Tag Archive for: Pflanzen

13 Experimente im Sommer

Die Sonne verwöhnt uns an langen, warmen Tagen. Ab und zu sorgen lauer Regen oder wilde Gewitter dafür, dass indes alles grünt und blüht. Der Sommer ist eine tolle Zeit für Experimente im Garten oder auf dem Balkon. In Keinsteins Kiste findet ihr viele spannende Anregungen, wie ihr die Natur um euch erforschen, die Sonnenenergie für Experimente nutzen oder einfach draussen Spass haben könnt. Was macht Blätter grün? Welche buchstäblich coolen Experimente eignen sich für heisse Tage? Oder wollt ihr lieber eine Rakete starten?

In dieser Sammlung von Sommer-Experimenten werdet ihr fündig!

Sicherheit – für euch und euren Garten

Wenn ihr draussen experimentiert, beachtet die gleichen Sicherheits-Grundregeln wie beim Experimentieren drinnen: Sucht euch einen spritz- und allenfalls feuerfesten Experimentierplatz, tragt passende Schutzkleidung (Malschürze wie beim Umgang mit Wasserfarben und bei aggressiven Stoffen Schutzbrille) und esst und trinkt nicht dort, wo ihr experimentiert!

Meine Checkliste zum sicheren Experimentieren findet ihr hier in Keinsteins Kiste zum Download.

Wenn ihr draussen experimentiert, habt ihr zudem einen unbestrittenen Vorteil: Für eine gute Belüftung ist immer gesorgt. Achtet aber darauf, dass eure Nachbarn nicht zu sehr unter stinkenden Experimenten leiden, falls ihr solche durchführt. Oder ladet sie einfach zum Mitforschen ein.

Ganz wichtig ist jedoch: Achtet darauf, dass keine flüssigen oder festen Bestandteile eurer Experimente an die Pflanzen oder in den Boden eures Gartens oder eurer Balkonkübel gelangen!

Das gilt besonders für Säuren und Basen wie Essig oder Natron und Seifen! Die können nämlich nicht nur unsere Haut, sondern auch Pflanzenteile beschädigen. Säuren und Basen können in grösseren Mengen zudem den pH-Wert im Boden so verändern, dass das Leben darin gehörig durcheinander gerät.

Seifen, genauer die Tenside darin, stören den Stoffaustausch zwischen Kleinstlebewesen und dem Wasser in ihrer Umgebung. So können sie für das Leben im Boden sehr gefährlich werden.

Sorgt deshalb für eine schützende Unterlage an eurem Experimentierplatz: Eine Maltischdecke, ein Tablett oder Backblech oder eine Plane auf dem Rasen können euch gute Dienste leisten.

Wenn ihr diese Sicherheitsvorkehrungen beachtet, steht dem Experimentierspass ohne Schaden an euch oder eurem Garten nichts mehr im Wege! Also los:

13 Experimente für draussen

Blätter transportieren Wasser – Ein Kontrollversuch macht es sichtbar

Experiment: Blätter transportieren Wasser - und warum ein Kontrollversuch wichtig ist

Mit diesem einfachen Experiment könnt ihr nicht nur sichtbar machen, dass Pflanzen trinken und schwitzen – und auf diese Weise Wasser aus dem Boden (oder einer Vase) in die Luft transportieren. Ihr könnt auch die Bedeutung eines Kontrollaufbaus (einer „Blindprobe“ oder auch einer Kontrollgruppe) für die Bewertung von Versuchsergebnissen aufzeigen. Oft zeigt sich das Ergebnis eines Versuch nämlich erst im Vergleich mit einem Aufbau ohne die entscheidende Zutat richtig deutlich. Das macht solche Kontrollversuche zu einem unverzichtbaren Werkzeug für die grossen Forscher! Da ihr im Sommer reichlich Zweige mit grünen Blättern finden könnt, können auch eure kleinen Forscher einen solchen Vergleich durchführen. Die Anleitung dazu findet ihr hier.

Das geheimnisvolle Leben der Pflanzen

Rund um Pflanzen gibt es ohnehin so viel zu entdecken. Wenn ihr ein Mikroskop habt – schon ein einfaches USB-Mikroskop genügt! – könnt ihr euch den spannenden Aufbau von Blättern ansehen. Unterwegs könnt ihr nach Sonnen- und Schattenblättern oder nach Standort-Spezialisten Ausschau halten. Und wusstet ihr, dass ihr eine Pflanze, die nach einem langen heissen Tag die Blätter hängen lässt, nicht gleich aufgeben müsst? Ihr könnt sie ganz einfach wiederbeleben! Eine ganze Sammlung von Tipps und Anleitungen rund um Pflanzen und ihre Blätter findet ihr hier.

Photosynthese erleben

Blogbild Photosynthese

Pflanzen leben von Luft und Licht…und von Wasser natürlich. Weitere Nährstoffe brauchen sie nur in vergleichweise winzigen Mengen. So kommt es, dass die wilden Gewächse, in die sich selbst unsere Topfpflanzen im Zimmer manchmal verwandeln, uns immer wieder zum Staunen bringen. Das Geheimnis dahinter: Pflanzen bauen aus CO2 und Wasser mit Hilfe von Lichtenergie Kohlenhydrate – die Bestandteile ihrer selbst – auf. Dabei entsteht praktischerweise Sauerstoff als Abfall. Den Vorgang, der dahinter steckt, nennen die Biochemiker Photosynthese. Und ihr könnt nicht nur die Entstehung von Sauerstoff, sondern auch die Bildung von Stärke in Pflanzenteilen einfach nachweisen. Wie das geht, erfahrt ihr hier. 

Raketenstart mit dem perfekt berechneten Treibstoff

Wer eine Rakete starten möchte, braucht möglichst viel Triebkraft bei möglichst wenig Gewicht. Essig und Natron geben einen prima Treibstoff ab, der für euch weitestgehend ungefährlich ist. Hier erfahrt ihr nicht nur, wie ihr aus Abfällen eure eigene Rakete baut, sondern auch wie ihr das perfekte Gemisch für euren Treibstoff ausrechnen könnt. Stöchiometrie nennen Chemiker diese Art zu rechnen. Wenn ihr eure Startrampe auf dem Rasen errichtet, empfehle ich euch eine Plane darunter zum Schutz des Grüns. Denn der Antrieb dieser Rakete beruht zwar darauf, dass Essig und Natron einander neutralisieren. Aber es hat wohl noch kein Raketen-Experiment gegeben, bei dem nicht einmal irgendetwas schief gelaufen wäre!

Spass mit Elefantenzahnpasta

Womit putzen Elefanten sich die Zähne? Mit einer grossen Menge schaumigem Zeug? Könnte man meinen…aber Scherz beiseite. Diesen Schaum solltet ihr besser nicht anfassen – aber Zuschauen allein macht grossen Spass! Auch für diesen Schaumvulkan ist ein Gasentstehung die Triebkraft. Hier sorgt Hefe, die mit Wasserstoffperoxid fertig zu werden versucht, für seine Entstehung. Und damit es richtig schäumt, gehört ein Schuss Seife dazu. Da weder die noch Wasserstoffperoxid gesund für den Garten sind, rate ich auch hier dringend zu einer Auffangwanne. Damit steht dem grossen Spass nichts mehr im Wege. Wie ihr die Elefantenzahnpasta anrichtet – vielleicht in einer grösseren Ausgabe als meiner? – erfahrt ihr hier.

Hefegärung mit Sonnenenergie

Experiment: Gärung - die Superkraft von Hefe

Hefe kann nicht nur blitzschnell Wasserstoffperoxid loswerden, sondern auch, was euren Kuchen zum Aufgehen bringt: Sich ernähren. Die Art und Weise, wie Hefezellen ihre Nahrung „verdauen“, nennt man Gärung. Und dabei entsteht eine richtig grosse Menge CO2. Die kann nicht nur dafür sorgen, dass euer Teig schön fluffig wird, sondern auch einen Luftballon aufblasen. So könnt ihr mit einem solchen die Gärung ganz einfach sichtbar machen! Und da Hefe es gerne lauschig warm hat, liefert die Sommersonne euch die passende Energie dazu. Wie ihr den Versuch macht, erfahrt ihr hier.

Blattfarbstoffe trennen

Wusstet ihr, dass Blätter im Herbst nicht gelb und rot werden, sondern einfach nur nicht länger grün bleiben? Richtig: In einem grünen Blatt sind stets alle seine möglichen Farben enthalten: Grün, Gelb, Rot. Das Grün ist im Sommer bloss derart in der Übermacht, dass es alle anderen Farben überstrahlt. Im Herbst lagern die Pflanzen es jedoch ein, und übrig bleiben Gelb und Rot, bevor ihre Blätter welken und abfallen. Ihr wollt einen Beweis? Mit diesem spannenden Experiment könnt ihr die Farbstoffe aus grünen Blättern trennen und einzeln begutachten! Da ihr dazu Lösungsmittel braucht, ist die gute Belüftung draussen euch dabei ein grosser Vorteil.

Die mysteriöse Pharaoschlange

Dieser faszinierende Partyspass erfordert ein wenig Vorbereitung seitens grosser Forscher – und eine Geheimzutat, die ihr in der Apotheke oder Drogerie kaufen müsst. Welche das ist, verrate ich hier mitsamt der Anleitung und zwei weiteren verblüffenden Experimenten. Das folgende Spektakel lohnt jedoch den Aufwand: Ihr könnt Zucker zum Brennen bringen und beobachten, wie ein mächtiger Aschewurm sich wie von Zauberhand aus dem Sand erhebt und windet! Und wenn ihr das Ganze draussen macht, braucht ihr euch um den Rauchabzug keine grossen Gedanken zu machen. Ein Spass für jede Gartenparty!

Für heisse Tage im Sommer: Herzen schmelzen…

Ein Herz aus Eis

…oder was immer ihr sonst schmelzen lassen wollt. An heissen Tagen sorgt dieses coole Experiment für viel Spass und allfällige Abkühlung. Beobachtet, in welcher Weise Eis schmilzt, beschleunigt den Vorgang mit Salz und erschafft mit bunten Farben surreale Eiswelten. Ganz junge Forscher haben hier ebenso viel Freude wie grössere Kameraleute, die gern farbenfrohe Bilder aufnehmen. Achtet aber darauf, ein Auffangblech oder eine Folie zu verwenden, damit die Farben bleiben, wo sie hingehören und nicht in den Garten laufen! Anleitung und Hintergründe zum Experiment findet ihr hier.

Brausende Herzen schmelzen…mit Essig-Eis

Experiment am Valentinstag: Essigeisherzen in Soda

Für diese Variante des Farbenspiels beim Schmelzen macht ihr Eiswürfel nicht aus Wasser, sondern aus Haushaltsessig! In einer Natron- oder Sodalösung zeigen die beim Schmelzen ihren wahrhaft aufbrausenden Charakter. Mit etwas Tinte oder Lebensmittelfarbe wird das Ganze zudem zu einem weiteren Farbspektakel. Aber bitte nicht trinken – auch wenn sie sich neutralisieren sollten, können Essig und Natron auf Schleimhäute ätzend wirken! Auffangblech oder Plane schützen zudem euren Garten, wenn es hoch her geht. Die Anleitung zum Experiment findet ihr hier.

Eis wächst!

gefrorenes Wasser : Das Glas wird voller

Zur Weiterverwendung zwecks Abkühlung an heissen Tagen ist das Eis aus diesem Experiment geeignet. Wusstet ihr, dass Wasser beim Gefrieren wächst? Das ist eine ganz besondere Eigenschaft dieses allgegenwärtigen Stoffes. Forscher nennen sie auch die „Dichteanomalie“ des Wassers: Sie wissen, dass Wasser bei etwa +4°C am „kleinsten“ ist und, wenn es kälter wird, wieder wächst! Auch dann, wenn es beim Kälterwerden gefriert. Deshalb solltet ihr niemals geschlossene Glasflaschen mit Inhalt ins Gefrierfach legen. Denn wenn der Inhalt zu stark wächst, platzen sie! Wie ihr das Wachstum von Eis ganz ohne Gefahr sichtbar machen könnt, erfahrt ihr dagegen hier.

Kinetischer Sand für drinnen und draussen

Experiment DIY Kinetischer Sand - und wie er funktioniert

Ihr habt Sehnsucht nach dem Strand? Der Sandkasten ist öde geworden? Ihr habt gar keinen Platz dafür? Oder der Sommer ist verregnet? Dann habe ich eine gute Nachricht für euch. Mit diesem Rezept könnt ihr kinetischen Sand ganz einfach selber machen! Mit diesem praktischen Sand können kleine Forscher nach Herzenslust bauen und spielen, ohne dass der berüchtigte Strandferien-Effekt eintritt: Sand überall! Denn diese Sandkörner bleiben beieinander, anstatt sich im Wohnraum zu verteilen. So steht dem Spielspass auf der Terrasse oder sogar drinnen nichts mehr im Wege.

Natur-Bingo für den Sommer-Spaziergang am See

Tier-Bingo am See

Wir haben in diesem besonderen Jahr auf Fernreisen verzichtet und verbringen die Ferien zu Hause. Da gibt es auch so viel zu entdecken! Wenn ihr an einem See oder Teich wohnt oder Urlaub macht, könnt ihr euren Spaziergang durch die Natur dort mit einem spannenden Forscher-Bingo verbinden. Die Anleitung samt Bingokarte zum Ausdrucken findet ihr hier. Wer entdeckt zuerst alle gesuchten Tiere?

