Beiträge

Experiment im Frühling: Blumen färben

,
Experiment im Frühling: Blumen färben

Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

Blogparade: Kinder sind Forscher!

Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

Papa daraufhin: “Aber wir haben doch schon Hortensien im Garten…”

Klein-Kathi: “Aber die sind rosa!” (Und meine Lieblingsfarbe war -und ist- eben blau.)

Papa: “Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.”

Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

Experiment: Wir färben Blumen um

Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

Ihr braucht dazu

  • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
  • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
  • Ggfs. Gummi- bzw. Einmalhandschuhe
  • Eine kleine Vase oder anderes Glasgefäss
  • Ein paar Stunden, ggfs. einen Tag Zeit
Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

Wie ihr das Experiment durchführt

  • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
  • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

  • Füllt das farbige Wasser in die Vase mit den Blumen.

Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

  • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

Was passiert da?

Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen “Rohrleitungen” durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

Die Adern in den Blütenblättern sind deutlich blau gefärbt

Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

Und was ist der “Antrieb” dieser Wasserversorgung?

Pflanzen sind in der Lage zu “schwitzen”: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

Warum funktioniert das nicht mit Topfpflanzen?

Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der “Topf” geradezu unendlich gross ist.

Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel “Wasserblau”.

Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach “Chemie”. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

Entsorgung

Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

Experiment zum Valentinstag : Was Herzen schmelzen lässt

, ,
Ein Herz aus Eis

Bald ist Valentinstag, und wieder einmal sind viele darauf aus, die Herzen ihrer liebsten schmelzen zu lassen. Ich habe zu diesem Zweck bei einer englischsprachigen Kollegin ein wunderbar farbenfrohes Experiment aufgestöbert. Damit könnt ihr nicht nur jedes Herz aus Eis zum Schmelzen bringen, sondern gleich erforschen, wie das Schmelzen eigentlich abläuft!

Du brauchst dazu

  • Eine wasserdichte Herzform (zum Beispiel eine Silikon-Kuchenform oder eine gut schliessende Springform
  • Wenn du eine Springform verwendest: etwas Frischhaltefolie
  • Lebensmittel- oder/und wasserlösliche Acrylfarbe
  • Ein grosses Tablett mit Rand, eine flache Wanne oder ein Backblech
  • Platz im Tiefkühlfach für die Herzform
  • Ein Gefäss zum Ausgiessen
  • Leitungswasser
  • Speise- oder Streusalz
  • Etwas zum Umrühren (z.B. einen Rührstab oder Löffel)

Wie du das Herz zum Schmelzen bringst

Dazu muss das Herz erst einmal richtig eiskalt werden! Das schaffst du wie folgt:

  1. Fülle deine Herzform maximal zu drei Vierteln hoch mit Wasser (Mache sie nicht ganz voll! Wasser dehnt sich aus, wenn es gefriert und braucht daher mehr Platz als wenn es flüssig ist!). Wenn du ein rosarotes oder andersfarbiges Herz haben möchtest, rühre etwas Lebensmittelfarbe in das Wasser. Falls du eine Springform verwendest: Probiere vorher mit etwas ungefärbtem Wasser aus, ob sie dicht hält. Falls nicht: Lege die Springform vor dem Einfüllen des gefärbten Wasser mit einem (!) Stück Frischhaltefolie aus.
  2. Stelle die Form mit dem gefärbten Wasser vorsichtig ins Tiefkühlfach und warte etwa einen halben Tag.

Wenn das Herz vollständig gefroren ist, geht es weiter:

  1. Nimm das Herz aus dem Tiefkühlfach, löse das Eis aus der Form (falls es festgefroren ist: spüle die Form kurz mit warmem Wasser ab und drücke das Eis sofort heraus). Falls du Frischhaltefolie zum Abdichten verwendet hast, löse sie so vollständig wie möglich vom Eis.
  2. Lege das Herz auf das Tablett mit Rand. Ich habe weisse Küchentücher untergelegt, damit auf meinem schwarzen Backblech die Farben besser sichtbar bleiben.
  3. Streue Salz auf das Eis-Herz (sei dabei nicht sparsam). Das Eis wird um das Salz herum besonders schnell zu schmelzen beginnen.Streue Salz auf das Herz
  4. Verdünne die Acrylfarbe mit etwas Wasser bzw. rühre Lebensmittelfarbe in Wasser ein.
  5. Giesse die farbige Flüssigkeit vorsichtig über das Herz und beobachte.Giese Farbe über das gesalzene Herz

 

Was du beobachten kannst

  • Wenn du das gefrorene Herz aus dem Tiefkühlfach nimmst, wird es bei Raumtemperatur sehr langsam zu schmelzen beginnen.
  • Dort, wo du Salz darauf streust, wird das Eis sehr viel schneller tauen. Mit der Zeit fressen sich regelrecht Ritzen und Spalten in das Eis.
  • Wenn du farbige Flüssigkeit über das schmelzende Eis-Herz giesst, wird sie in und durch die Spalten laufen und die feinen Verästelungen deutlich sichtbar machen.

    im schmelzenden Eis - Herz bilden sich Furchen

    Hier ist schon einiges weggeschmolzen. Der Boden der Springform hatte eine karierte Struktur, die zu einer sehr regelmässigen Verteilung der Spalten beigetragen hat.

