Beiträge

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Lavalampe im Glas

Ihr kennt sie bestimmt – die spacige Leuchte, die in den 1970ern erstmals trendete: Die Lavalampe. Ich habe sie als Teenager während ihres Wiederauflebens in den 1990er Jahren kennengelernt und bestimmt so manche Stunde die auf- und absteigenden lavaartigen Blasen darin beobachtet.

Heute verrate ich euch, wie die geheimnisvollen Lavalampen funktionieren – und wie ihr den Effekt mit einem schnellen, einfachen Experiment nachstellen könnt!

Wie funktioniert eine Lavalampe?

Eine Lavalampe enthält zwei unterschiedlich farbige Flüssigkeiten, die sich nicht miteinander mischen. Wenn man die Lampe einschaltet, beginnt die eine Flüssigkeit in lavaartigen Blasen in der anderen Flüssigkeit aufzusteigen – und nach ein wenig Zeit wieder abzusinken. Doch was bewegt die “Lava” in der Lampe?

Die Dichte ist der Schlüssel

Zu den ganz “persönlichen” Eigenschaften jedes Stoffs zählt das Gewicht, welches eine ganz bestimmte Menge dieses Stoffs auf die Waage bringt. Mit anderen Worten: Ein Liter massives Holz ist leichter als ein Liter Wasser. Beides können wir problemlos mit einer Hand heben. Einen Liter Blei zu heben, würde jedoch eine grosse Kraftanstrengung erfordern: Blei ist sehr viel schwerer als die beiden erstgenannten Stoffe.

Physiker und Chemiker sagen: Blei hat ein viel höheres spezifisches Gewicht – bzw. eine viel höhere Dichte – als Wasser oder Holz.

Wie kommt das?

Das Metall Blei besteht sehr dicht gepackten Atomen, deren Atomkerne wiederum aus vielen, d.h. über 200 dicht gepackten Kernteilchen bestehen. Dahingegen besteht Wasser aus Wasserstoff- (1 Kernteilchen) und Sauerstoff-Atomen (16 Kernteilchen), die in kleinen, gegeneinander leicht beweglichen Molekülen miteinander verbunden sind. Diese Anordnung braucht deutlich mehr Platz als die Atom-Packung im Metall.

Kurz und kindgerecht gesagt: Die Blei-Teilchen sind tatsächlich “dichter” beieinander als die Wasserteilchen, sodass in einem Liter Blei mehr Teilchen auf der Waage liegen und so mehr Gewicht zusammenbringen als in einem Liter Wasser.

Von der Dichte zur Schwimmfähigkeit

Wenn man zwei Flüssigkeiten, die sich nicht ineinander lösen, zusammengibt, schwimmt stets die weniger dichte Flüssigkeit auf der dichteren (das gilt übrigens auch für feste Körper in Flüssigkeiten – so lange man Begleitumstände wie Oberflächenspannung oder das geschickte Ausnutzen des Auftriebs durch Formgebung vernachlässigen kann).

Damit ein Stoff abwechselnd auf einer Flüssigkeit schwimmen und darin sinken kann, muss er also seine Dichte ändern.

In der Lavalampe: Dichteänderung durch Temperatur

Für die meisten Stoffe gilt: Wenn sie wärmer werden, nimmt ihre Dichte ab. Das liegt daran, dass die Teilchen eines Stoffes um so zappeliger sind, je wärmer sie es haben. Die Temperatur eines Stoffes ist damit ein Mass für die Zappeligkeit seiner Teilchen. Und Teilchen, die zappelig sind – also in ihrer festen Anordnung hin und her schwingen oder in einer Flüssigkeit oder einem Gas umeinander wuseln, brauchen dafür mehr Platz als ruhigere Teilchen. So finden in einer warmen Portion eines Stoffs weniger Teilchen Platz als in einer kalten Portion des selben Volumens.

