Beiträge

Weihnachten mit Keinsteins Kiste: Experimente und mehr im Advent

Liebe Leser, Ich verbringe die Adventszeit dieses Jahr ganz unweihnachtlich im warmen Australien. Das bedeutet aber nicht, dass ihr ganz auf adventliche Experimente und Weihnachtsgeschichten aus der Naturwissenschaft verzichten müsst. Davon habe ich nämlich in den letzten Jahren so einige gesammelt, die nach wie vor spannend sind und viel Spass machen. Und dazu kommt dieses Jahr noch ein ganz neuer Artikel mit sage und schreibe 13 Experimenten! Deshalb gibt es heute eine Übersicht über alle Beiträge in Keinsteins Kiste zu Chemie und mehr rund um Advent und Weihnachten, die bis Weihnachten 2018 erschienen sind.

Experiment: Wie setzt sich Kerzenlicht zusammen? Untersucht Lichtquellen mit einem selbstgebauten Spektroskop!

Ihr möchtet euch die Wartezeit im Advent mit Forscher-Aktivitäten versüssen? Dazu braucht es nicht viel – nur eine Pappschachtel und eine alte CD. Damit könnt ihr nach dieser Anleitung ganz einfach ein eigenes Spektroskop bauen!

Spektroskop im Einsatz

Ich probiere das Keksschachtel-Spektroskop am Adventskranz aus

Schaut durch dieses Gerät auf eine Lichtquelle, und ihr könnt die einzelnen Farben sehen, aus welchen das Licht besteht. Gibt es Unterschiede zwischen Kerzenlicht und LED-Lichterketten? Strahlen Leuchtstoffröhren anders als die Sonne? Findet dies und mehr hier selbst heraus!

Weihnachtsgeschichte: Was war der Weihnachtsstern wirklich?

Diese Frage hat die neunjährige Sarah ihrem Onkel Balthasar gestellt, der ein echter Himmelsforscher ist. Der nimmt sie mit an seinen Arbeitsplatz, eine richtig grosse Sternwarte. Mit Hilfe von Onkel Balthasars Forscher-Kollegen findet Sarah heraus, wie die bunten Farben eines Lichtspektrums den Wissenschaftlern von der Zusammensetzung der Sterne erzählen. Dabei begegnet sie einigen fantastischen Himmelserscheinungen. Ob der Weihnachtsstern, dem die drei “heiligen Könige” nach Betlehem folgten, auch dabei ist? Wissenschaft zum Vorlesen (und Selberlesen), verpackt in eine weihnachtliche Geschichte findet ihr in diesem Beitrag! Der Weihnachtsstern : Himmelsphänomen oder Fantasieprodukt?

Spannende Wissenschaft: Der molekulare Weihnachtsmann

Auch in unseren Zellen weihnachtet es – und das das ganze Jahr über. Da spaziert nämlich ein Molekül von den Fabriken im Zellinnern zur Zellaussenhaut und schleppt einen grossen Sack voller Geschenke mit sich….ja, richtig gelesen: Da _spaziert_ ein Molekül! Dieses Molekül ist das Transportprotein Kinesin, das sich tatsächlich auf eigenen Füssen an den Streben des Zellskeletts entlang bewegen kann. In vielfacher Ausführung kann es so säckeweise frisch produzierter Hormone zum Versand durch Aussenhülle der Zelle verfrachten. Und einige dieser Hormone können uns wahrhaft glücklich machen. Damit wird der molekulare Weihnachtsmann wahrlich seiner Rolle gerecht. Ein Kinesin-Molekül läuft mitsamt Geschenkesack über ein Aktin-Filament Erfahrt in diesem Einblick in die Zellbiologie, wie Kinesin-Moleküle laufen lernen und mit Hilfe fleissiger Weihnachtselfen ihre Geschenke ausliefern. Und wo es einen Weihnachtsmann gibt, gilt immer (auch hier): Obacht vor dem Grinch! Oder möchtet ihr selbst im Forscher-Labor Geschenke basteln? Da habe ich gleich drei Vorschlage:

Experiment: Weihnachtskugeln mit Silberspiegel

Warum kann man sich eigentlich in Christbaumkugeln spiegeln? Weil sie mit Silber beschichtet sind – und zwar von innen! Aber wie kommt das Silber in die Glaskugel? Das könnt ihr in diesem Experiment ausprobieren und dabei eure eigenen Kugeln verspiegeln.