  • Nimm dir Zeit und beobachte das faszinierende Farbenspiel und die filigranen Strukturen, die das schmelzende Eis bildet! Wenn du eine Kamera hast, kannst du auch herrlich surreale Bilder davon machen!

    Acrylfarbe auf schmelzendem Eis

    Die stark verdünnte Farbe verläuft sich schnell. Mit reiner Acrylfarbe werden die Aushöhlungen und Schluchten noch besser sichtbar!

[yellow_box]

Wie geht das Schmelzen vor sich?

Alle Stoffe bestehen aus winzigkleinen Teilchen. Die Art und Weise, wie wir die Stoffe wahrnehmen, hängt vom Verhalten dieser Teilchen – und vor allem von den Wechselwirkungen zwischen ihnen – ab.

Feststoff oder Flüssigkeit: Eine Frage der Bewegung

(Wasser-)Eis und Wasser sind ein und derselbe Stoff. Je nach herrschender Temperatur erscheint uns dieser Stoff fest oder flüssig (oder – bei ausreichend hoher Temperatur – sogar gasförmig: als Wasserdampf). Diese Erscheinungsformen – welche Chemiker und Physiker “Aggregatzustände” nennen – sind das Ergebnis unterschiedlicher Beweglichkeit der winzigen Stoffteilchen.

Im Feststoff sitzt längst nicht alles fest

In einem Eisblock, das heisst bei Temperaturen unter 0°C, sind die Wasserteilchen auf festgelegten Positionen angeordnet. Die Teilchen wechselwirken dabei mit ihren Nachbarn: Anziehung zwischen den Teilchen sorgt dafür, dass sie auf ihrem Platz bleiben, und die Ausrichtung dieser anziehenden Wechselwirkungen (im Fall von Wasserteilchen sind das vornehmlich sogenannte “Wasserstoffbrücken”) bestimmt das Muster der Anordnung. Die Teilchen sind also zu einem sich immer wiederholenden “Gitter” angeordnet, das wir – wenn es gross genug ist – als Festkörper wahrnehmen: Zum Beispiel als gefrorenes Herz.

Die Stoffteilchen sind allerdings ziemlich unruhige Gesellen. Ständig zittern und zappeln sie auf ihren Plätzen im Gitter herum – je höher die Temperatur des Ganzen ist, desto heftiger. Erst wenn man die Temperatur des Festkörpers auf den absoluten Nullpunkt (also 0 Kelvin oder -273,15°C) senken würde, wären die Teilchen im Gitter vollkommen ruhig.

Flüssigkeiten: Ein lebhaftes Gedränge

In einer Flüssigkeit gibt es keine festen Plätze mehr. Die Wasserteilchen in flüssigem Wasser bewegen sich weitestgehend frei gegeneinander, werden aber durch die anziehenden Wechselwirkungen nah beieinander gehalten. So geht es in der Flüssigkeit zu und her wie in einer bewegten Menschenmenge: Es strömt und fliesst und drängt hierhin und dorthin, und ununterbrochen ist man mit anderen auf Tuchfühlung. Wer schon einmal auf einer Grossveranstaltung wie der Street Parade in Zürich war, weiss, wovon ich schreibe.

Wie eine grosse Menschenmenge werden auch die Teilchen einer Flüssigkeit jeden Behälter, in welchen man sie gibt, bis zur letzten Ecke ausfüllen und sich dabei der Schwerkraft folgend von unten nach oben aufschichten.

Drei Aggregatzustände im Modell

Stoffteilchen in drei Aggregatzuständen, wie du sie im Alltag beobachten kannst: Fest, flüssig, gasförmig

Aus fest wird flüssig: Der Schmelzvorgang

Unser gefrorenes Herz wird im Tiefkühlfach höchstens bis auf schlappe -18°C abgekühlt. Und bei Raumtemperatur wird es dann allenfalls noch wärmer. “Wärme” ist dabei nichts anderes als die Bewegung der Stoffteilchen: Je wärmer ein Stoff ist, desto grösser ist das Gezappel. Dabei können die herumzappelnden oder -flitzenden Teilchen eines Stoffes ihre Nachbarn anrempeln und ebenfalls in Bewegung versetzen.