Und noch mehr Experimente im Sommer

Viele weitere Versuche in Keinsteins Kiste könnt ihr nicht nur drinnen, sondern ebenso gut auf der Terrasse oder dem Balkon machen. Stöbert und probiert also ruhig nach Herzenslust weiter. Ich wünsche euch viel Spass beim Experimentieren in diesem Forschersommer!

Eure Kathi Keinstein

Und was ist euer Lieblings-Sommer-Experiment? Wenn ihr einen Blog habt oder gerne einmal einen Gastbeitrag schreiben würdet, nehmt damit doch gleich an meiner Jubiläums-Blogparade teil!

Experiment: Blätter transportieren Wasser - und warum ein Kontrollversuch wichtig ist

Es ist Herbst, und langsam färben sich die Blätter bunt. Sie zu sammeln und aufzuheben macht Freude. Aber wenn man nicht achtgibt, rollen sie sich nur zu schnell ein und werden spröde. Aber warum werden lose Blätter trocken? Weil sie nichts mehr zu trinken haben, ist eine naheliegende Antwort. Aber nicht die einzige: Dazu kommt, dass Blätter ständig Wasser an die Luft abgeben – als Wasserdampf, der von ihrer Oberfläche verdunstet.

Dieses Experiment zeigt, wo Pflanzen das Wasser hernehmen – und dass sie es tatsächlich von einem Ort an einen anderen befördern können.

Ihr braucht dazu

  • 2 gleiche Gläser
  • Wasser
  • einen Zweig mit grünen Blättern
  • etwas Speiseöl
  • ggfs. Pasteurpipette (z.B. Deckel einer Nasentropfen-Flasche)
Links: Glas mit einem Blatt einer Glyzine („Blauregen“), Rechts: Kontrolle ohne Blatt
Ich habe Olivenöl verwendet, dass eine gelbliche Farbe hat. Andere Speiseöle sind weniger farbig, funktionieren aber ebenso.
Bei dem dünnen Blattstiel hätte ich aber ewig warten können…

So geht’s

Füllt die Gläser etwa zwei Drittel hoch mit Wasser. Die Füllhöhe soll dabei in beiden Gläsern gleich sein. Schneidet den Zweig am unteren Ende schräg an und stellt ihn in ein Glas. Bedeckt nun die ganze Wasseroberfläche in beiden Gläsern mit einer Schicht Speiseöl. Eine Pipette kann beim sauberen Dosieren helfen. Ausserdem könnt ihr mit der Pipettenspitze das Öl zum Glasrand hin verstreichen, bis es daran kleben bleibt. Stellt anschliessend beide Gläser für einige Stunden, besser einen Tag lang an die Sonne oder in einen warmen Raum.

Mit einem verholzten Zweig vom Kirschbaum samt sieben Blättern konnte ich schliesslich doch einen Effekt beobachten…

Was ihr beobachten könnt

Der Wasserspiegel im Glas mit dem Zweig sinkt mit der Zeit, während jener im Glas ohne Zweig unverändert bleibt.

Nach zwei bis drei Stunden an der Sonne steht das Wasser im Glas mit den Zweigen 1 bis 2 Millimeter weniger hoch als im Kontrollglas.
Nach einem zusätzlichen Tag im Innenraum fällt das Ergebnis noch deutlicher aus: Der Unterschied beträgt jetzt mehr als 5 Millimeter!

Was passiert da?

Blätter geben über kleine Poren (Spaltöffnungen) an ihrer Oberfläche ständig Wasser(-dampf) an die Luft ab.

Blätter unter dem Mikroskop, mit sichtbaren Spaltöffnungen
Dies ist die untere Aussenhaut eines frischen Blattes meiner Tomatenpflanze bei 100-facher Vergrösserung. Die winzigen Spaltöffnungen (sie sind ca. 0,05 – 0,1 mm klein!) sind als dunkelgrüne Punkte gut erkennen (die Ränder der Spalten enthalten den grünen Blattfarbstoff Chlorophyll, die übrigen Aussenhautzellen nicht). Diagonal durch das Bild verläuft eine „Blattader“, d.h. Leitungsbündel, in dessen Umgebung ebenfalls chlorophyllhaltige Zellen haften geblieben sind.

Durch den Wasserverlust entsteht ein Unterdruck, der über die Wurzeln der Pflanze Wasser aus dem Boden nach oben saugt. Als Leitungen dienen dabei dünne Röhren im Inneren der Stängel sowie die „Adern“ in den Blättern. Da der geschnittene Zweig weder Wurzeln noch Boden hat, wird das Wasser im Experiment direkt aus dem Glas gezogen. Mit dem Stängel werden nämlich auch die Röhren darin angeschnitten, sodass sie nun offen ins Wasser ragen. Mit dem schrägen Schnitt vermeidet ihr, dass die Öffnungen der Röhren flach auf den Glasboden gedrückt und so verschlossen werden.

Warum rollen sich trockene Blätter nun ein?

Einen guten Teil des in die Blätter hinauf gesogenen Wassers gibt die Pflanze nicht sofort wieder ab. Stattdessen speichert sie es in kleinen Hohlräumen (Vakuolen) in ihren Zellen. Sind die Vakuolen prall gefüllt, sind auch die Zellen prall und das Blatt erscheint straff und fest.

Wenn der Wassernachschub ausbleibt, werden die Vakuolen zunehmend entleert: Die Blätter werden zunächst schlaff (dieser Teil lässt sich umkehren und die Pflanze „wiederbeleben“ – wie genau, erfahrt ihr hier). Wenn die Wasservorräte ganz verbraucht sind, können die Blattzellen nicht mehr funktionieren und sterben ab. Ohne pralle, formgebende Wasserspeicher fallen die „Skelette“ der sterbenden und toten Zellen regelrecht in sich zusammen, sodass das Blattgewebe krumm und spröde wird.

Und wozu das Speiseöl?

Das Speiseöl verhindert, dass Wasser über die Wasseroberfläche verdunstet. So muss das Wasser, das im Glas mit dem Zweig fehlt, von dessen Blättern „ausgeschwitzt“ worden sein!


Ein Forschertrick: Sichere Ergebnisse durch Kontrollversuche

Das zweite, leere Glas dient als direkte Vergleichsmöglichkeit: Ihr könnt den Unterschied zwischen einem Glas mit Verdunstungsmöglichkeit über einen Zweig und einem Glas, aus dem nichts verdunsten kann, auf einen Blick sehen. So könnt ihr

  1. auch kleine Unterschiede rasch erkennen.
  2. sicher gehen, dass ihr den Zweig auch dann „schwitzen“ seht, wenn doch etwas Wasser durch das Öl verdunsten sollte. Das geschähe dann nämlich in beiden Gläsern in gleicher Weise. Folglich muss ein sichtbarer Unterschied etwas mit dem Zweig zu tun haben.

Auch die grossen Forscher machen Kontrollversuche

In der wissenschaftlichen Forschung sind solche Kontrollversuche von entscheidender Wichtigkeit. Je komplizierter die Versuche nämlich sind, desto mehr Umstände können das Ergebnis beeinflussen. Besonders wenn Lebewesen an Experimenten beteiligt sind, sind Forscher oft gar nicht in der Lage, jeden einzelnen dieser Umstände nachzuvollziehen und seinen Einfluss auf das Ergebnis zu bestimmen.

Ein Kontrollversuch unter möglichst gleichen Bedingungen, aber ohne das Detail, das man untersuchen möchte, zeigt einem die Summe aller zusätzlichen Einflüsse. Wenn das zu untersuchende Detail zu einem davon unterschiedlichen Ergebnis führt, kann man sicher sein, dass eben dieses Detail auch die Ursache dafür ist. Und das, ohne jeden einzelnen Umstand mit Einfluss zu kennen!

Das gilt für einfache Experimente wie den Nachweis eines Stoffs mit einem Reagenz bis hin zu Studien, in welchen Medikamente an Menschen getestet werden.

Mit Kontrollversuchen lässt sich der Placebo-Effekt „ausblenden“

Bei solchen Studien erhält eine zusätzliche Gruppe von Versuchspersonen, die „Kontrollgruppe“ genannt wird, ein Medikament ohne Wirkstoff – ein sogenanntes Placebo. Das menschliche Gehirn ist nämlich ein besonders schwer zu kontrollierender Einfluss auf Versuchsergebnisse: Es lässt uns selbst dann eine Veränderung unseres Befindens wahrnehmen, wenn kein Wirkstoff im genommenen Medikament ist (das nennen die Forscher den Placebo-Effekt)!

Der Placebo-Effekt tritt (wie viele andere Umstände) sowohl bei der Kontrollgruppe als auch bei der Gruppe mit Wirkstoff auf. Wenn das Ergebnis bei der Gruppe mit Wirkstoff trotzdem anders ist als das bei der Kontrollgruppe, hat das mit ziemlicher Sicherheit der Wirkstoff bewirkt. Gibt es dagegen keinen Unterschied zwischen der Gruppe mit Wirkstoff und der Kontrollgruppe, bewirkt der „Wirkstoff“ ebenso sicher nichts.   


Zusammenfassung

Dieses einfache Experiment zeigt, dass Pflanzen Wasser aus dem Boden (oder einem Glas) „trinken“ und als Wasserdampf an die Luft abgeben können.

Ein Kontrollversuch ohne Pflanze macht diesen Effekt im Vergleich direkt sichtbar. Ausserdem lässt sich mit seiner Hilfe ausschliessen, dass andere Faktoren für das Verschwinden des Wassers aus dem Glas verantwortlich sind. Derartige Kontrollen sind ein äusserst wichtiger Bestandteil wissenschaftlicher Forschung.

Ihr könnt euch die Trink- und Schwitz-Fähigkeit von Pflanzen übrigens direkt zu Nutze machen: Zimmerpflanzen im Raum sorgen dafür, dass auch im Winter die Raumluft nicht zu trocken wird!

Entsorgung

Den Zweig könnt ihr auf den Kompost oder in den Grünabfall geben. Oder ihr lasst ihn als Dekoration im Wasserglas stehen oder verwendet ihn für weitere Blatt-Experimente.

Wasser und Speiseöl könnt ihr in den Ausguss entsorgen. Die Super-Waschkraft von Spülseife hilft dabei, Ölreste von den Gläsern zu entfernen und fort zu spülen. Nicht verwendetes Speiseöl könnt ihr natürlich zum Kochen weiterverwenden.

Oder ihr nehmt bloss den Zweig aus dem Glas und verwendet es samt Inhalt für das Experiment mit der DIY-Lavalampe!

Ich wünsche euch viel Spass beim Experimentieren!

Hast du das Experiment nachgemacht:

[poll id=“7″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Forscher-Abenteuer Raiffeisen-Skywalk

Dieser Beitrag stellt meine persönliche Empfehlung dar – keine der genannten Firmen, Institutionen oder Sponsoren ist an der Entstehung beteiligt!

Naturforschen ist immer auch ein Abenteuer – sei es, weil man dabei immer wieder Spannendes entdeckt, oder weil es schon abenteuerlich ist dorthin zu gelangen, wo es etwas zu entdecken gibt. So zum Beispiel in den für Menschen schwer zugänglichen Kronen der Bäume! Während Dschungelwissenschaftler Klettergerät brauchen oder gleich einen ganzen Baukran aufstellen, um das Dach des Waldes erkunden zu können, ist der Weg zu den Baumkronen für Nachwuchs- und Hobbyforscher in den letzten Jahren sehr einfach geworden: An vielen Orten gibt es einen Baumwipfelpfad oder eine Hängebrücke, auf denen ihr bequem über das Blätterdach spazieren könnt!

Man liebt sie oder man hasst sie: Baumwipfelpfade und Hängebrücken. Eigentlich gibt es nur zwei Optionen. Entweder dir läuft bereits beim Anblick ein Schauer über den Rücken und du bist bereit zu flüchten oder du freust dich bereits auf den Ausblick aus schwindelerregender Höhe.

Ein Bisschen Mut erfordert es in der Tat, in luftiger Höhe zu wandeln. Aber ohne ein kleines Abenteuer wäre das Forschen ja langweilig. Und wenn man sich nach oben traut, gibt es viel Spannendes zu entdecken: Wie sieht die Spitze einer 50-Meter-Fichte aus? Wie wachsen Tannenzapfen? Welche Tiere leben im obersten Stockwerk des Wald?

Baumwipfel von oben

Doch wo könnt ihr euren Mut beweisen und auf Entdeckungsreise in luftige Höhen gehen? Die Reiseeule hat eine tolle Blogparade ins Leben gerufen, um der Vielfalt der Baumwipfelpfade und Hängebrücken gerecht zu werden. Und da steuere ich für euch gerne meine Lieblings-Baumwipfelpfad-Hängebrücke bei mir daheim in der Schweiz bei:

Der Raiffeisen-Skywalk

Oberhalb von Sattel-Aegeri im Kanton Schwyz spannt sich eine atemberaubende Hängebrücke über das Lauitobel, eine mit riesigen Nadelbäumen bestandene Wildbach-Schlucht. Auf der Stahlgitterkonstruktion könnt ihr bis zu 58 Meter über dem Grund des Tobels wandeln – ohne dazu eine Leiter erklimmen zu müssen. Dafür erfordert der Weg Durchhaltevermögen: Mit 374 Metern Länge ist der Raiffeisen-Skywalk eine der längsten Fussgänger-Hängebrücken Europas!