Deshalb ist unten im Sockel einer Lava-Lampe eine Heizung eingebaut. Diese Heizung erwärmt die “Lava”, die im kalten Zustand dichter ist als die klare Flüssigkeit um sie herum. Sobald die Dichte der “Lava” unter die Dichte der klaren Flüssigkeit sinkt, steigt die Lava brockenweise auf bis ans obere Ende des Gefässes (die Nicht-Mischbarkeit der Flüssigkeiten sorgt dabei für die runden Formen: nicht-mischbare Stoffe bevorzugen möglichst kleine Grenzflächen zueinander!).

Oben im Lampengefäss ist es kühler, sodass die “Lava” abkühlt und ihre Dichte zunimmt. Sobald sie die Dichte der klaren Flüssigkeit übersteigt, sinken die Lavabrocken wieder auf den Boden der Lampe, wo sie wiederum erwärmt werden.

Dabei sind die beiden Flüssigkeiten so gewählt, dass ihre Dichten sehr nah beieinander liegen. So genügen wenige Grad Temperaturunterschied, um das Verhältnis der Dichten umzukehren.

 

Experiment: Lava-Effekt im Glas

Du kannst das Geschehen in einer Lavalampe ganz einfach und ohne Heizung – dafür weniger dauerhaft – mit ein paar Haushaltszutaten nachstellen!

Du brauchst dazu

  • Ein hohes Trinkglas oder ähnliches Glasgefäss
  • Leitungswasser
  • Speiseöl
  • Kochsalz
  • Teelöffel
  • Evtl. Lebensmittelfarben

So führst du das Experiment durch

  • Fülle das Glas halb mit Wasser
  • Gib dann Speiseöl vorsichtig dazu (das Öl schwimmt auf dem Wasser – seine Dichte ist geringer als die von Wasser!), bis sich eine mindestens 1 cm dicke Schicht gebildet hat

Öl schwimmt auf Wasser

  • Streue vorsichtig erst wenig, dann mit dem Teelöffel mehr Salz in das Öl

Das kannst du beobachten

Das Salz fällt durch die Ölschicht, ohne dass es sich auflöst. An der Grenzfläche zwischen Öl und Wassser lösen sich Tropfen aus der Ölschicht und fallen mit dem Salz durch das Wasser auf den Glasboden. Binnen einiger Sekunden lösen sich die Ölblasen wieder vom Glasboden und steigen wieder zur Ölschicht auf. Das Salz bleibt am Glasboden zurück. Mit mehr Salz lässt sich das beliebig wiederholen.

Lavalampe in Aktion

Wenn du es spektakulär und farbig magst, kannst du Öl und Wasser auch mit unterschiedlichen Lebensmittelfarben einfärben und so eine ganz bunte “Lavalampe” kreieren.

Was passiert im Glas?

Kochsalz löst sich nicht in Öl (so wie Öl sich nicht in Wasser löst). Die Dichte des Gemischs aus Öl und Salz ist allerdings grösser als die von Wasser. So sinkt das Öl-Salz-Gemisch durch das Wasser nach unten.

Salz löst sich sehr gut in Wasser: Es zieht die Wechselwirkung mit Wasser derer mit dem Öl vor: Das Salz sinkt innerhalb der Öltropfen nach unten (Salz ist sowohl dichter als Öl, als auch dichter als Wasser), soweit es nicht sogar vom umgebenden Wasser herausgelöst (extrahiert) wird. Das salzfreie Öl mit geringerer Dichte löst sich schliesslich von dem Salz am Boden des Glases ab und steigt wieder zur Ölschicht auf.

So lange du noch Salz zum Nachstreuen hast, kannst du diesen “umgekehrten” Lavalampen-Effekt immer wieder beobachten!

Entsorgung

Wasser, Öl und Salz sind Lebensmittel, die in den Abfluss entsorgt werden können. Seife hilft dabei, Ölreste vom Glas zu lösen.

Und nun wünsche ich dir viel Spass mit deiner Lava im Glas!