Das tun zum Beispiel die Luft-Teilchen, die – wie in einem Gas üblich – völlig ungebunden im Raum herumsausen. Wenn sie auf ihrem Weg gegen die Oberfläche des Eisherzens rempeln, versetzen sie die Wasserteilchen im Gitter in Schwingung: Die Eis-Oberfläche wird wärmer.

Und wenn die Temperatur des Eises dabei 0°C erreicht, kann die Wärme-Energie auf noch andere Weise verwendet werden: Um die Wasser-Teilchen an der Eis-Oberfläche aus dem Gitter zu lösen. Die dafür aufgewendete Energie wird Schmelzwärme genannt – ich habe sie kürzlich hier näher erklärt.

Die aus dem Gitter gelösten Teilchen bleiben zunächst dicht beieinander, bewegen sich dabei aber weitgehend frei: Sie bilden eine Flüssigkeit – flüssiges Wasser.

Ein Festkörper schmilzt also von aussen nach innen, denn von aussen kommt die Wärme und nach aussen können die Flüssigkeits-Teilchen davonfliessen. Dabei ist ein Teilchen im Gitter umso mehr Rempeleien ausgesetzt, je mehr “Seiten” es hat, die nach aussen weisen. Vorspringende Ecken und Kanten schmelzen also schneller als ein massiver Block, der eine kleine Oberfläche hat, die mit warmer Luft in Berührung kommen kann!

Was das Salz dazu tut

Kochsalz-Teilchen mischen sich sehr gut mit flüssigem Wasser. Das führt dazu, dass die Wasserteilchen aus dem Eis nicht erst bei 0°C, sondern schon bei niedrigeren Temperaturen (bis -17°C !) aus dem Gitter gelöst werden. Wie das vor sich geht, habe ich hier erklärt.

Wenn wir Salz auf unser Herz streuen, lösen sich die Wasserteilchen in der direkten Umgebung der Salzkörner demnach schneller aus dem Gitter. So entstehen zunächst Mulden, dann regelrechte Ritzen und Spalten in der Eis-Oberfläche, an deren Wänden nun viel mehr Wasserteilchen den Rempeleien der wärmeren Luft bzw. des flüssigen Wassers ausgesetzt sind. So wachsen die Ritzen und Spalten schnell weiter.

Wenn wir nun farbige Teilchen (zum Beispiel Acryl- oder Lebensmittelfarbe) mit den Wasserteilchen mischen, werden die Ritzen, durch die das farbige Wasser-Farbstoffgemisch fliesst, sehr gut sichtbar.

[/yellow_box]

Entsorgung

Wasser mit Lebensmittelfarben und Resten von wasserlöslichen Acrylfarben zum Basteln kann in den Ausguss entsorgt werden! Grössere Mengen Acrylfarbe solltest du eintrocknen lassen (oder besser zum Malen verwenden!) und in den Hausmüll geben.

Ideen zum Weiterexperimentieren

  • Du kannst das Experiment natürlich auch zu jedem anderen Anlass bringen: Anstelle der Herzform funktionieren weihnachtliche, Oster- und andere Formen ebenso gut.
  • Du kannst zudem mit verschiedenen Farbtönen experimentieren und (leider recht vergängliche) Eiskunst kreieren und fotografieren.
  • Was ich noch nicht ausprobiert habe: Was geschieht, wenn man das Herz mitsamt Ritzen und Spalten wieder einfriert und später eine andere Farbe zum Giessen verwendet?

Ich wünsche dir viel Spass beim Herzen schmelzen – sowohl derer aus dem Tiefkühlfach als auch derer deines/r Liebsten!

Experiment: Das Geheimnis des schwarzen Filzstifts

DIY-Experiment: Entdecke verborgene Farben!

Farbenfrohe Papier-Chromatographie – ganz einfaches Experiment für die jüngeren Forscher

Das neue Jahr mit Keinsteins Kiste ist fulminant gestartet. Es gab nämlich diese Woche eine Premiere: Die Kiste gibt es jetzt nämlich auch zum Anfassen und Mitmachen – als “rollendes Chemielabor” voller spannender Experimente, das in Schulen und zu Events aller Art kommt (mit mir natürlich). Ihren ersten Einsatz hatte die rollende Kiste am letzten Dienstag im hiesigen Primarschulhaus Steg zum Science-Projekttag der Primar- (d.h. Grund-)schüler, die dort lernen.

Wir haben verschiedene Stoffgemische getrennt – doch an einem Experiment hatten die Kinder besonders Freude: Am Geheimnis des schwarzen Filzstifts. Das ist nämlich überraschend farbig. Und Farben regen die Kreativität von Kindern ganz besonders an. Ich zeige euch heute, wie ihr dieses kleine, schnelle Experiment ganz einfach nachmachen könnt!