Blick von der Hängebrücke ins Lauitobel

Blick von der Hängebrücke ins Lauitobel

Belohnt werden mutige Forscher, die sich auf die Brücke wagen, mit direktem Blick ebenso auf die Spitzen rund 60 Meter hoher Nadelbäume als auch auf die Wipfel verschiedener Laubbäume an den Enden des Skywalks. Damit ist diese Hängebrücke gleichzeitig ein richtiger Baumwipfelpfad! Ausserdem könnt ihr von dort eine herrliche Aussicht über die Schwyzer Voralpen bis zum Aegerisee und zum Rigi-Massiv geniessen.

Blick auf die Rigi

Blick auf die Rigi von oberhalb des Skywalks

Eine Hängebrücke im Kinderparadies

Obwohl auf 1200 Metern über dem Meer gelegen ist der Raiffeisen-Skywalk ein perfektes Ausflugsziel mit Kindern. Auf den Mostelberg kommt man nämlich ganz bequem mit einer Seilbahn, die geräumig genug ist, um auch Kinderwagen Platz zu bieten. Die Hängebrücke beginnt gleich an der Bergstation praktisch ebenerdig. Auf actionhungrigen Nachwuchs warten dort ausserdem eine Sommerrodelbahn und ein Hüpfburgenparadies. Mit Berggasthäusern, öffentlichen WCs, und einem Trinkwasserbrunnen ist auch für das leibliche Wohl gesorgt. Und im Winter kann man hier Ski fahren.

Mostelberg von oben

Der Brückenkopf und die Spielanlagen an der Bergstation

Wandern in wilder Natur

Trotzdem müsst ihr nicht fürchten, in eine künstliche Touristenwelt zu geraten. Denn nur wenige Schritte genügen, und schon ist man in einem herrlichen Naturparadies, das sich auf vielen Wegen aller Schwierigkeitsgrade bewandern lässt. Asphaltierte, Strässchen führen fast ohne Höhenunterschied durch üppige Bergwiesen, auf denen jetzt im Frühsommer wilde Orchideen blühen, und können mit Kinderwagen begangen werden. Wer trittsicherer und nicht auf Fahrzeuge angewiesen ist, kann auf einfachen Bergwanderwegen (rot-weisse Markierung der Schweizer Wanderwege) in die Bergwildnis vordringen und sogar den Gipfel des Hochstuckli (1566 Meter ü.M.) bezwingen.

Und als ob das noch nicht genug wäre, gibt es noch einen Bonus für Schatzsucher: Fast alle Wanderwege rund um Mostelberg sind dicht mit Geocaches bestückt, sodass Geocacher hier fleissig suchen können (ich gehöre selbst zu dieser Sorte und habe bei meinem jüngsten, mindestens dritten Besuch hier oben noch so manchen Schatz finden können).

Wie ihr zum Skywalk kommt

Wenn ihr bereits in der Schweiz seid, empfehle ich euch die Anfahrt mit dem öffentlichen Verkehr. Zwischen Biberbrugg und Arth-Goldau verkehrt einmal in der Stunde die S31 mit Halt in Sattel-Aegeri. Vom Bahnhof dort seid ihr in 10 bis 15 Minuten zu Fuss an der Talstation der Seilbahn „Stuckli-Rondo“ (dort können Autoreisende auch ihren fahrbaren Untersatz auf einem geräumigen Parkplatz abstellen (aktuell 2 Stunden gratis, darüber hinaus CHF 5.- für den Rest des Tages)). Und die hat es in sich:

Einstimmung in der Drehgondelbahn

Die geschlossenen Gondeln dieser Luftseilbahn drehen sich nämlich um sich selbst, sodass ihr das herrliche Bergpanorama rundum geniessen könnt! Ausserdem ist die Drehgondelfahrt eine perfekte Vorübung für den luftigen Gang über die Hängebrücke. Die aktuellen Fahrpreise findet ihr hier auf der Website zum Ausflugsgebiet. Wer ein Halbtax- oder Generalabo von der Schweizer Bahn (SBB) besitzt, bekommt übrigens bis zu 50% Preisnachlass.

Anfahrt auf die Bergstation der Stuckli-Rondo

Anfahrt auf die Bergstation der Stuckli Rondo – Drehgondelbahn

Auch Kinderwagen sind kein Problem

Die Gondeln sind ebenerdig zugänglich, sodass sie problemlos mit Kinderwagen oder Rollstühlen benutzt werden können. Und wer ein Gondelbahn-Billet hat oder zu Fuss von Sattel-Aegeri hinaufgestiegen ist (unter der Seilbahn verläuft ein Gebirgswanderweg), kann den Raiffeisen-Skywalk kostenlos benutzen.

Gondel der Stuckli Rondo

Eine Gondel der Stuckli Rondo : Genug Platz für Kinderwagen ohne Rollstuhl

Der ist übrigens in seinem engsten Bereich 90cm breit und darf mit Kinderwagen oder Rollstuhl benutzt werden – allerdings nur in eine Richtung, nämlich von der Bergstation weg auf die andere Seite des Tobels! Fussgänger ohne Gefährt können hingegen in beide Richtungen laufen.

Es ist ausserdem möglich, mit dem Auto bis nach Mostelberg zu fahren. Allerdings sind die Parkmöglichkeiten hier oben begrenzt – und für den Skywalk wird ein zusätzlicher Eintritt fällig.

Die beste Reisezeit

Der Raiffeisen-Skywalk liegt auf 1200 Meter ü.M., das Wandergebiet erstreckt sich bis auf über 1500 Meter Höhe. Da ist im Frühling und Herbst noch mit Schnee zu rechnen! Die Drehgondelbahn verkehrt von Mitte April bis Anfang November – die Attraktionen am Mostelberg haben dann auch geöffnet. Wenn ihr das Wandergebiet in seiner Gänze geniessen wollt, achtet darauf, dass auf der gewünschten Höhe kein Schnee mehr liegt. Denn bei Schnee sind einige der Gebirgswege kaum oder gar nicht begehbar.

Ich habe für meinen jüngsten Gang über den Skywalk Ende Mai die erstbeste Gelegenheit genutzt, an der ich auch das Hochstuckli komplett schneefrei umrunden konnte.

Die Hängebrücke wird über Nacht übrigens zugesperrt – genauer gesagt ist sie bis eine Viertelstunde vor Betriebsschluss der Gondelbahn geöffnet. Ihr tut also gut daran, euch die Öffnungszeiten des Tages zu merken und rechtzeitig am richtigen Ende der Brücke zu sein – sonst wird ein beträchtlicher Umweg fällig.

Raiffeisen-Skywalk: Brückenkopf an der Bergstation

Der Brückenkopf an der Bergstation: 15 Minuten vor Betriebsschluss der Gondelbahn werden die Tore geschlossen.

Natur am Mostelberg: Baumwipfelpfad und mehr

Selten ist mir die atemberaubende Höhe unserer einheimischen Fichten so bewusst geworden wie beim Blick vom Skywalk an diesen Bäumen hinunter (anstatt wie üblich hinauf). Jetzt im Frühsommer scheinen die an den Spitzen wachsenden Zapfen zudem zum Greifen nah zu sein.

Fichtenspitze zum Greifen nah

Fichtenspitze zum Greifen nah

Wildpflanzen und -tiere der Schweizer Voralpen

Und jenseits der Hängebrücke gibt es noch viel mehr zu entdecken. Wildrosen und Kabenkräuter – dies sind die wilden Orchideen, die ich bereits erwähnt habe, sind nur zwei Beispiele für aussergewöhnliche Bergpflanzen, die es hier zu entdecken gibt.

Knabenkraut - wilde Orchidee

Ein Knabenkraut – eine wilde Orchidee auf den Wiesen nahe der Hängebrücke

Und wer sich in die Höhe wagt, begibt sich zudem auf eine kleine Zeitreise: Farne und Schachtelhalme, wie sie am Rand der Bergwiesen wachsen, gehören nämlich zu den ältesten noch lebenden Pflanzengattungen der Welt: Schon die Dinosaurier haben sie gekannt und vermutlich auch als Futter geschätzt.

Farn und Schachtelhalm

Aus der Zeit der Dinosaurier: Farn und Schachtelhalm

Wer nach Tieren Ausschau hält, findet allerorts Vögel, Schmetterlinge und andere Insekten (hier oben sind die noch richtig zahlreich). Und vielleicht habt ihr ja so viel Glück wie ich während einer früheren Wandertour, als ich am späten Nachmittag auf der Krete zwischen Mostelberg und Hochstuckli eine kleine Herde Rotwild beim Überqueren des Wanderwegs beobachten konnte!

Rotkehlchen

Überraschend zutrauliches Fotomodell: Das Rotkehlchen auf dem Wanderweg

Der Geomantik-Lehrpfad

Wenn ihr in der Umgebung der Hängebrücke wandert, werden euch wahrscheinlich Infotafeln auffallen, die nach einem Naturlehrpfad aussehen. Warum ich den weiter oben nicht erwähnt habe? Als Naturforscher-Bloggerin tue ich mich mit diesem Pfad ein wenig schwer. Das Leitthema der Tafeln ist nämlich Geomantik bzw. Radiästhesie, die beide mit Naturwissenschaft nicht viel zu tun haben.

Was ist Geomantie?

Die heutige Geomantie bzw. Geomantik ist eine esoterische Lehre über energetische Eigenschaften bzw. „Gitternetzlinien“ der Erde und die daraus folgende „sinnvolle“ Gestaltung von Lebensräumen (gerne wird die Geomantik mit dem chinesischen Feng Shui verglichen). Die Existenz der von Geomantikern angenommenen Energien konnte jedoch nicht wissenschaftlich belegt werden, obwohl entsprechende Versuche unternommen wurden.

Das ist aber nicht der Grund für meine Schwierigkeiten mit den Infotafeln. Im Gegenteil: Eine Erfahrungslehre, welche Art Gestaltung unserer Umgebung uns guttut, möchte ich nicht pauschal als ’schlecht‘ abstempeln, auch wenn die ihr zugrundeliegenden Modelle fragwürdig sein mögen.

Der besteht vielmehr darin, dass auf den Tafeln naturkundliche Inhalte mit den esoterischen Lehren vermengt werden, sodass beide als gleichwertige Fakten dargestellt sind. Naturkundlichen Laien dürfte die Unterscheidung zwischen dem einen und dem anderen oftmals schwerfallen – was meinem persönlichen Bestreben entgegen steht: Naturwissenschaftliches Wissen zu vermitteln, um der Entstehung von mitunter gefährlichem Irrglauben vorzubeugen.

Denn das Vermengen von nicht belegbaren Inhalten mit als belegt geltendem Wissen führt leicht dazu, dass das Nichtbelegbare ebenfalls als anerkannt „richtig“ wahrgenommen und gelernt wird. Und wie schwer es ist, einen einmal angenommenen Irrglauben zu „erschüttern“, zeigen die vielen fruchtlosen Anläufe genau dazu von Wissenschaftler-Kollegen und meiner selbst.

Das Ganze soll aber das atemberaubende Erlebnis des Raiffeisen-Skywalks und seiner Umgebung nicht trüben.

Blick über den Raiffeisen-Skywalk

Der Raiffeisen-Skywalk: Der Blick über die Baumwipfelpfad-Hängebrücke

Weitere Baumwipfelpfade und Hängebrücken in der Schweiz

Wer nach dem Gang über die Hängebrücke am Mostelberg noch nicht genug von schwindelnden Höhen hat, findet in der Schweiz übrigens noch weitere Baumwipfelpfade.

Ein weiterer meiner Favoriten entführt euch gar auf Schweiter Boden (oder eben nicht Boden) in den Dschungel Madagaskars: Denn im Zoo Zürich hält die Masoala-Regenwaldhalle einen echten Indoor-Baumwipfelpfad bereit – ein tolles Ausflugsziel im Winter und bei „gruusigem“ Wetter. Was ihr dort an spannender Physik und Chemie entdecken könnt, habe ich übrigens in einem eigenen Beitrag beschrieben.

Der erste „offizielle“ Baumwipfelpfad der Schweiz ist übrigens kaum mehr als drei Wochen alt und liegt im Neckertal bei Mogelsberg im Kanton St. Gallen. Der ist hiermit auf meine Liste für die Expeditionskiste gesetzt!

Hängebrücken gibt es in der Schweiz hingegen eine ganze Reihe – darunter die mit über 3000 Meter ü.M. höchstgelegene Hängebrücke Europas! Eine Liste der schönsten Schweizer Hängebrücken findet ihr hier.

Nun wünsche ich euch aber ordentlich Mut zum Ausflug in die Höhe und viel Spass beim Erkunden aus der Vogelperspektive! Und wenn ihr schon eine Hängebrücke oder einen Baumwipfelpfad besucht habt: Wie ist es euch da oben ergangen? Was habt ihr erlebt und erforscht?

Deko im Frühling mit Superabsorber

Es ist die Zeit der Hasen, Küken Blumen…. Wie wäre es mit einer Osterdeko im Forscher-Stil – die gleich noch ein Experiment beinhaltet? Und (nicht nur) im Frühling jedes Heim-Labor verschönert? Ich habe ein tolles Gadget gefunden, das nicht nur eine besondere Sicht auf das Leben von Pflanzen gewährt, sondern auch eine verblüffende Eigenschaft von bestimmten Riesenmolekülen offenbart: Superabsorber!