Links eine unbehandelte Ersatzkugel, rechts die selbst verspiegelte Kugel

Dazu benötigt ihr Silbernitrat – ein Salz, das Silber-Ionen enthält. Ihr bekommt es in der Drogerie oder Apotheke – für ein paar Franken oder Euros, die in diese ganz besondere “Bastelarbeit” gut angelegt sind. Schliesslich kommt ja echtes Silber dabei raus! Um aus diesen Silber-Ionen das spiegelnde Edelmetall zu machen, braucht ihr nichts weiter als Zucker und eine Wärmequelle. Den Rest – wie ihr das Silbersalz dazu bringt, auf der Kugeloberfläche zu Silber zu reagieren und wie ihr die Reste sicher entsorgt (Silber ist ein Schwermetall!) – erfahrt ihr hier in der Experimentier-Anleitung.

Experiment: Kristalle züchten

Neben spiegelnden Christbaumkugeln machen sich auch funkelnde Kristallsterne gut als Baumschmuck. Und die könnt ihr ganz einfach selber züchten. Ihr braucht dazu Alaun – ein Salz, das ihr in der Apotheke oder Drogerie kaufen könnt, und destillatgleiches Wasser (“Bügelwasser”), das ihr in jedem Supermarkt beim Haushaltszubehör findet. Dazu kommen ein paar Tage Geduld und ihr könnt wunderschönen Kristallen beim Wachsen zusehen. Mit diesen Kristallen lassen sich natürlich nicht nur Sterne züchten – eurer Fantasie sind keine Grenzen gesetzt: Sollen es lieber Herzen, Engel, Tannenbäume sein? Und wenn ihr Zugang zu anderen, farbigen Salzen habt (wie Kupfersulfat oder Chrom-Alaun), könnt ihr sogar farbigen Baumschmuck züchten! Hier in der Experimentier-Anleitung bei den Monstamoons stelle ich die schneeweisse Ausführung mit einfachem (Kali-)Alaun vor.

Experiment: Schneekugeln selber machen

Eine selbstgestaltete Schneekugel ist ein wunderschönes Geschenk für eure Lieben! In der ganz einfachen Ausführung wird einfach Glitzer in destillatgleiches Wasser gemischt und in ein gestaltetes Glas gefüllt. Was aber, wenn ihr “richtige” Schneeflocken in eurer Kugel haben wollt? DIY Schneekugeln mit Benzoesäure Die könnt ihr aus Benzoesäure selbst herstellen. Dem Namen zum Trotz ist Benzoesäure ein Feststoff, eine organische Verbindung, die oft als Lebensmittelzusatzstoff zum Einsatz kommt. Deshalb könnt ihr sie auch problemlos in der Drogerie oder Apotheke kaufen. Zur Herstellung von Schneeflocken wird das kochsalzähnliche Pulver direkt im Schneekugel-Wasser “umkristallisiert”. Wie das geht, zeige ich euch hier in der Experimentier-Anleitung gemeinsam mit Mikkis Weihnachtengeln.

Experimente: 13 Versuche mit Kerzen

Und damit euch auch ganz bestimmt nicht langweilig wird, gibt es zum Schluss noch etwas Neues: Im Rahmen der Advents-Blogparade der IG Schweizer Familienblogs bei den Angelones stelle ich euch 13 ganz einfache Experimente mit Kerzen vor. Ganz einfach heisst dabei aber nicht weniger spektakulär. Denn eine Kerzenflamme ist nicht nur heiss und hell, sondern über alle Massen faszinierend. Warum brennen Kerzen eigentlich? Könnt ihr eine Kerzenflamme um ein Hindernis herum ausblasen? Wie erschafft man eine halbe Flamme? Was passiert, wenn man ein Glas über eine Kerze stülpt? Warum sind Adventskranz und Weihnachtsbaum brandgefährlich? Die Antworten auf diese und mehr Fragen könnt ihr in dieser Experimentier-Anleitung und vor allem durch selbst Ausprobieren finden! Forscher-Advent: 13 Experimente mit Kerzen   Nun wünsche ich euch viel Spass beim Lesen, Stöbern, Basteln und Experimentieren im Advent! Zumindest rechtzeitig zu Weihnachten werden wir wieder im Lande sein. Und dann würde ich mich sehr über eure Berichte und Ergebnisse vom Nachbasteln und -Experimentieren freuen! Eure Kathi Keinstein