Was ihr dazu braucht

  • einen schwarzen, wasserlöslichen (!) Filzstift
  • saugfähiges weisses Papier (z.B. Papierservietten oder Filterpapier)
  • ein Glas mit weiter Öffnung
  • Wäscheklammern
  • gegebenenfalls einen Bleistift oder Schaschlik-Spiess
  • Wasser

Material: Was ihr für die Papierchromatographie braucht

Wie ihr das Experiment durchführt

  • Schneidet euer Papier in Streifen, die etwas länger sind als das Glas hoch ist.
  • Zeichnet mit dem Filzstift einen gut sichtbaren Querstrich auf ein Ende eines Papierstreifens (der Strich darf sich nicht ganz am Rand des Streifens befinden!).

Schwarzer Querstrich auf Serviette

  • Füllt das Glas 0,5 bis 1cm hoch mit Wasser.
  • Taucht das bemalte Ende des Streifens vorsichtig ein wenig ins Wasser ein (der Strich darf nicht mit eintauchen!) und klemmt den Streifen gerade so eingetaucht mit einer Wäscheklammer am Glasrand oder dem quer darüber liegenden Spiess fest.
  • Wartet ab und beobachtet. Der Filzstift-Strich wird sein Geheimnis innerhalb von einigen Sekunden oder wenigen Minuten offenbaren!
Papierchromatographie mit Spiess und am Glasrand

Links: Variante für Gläser mit senkrechtem Rand: Der Papierstreifen ist am Glas befestigt. Rechts: Variante für Gläser beliebiger Form: Der Papierstreifen hängt an einem Stab, der quer über dem Glas liegt.

Was geschieht hier?

Stoffe wie Wasser und Filzschreiberfarben bestehen aus unzähligen winzigen Teilchen. Dabei hat jeder Stoff seine eigene Teilchen-Sorte mit eigenen Eigenschaften. Ein DIY-Versuch, welcher zeigt, dass es diese Teilchen gibt, und eine nähere Erklärung zum “Teilchenmodell” findet ihr hier. Einem Stoff sieht man mit nacktem Auge nicht immer an, ob er aus nur einer oder mehrerer Teilchensorten besteht (und damit eigentlich ein Stoffgemisch ist).

Um herauszufinden, ob man es mit einem Gemisch zu tun hat, und wie viele Stoffe daran beteiligt sind, muss man die Teilchen voneinander trennen und nach Sorten sortieren. Dazu nutzen Chemiker häufig aus, dass die verschiedenen Stoffteilchen sich unterschiedlich schnell bewegen, wenn es mal eng wird.

Viele Feststoffe sind nicht so fest und massiv, wie sie aussehen. Stattdessen sehen sie aus wie ein Stück Emmentaler-Käse oder ein Schwamm – mit vielen, vielen Löchern oder «Poren». Diese Löcher sind so klein, dass wir sie mit nackten Auge nicht sehen können – manchmal fast so klein wie Stoffteilchen. Das Filterpapier von Station 2 ist so ein Schwamm – und andere Papiersorten auch. Deshalb können wir Papier als eine Art Hindernis-Rennbahn für Stoffteilchen gebrauchen!

Die Wettläufer auf dieser Rennbahn sind die Stoffteilchen, aus denen die Flüssigkeit im schwarzen Filzstift besteht. Das aufsteigende Wasser schwemmt die Stoffteilchen aus dem Filzstift-Strich durch das Papier. Die Teilchen, die am leichtesten ihren Weg durch die Poren des Papier-Schwamms finden, kommen dabei am weitesten – die Teilchen, die am langsamsten durch den Schwamm finden, kommen am wenigsten weit!

Die Tinte aus meinem Filzschreiber besteht aus (mindestens) drei leicht trennbaren Farbstoffen: blau, orange und rosarot!

Die Tinte aus meinem Filzschreiber besteht aus (mindestens) drei leicht trennbaren Farbstoffen: blau, orange und rosarot!