Ich habe das Material für das Experiment aus eigenem Antrieb beschafft. Für die Idee dazu danke ich Marion Rotter vom Luxury Lifestyle Magazine, in welchem diese spannende Frühlingsdekoration auch einen Platz finden wird.

Superabsorber statt Pflanzenerde für Zwiebelblumen

Hydroperlen aus Superabsorbern sind ganz besondere Kunststoffgebilde, die unglaubliche Mengen Wasser speichern und wieder abgeben können. Dabei sind sie durchsichtig und nach Wunsch bunt. So geben sie nicht nur einen praktischen Ersatz für Pflanzenerde ab (das kann z.B. Blähton für die Hydrokultur auch), sondern gewähren, wenn man sie in gläsernen Blumentöpfen verwendet, einen spannenden Blick auf das Wurzelwerk der Pflanzen.

Und da Zwiebelblumen sich besonders leicht ein- und umsetzen lassen, bietet der Frühling die ideale Gelegenheit zum Experimentieren mit Superabsorbern!

Ihr braucht dazu

  • Glasgefässe mit weiter Öffnung: Für den Labor-Stil können das zweckentfremdete Behälter sein, wie mein Honigglas, mein Einmachglas oder der Glaszylinder aus meinem Windlicht. Auch ein Labor-Becherglas eignet sich natürlich.
  • Zwiebelblumen, die idealerweise schon ein wenig ausgetrieben haben
  • Superabsorber: Die gibt es als „Hydrokristalle“ oder „Hydroperlen“ für kleines Geld in verschiedenen Shops für Krimskrams, Gadgets oder Geschenkartikel (meine Bezugsquelle hat mich letztlich nicht zu einer Erwähnung überzeugt, da sie stark verspätet und erst nach meiner Nachfrage geliefert und mich überdies trotz meiner Nicht-Zustimmung mit einer ganzen Flut von Newslettern zugeschüttet haben).
  • Leitungswasser, ein Lavabo bzw. Spülbecken zum Reinigen von Pflanzenwurzeln
  • Ein paar Stunden Zeit für viele Tage Freude
Material : Zwiebelpflanzen, Hydroperlen, leere Gläser

Wie ihr eure gläsernen Topfpflanzen setzt

Zunächst müsst ihr die Superabsorber in Wasser ziehen lassen, damit sie sich ordentlich voll saugen. Das dauert ein paar Stunden, sodass es sich anbietet, sie über Nacht ziehen zu lassen. Eine Anleitung dazu liegt normalerweise der Verpackung der Hydrokristalle oder Hydroperlen bei. So bin ich mit meinen vorgegangen:

  • Schätzt ab, wieviele (Milli)Liter Wasser in die Gefässe passen würden, die ihr bepflanzen wollt. Entnehmt der Verpackung so viele Perlen bzw. Kristalle, wie ihr laut Angaben auf der Packung für dieses Volumen braucht. Achtung! Das sieht nach verdammt wenig aus, aber das passt schon: Ihr habt die grosse Überraschung ja noch vor euch!
Hydroperlen bzw. Hydrokristalle für etwa 600ml Wasser
Das sind genug Hydroperlen für die zwei Gläser oder insgesamt 600 Milliliter Wasser!
  • Verteilt die Hydroperlen bzw. Hydrokristalle auf die leeren Gefässe entsprechend ihrer Grösse. Dann füllt die Gefässe mit Wasser auf.
Hydroperlen bzw. Hydrokristalle in Wasser
Die Hydroperlen in den Gläsern, gleich nach dem Auffüllen mit Wasser. Und wirklich: Das genügt!
  • Stellt die Gefässe dorthin, wo sie nicht stören und deckt sie ggfs. gegen Staub ab (z.B. Deckel lose auflegen). Schaut in den nächsten Minuten bzw. Stunden immer mal wieder nach den Gläsern: Schon in den ersten Minuten werden die Perlen/Kristalle merklich wachsen und dabei zunehmend durchsichtiger erscheinen.
Superabsorber in Aktion: Hydroperlen trocken und nach einer Nacht im Wasser
Nach einer Nacht: So gross sind die Perlen geworden!
  • Nach einer Nacht sind meine Perlen von ursprünglich rund 2 mm im Durchmesser auf sage und schreibe 12 mm angewachsen und füllen die Gläser fast vollständig! Wenn es bei euch so weit ist, giesst das übrige Wasser ab.
Superabsorber: Hydroperlen bzw. Hydrokristalle nach einer Nacht in Wasser
Am nächsten Morgen: Die Hydroperlen sind über Nacht gewachsen und haben fast alles Wasser aufgesogen!

Jetzt könnt ihr mit dem Bepflanzen beginnen.

  • Wenn ihr bereits ausgetriebene Blumenzwiebeln umsetzt: Nehmt die Zwiebeln aus dem Topf und befreit die Wurzeln vorsichtig von der Erde (die könnt ihr zum Gärtnern aufheben). Spült die Wurzeln dann gründlich unter fliessendem Wasser, bis sie blitzsauber sind.
  • Nehmt einen Teil der Hydroperlen bzw. Hydrokristalle aus eurem Pflanzgefäss, legt sie in einem anderen Behälter beiseite (die Perlen sind jetzt elastisch wie Gummibälle – passt auf, dass sie euch nicht davonspringen!).
  • Platziert die Zwiebel mit den Wurzeln nach unten im Gefäss und füllt die Zwischenräume zwischen den Wurzeln behutsam mit den beiseite gelegten Perlen bzw. Kristallen auf (die Superabsorber gehen nicht so leicht kaputt, die Pflanzenwurzeln können dagegen recht empfindlich sein).
Zwiebelblumen in Hydroperlen: Frühlings-Deko im Labor-Style
Fertig! Jetzt heisst es geduldig warten!
  • Wenn die Zwiebel stabil untergebracht ist, platziert das Gefäss an einem hellen, nicht zu warmen Ort (wenn es nicht mehr friert auch draussen). Zwiebelblumen wie Krokusse, Narzissen und andere Frühlingsblüher sind für kühles Frühlingswetter geschaffen und welken bei zu hoher Raumtemperatur schnell.
  • Freut euch die nächsten Wochen an eurer Forscher-Frühlingsdeko und beobachtet die Pflanze und ihre Wurzeln beim Wachsen! Die Hydroperlen oder -kristalle werden mit der Zeit wieder schrumpfen, wenn das Wasser verdunstet oder die Pflanze davon trinkt. Insgesamt sollten die Pflanzen aber bis zu zwei Wochen ohne Giessen auskommen! Danach giesst einfach etwas Wasser nach, und die Superabsorber sollten wieder aufgehen.

Was passiert da?

Was genau sind eigentlich Superabsorber?

Superabsorber sind riesige Moleküle, sogenannte Polymere. Das sind lange Ketten aus sich immer wiederholenden kleinen Atomgruppen, die bei der Herstellung der Polymere miteinander verbunden werden. Was wir als „Plastik“ oder „Kunststoff“ bezeichnen, besteht aus solchen Riesen-Kettenmolekülen. Doch auch die Natur hält verschiedenste Polymere bereit, wie Proteine, Stärke, Zellulose oder unsere DNA.

Die Superabsorber unter den Polymeren haben zwei besondere Eigenschaften:

  1. Die langen Kettenmoleküle sind über Querstreben aus weiteren Atomgruppen miteinander vernetzt. Das Ergebnis ist ein regelrechter Molekül-Schwamm, dessen Poren in der Grössenordnung von einigen Atomdurchmessern liegen. Das bedeutet, eine Hydroperle bzw. ein Hydrokristall ist im Grunde genommen ein einziges gigantisches Molekül – so gross, dass wir es sehen und anfassen können!
  2. Die Atomgruppen, aus welchen die Superabsorber-Polymere bestehen, sind so gestaltet, dass sie und Wassermoleküle einander anziehen: Chemiker sagen, die Atomgruppen sind „hydrophil“ – sie mögen Wasser. Wie Atomgruppen aussehen müssen, die Wasser mögen, und wie die gegenseitige Anziehung funktioniert, habe ich im Artikel über Tenside genauer beschrieben.

Kurz gesagt: Zu den wasserfreundlichsten Kohlenstoffverbindungen (zu diesen zählen die meisten Kunststoffe) gehören solche, die elektrische Ladungen tragen, also Ionen sind. Deshalb tragen die riesigen Superabsorber-Moleküle eine Unzahl an negativen Ladungen auf ihrem Netz aus Atomketten. Die wiederum ziehen nicht nur Wasser an, sondern auch positiv geladene Metall-Ionen. Mit solchen gehen die negativ geladenen Atomgruppen des Molekül-Schwamms Ionen-Bindungen ein – wie die Natrium- und Chlorid-Ionen in einem Kochsalzkristall!

Woraus meine (und höchstwahrscheinlich auch eure) Hydroperlen bestehen

Superabsorber sind also riesige Molekül-Netze, die aus zahllosen kleinen Carbonsäure-Gruppen (sehr häufige Monomere sind Acrylsäure bzw. ihre stickstoffhaltige Variante Acrylamid*, aus denen auch meine Hydroperlen bestehen) zusammengesetzt sind. In trockenem Zustand werden die Ladungen durch in den Maschen gebundene Natrium (Na+)-Ionen ausgeglichen, sodass das Netz sich auf sehr engem Raum dicht zusammenpacken lässt. So fühlen sich die trockenen, winzigen Hydroperlen hart und massiv an. Tatsächlich kann man sagen: Ein (trockener) Superabsorber ist sowohl ein Polymer als auch ein Salz!

*Wenn der Begriff „Acrylamid“ bei euch die Alarmglocken klingeln lässt: In verketteter Form, also als Polyacrylamid bzw. „Polyamid“ ist diese Verbindung absolut nicht giftig!

Wie funktionieren Superabsorber?

Wenn ihr trockene Hydroperlen oder Hydrokristalle in Wasser legt, passiert mit ihnen das selbe, was auch mit meinem nackten Ei (ein weiteres spannendes Oster-Experiment!) passiert ist: Die Ionen im Inneren des Molekül-Schwamms streben danach, sich mit Wassermolekülen zu mischen und mit ihnen zu wechselwirken. Dabei sind zunächst im Schwamm viele Ionen zwischen wenigen bis gar keinen Wassermolekülen, während das Wasser draussen nur wenige Ionen enthält – und die Natur verlang danach, diesen Unterschied auszugleichen: Physiker nennen dieses Verlangen „osmotischer Druck“.

Mit Osmose zum Gel

Dem osmotischen Druck folgend dringen die Wassermoleküle rasch in den Molekül-Schwamm ein. Dort umlagern sie die Natrium-Ionen, welche sich daraufhin vom Molekül-Netz lösen, und die Anionengruppen. Letztere bleiben allerdings fest mit den Kohlenstoff-Maschen des Polymers verbunden, sodass der Schwamm selbst sich nicht auflöst. Dabei stossen sich die negativen Ladungen, die nicht länger von Natriumionen aufgehoben werden, gegenseitig ab und treiben das anfangs eng gepackte Netz immer weiter auseinander.

Das Ergebnis ist ein riesiges Schwamm-Molekül, in dessen wachsenden Poren Wassermoleküle regelrecht kleben, während es immer mehr Raum einnimmt. Solch ein Gebilde, das weder wirklich ein Feststoff noch wirklich in Wasser gelöst ist, nennen die Physiker ein Hydrogel. Damit die Hydroperlen für eure Topfpflanzen bei all dem aber nicht völlig aus dem Leim gehen, ist ihre Oberfläche von einem zusätzlichen Polymer-Netz umgeben, das sich nur begrenzt ausdehnt und so dafür sorgt, dass die Perlen ihre Form behalten und so lustig herumspringen können.

Wo finden Superabsorber sonst noch Verwendung?

Ihrer Supersaugkraft wegen werden Superabsorber auch in Babywindeln eingebaut, damit Babys Popo auch die ganze Nacht trocken bleibt (ebenso saugen sie wirksam die Folgen einer Blasenschwäche auf). Dabei wird auf die formgebende Aussenhülle verzichtet, denn die Windel selbst hält ja alles an Ort und Stelle. Was passiert, wenn man Superabsorber ohne begrenzende Hülle mit Wasser tränkt, zeigen die Simple Chemics hier sehr eindrücklich:


Da kann man bestimmt auch Pflanzen hinein setzen, aber man sieht dabei auch nicht mehr als in richtiger Erde. Ausserdem haben die springenden Gelbällchen es mir wirklich angetan. Man kann damit wunderbar herumspielen!

Indem man kleine Superabsorber-Körner mit Erde mischt, wird zudem Blumenerde hergestellt, die auch ohne den „Labor-Look“ besonders viel Wasser speichern kann.


Entsorgung

Polyacrylsäure und Polyamid sind nicht giftig. Polyacrylsäure wird sogar als Grundstoff für Medikamente und Kosmetik wie Gels zum Auftragen oder Augentropfen als Tränenersatz verwendet. Deshalb machen sie auch bei der Entsorgung keine Umstände.

Die Hydroperlen oder Hydrokristalle können immer wiederverwendet werden – es ist nicht nötig, sie nach einmaliger Benutzung wegzuwerfen! Falls ihr sie doch irgendwann nicht mehr braucht, können sie in den Restmüll gegeben werden. Blumenzwiebeln könnt ihr bis im Herbst in den Garten oder auf den Balkon auspflanzen. Welke Pflanzenteile können ganz normal auf den Kompost oder in den Bioabfall.

