, also hinzugefügt wird. Dieses Vorgehen wird von den Fachleuten Assimilation genannt und findet zum Beispiel statt, wenn wir wissen, dass Wasser bei 0°C gefriert, und erfahren, dass Alkohol, eine andere Flüssigkeit, ebenfalls gefrieren kann, aber bei einer tieferen Temperatur.

Wenn unser Gehirn jedoch mit einer Information konfrontiert wird, die nicht ins bestehende Konzept passt, muss es den zweiten, wesentlich aufwändigeren Lernweg gehen: Was nicht passt, wird passend gemacht. Und da eine erhaltene Information nicht willkürlich geändert werden kann, muss zwangsläufig das Konzept angepasst werden. Die Fachleute nennen diesen Vorgang Akkomodation. Das Ergebnis einer solchen Anpassung ist mitunter ein regelrechtes AHA-Erlebnis, welches mehr oder minder tiefgreifende Folgen nach sich zieht.

 

Die Wärme verschwindet nicht: Kleine Teilchen liefern die Lösung

Im Falle des Eiswasser -Versuchs hat spätestens in der nächsten Unterrichtsstunde mein Chemielehrer die Welt wieder gerade gerückt: In den Augen der Chemiker (und auch der anderen Naturwissenschaftler) bestehen alle Stoffe aus unzähligen kleinen Teilchen. In einem Feststoff wie Eis sind diese Teilchen in regelmässiger Ordnung zusammengepackt, etwa wie ein Stapel Waren auf einer Euro-Palette. Anders als die Waren, die ruhig auf der Palette liegen (sollten), zittern die Teilchen im Feststoff jedoch ständig, und zwar umso stärker, je wärmer sie werden. Was wir als Wärme wahrnehmen, ist also nichts anderes als die Zitter-, oder besser Schwingungsenergie vieler, vieler kleiner Teilchen.

Wenn diese Teilchen irgendwann eine bestimmte Wärmemenge aufgenommen haben, können sie schliesslich aus der Ordnung ausbrechen und sich frei gegeneinander bewegen. Auf diese Weise entsteht aus einem Feststoff eine Flüssigkeit. Und Teilchen, die sich von einem Ort zum anderen bewegen, haben eine Bewegungsenergie, die sie zuvor im Feststoff nicht hatten (die Schwingungsenergie bleibt ihnen zusätzlich erhalten, denn auch die Teilchen der Flüssigkeit zittern munter weiter).

 

Übergänge zwischen den drei Aggregatzuständen


Die drei alltäglichen Aggregatzustände von Stoffen im Teilchenmodell: Beim Übergang vom Feststoff zur Flüssigkeit, dem Schmelzen, wird Wärme in Bewegungsenergie der Teilchen umgewandelt (ebenso wie bei allen anderen durch rote Pfeile dargestellten Übergängen). Beim jeweiligen Übergang in umgekehrter Richtung (blaue Pfeile) wird dieselbe Menge Energie wiederum in Wärme umgewandelt.

Die Bewegungsenergie der Teilchen entsteht – gemäss dem Energie-Erhaltungssatz – nicht aus dem Nichts, sondern durch Umwandlung der von der Herdplatte ausgehenden Wärme. So kann ein Stoff nicht weiter erwärmt werden, während er schmilzt. Die zum Schmelzen einer bestimmten Menge Teilchen aufzuwendende Wärmemenge wird dementsprechend Schmelzwärme oder auch Schmelzenthalpie genannt.

Beim Verdampfen einer Flüssigkeit spielt sich übrigens das Gleiche ab: Die Flüssigkeit wird nicht wärmer, während sie verdampft, da eine Verdampfungswärme genannte Wärmemenge aufgewendet wird, um der Bewegungsenergie der Teilchen eine neue Note zu verleihen (im Gaszustand bewegen die Teilchen sich frei im Raum anstatt im Verbund gegeneinander!).

 

Meine prägende Erkenntnis aus meiner ‚Entdeckung‘ der Schmelzwärme

Mit der Akkomodation meines Konzepts von Energie durch die Einführung einer mir völlig neuen Erscheinungsform der Energie in Gestalt der Bewegung kleiner Stoffteilchen, konnte ich nun das Kaltbleiben des Eiswassers auf der Herdplatte einordnen, ohne dass der erste Hauptsatz der Thermodynamik, der Energieerhaltungssatz, verletzt wurde.

Die „Entdeckung“ der Schmelzwärme als solche wäre mir jedoch nicht über 20 Jahre so präsent im Gedächtnis geblieben. Eingeprägt hat sich mir vielmehr das überwältigende Gefühl, zunächst an die Grenzen der eigenen Welt zu stossen und diese dann zu aufregenden neuen „Ufern“ hin zu überschreiten. Und die Erkenntnis, die jenes erste Überschreiten in mir keimen liess: Die Welt birgt hinter unserem Tellerrand erstaunliche Geheimnisse. Und wir können sie entdecken und staunen, wenn wir nur genau hinschauen!

Von jenem Tag war mein Hunger nach solchen Geheimnissen und dem überwältigenden Gefühl ihrer Enträtselung geweckt und die Welt der kleinen Teilchen hat mich nicht mehr losgelassen. Mit den Jahren ist neben diesem Hunger auch der Wunsch, meine Faszination zu teilen, gewachsen. So habe ich inzwischen nicht nur die kleinen Teilchen studiert, sondern auch die Lehrerausbildung in Angriff genommen und darüber hinaus in der Blogosphäre eine wunderbare Plattform gefunden, um meine Leser ganz nach meinen Vorstellungen zu faszinieren. Somit wünsche ich viel Freude und Staunen beim weiteren Stöbern in Keinsteins Kiste.

Ihr könnt die Schmelzwärme übrigens auch selbst entdecken: Hier habe ich eine Anleitung für euch, wie ihr das Experiment mit dem AHA-Effekt bei euch zu Hause nachmachen könnt!

Und welches erstaunliche Phänomen hat deine Welt aus den Angeln gehoben?