Mögliche Varianten zum Ausprobieren

  1. Welches ist das beste Papier? Die Geschwindigkeit, mit welcher die Farbstoffe sich im Papier verteilen, hängt von der Durchlässigkeit des Papiers, also der Dichte der Hindernisse auf der “Rennbahn” ab. Ein “langsames” Papier führt zu einer deutlicheren Trennung der Farben, erfordert aber mehr Geduld. Für die grösseren Forscher habe ich das Farbschreiben zur Trennung von Farbstoffen aus Pflanzenblättern vorgestellt und dazu normales Schreibpapier verwendet. Das “Rennen” darin dauert mindestens eine Stunde – dafür sind die Farbstoffe nachher als klar trenn- und miteinander vergleichbare “Banden” zu erkennen. Probiert einfach selbst aus, welches Papier sich am besten für eure Zwecke eignet!
  2. Ist einzig schwarze Tinte ein Stoffgemisch? Nicht nur schwarze Filzstifte bergen ein Geheimnis. Wenn ihr andere Filzstifte zur Hand habt, versucht herauszufinden, welche Farben ebenfalls aus mehreren Farbstoffen zusammengemischt sind!
  3. Kunst und Forschen lassen sich vereinen! Nicht nur ein einfacher Strich lässt sich trennen! Ebenso gut könnt ihr Muster auf euer Papier schreiben – oder mehrere Farben auf einem Streifen laufen lassen. Der Fantasie sind keine Grenzen gesetzt!
  4. Und was ist mit wasserfesten Tinten? Das Farbschreiben mit Wasser als “Antrieb” funktioniert nur mit wasserlöslichen Filzschreibern. Wasserfeste Tinten, zum Beispiel aus Permanent-Markern, CD-Schreibern und anderen Stiften, lösen sich wie die Blatt-Farbstoffe nur in passenden organischen Lösungsmitteln. Wenn ihr solche Tinten trennen möchtet, versucht es am besten mit Ethanol (Brennsprit, Spiritus) oder Aceton (z.B. aus dem Malerbedarf im Baumarkt). Fleckbenzin verdunstet sehr schnell und bringt zusätzliche Gefahren mit sich, weshalb es weniger Achtung! Organische Lösungsmittel sind leicht entzündlich! Niemals in der Nähe von offenem Feuer damit arbeiten!

Ich wünsche euch viel Spass beim Nachmachen – bringt Farbe in den grauen Winter! Und wenn ihr in der Deutschschweiz lebt und rollende Chemielabor hautnah erleben möchtet, findet ihr alle Informationen dazu in meiner Lernkiste!

Farben, Licht und Glanz – Warum die Welt uns bunt erscheint

,
Farben, Licht und Glanz: Wie Stoffe zu ihrem Aussehen kommen

Es ist Herbst geworden. Die Blätter an den Bäumen färben sich leuchtend gelb, orange oder rot. Am zurückliegenden herrlichen Oktober-Wochenende schien die Sonne vom strahlend blauen Himmel, und wir haben braune Walnüsse aus dem noch saftig grünen Gras unter den Nussbäumen gesammelt.

Aber warum sind all diese Dinge eigentlich bunt? Unter welchen Umständen erscheinen Stoffe uns farbig? Und warum sind andere Stoffe farblos oder sogar durchsichtig, wie Glas? Und warum glänzen wieder andere wie ein blanker Spiegel?

 

Wie wir Farben sehen

Um zu erfahren wie Farben, Transparenz und Glanz entstehen, solltest du wissen wie der menschliche Sehsinn funktioniert. Unsere Augen funktionieren nämlich ganz ähnlich wie eine Kamera: Wir “sehen” Licht, welches durch unsere Augäpfel (deren Innenleben im Normalfall durchsichtig ist) auf die Netzhaut fällt und dort chemische Reaktionen auslöst. Die Produkte dieser Reaktionen führen zu elektrischen Signalen, die über den Sehnerv an das Gehirn weitergeleitet und dort zu einem Bild interpretiert werden. Die Ausgangsstoffe für die Reaktionen zur Erzeugung eines einfachen “Hell”-, aber auch von Farb-Signalen sind Abkömmlinge von Vitamin A bzw. Retinol, Varianten des “Seh-Stoffs” Retinal.

Licht ist aber nicht gleich Licht, sondern kommt in unterschiedlichen Wellenlängen, d.h. mit unterschiedlicher Energie daher. Die Bandbreite möglicher Wellenlängen reicht dabei von extrem langwelligen (und energiearmen) Radiowellen bis zu energiereicher Röntgen- oder gar Gamma-Strahlung mit extrem kurzen Wellenlängen. Das menschliche Auge ist in der Lage einen kleinen Teil dieses Spektrums (eine grafische Darstellung des gesamten Licht-Spektrums findest du hier), das “sichtbare Licht”, wahrzunehmen und nach Wellenlängen zu unterscheiden.

Dazu gibt es in der Netzhaut drei verschiedene Arten von Zapfen-Zellen, welche nach ihrer jeweiligen Licht-Empfindlichkeit benannt sind. In den K-Zapfen reagiert eine Retinal-Variante mit kurzwelligem (violetten bis blauen), in den M-Zapfen mit mittelwelligem (blaugrünen bis gelben), und in den L-Zapfen mit langwelligem (orangegelben bis roten) Licht.

Das erinnert nicht umsonst an das gängige RGB-Farbschema zur Darstellung von Farben auf dem Computerbildschirm. Dieses nutzt schliesslich aus, was unser Gehirn tut: Es mischt sich aus den “blau”-, “grün”- und “rot”-Signalen der Netzhaut-Zapfen die gesehenen Farben zusammen. Da sich die Wellenlängenbereiche, die in den jeweiligen Zapfen Reaktionen auslösen, überlappen, erzeugt jede Wellenlänge ihre ganz eigene Kombination von Signalen, die das Gehirn auf 1 bis 2 Nanometer Licht-Wellenlänge genau bestimmen kann. Wir können damit 200 verschiedene Farbtöne sehen, jeden für sich in unterschiedlichen Sättigungen (Grau-Beimischungen).