Und wir sieht eure – vielleicht auch ungewöhnliche – Frühlings- oder Osterdekoration aus?

Hast du das Experiment nachgemacht: 

[poll id=“21″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Experiment im Frühling: Blumen färben

Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

Blogparade: Kinder sind Forscher!

Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

Papa daraufhin: „Aber wir haben doch schon Hortensien im Garten…“

Klein-Kathi: „Aber die sind rosa!“ (Und meine Lieblingsfarbe war -und ist- eben blau.)

Papa: „Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.“

Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

Experiment: Wir färben Blumen um

Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

Ihr braucht dazu

  • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
  • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
  • Ggfs. Gummi- bzw. Einmalhandschuhe
  • Eine kleine Vase oder anderes Glasgefäss
  • Ein paar Stunden, ggfs. einen Tag Zeit
Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

Wie ihr das Experiment durchführt

  • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
  • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

  • Füllt das farbige Wasser in die Vase mit den Blumen.

Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

  • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

Was passiert da?

Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen „Rohrleitungen“ durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

Die Adern in den Blütenblättern sind deutlich blau gefärbt

Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

Und was ist der „Antrieb“ dieser Wasserversorgung?

Pflanzen sind in der Lage zu „schwitzen“: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

Warum funktioniert das nicht mit Topfpflanzen?

Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der „Topf“ geradezu unendlich gross ist.

Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel „Wasserblau“.

Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach „Chemie“. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

Entsorgung

Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

Hast du das Experiment nachgemacht:

[poll id=“22″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Blogbild Photosynthese

Habt ihr euch auch schon einmal gefragt, wovon Pflanzen eigentlich leben? Mit dieser Frage habe ich den ersten Teil der Experimente um das geheimnisvolle Leben der Pflanzen begonnen. Darin habt ihr erfahren, dass Pflanzen fast ausschliesslich von Luft und Wasser leben, und wie sie diese „Zutaten“ zum Leben aufnehmen und Abfälle wieder ausscheiden können.

Kein Leben ohne Energie

Doch was ist das eigentlich, das Leben? Nach Ansicht der Biologen sind Lebewesen Ansammlungen von Stoffen, die – mit Hilfe von chemischen Reaktionen – sich selbst vermehren können. Lebewesen nehmen also einfache Moleküle aus ihrer Umgebung auf und bauen sie zu grossen, komplexen Molekülen, Zellen und Geweben um. Für Pflanzen heisst das: Sie nehmen Wasser und Kohlendioxid aus ihrer Umgebung und bauen aus den Atomen dieser Moleküle Zucker, Proteine und vieles mehr, die sie zu Blättern, Stängeln und Blüten zusammenfügen. Mit anderen Worten: Pflanzen bringen Ordnung in das vormals fein verteilte Durcheinander der Kleinmoleküle.

Leben ist Ordnung
Leben ist Ordnung: Ein ungeordneter Haufen Atome (in kleinen Molekülen) – entsprechend dem Haufen Bausteine links – kann zu einem Lebewesen geordnet werden – wie die Bausteine zum Gesicht rechts.

Die Gesetze der Thermodynamik schreiben der Natur jedoch vor: Ordnung machen erfordert Arbeit – bzw. Energie. Das gilt für das Zimmeraufräumen ebenso wie für das Wachstum von Pflanzen und anderen Lebewesen.

Was leben will, braucht also (mindestens) eine verlässliche Energiequelle, um all seine chemischen Prozesse am Laufen zu halten.

Wir Menschen erledigen das beim Essen: In unserer Nahrung sind Moleküle – vornehmlich Zuckermoleküle – enthalten, in welchen Energie gespeichert ist. Diese „chemische“ Energie kann freigesetzt werden, wenn solche Moleküle mit passenden Partnern reagieren und dabei weniger energiereiche Produkte entstehen.

Grüne Pflanzen halten es anders: Sie bauen ihre Zuckermoleküle selbst! Und die Energie, welche sie in diese Moleküle einbauen, liefert ihnen das Sonnenlicht. Ganz verlässlich jeden Tag aufs Neue. Den Prozess, in welchem aus Kohlendioxid und Wasser mit Hilfe von Sonnenenergie Zuckermoleküle entstehen, nennen Biologen und Biochemiker „Photosynthese“.

Photosynthese: Wie aus Luft und Wasser Zucker wird

‚Die Photosynthese‘ fasst eine ganze Reihe von Reaktionen und Prozessen zusammen, für die wiederum eine ganze Reihe von Proteinen gebraucht wird – und natürlich Licht. Das Ganze lässt sich in einer einfachen Reaktionsgleichung zusammenfassen, welche die Ausgangsstoffe und das (vorläufige) Endprodukt der Photosynthese enthält:

Wer nachzählt, wird feststellen, dass links und rechts des Pfeils von jeder Sorte gleich viele Atome stehen, wie es sich für eine ordentliche Reaktionsgleichung gehört. 6 Moleküle Kohlendioxid (CO2) und 6 Wasser-Moleküle (H2O) werden also zu einem Traubenzucker- (bzw. Glucose-) Molekül (C6H12O6) und 6 Sauerstoff-Molekülen (O2) umgebaut.

Um Traubenzucker-Moleküle zu machen ist Energie erforderlich, die in diesen Molekülen gespeichert wird und später wieder freigesetzt werden kann. Lebewesen, d.h. Tiere, Menschen und auch Pflanzen können Glucose zu diesem Zweck im Zuge der Zellatmung kontrolliert „verbrennen“ (dazu benötigen wir den Sauerstoff, den wir atmen). Dass Zucker sich mit einem kleinen Trick auch ganz einfach anzünden und zur Energiefreisetzung abbrennen lässt, könnt ihr mit der „mysteriösen Pharao-Schlange“ selbst ausprobieren.

Licht wird zu chemischer Energie

Bevor es an die Zellatmung geht, muss der Energieträger Glucose jedoch erst einmal hergestellt werden – mit Lichtenergie. Und Licht lässt sich mit farbigen Molekülen sammeln: Im Artikel zu Farben, Licht und Glanz erkläre ich ausführlich, wie passende Lichtportionen (man nennt sie Photonen oder Lichtquanten) Elektronen auf eine höhere Etage innerhalb der Elektronenhülle eines Moleküls „anregen“ können. Je nachdem wie ein solches Molekül gebaut ist, können derart „angeregte“ Elektronen von der höheren Etage aus sehr einfach „ihr“ Molekül verlassen, um in die Elektronenhülle eines anderen Moleküls in der Nähe „einzuziehen“.

Ein Molekül mit dieser Fähigkeit zur Abgabe von Elektronen ist Chlorophyll, das vornehmlich blaues und rotes Licht zur Elektronenbeförderung verwendet (grünes und gelbes Licht lässt es unbehelligt, weshalb es uns grün erscheint). In den grünen Teilen von Pflanzen sitzen Chlorophyll-Moleküle dicht an dicht in Proteine eingebettet, wie Rosinen in einem sehr rosinenreichen Kuchen. Das Ganze hat die Form eines molekularen Hohlspiegels: So können angeregte Chlorophyll-Moleküle ihre Nachbarn anregen und ihre gesammelte Lichtenergie an das „Chef“-Chlorophyll im Brennpunkt des „Spiegels“ weiterleiten. Einmal angeregt kann dieses Molekül sehr einfach ein Elektron an ein benachbartes Protein abgeben, welches es wiederum an seinen Nachbarn weiterreicht und so fort, bis das Elektron schliesslich auf ein kleineres, bewegliches Elektronen-Transportmolekül (NADPH) verladen und zur Zucker-Herstellung „verschifft“ wird.

Dem ursprünglichen „Chef“-Chlorophyll – jetzt ein elektrisch positiv geladenes „Radikal“ – missfällt das nun fehlende Elektron jedoch so sehr, dass es sich schleunigst ein neues sucht. Behilflich ist ihm dabei ein weiteres Nachbar-Protein – ein Enzym, das Wassermoleküle auseinanderbauen kann:

Die vier Elektronen, die bei dieser Reaktion entstehen, werden zum Wiederauffüllen der Elektronenhülle von Chlorophyll verwendet. Die Wasserstoff-Ionen (H+) dienen als „Treibstoff“ für molekulare Dynamos (Proteine names ATP-Synthase), die das Energieträger-Molekül ATP „generieren“. Einzig die Sauerstoff-Atome haben keinen direkten Nutzen. So werden je zwei davon zu einem Sauerstoff-Molekül (O2) verbunden und kurzerhand durch die Spaltöffnungen in den Pflanzenblättern entsorgt.

In dieser „Lichtreaktion“ werden also Lichtquanten gesammelt, um mit ihrer Energie Wassermoleküle zu zerlegen und den Elektronentransporter NADPH sowie den Energietransporter ATP zu beladen. Dabei bleiben Sauerstoff-Moleküle als Abfall übrig, der entsorgt werden muss.

Und dass letzteres wirklich funktioniert, könnt ihr selbst nachweisen:

Versuch 1 : Sauerstoff durch Photosynthese

Sauerstoff ist Ausgangsstoff für jede Art von Verbrennung, zum Beispiel der von Kerzenwachs. Ohne Sauerstoff kann keine Verbrennung stattfinden. In einem abgeschlossenen Raum verbraucht eine brennende Kerze daher sämtlichen Sauerstoff und verlischt dann. Eine brennende Kerzenflamme zeigt also an, dass Sauerstoff in ihrer Umgebung vorhanden ist. Und das könnt ihr euch zu Nutze machen. Dazu braucht ihr:

  • Ein dicht verschliessbares Einmachglas, am besten mit Scharnier-Deckel
  • Eine Kerze, ggfs. mit Untersatz
  • Streichhölzer
  • Frische grüne Pflanzenteile bzw. -blätter
  • Sonnen- oder elektrisches Licht
  • Eine Zange, Wäscheklammer oder ähnliches

Durchführung Teil 1:

  • Zündet die Kerze an und platziert sie wie auf dem Bild im liegenden Einmachglas (Bei der Verbrennung entsteht Kohlenstoffdioxid (CO2), das schwerer als Luft ist und daher nach unten sinkt. Daher sollte die Flamme oben im Glas brennen, damit sie nicht vorzeitig erstickt).
Position der Kerze im Glas – Hier nach dem Verlöschen mit Blättern. So kann der Aufbau einige Stunden von der Sonne beschienen werden.
  • Verschliesst das Glas dicht und wartet, bis die Flamme erloschen ist. Nun ist im Glas kein Sauerstoff mehr vorhanden, sondern ein Gemisch aus Stickstoff (der Hauptbestandteil von Luft) und Kohlenstoffdioxid.
  • Sobald das Kerzenwachs erstarrt ist, stellt das Einmachglas aufrecht und öffnet es vorsichtig (da Kohlenstoffdioxid schwerer als Luft ist, dringt es nicht hinaus, und so lange es keine Verwirbelungen gibt, kommt so kein Sauerstoff hinein).
  • Entzündet ein Streichholz und lasst es mit der Zange/Klammer vorsichtig in das Glas hinab.

Das Streichholz wird verlöschen: Es ist wirklich kein Sauerstoff im Glas!

Durchführung Teil 2:

  • Platziert nun die Pflanzenteile hinten bzw. unten im Glas und platziert die brennende Kerze davor. Ich lasse dabei ein paar Tropfen Wasser im Glas (z.B. an nassen Pflanzenteilen), damit die Blätter nicht übermässig Wasser ausschwitzen.
  • Schliesst das Glas und wartet, bis der Sauerstoff darin verbraucht ist und die Flamme verlischt.
  • Stellt das Glas ungeöffnet für einige Stunden an die Sonne bzw. unter eine helle Lampe.
  • Anschliessend stellt das Einmachglas aufrecht und senkt wie oben beschrieben ein brennendes Streichholz hinein.
Nachweis Sauerstoff
Das Streichholz brennt im Einmachglas: Hier ist Sauerstoff vorhanden!

Das Streichholz wird vollständig abbrennen: Da von aussen kein Sauerstoff ins Glas kommt, muss im Glas Sauerstoff entstanden bzw. freigesetzt worden sein!


Auch im Dunkeln wird gearbeitet: Von der Photosynthese zur Kartoffel

Die „Last“ der im Zuge der Lichtreaktion beladenen Elektronen- bzw. Energietransporter wird an ihrem Bestimmungsort innerhalb der Blätter verwendet, um die Kohlenstoff-Atome aus CO2-Molekülen zu Zucker-Molekülen zu verknüpfen. Wie in der Summengleichung für die Fotosynthese angegeben bilden 6 Kohlenstoffatome (samt Sauerstoff und Wasserstoff) dabei ein Molekül Glucose (C6H12O6). Damit diese noch recht kleinen Moleküle in „ihrer“ Zelle keine Unordnung schaffen, werden sie dort miteinander zu langen Ketten verknüpft: Zu Stärke-Molekülen.

Strukturformel Stärke bzw. Amylose
Einfaches Stärkemolekül („Amylose“) – eine Kette aus Glucose-Molekülen, hier als Sechsringe dargestellt.

Aus diesem Zwischenlager kann die Glucose jederzeit – also auch im Dunkeln – wieder freigesetzt werden, zum Beispiel für die Zellatmung oder zum Umbau in andere Verbindungen. Dazu zählt zum Beispiel der „Fruchtzucker“ Fructose. Und ein Molekül Fructose lässt sich mit einem Molekül Glucose zu einem Paar verbinden – besser gesagt zu einem Molekül Saccharose, die wir alle als Haushaltszucker kennen. Die Saccharose kann nun durch das Leitungssystem einer Pflanze aus den Blättern zu anderen Orten transportiert, dort wieder in Stärke umgewandelt und eingelagert werden.