Experiment DIY Kinetischer Sand - und wie er funktioniert

Die grossen Ferien sind auch in den spätesten Kantonen und Bundesländern vorbei und der Sommer geht zu Ende. Wer denkt da nicht manchmal wehmütig an die Strandferien zurück? An das Gefühl von Sand zwischen Zehen und Fingern, an Sandburgen und andere Küsten-Kunstwerke?

Das alles muss aber nicht bis zum nächsten Jahr warten. Für Sehnsuchtsvolle gibt es nämlich ein Spielzeug, mit dem es sich auch an Schlechtwettertagen herrlich “sändelen” lässt: Kinetischer Sand. Den kann man entweder im Kaufhaus kaufen, online bestellen (Kinetic Sand® und ähnliche) – oder selber machen.

Ich habe meinen kinetischen Sand selbst gemacht und zeige euch, wie ich das hinbekommen habe. Und natürlich auch die Chemie, die dahinter steckt (und ganz und gar ungefährlich ist!). Denn wenn man versteht, was man da zusammenrührt, funktioniert es am besten und macht auch noch am meisten Spass.

Wie aus Sand Burgen werden

Jedes Kind, das gerne Sandburgen baut, weiss eines: Dazu braucht man nassen Sand. Wenn man trockenen Sand auftürmen oder gar formen will, fliesst der nämlich sofort auseinander und verteilt sich überall.

Nasser Sand dagegen pappt zusammen. Aber wieso eigentlich? Der gewöhnliche Strandsand besteht zu grössten Teilen aus Quarz, also aus Siliciumdioxid, SiO2. Das sind Kristalle, in denen Sauerstoff-Atome abwechslungsweise mit Silicium-Atomen verbunden sind. Darin ähnelt Quarz in gewisser Weise dem Wasser (und noch mehr einem Eiskristall): Darin wechseln sich nämlich Sauerstoffatome mit Wasserstoffatomen ab.

Aus diesem Grund finden sich Quarz und Wasser überaus anziehend – sie werden von “zwischenmolekularen Kräften” zusammen gehalten. Diese Kräfte wirken auch zwischen verschiedenen Wassermolekülen (wie das genau funktioniert, erkläre ich beim Experiment mit dem krummen Wasserstrahl). So können Wassermoleküle untereinander zusammenhalten und zwischen den Oberflächen von Sandkörnern regelrechte Wasserbrücken formen – sodass feuchte Sandkörner unwillkürlich zusammen pappen. Das Wasser wirkt also wie ein formbarer “Zement” zwischen den Sandkörnern!

Dort wo sich die Oberflächen der runden Sandkörner nicht so nahe kommen, bleiben Zwischenräume, die mit ein Bisschen Luft gefüllt sind.

Die Kräfte zwischen den Molekülen sind dabei eben so stark, dass die Sandkörner aneinander haften, aber so schwach, dass Kinderhände das Netzwerk aus Wasserbrücken zwischen Sandkörnern spielend leicht verformen können.

Dabei gibt es allerdings ein Problem: Wasser verdunstet relativ schnell – besonders an trockener Luft oder gar an der Sonne. Und dann beginnt die schöne Sandburg rasch wieder zu bröseln und zu Sandlawinen zu zerfallen.

Was ist kinetischer Sand?

Was wäre aber, wenn man einen “Zement” hätte, der nicht so leicht verdunstet? Das haben sich wohl die Erfinder von “Kinetic Sand®” gedacht – und ihren trockenen Sand mit Silikonöl (genauer gesagt “Polydimethylsiloxan”, PDMS) gemischt.