Wenn die Netzhaut alle möglichen Farben gleichzeitig, oder zumindest die Signale für zwei “komplementäre” Farben zusammen empfängt, macht das Gehirn daraus die Information “weiss”.

Farbenkreis: Komplementärfarben liegen einander gegenüber

Im Farbkreis liegen Komplementärfarben einander gegenüber. Nebeneinander nehmen wir sie grösstmöglicher Kontrastwirkung wahr, während das Gehirn ihre Überlagerung als ‘weiss’ interpretiert. (by Benutzer:Golden arms (von mir erstellt) CC-BY-SA-3.0 via Wikimedia Commons])

Weiss entspricht also keiner eigenen Licht-Wellenlänge, sondern einer Zusammenstellung verschiedener Wellenlängen. Wenn man eine Farbe also als bestimmte Wellenlänge sichtbaren Lichts definiert, ist Weiss keine Farbe.

 

Warum sehen Stoffe bunt aus?

Das Licht, das unseren Tag erhellt, kommt üblicherweise von der Sonne oder von elektrischen Leuchtmitteln und erscheint uns weiss. Tatsächlich ist dieses Tagelicht ein Gemisch von Lichtwellen aller Wellenlängen (nicht nur) im sichtbaren Bereich (für Sonnenlicht gelten einige Ausnahmen, aber das ist eine andere Geschichte!). Wer dafür einen Beweis möchte, besorge sich ein Prisma – das ist ein durchsichtiger, symmetrischer Gegenstand, der das weisse Licht in seine farbigen Bestandteile “bricht”.

Prisma : zerlegt das Licht in seine Farben

Weisses Licht besteht aus Lichtwellen aller Farben: Das weisse Lichtbündel kommt von links unten und wird an der Oberfläche des Prismas teilweise reflektiert (ein kleineres Lichtbündel geht nach oben ab). Der Rest wird beim Austritt aus dem Prisma rechts abhängig von der jeweiligen Wellenlänge gebrochen: Die unterschiedlichen Farben der Lichtwellen werden sichtbar. (by Spigget (Own work) [CC BY-SA 3.0via Wikimedia Commons])

Wenn wir direkt in eine Lampe (aber niemals direkt in die Sonne!!) schauen, sehen unsere Augen das Licht, wie es aus der Glüh- (oder Leuchtstoff-)birne kommt: alle Wellenlängen miteinander, und das Gehirn interpretiert “weiss”. Wenn das weisse Tageslicht aber zunächst auf einen Rasen fällt und dann unser Auge erreicht, nehmen wir “grün” wahr. Was ist mit dem Licht passiert?

Elektronen bewegen sich im atomaren Hochhaus

Gras enthält Moleküle des Stoffs Chlorophyll, die aus verschiedenen Atomen zusammengesetzt sind. Diese Atome sind (wie alle Atome) mit “Wolken” umgeben, welche ihre Elektronen enthalten. Im Molekül sind diese Wolken teilweise miteinander verbunden (die Atome “teilen” ihre Elektronen miteinander, was sie zusammenhält: eine chemische Bindung entspricht solch einer “Gemeinschaftswolke”).

Jedes Elektron, das sich in solch einer Wolke befindet, hat eine ganz bestimmte, der Position “seiner” Wolke entsprechende Energie, sodass die Elektronenhülle eines Atoms mit einem Hochhaus mit vielen von Elektronen bewohnten (und unbewohnten) Etagen vergleichbar ist. Analog zur klassischen Mechanik, gemäss der jemand, der nach oben will, Energie aufnehmen muss (die Treppe raufgehen ist anstrengend!), entsprechen die “oberen” Wolken (oder “Orbitale”) im atomaren Hochhaus viel Energie, während “darunter” Wolken mit weniger Energie zu finden sind.

Fällt nun ein Lichtquant (eine elementare Portion einer Lichtwelle) mit passender Energie auf ein Elektron in einer niedrigen Wolke, kann das Elektron mit dieser Energie in eine höher gelegene, leere Etage umziehen. Das Lichtquant entspricht also einer Schlüsselkarte für den Fahrstuhl, welche diesen veranlasst eine bestimmte Strecke nach oben zu fahren. Wenn sich genau dort eine Fahrstuhltür zu einer leeren Etage öffnet, kann das Elektron aussteigen und einziehen (wenn nicht, d.h. wenn der Fahrstuhl an seinem Ziel vor einer Wand halten würde, tritt es die Fahrt erst gar nicht an).