So können Pflanzen auch ihre Teile versorgen, die ständig im Dunkeln liegen, wie ihre Wurzeln. Manche Pflanzen können auf diese Weise enormen Mengen an Stärke in entsprechend voluminösen Wurzeln einlagern. Und da auch der menschliche Körper Stärke abbauen und verwerten kann, landen diese Wurzeln – zum Beispiel Kartoffeln – häufig auf unserem Teller.

Da der Abtransport der Zucker aus den Blättern auch im Dunkeln möglich ist, wird tagsüber ein Teil der mittels Photosynthese hergestellten Zucker in die Stärke-Zwischenspeicher in den Pflanzen-Blättern gefüllt, während ein anderer Teil in die Wurzeln abtransportiert wird. Nachts – ohne Licht – kommt die Photosynthese zum Erliegen, sodass nur noch Zucker abtransportiert werden und die Zwischenspeicher sich leeren.

Und den Füllstand dieser Zwischenspeicher könnt ihr sichtbar machen:

Versuch 2 : Sichtbare Stärke in Pflanzen-Blättern

Stärke wird deutlich sichtbar, wenn man sie mit (elementarem) Iod in Berührung bringt: In Wasser verdrillen sich die langen Stärkeketten zu Spiralen, ähnlich einem gekräuselten Geschenkband. In diese Kräusel passen Iod-Atome wunderbar hinein, sodass aus (in Lösung braunem) Iod und farbloser Stärke mit Iod gefüllte Spiralen entstehen, die sehr dunkelviolett oder sogar schwarz aussehen. Wenn sich Pflanzenteile in Iodlösung dunkel färben, enthalten sie also Stärke, was ihr als Nachweis nutzen könnt. Dazu braucht ihr:

  • Eine lebende Blattpflanze
  • einen schwarzen ( = lichtundurchlässigen ) Plastiksack (z.B. ein Abfallsack)
  • Schnur zum Zubinden des Sacks
  • Iod-Lösung:
    • entweder Iod-Kaliumiodid-Lösung („KI3„): 3g Iod und 10g Kaliumiodid auf 1l Wasser, oder auch fertig zu kaufen, z.B. als Testlösung für den Erntezeitpunkt von Obst oder in der Apotheke/Drogerie (da die dunkle Färbung mit dieser Variante deutlicher ausfällt als mit der zweiten, lohnt sich der Einkauf für das „Testen“ von Blättern)
    • oder Betaisodona-Lösung bzw. -salbe (Polyvidon-Iod, eine andere, wasserlösliche Einschluss-Verbindung mit Iod) aus der Apotheke): Aus der Salbe könnt ihr eine Lösung herstellen, indem ihr 2 bis 3 cm davon aus der Tube in ein Glasgefäss drückt und wenige Milliliter Wasser dazu gebt. Die Salbe löst sich in wenigen Minuten vollständig darin auf (ggfs. könnt ihr ein wenig umrühren), sodass eine kräftig braune Flüssigkeit übrig bleibt.
  • Sonnen- oder elektrisches Licht
  • eine Herdplatte oder vergleichbare Wärmequelle
  • evtl. Brennsprit/Spiritus, ein zusätzliches Glasgefäss und eine Grillzange oder ähnliches
  • eine Pinzette
  • Eine kleine Schale aus Glas (kein Kunststoff – der könnte vom Iod ebenfalls dunkel verfärbt werden!)

Durchführung:

  • Stülpt den Plastiksack über einen Zweig eurer Pflanze mit Blättern (nicht über die ganze Pflanze – einige Blätter sollen am Licht bleiben!).
Plastiksack über einem Zweig unseres chinesischen Ahorns (der mehr als genug Blätter zum Experimentieren hat).
  • Lasst die Pflanze mindestens 3 Tage lang am Licht (ggfs. giessen nicht vergessen!).
  • Pflückt ein Blatt von eurer Pflanze. Dann entfernt den Plastiksack und pflückt ein weiteres Blatt, welches zuvor im Sack gewesen ist.
  • Wenn ihr mit Kaliumtriiodid-Lösung arbeitet: Legt jedes Blatt einzeln in einen Kochtopf mit Wasser und lasst es auf dem Herd mindestens 15 Minuten kochen. Dabei werden die Blatt-Zellen so weit zerstört, dass Iod-Lösung einfach hineindringen kann.
  • Wenn ihr mit Betaisodona arbeitet: Legt jedes Blatt einzeln für wenige Minuten in kochendes Wasser (bis das Wasser sich grünlich zu färben beginnt). Dann fischt das jeweilige Blatt mit einer Pinzettte aus dem Wasser und legt es in ein Gefäss mit etwas Ethanol („Alkohol“: Brennsprit bzw. Spiritus). Erhitzt den Alkohol vorsichtig, indem ihr das Gefäss in das leicht kochende Wasser in eurem Kochtopf taucht.
Extraktion von Chlorophyll
Extraktion von Chlorophyll im Wasserbad: Im Becherglas sind Alkohol und das Blatt, im Topf ist Wasser. Die lange Grillzange erlaubt es mir, auf Abstand zu den Dämpfen zu bleiben.

Der Alkohol löst das verbliebene grüne Chlorophyll aus den beschädigten Blattzellen, sodass das Blatt ausgebleicht zurückbleibt. So ist die dunkle Farbe der Iodstärke später besser zu sehen.

Brennsprit bzw. Spiritus ist leicht entzündlich! Verwendet kein offenes Feuer zum Erhitzen, sondern einen Elektroherd! Alkohol-Dampf kann überdies benommen machen! Nicht einatmen! Haltet Abstand zum Topf und schaltet – wenn vorhanden – die Dunstabzugshaube ein! Verwendet überdies so wenig Alkohol wie möglich.

  • Legt die Blätter auf eine flache Glas- oder Porzellanschale. Verteilt Iodlösung auf den Blättern und lasst sie wenige Minuten einziehen.

Das Blatt, welches der Sonne ausgesetzt war, wird sich dunkel färben: Hier ist durch Fotosynthese Stärke entstanden und eingelagert worden. In den Blättern unter dem Plastiksack konnte keine Stärke entstehen. Aus diesen Blättern wurde die Stärke also nur abtransportiert, sodass keine/kaum Stärke übrig ist, die sich dunkel färben könnte!

Reaktion von Iod mit Stärke im Blatt
Links: Ein belichtetes Blatt vom chinesischen Ahorn nach dem Erhitzen in Ethanol: Der Bereich um die grosse mittlere Blattader ist weitgehend gleichmässig hell. Rechts: Nach dem Beträufeln mit Polyvidon-Iod zeigen sich dunkle Strukturen – hier hat sich das Iod in Stärkemoleküle eingelagert!

Entsorgung von Iod-Lösungen

Iod ist sehr giftig für Wasserorganismen, weshalb es als Sonderabfall entsorgt werden muss!

Verwendet also möglichst wenig davon. Unbenutze Iod-Lösung könnt ihr in einer braunen Flasche im Dunkeln (Schrank) gut aufbewahren und für weitere Nachweise verwenden (z.B.: Welche Gemüse/welches Obst enthält Stärke?).

Ich habe übrigens meine abgelaufene Betaisodona-Salbe zur Herstellung von Polyvidon-Iod-Lösung verwendet und ihr so ein zweites Leben verschafft, anstatt sie zu entsorgen.

Wenn trotzdem Iod-Reste anfallen, bringt diese zur Entsorgung in die Apotheke (zurück) oder zu einer Sonderabfall-Entsorgungsstelle (Schweiz: An der Hauptsammelstelle der Gemeinde; Deutschland: Schadstoffmobil).

Entsorgung von Ethanol (Brennsprit bzw. Spiritus)

Brennsprit ist unbegrenzt mit Wasser mischbar: Sehr kleine Mengen (einige Milliliter) können mit viel Wasser in den Ausguss entsorgt werden. Grössere Mengen müssen wie andere Lösungsmittel in den Sonderabfall gegeben werden. Wer einen sicheren Spiritusbrenner hat, kann den Alkohol auch abbrennen (in brandsicherer Umgebung, Feuer nicht unbeaufsichtig lassen!).

Und wenn ihr nun Lust auf weitere Experimente zu Hause mit Pflanzen habt, findet ihr sie gleich hier in Keinsteins Kiste:

Extrahiert das grüne Chlorophyll und weitere Blattfarbstoffe (die es auch in grünen Blättern gibt!) aus Blättern und trennt sie mittels Papierchromatographie!

Legt eine Hermetosphäre an und beobachtet, wie Pflanzen Monate und Jahre lang in einem abgeschlossenen Glas überleben!

Viel Spass beim Lesen und Experimentieren wünscht

Eure Kathi Keinstein

Hast du die Experimente nachgemacht:

[poll id=“37″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Habt ihr euch auch schon einmal gefragt, wovon Pflanzen eigentliche leben? Wie sie an Energie und Nährstoffe kommen, um zu wachsen, Blätter und Blüten zu bilden?

Im Biologiebuch ist nachzulesen, dass Pflanzen tatsächlich fast nur von Luft, Licht und Wasser leben können! Das erkannten die Naturforscher Johan Baptista van Helmont und Joseph Priestley schon zu Beginn des 17. bzw. im 18. Jahrhundert.

Wie genau die Pflanzen es anstellen, aus ein paar winzigen Molekülen feste Stängel, Blätter und Blüten zu formen, könnt ihr mit spannenden Experimenten zu Hause und aufmerksamen Sinnen draussen selbst ergründen!

Um dieses faszinierende Thema zu würdigen und euch möglichst viele Naturforscher-Anregungen zu geben, widme ich dem Leben der Pflanzen zwei Beiträge, die diese und nächste Woche erscheinen sollen. So zeige ich euch heute wie Pflanzen ihre Nahrung aufnehmen und „Abfall“-Stoffe abgeben können. Der nächste Beitrag ist dann ganz der Energie- und Materialgewinnung durch Photosynthese gewidmet.

Aber fangen wir am Anfang an.

Pflanzen im Detail: Wie sind diese Lebewesen aufgebaut?

Eine typische Grünpflanze besteht aus Wurzeln, ggfs. einem Stängel oder Stamm und grünen Blättern. Wasser dringt in durch die Wurzeln ein und bringt die wenigen Nährstoffe, die aus dem Boden stammen, mit, wenn es in die verschiedenen Teile der Pflanze gelangt. Die grünen Blätter (und Stängel) sammeln Licht, mit dessen Energie die Pflanze aus Luft-Bestandteilen ihre Hauptnahrung herstellen kann: Glucose bzw. Traubenzucker. So viel mag den allermeisten unter euch bekannt sein.

Aber wie finden all diese Stoffe in der Pflanze ihren Bestimmungsort?

Versuch 1: Blätter ganz, ganz aus der Nähe betrachtet

Seht euch doch einmal ein Blatt genauer an. Bei grossen Blättern – zum Beispiel denen eines Ahorn-Baumes – könnt ihr schon mit blossem Auge ein Netzwerk wie aus Adern sehen. Tatsächlich sind diese Adern das Gegenstück zu unserem Blutgefässsystem: Sie sind Leitungen, durch welche Wasser und Nährstoffe transportiert werden! Und wie in unserem Gefässsystem gibt es neben den grossen Blatt-Adern auch kleinere und winzig kleine Gefässe, die in jeden Winkel reichen.

Habt ihr eine starke Lupe oder sogar ein Mikroskop? Schon mit einfachen Hilfsmittel könnt ihr die feinen Äderchen in Blättern sichtbar machen. Mein einfaches USB-Mikroskop mit angeblich 100-facher Vergrösserung reicht dazu schon aus.

Anleitung zum Mikroskopieren

  • Klemmt zum Mikroskopieren ein frisches, möglichst dünnes Blatt zwischen zwei Objektträger und schiebt es mit der Unterseite nach oben in die Halterung unter der Linse (oder fixiert die Träger mit Klebestreifen, wenn euer Mikroskop keine Halterung hat).
  • Beleuchtet das Blatt von unten (mein Gerät ist mit Beleuchtung von unten und von oben ausgestattet – es gibt jedoch kleine, günstige LED-Leuchten, die für Freihand-USB-Mikroskope ohne Unterbau den gleichen Zweck erfüllen). Die fast farblosen Blatt-Adern werden zwischen dem undurchsichtig grünen Blattgewebe hell aufleuchten.
Blatt Anatomie vergrössert
Oberseite eines Blattes des Ranunkelstrauchs bei Licht von unten: Die durchscheinenden Blattadern leuchten hell zwischen den Bereichen, die grosse Mengen des grünen Blattfarbstoffs Chlorophyll enthalten.
  • Noch eindrücklicher ist die Beleuchtung der Blattunterseite von oben: Die kleineren Blatt-Adern erscheinen dunkel, grössere Adern und Haare stehen hell hervor. Mit geübtem Auge und scharfem Bild lassen sich bei 100-facher Vergrösserung sogar einzelne Strukturen innerhalb der grünen Zell-Inseln ausmachen!
Blatt Anatomie Ranunkelstrauch
Die Unterseite eines Blattes des Ranunkelstrauchs bei Licht von oben: Blattoberfläche und grössere Blattadern sind von feinen weissen Härchen besetzt.

Ich habe ein junges Blatt von meinem Ranunkelstrauch (Kerria japonica), einem beliebten Zierstrauch, der auf meinem Balkon wächst, gepflückt. Die Blätter dieser Pflanze fühlen sich samtig an, was ein weiteres Detail erahnen lässt. Und die Mikroskopaufnahme zeigt es deutlich: Diese Blätter sind behaart – die feinen Härchen auf der Unterseite erscheinen im Bild als weisse Würmchen. Dazwischen schimmern die feinen Blattadern, die sich zwischen dunkelgrünen Inseln verzweigen.

  • Um mehr zu sehen ist es nötig, einzelne Schichten eines Blattes unter das Mikroskop zu bringen. Klebt dazu einen durchsichtigen Klebestreifen auf ein frisches Blatt und drückt ihn sorgfältig an (aber ohne das Blatt gänzlich zu zerquetschen!). Zieht den Streifen dann mit einem Ruck wieder ab. Wenn nun grüne Teile des Blattes am Streifen heften und das Blatt an betreffenden Stellen nur noch aus farbloser, dünner Haut besteht: Perfekt! Ihr habt alles bis auf eine Aussenhaut des Blattes entfernt. Platziert diese farblosen Stellen nun zwischen zwei Objektträgern unter dem Mikroskop:
Dies ist die untere Aussenhaut eines frischen Blattes meiner Tomatenpflanze bei 100-facher Vergrösserung. Die winzigen Spaltöffnungen (sie sind ca. 0,05 – 0,1 mm klein!) sind als dunkelgrüne Punkte gut erkennen (die Ränder der Spalten enthalten den grünen Blattfarbstoff Chlorophyll, die übrigen Aussenhautzellen nicht). Diagonal durch das Bild verläuft ein Leitungsbündel, in dessen Umgebung ebenfalls chlorophyllhaltige Zellen haften geblieben sind.
  • Solltet ihr kein Mikroskop zur Hand haben, dafür aber eine Kamera mit Nahaufnahmen-(Makro-)Funktion, könnt ihr gegen das Licht durch grössere Blätter gleich an der Pflanze hindurch fotografieren und die Blattäderchen anschliessend auf einem grossen Bildschirm genauer betrachten (verwendet für solche Aufnahmen die bestmögliche Auflösung, dann könnt ihr am Bildschirm am weitesten hineinzoomen!).
Feigenblatt Makroaufnahme Gegenlicht
Ausschnitt aus einem Feigenblatt, gegen die Sonne aufgenommen (Samsung Galaxy NX, 16-50mm (kein Makro-Objektiv!), F/11, Belichtungszeit 1/200, ISO 100, Auflösung der Original-Aufnahme: 5472×3648 px)

Wer ein besseres Mikroskop hat, kann darüber hinaus sehen, woraus diese Inseln und alle anderen Teile des Blattes bestehen: Richtig, aus Zellen! Wie unsere Körperteile auch ist ein Blatt nämlich ein Organ, das sich aus vielen Zellen zusammensetzt. Und wer bei stärkerer Vergrösserung genau hinschaut, kann vielleicht eine aus Zellen zusammengesetzte Spaltöffnung in der Blattunterseite erkennen.

Am gründlichsten beobachtet Mensch übrigens beim Zeichnen! Wenn ihr möchtet, dass euch wirklich nichts entgeht, greift also zu Holzstiften und zeichnet ab, was ihr unter dem Mikroskop seht. Ich habe für euch eine Skizze des Längsschnittes durch ein Blatt, welche dessen Aufbau aus  Zellen zeigt.

Ein Blatt-Querschnitt aus der Nähe: Wie Blätter aufgebaut sind

Blatt-Anatomie: Querschnitt durch ein Pflanzen-Blatt
Skizze des Schnitts (von oben nach unten) durch ein Pflanzenblatt, wie er unter einem leistungsfähigen Lichtmikroskop erscheint: Blätter bestehen aus Zellen, die in unterschiedlichen Schichten angeordnet sind. Die Blattoberseite ist oben, die Unterseite ist unten. (By A.Spielhoff (Own work) [CC BY-SA 3.0], via Wikimedia Commons)

(a) und (g) Die meisten Blätter sind von einer schützenden Wachsschicht („Cuticula“) überzogen.

(b) und (f) Epidermis-Zellen: Diese Zellen bilden die „Haut“ des Blattes: Sie enthalten keinen grünen Blattfarbstoff und sind lichtdurchlässig.

(c) Palisadengewebe: Die Zellen sind hier dicht an dicht aneinander gereiht. Sie enthalten reichlich grünen Blattfarbstoff (Chlorophyll) und „verarbeiten“ viel Sonnenlicht bei der Fotosynthese.

(d) Schwammgewebe: Die Zellen sind hier weniger dicht beieinander und weniger regelmässig angeordnet. In den freien Räumen dazwischen (j) befindet sich Flüssigkeit.

(e) Leitungsbündel: Eine Blattader ist in zwei Sorten Leitungen, die gebündelt eine „Ader“ bilden, unterteilt: eine Sorte für Wasser und eine für die Fotosynthese-Erzeugnisse.

(h) Eine Spaltöffnung, gebildet von zwei benachbarten Zellen. Diese besonderen Zellen können sich je nach Wassergehalt berühren oder den Spalt offen lassen.

(i) Der Hohlraum hinter der Spaltöffnung ist mit Luft gefüllt und dient der Kohlendioxid-Aufnahme und der Sauerstoff- und Wasser(dampf)abgabe.


Verschiedene Blätter für verschiedene Standorte

Dabei ist Blatt keineswegs gleich Blatt. Vielmehr sind Blätter an den Standort ihrer Pflanze und damit an den gewünschten Einsatz im Photosynthese-Business angepasst: Blätter, die in der Sonne wachsen, sind voll mit Photosyntheseanlagen und erzeugen viel Material, das abstransportiert werden möchte. So sind solche Blätter kräftig und tiefgrün. Die Blätter von Schattenpflanzen sind hingegen zarter und von blassgrüner Farbe: Sie enthalten weniger Chlorophyll und sind somit nicht darauf ausgelegt, grosse Mengen Sonnenenergie zu verwerten. Stattdessen würden sie in der prallen Sonne Schaden nehmen.

Expedition 1: Finde Sonnen- und Schattenpflanzen!

Haltet die Augen offen, wenn ihr draussen unterwegs seid. Findet angepasste Sonnen- und Schattenpflanzen. Als Hinweis gebe ich euch je ein Beispiel:

Links: Sauerklee (Gattung Oxalis) ist eine typische Schattenpflanze mit zarten, hellen, grossflächigen Blättern. Er ist daher nur in schattigen Wäldern zu finden. Rechts: Unser Pfirsichbaum ist mit seinen dicken, tiefgrünen Blättern ein echter Sonnenanbeter.

Viele Bäume bilden sowohl Sonnen- und Schattenblätter an ein und derselben Pflanze! Betrachtet und befühlt die Blätter an tief hängenden Buchenästen. Könnt ihr beide Sorten finden, bestenfalls sogar am gleichen Baum? Sonnenblätter werdet ihr aussen bzw. oben am Rand der Baumkrone finden, wo sie das meiste Licht abfangen, während Schattenblätter weiter innen bzw. unterhalb des Blätterdachs zu finden sind. Klettert aber nicht ungesichert auf hohe Bäume! Wenn es keine tief hängenden Äste gibt, sind Sträucher und Hecken oder ein frisch umgestürzter Baum einfacher zu erreichende Fundstellen für zweierlei Laub!

Zwei Blätter ein und derselben Buche: Links ein Sonnenblatt vom Rand der Krone – es fühlt sich steif und ledrig an und ist dunkelgrün. Rechts ein Schattenblatt tief aus dem Gehölz – es fühlt sich dünner, fast zart an und ist heller. Achtung: An den Spitzen von Zweigen können sehr helle junge Blätter sein. Sucht daher in der Nähe der Zweig-Ansätze nach „echten“ Schattenblättern!


Nahrung rein, Abfall raus: Wie Blätter funktionieren

Im Organ Blatt werden die Kohlenstoff-, Wasserstoff- und Sauerstoffatome von Kohlendioxid und Wasser mit Hilfe von Lichtenergie zu Traubenzucker (Glucose) umgebaut (mehr dazu im Beitrag zur Photosynthese). Die nötigen Baustoffe müssen dazu aus der Luft bzw. aus dem Boden in die Blattzellen, genauer in die Chloroplasten, gebracht und der fertige Traubenzucker sowie Sauerstoff-„Abfall“ von dort fortgeschafft werden. Bloss haben Pflanzen kein schlagendes Herz, das die dazu nötigen Verkehrsströme antreiben könnte.

Dafür haben die Blätter ihre Spaltöffnungen mit den dahinter liegenden Hohlräumen. Durch die geöffneten Spalten kann Kohlendioxid in die Hohlräume eindringen (alle Gasteilchen sind ständig in Bewegung, sodass dazu kein gesonderter Antrieb nötig ist) und durch ihre grosse Oberfläche in das Innere des Blattes gelangen. Auf dem umgekehrten Weg gelangt Sauerstoff durch diese Öffnungen hinaus.

Wirklich genial ist der Trick, mit welchem Pflanzen ihr Wasser gegen die Schwerkraft aus dem Boden ziehen. Blätter können nämlich „schwitzen“, indem sie über ihre Spaltöffnungen Wasser abgeben. Dieses Wasser fehlt dann in den Blattzellen, die sich Nachschub aus den Blattadern holen. Der so entstehende „Unterdruck“ im Blattgefässsystem, das sich bis in die Wurzeln der Pflanze erstreckt, reicht aus, um Wasser aus dem Boden bis in die obersten Bereiche anzusaugen (Biologen nennen diesen Effekt dementsprechend „Transpirationssog“)! Und das funktioniert vom winzigen Kraut bis zu Dutzende Meter hohen Bäumen!

Dass der „Antrieb“ der Wasserversorgung in den Blättern, d.h. im oberen Teil von Pflanzen liegt, ist auch der Grund dafür, dass Schnittblumen in der Vase über viele Tage frisch bleiben können: Sie haben zwar keine Wurzeln mehr, aber durch das Schwitzen können sie auch durch das angeschnittene Leitungssystem in den Stängeln Wasser aus der Vase ansaugen.

Damit die Wasserversorgung der Pflanze nicht beim kleinsten Engpass aus dem Ruder läuft, hat jede Pflanzenzelle ein eigenes kleines Wasserreservoir, die Vakuole, in welcher sie Wasser zwischenlagern kann. Ausserdem verleiht eine prall gefüllte Vakuole ihrer Zelle eine pralle, steife Gestalt, die dazu beiträgt, das ganze Blatt bzw. die ganze Pflanze in Form zu halten.

Ihr möchtet den Beweis dafür erbringen? Hier ist er:

Versuch 2 : Die magische Pflanzen-Wiederbelebung

  • Giesst eine Topfpflanze so lange nicht oder stellt Schnittpflanzen in eine trockene Vase, bis ihre Blätter und Triebe schlaff (aber nicht spröde oder braun!) werden. Je nach Witterung kann das ein paar Stunden oder einen Tag dauern. Sehr gut funktioniert dieser Versuch zum Beispiel mit Sonnenblumen oder Blättern von Tomaten.

Wenn die Pflanze keinen Wassernachschub mehr hat, verbrauchen die Zellen ihre Vorräte aus den Vakuolen zum Schwitzen und für die Photosynthese. Die Entleerung ihrer Vakuole lässt die Pflanzenzelle erschlaffen, wie eine Ballonhülle ohne Luft darin.

  • Giesst nun die Topfpflanze reichlich oder gebt Wasser in die Blumenvase (und schneidet ggfs. den oder die Stängel noch einmal frisch an) und wartet wenige Stunden (z.B. bei Sonnenblumen) oder auch einen Tag (z.B. bei abgeschnittenen Tomatenblättern)..

Die zuvor schlaffe Pflanze wird sich in kurzer Zeit wieder aufrichten und straff und frisch aussehen, als wäre nichts gewesen!

Wiederbelebung Tomate Blatt
Ich habe meine Tomate ausgegeizt: Diese beiden Tomaten-Blätter in Bild 1 haben zwei warme Tage lang draussen unter der Tomatenpflanze gelegen: Sie hängen schlaff bis auf den Tisch. Nach der Aufnahme habe ich Wasser in das Glas gefüllt. Nach etwa 4 Stunden hat sich das rechte Blatt weitestgehend wieder aufgerichtet (Bild 2), nach 24 Stunden erscheinen beide Blätter frisch wie eben erst geschnitten (Bild 3).

Der Wassermangel in Zellen und Leitungssystem führt dazu, dass die Pflanze Wasser aus dem Boden bzw. der Vase ansaugt, sodass die Zellen ihre Vakuolen auffüllen können. So erhalten sie und die Pflanze ihre pralle, feste Gestalt zurück.

Damit Pflanzen bei warmer Witterung nicht drauf los schwitzen, bis sie austrocknen, können sich ihre Spaltöffnungen, die „Schweissporen“, nach Bedarf öffnen und schliessen: Ein solcher Spalt besteht aus zwei nebeneinander liegenden Zellen, die nicht fest miteinander verbunden sind. Nur wenn diese Zellen prall mit Wasser gefüllt sind, wölben sie sich so nach aussen, dass ein offener Spalt zwischen ihnen klafft. Wenn die Pflanze nicht genügend Wasser hat und die Schliesszellen erschlaffen, schliesst sich der Spalt, sodass die Pflanze nicht unnötig Wasser ausschwitzt.