Anregung von Elektronen durch Lichteinfall: Das Schema stellt stark vereinfacht die Besetzung von Energieniveaus bzw. “Etagen” im atomaren Hochhaus durch Elektronen (blaue Kreise) dar. Die Energie von sichtbarem Licht, das auf ein Atom im Grundzustand (1) fällt, entspricht genau dem markierten Abstand zum übernächsten Energieniveau (blauer Pfeil). Das Elektron absorbiert das Licht und zieht um in den angeregten Zustand (2). Der Weg zurück in den Grundzustand (3) verläuft für dieses Elektron in zwei Schritten über das Zwischengeschoss: Die entsprechenden Energien bzw. Licht-Wellenlängen liegen im Infrarot-Bereich und sind damit nicht sichtbar.

 

Die Energie des Lichtquants wird bei einem erfolgreichen Umzug vom Elektron absorbiert, also “geschluckt”, und wird erst wieder abgegeben, wenn das Elektron wieder in seine vorherige, tiefer gelegene Etage zurückkehrt (da es dazu häufig die “Treppe” benutzt und die Energie auf dem Weg über Zwischengeschosse in kleineren, also langwelligeren, für uns unsichtbaren Portionen (im Infrarot-Bereich) abgibt, sehen wir das einmal absorbierte Licht oft nicht mehr wieder).

Das Farben-Hochhaus des Chlorophylls

Die Abstände zwischen den Wolken-Etagen eines Chlorophyll-Moleküls sind nun genau so beschaffen, dass vornehmlich “rote” Lichtquanten die Elektronen zu einer höher gelegenen Aufzugtür und damit auf ein höheres Energieniveau befördern können. Wenn also weisses Licht auf das Chlorophyll im Gras fällt, werden darin enthaltene rote Lichtwellen von aufzugfahrenden Elektronen geschluckt. Alle übrigen Wellen werden unverrichteter Dinge wieder zurückgeschickt (reflektiert) und können in unser Auge gelangen und als “alles ausser rot” empfangen werden. Und das Signal für “alles ausser rot” entspricht für das Gehirn “grün”.

Wenn wir einen farbigen Gegenstand sehen, weil er von weissem Licht beleuchtet wird, sehen wir also den Rest des weissen Lichts, der nicht von den Elektronen im Gegenstand geschluckt bzw. absorbiert worden ist.

Manche Stoffe haben genügend verschiedene Wolken-Etagen, um Lichtwellen aller sichtbaren Wellenlängen zu schlucken, sodass keine davon unser Auge erreicht. Solche Stoffe erscheinen uns schwarz. Damit ist Schwarz streng genommen auch keine Farbe, sondern einfach “dunkel” bzw. “kein Licht”. Andere Stoffe, die (mangels passender Etagen-Abstände) gar kein sichtbares Licht absorbieren können, erscheinen uns dagegen weiss.

Was farbig leuchtet

Selbst leuchtende Stoffe funktionieren übrigens genau umgekehrt. Die orange-gelb strahlenden Strassenlaternen, die man mancherorts findet, enthalten zum Beispiel Natrium-Atome, deren Elektronen mittels der Energie aus elektrischem Strom nach “oben” umziehen, d.h. angeregt werden. Anschliessend fahren sie mit dem Fahrstuhl wieder nach “unten” auf ihre Ausgangs-Etage (den Grundzustand) und geben dabei je ein Lichtquant mit der zugehörigen “gelben” Wellenlänge ab (genauer gesagt gibt es im Natrium-Atom zwei sehr ähnliche “gelbe” Abstände, die so überbrückt werden können).

Wenn wir etwas farbig leuchten sehen, nehmen wir Licht mit genau den Wellenlängen wahr, die von angeregten Elektronen bei der Rückkehr in den Grundzustand abgegeben bzw. emittiert worden sind.

Dass wir auch im gelben Licht einer Natrium-Lampe erkennen, dass ein Stück Papier weiss ist, obwohl es nur gelbes Natrium-Licht an unser Auge weiterschicken kann, haben wir übrigens der Photoshop-Software unseres Gehirns zu verdanken, die weiss, dass das Papier weiss zu sein hat und das empfangene Bild entsprechend bearbeitet.

 

Warum glänzen Metalle?

Ein Stück Metall besteht aus einem einzigen Riesenverbund gleichartiger Atome, die sich allesamt eine Riesen-Elektronenwolke teilen (Chemiker sprechen hier gern von einem “Elektronen-Gas”). Solch eine Wolke, die Etagen aller daran beteiligten Atome umfasst, kommt auf so viele dicht beieinander liegende Wolken-Etagen bzw. Energieniveaus, dass sich diese gar nicht mehr auseinanderhalten lassen.  Entsprechend können sich die Elektronen des Metalls frei in der Riesenwolke bewegen und jede sichtbare Licht-Wellenlänge zum Umziehen absorbieren.

Demnach sollten Metalle also schwarz sein (nur sehr wenige Metalle, vornehmlich Gold und Kupfer, haben dennoch eine Farbe). Die freie Beweglichkeit erlaubt den Elektronen jedoch auch, ebenso leicht mit dem Fahrstuhl nach unten zu fahren wie sie nach oben gekommen sind, sodass sie ein absorbiertes Lichtquant bei ihrer Rückkehr in die untere Etage unverändert wieder abgeben können. Wenn das an einer polierten, d.h. gleichförmigen Oberfläche aus gleichartigen Atomen passiert, kommt das Licht genauso wieder zurück, wie es auf die Oberfläche getroffen ist.

Fällt solches Licht von einer Lichtquelle zuerst auf unser Gesicht, dann auf eine glatte Metalloberfläche und schliesslich zurück in unser Auge, sehen wir uns selbst in einem “Spiegel”. Deshalb wird “Metallglanz” auch “Spiegelglanz” genannt. Manche Mineralien (besonders solche, die viele Metallatome enthalten), sind reinen Metallen in ihrem Aufbau übrigens so ähnlich, dass sie ebenfalls Spiegelglanz zeigen, obwohl sie chemisch keine Metalle, sondern Ionenverbindungen sind.

Pyrite-49354

Pyrit oder “Katzengold” ist ein Mineral, das aus Eisen- und Schwefel-Ionen besteht. In seinem Aufbau ist es einem Metall dennoch so ähnlich, dass die glatte Oberfläche der Kristalle das Licht spiegelt. (by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC BY-SA 3.0], via Wikimedia Commons)

Metalle glänzen, weil ihr “Elektronen-Gas” sichtbares Licht nicht nur uneingeschränkt absorbieren, sondern ebenso wieder abgeben kann. An einer glatten, gleichförmigen Oberfläche wird das Licht somit genauso reflektiert, wie es gekommen ist.

 

Warum ist Glas durchsichtig?

Ein Stück Glas ist chemisch ähnlich aufgebaut wie ein Quarzkristall (der ist auch durchsichtig). Beide bestehen aus Silizium- und Sauerstoff-Atomen (in dem Glas, das wir im Alltag nutzen, kommen noch verschiedene andere Elemente dazu, die dem Glas weitere erwünschte Eigenschaften geben), die zu einem einzigen Riesenmolekül verbunden sind.

Im Kristall sind Atome und Bindungen in einem regelmässigen, sich stetig wiederholenden Gitter angeordnet (das macht einen Kristall aus), während die Atome im Glas zu einem ungeordneten Netzwerk verknüpft sind: Glas ist eine Flüssigkeit, die erstarrt ist, ohne dass die Teilchen darin sich zu einem Kristall hätten ordnen können – eine “unterkühlte Schmelze”.

Quarz_vs_Glas

Aufbau von Quarzkristall und Quarzglas: Im Quarzkristall sind Silizium- (rot) und Sauerstoffatome (blau) regelmässig angeordnet. Im Glas bilden sie ein ungeordnetes Netzwerk. In beiden Stoffen sind die Elektronen fest an ihre jeweiligen Atome gebunden, sodass sie mit sichtbarem Licht nicht wechselwirken können.

Sowohl im Kristall als auch im Glas sind die Elektronen den einzelnen Atomen und Bindungen fest  zugeordnet. Daraus ergeben sich grosse Abstände zwischen den Orbitalen bzw. “Wolken-Etagen”, die vornehmlich mit der Energie von UV-Licht überwunden werden können (tatsächlich ist Glas für UV-Licht “undurchsichtig”: Hinter Glas bekommt man so schnell keinen Sonnenbrand!). Licht mit Wellenlängen im sichtbaren Bereich kann hingegen keine Elektronen im Glas anregen (zum Umziehen bewegen) und geht somit unverändert hindurch.

Anders als in weissen, undurchsichtigen Stoffen wird das Licht in Glas zudem nicht nennenswert gestreut: Eine gleichmässige Streuung von Licht verschiedener Wellenlängen findet nur an Strukturen statt, deren Grösse in der Grössenordnung dieser Wellenlängen liegt – für sichtbares Licht sind das einige hundert Nanometer. Atome und kleine Moleküle, aber auch Atomgruppen in einem Kristall oder Glas sind hingegen mindestens 1000 mal kleiner.

Glas ist also durchsichtig, weil sichtbares Licht weder die richtige Wellenlänge hat, um von den fest verorteten Elektronen des Materials absorbiert, noch um darin gestreut zu werden.

Während es draussen zunehmend grauer und dunkler wird, werden die Oktober-Geschichten in Keinsteins Kiste ganz im Zeichen von Licht und Farben stehen. Macht euch auf spannende Entdeckungen und Phänomene gefasst!

 

Und was ist deine Lieblingsfarbe? Oder bist du vielleicht sogar farbenblind?