Standortspezialisten unter den Pflanzen

Pflanzen wachsen nicht nur im Garten, auf der Wiese oder im Wald in gemässigtem Klima, sondern an den verschiedensten, zuweilen scheinbar unmöglichen Orten. Wie gelingt ihnen das? Die Pflanzenarten haben sich an ihren jeweiligen Standort, insbesondere an die dort vorhandene Wassermenge, gut angepasst.

Expedition 2 : Finde Pflanzen, die sich an unterschiedliche Wasserverfügbarkeit angepasst haben!

Pflanzen können anhand ihrer Anpassung an die Verfügbarkeit von Wasser in fünf übergeordnete Gruppen eingeteilt werden. In der Schweiz mit ihren vielfältigen Klimazonen könnt ihr Vertreter aller fünf Gruppen wild oder in Gärten finden. Ebenso gut könnt ihr diese kleine Expedition auch in einem botanischen Garten, im Gartencenter oder auf Reisen unternehmen.

Und hier sind für euch die fünf Pflanzengruppen:

Seerose

1. Wasserpflanzen: wachsen teilweise oder vollständig unter Wasser. Unterwasser-Pflanzen brauchen keine Spaltöffnungen, Pflanzen mit Schwimmblättern wie Seerosen nur an der Luftseite ihrer schwimmenden Blätter. Wasserpflanzen nehmen Wasser und darin gelöstes Kohlendioxid über ihre gesamte Oberfläche auf. Wurzeln haben sie daher kaum, denn die werden höchstens noch zum Festhalten benötigt.

Ausschliesslich an der Luft bzw. in trockenem Boden können Wasserpflanzen daher nicht überleben. Beispiel: Seerosen

Sumpfdotterblume

2. Pflanzen feuchter Standorte: findet man zum Beispiel in Regen- oder Nebelwäldern. Oder in Feuchtgebieten, die häufig mit Bodennebel aufwarten. Die extrem hohe Luftfeuchtigkeit an solchen Standorten hindert sie am „Ausschwitzen“ von Wasserdampf. Ihre grossen, dünnen Blätter können dank Rillen oder Haaren für eine noch grössere Oberfläche und vorgewölbten und damit „am Wind“ gelegenen Spaltöffnungen leichter Wasser abgeben.

Beispiel: Sumpfdotterblume (Caltha palustris – Achtung giftig, nicht anfassen!)

Übrigens: Manche Pflanzen, die auch bei „normaler“ Luftfeuchtigkeit zurecht kommen, können sich binnen kürzester Zeit an einen feuchten Standort anpassen. Solche eignen sich gut für die Bepflanzung einer „Hermetosphäre“. Die Anleitung zur Erschaffung eines solchen Gartens im Glas findet ihr übrigens hier!

Baeume im Fruehling

3. Pflanzen wechselfeuchter Standorte: Wachsen an Standorten, die nur gelegentlich feucht sind, d.h. flüssiges Wasser bieten. Dies können periodisch austrocknende Gebiete sein oder solche, in welchen es im Winter friert. „Wechselfeuchte“ Pflanzen legen in der trockenen Zeit eine Ruhepause ein: Sie werfen im Herbst die Blätter ab, ziehen sich in ein Minimum an Ausdehnung zurück oder überdauern die Trockenheit als Samen.

Beispiele: Alle Laubbäume, die im Herbst die Blätter verlieren, viele einjährige Pflanzen

Olivenbaum

4. Pflanzen trockener Standorte: In trockener Luft müssen Pflanzen das Schwitzen einschränken, um nicht zu verdursten, und ihr Wasser aus einem grossen Bereich des Bodens zusammenklauben. Sie haben daher ausgeprägte, tief oder weit reichende Wurzeln und kleine derbe Blätter mit dicker Wachsschicht. Die zahlreichen Spaltöffnungen darin befinden sich in kleinen Senken in der Blattoberfläche,

sodass Wasser nicht so leicht daraus entweichen kann. Beispiel: Olivenbaum (Olea europaea)

Hauswurz Rosetten

5. Pflanzen extrem trockener Standorte, auch als Sukkulenten bekannt: haben die Möglichkeit, Wasser in ihrem Innern langfristig zu speichern. Ihr Wasserspeichergewebe ist von einer festen, oft wehrhaften (Dornen, Stacheln!)  Aussenhülle umgeben. Sukkulenten haben eine kleine Oberfläche, d.h. Blätter sind – wenn vorhanden – sehr dick und fleischig.

Spaltöffnungen sind in geschützen Bereichen (z.B. Rillen eines Kaktus) abgesenkt. Beispiel: Hauswurz (Gattung Sempervivum)

All diese Spezialisten haben jedoch eines gemeinsam: Sie betreiben Fotosynthese! Und was sich dahinter verbirgt – wie Pflanzen aus Lichtenergie Nahrung gewinnen können – erfahrt ihr nächste Woche im zweiten Beitrag zum geheimnisvollen Leben der Pflanzen. Bis dahin wünsche ich euch viel Spass beim Erkunden und Experimentieren. Berichtet doch gleich hier im Kommentar von euren Erlebnissen!

Eure Kathi Keinstein

Hast du die Experimente nachgemacht: 

[poll id=“38″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Anlässlich des ersten Geburtstags von Keinsteins Kiste waren alle Schreibfreudigen eingeladen über die Wunder der Natur zu staunen und ihre Eindrücke, Erklärungen und vieles mehr in der Kiste zu sammeln.

„Das fand ich ganz furchtbar!“ „Das ist doch total schwer!“ „Das Fach habe ich nie verstanden…“ „Habe ich bei der ersten Möglichkeit abgewählt!“

Dass solche Reaktionen auf das Stichwort „Chemie“ oder „Naturwissenschaft ganz und gar nicht allgegenwärtig sind, beweisen die zwölf tollen Beiträge, welche innerhalb der letzten gut dreieinhalb Monate zusammengekommen sind. Ich freue mich ungemein, dass es da draussen so viele Menschen gibt, die ähnlich wie ich das Staunen nicht verlernt haben und reichlich Spektakuläres zu berichten haben.

Den Anfang macht Peter von „Light Microscope„, der für wenige Euro eine Mikroskop-Linse zum Aufsetzen auf die Smartphone-Kamera erstanden und damit fantastische Filmaufnahmen von Gartenameisen gemacht hat. Überhaupt sind Ameisen überaus erstaunliche Geschöpfe – und das nicht nur, weil sie gewaltige Staaten bilden. Einzelheiten und das Ameisen-Video gibt es hier auf: http://light-microscope.net/de/2016/06/wo-mich-die-natur-zum-staunen-bringt/ .

Ganz besondere Freude macht mir immer wieder der einzigartige Schreibstil von Frau Spatz, die ich letztes Jahr im Rahmen des Scienceblogs-Schreibwettbewerbs kennenlernen durfte. Da ich weiss, dass Frau Spatz eine Gabe zum Staunen über die Natur hat, freue ich mich ganz besonders über ihre atemberaubende Schilderung der sommerlichen Flugshow der Mauersegler – welche ich übrigens im Südfrankreich-Urlaub im Juli fast jeden Tag live erleben durfte.

Dass man ebenso gut daheim über die Natur staunen kann, weiss Inka, die im Frühling zum Foto-Spaziergang in Mutters Garten aufgebrochen ist und eindrucksvoll das spriessende und blühende Leben dokumentiert hat, welches wie durch ein Wunder jedes Jahr aufs Neue erwacht. Überdies verleiht dieser englischsprachige Beitrag der Blogparade einen geradezu internationalen Touch:  http://inkastour.com/photography-spring-garden/

Frank Ohlsen ist Experte für Entspannung und Selbstfindung in der Natur. Da verwundert es nicht, dass er mit ein wenig Entschleunigung ein wahres Kaleidoskop von Natureindrücken entfaltet: Von den Geheimnissen einer Moorlandschaft, dem „Baden“ in Waldluft, der Einheit in der Vielfalt unserer DNA, den Superkräften von Wildkräutern bis hin zu den tiefschürfenden Eindrücken, die gewaltige Naturphänomene bei uns hinterlassen können: http://blog.finde-dich-selbst.net/erstaunliche-natur/

Fräulein von Vux alias Jari-chan lebt mit ganz erstaunlichen Hausgenossen zusammen: Katzen, welche die Evolution eigens mit Schneeschuhen ausgestattet hat! Ich selbst liebe Katzen und streichle jeden Stubentiger, der mich lässt – wenn mir mal ein solcher begegnet, muss ich mir das unbedingt mal ansehen. Bis dahin gibt es ein Schneeschuh-Foto und mehr zu diesen faszinierenden Tieren hier: http://oradellavolpe.blogspot.ch/2016/06/blogparade-augen-auf-wo-die-natur-mich.html

Andrea weiss aus Erfahrung als bloggende Mama, von wem man das Staunen über die Natur am besten lernen kann: Von Kindern! Sie erzählt von der Entwicklung der Neugier bei Kleinkindern, von ihren schier unglaublichen Ideen und ihrer unersetzlichen Fähigkeit, die Natur ganz ohne Hemmschwellen oder gar Ängste zu erkunden:  http://www.kinderalltag.de/wow-natur-kopfschuetteln-und-staunen/

Anika führt und auf „Stift und Bier“ ganz intim durch ihren Tag voller Staunen – über den eigenen Körper, über Junkfood-geschädigte Meisen und die unglaubliche Glückseligkeit, die sie (und mich) gern beim Bestaunen all der grossen und kleinen Wunder überkommt. Für alle, die noch Anregungen für solche Erlebnisse suchen, gab es hier zudem Anikas ganz eigene „Faszinations-und-Gute-Laune-Liste“.

Noch weiter geht Nessa Altura vom Autorenexpress: Längst nicht nur in ihren Augen kann die Natur nicht nur bestaunenswert, sondern geradezu sinnlich sein. So präsentiert sie hier gleich eine ganze Linkliste zu Leser-Geschichten von sinnlichen Naturerlebnissen: http://autorenexpress.de/augen-auf-fuer-die-natur/

Veronica alias Roadtripgirl lebt gar nicht so weit von hier in meiner (Wahl-)Heimat, ist aber mit Leidenschaft unterwegs – am liebsten mit dem eigenen VW-Campingbus. Mit dem hat sie eine wahrlich erstaunliche Gegend im Glarnerland erkundet, die den Vergleich mit Kanada nicht scheuen muss – kaum mehr als eine Stunde von meinem Zuhause entfernt! So nah kann Bestaunenswertes sein: http://roadtripgirl.ch/?p=1866

Auch Daniela liebt das Reisen – sie verschlug es allerdings gleich auf die Südhalbkugel: In der Wüste Namib ist sie einer singenden Düne begegnet! Überhaupt sind Wüsten absolut faszinierende Landschaften, wie ich schon in den vereinigten Staaten erleben durfte. Bis ich es allerdings einmal nach Namibia schaffe, geniesse ich Daninas eindrückliche Schilderung: http://www.genuss-touren.com/big-daddy-im-sossusvlei-oder-wenn-duenen-singen/

Eines der grossen Wunder, die wir Bewohner der „gemässigten Breiten“ nur zu oft für selbstverständlich nehmen, ist der Lauf der Jahreszeiten – zumindest, bis er scheinbar durcheinander gerät. Wie die Jahreszeiten durch die Neigung der Erdachse zustande kommen, beschreibt Danina wunderbar eingängig: http://www.daninas-kunst-werkstatt.at/2016/08/25/alles-in-bewegung-alles-im-wandel/

Last but not least staunt auch der Kleingärtner Konstantin fast schon von „Berufs“ wegen über die grossen wie die kleinen Wunder der Natur – ob über die atemberaubenden Canyons in den USA oder die wachsenden und reifenden Tomaten im eigenen Garten (apropos: Ich muss auf dem Balkon dringend mal wieder zur Ernte schreiten): http://diekleingaertner.de/blogparade-teilnahme-wunderschoene-natur/

Ich selbst habe schon von Kindesbeinen an über die Natur gestaunt – und meine Eindrücke anlässlich der totalen Sonnenfinsternis 1999 in Mitteleuropa sogar niedergeschrieben. So konnte ich diese wirklich älteste meiner Naturgeschichten mit euch teilen: https://www.keinsteins-kiste.ch/faszination-sonnenfinsternis-wo-die-natur-mich-zum-staunen-brachte/

Im Nachhinein hat mich noch eine Nachricht von Walter von Othala erreicht, der so naturbegeistert ist, dass er auch nach dem Ende der Parade noch eine Geschichte beigesteuert hat: Auf seinem Blog über Feng Shui und mehr betrachtet er die Natur mit ganz anderen Augen – und findet dabei nicht selten Drachen: http://othala.me/feng-shui-drachen-in-der-natur/

Unser ganzes Leben ist eine Reise durch eine bestaunenswerte Welt. Und diese Reise habt ihr im Rahmen dieser Blogparade in vielen wunderbaren Facetten beleuchtet. Ich danke euch allen von Herzen dafür! Verliert euren Sinn fürs Staunen nicht – mir beschert er jeden Tag Freude, die ich auch in Zukunft hier in Keinsteins Kiste mit euch teilen möchte.

Auf viele weitere Jahre voller Faszination und Staunen,

Eure Kathi Keinstein