Silikon: Ein ganz besonderer Kunststoff

Silikone sind Kunststoffe aus langen Molekülketten, sogenannte Polymere. Anders als die meisten anderen Kunststoffe aus Kohlenstoff bestehen die Ketten der Silikone jedoch aus Silicium-Atomen, die sich mit Sauerstoff-Atomen abwechseln (Silicium ist Kohlenstoff in vielen chemischen Dingen sehr ähnlich). Das hatten wir doch schon….genau: Quarz. Tatsächlich sind sich die Silikon-Ketten und Quarz so ähnlich, dass auch zwischen ihnen anziehende zwischenmolekulare Kräfte wirken können.

Beim PDMS trägt übrigens jedes Siliciumatom noch zwei “Methylgruppen” aus Kohlenstoff- und Wasserstoffatomen, daher der Name:

Kinetischer Sand braucht "Zement" - Hier das Original: Polydimethylsiloxan

Ein Glied einer PDMS-Kette: Der Buchstabe n steht für eine beliebige Zahl solcher Glieder, die eine Kette bilden.

Und dazu kommt noch etwas: Silikone sind bei “lebendigen” Bedingungen, also in und um Körper von Lebewesen, sehr reaktionsträge, was sie unter den Kunststoffen besonders ungiftig macht. So sind Silikone als Material für Brustimplantate berühmt geworden und finden in der Medizin noch viele andere Anwendungen. Im Haushalt kennt ihr sie vielleicht als Material für elastische Backformen und -pinsel oder als Fugenmasse im Badezimmer.

Je nach der Länge und Vernetzung ihrer Moleküle können Silikone unterschiedliche Eigenschaften haben. Sind die Moleküle kurz genug und wenig bis gar nicht vernetzt, bilden sie bei Raumtemperatur mehr oder weniger zähe Flüssigkeiten: Silikonfette oder -öle. Die sind ihrer Reaktionsträgheit wegen bei Labor-Chemikern als Schmiere für ihre Glasapparaturen oder als Wärmeüberträger (Silikonöle verdunsten kaum und können viel heisser als Wasser werden, bevor sie zu kochen beginnen!) sehr beliebt.

Silikon als perfekter “Zement” für Sandburgen?

Eine ölig-zähe Flüssigkeit, die chemisch inert ist und schwer verdunstet – und zu den passenden Wechselwirkungen zu Sandkörnern fähig ist… die wäre doch ein perfekter “Zement” für Spielsand für kleine Kinder! Leider bekommt man Silikonöl nicht einfach so im Supermarkt. Deshalb haben schon viele DIY-begeisterte Mütter und BloggerInnen nach passenden Ersatzstoffen für PDMS gesucht. Mit mehr oder weniger grossem Erfolg.

Ich habe mitgesucht und zeige euch meinen persönlichen Favoriten: Der besteht ausschliesslich aus Quarzsand und Lebensmittelzutaten, lässt sich prima formen und kneten. Damit eignet sich dieser kinetische Sand auch für die ganz Kleinen, die schonmal etwas davon in den Mund nehmen.

Rezept: Kinetischer Sand selbstgemacht

Ihr braucht dazu

2 Tassen feinen Sand (Dekorsand oder gesiebten Vogelsand)
1 Tasse Maisstärke (Stärkemehl, z.B. Maizena)
Etwas Wasser
Etwas Speiseöl
Eine runde Schüssel, Schneebesen, Löffel

Was ihr braucht: Sand, Stärkemehl,Wasser,Schüssel,Schneebesen - dazu kommen: Löffel,Öl

Wenn ihr mehr Sand zum Spielen möchtet, nehmt einfach mehr von den Zutaten. Auf ein beliebiges Volumen Sand kommt dabei immer die Hälfte dieses Volumens an Stärkemehl!

So geht es

Gebt den Sand und Stärke trocken in die Schüssel und vermischt sie mit dem Schneebesen sehr gründlich. Es sollten am Ende keine Stärkeklumpen mehr zu sehen sein.

Kinetischer Sand gut gemischt: Sand und Stärke lassen sich fast nicht mehr auseinander halten

So sind Sand und Stärke gründlich vermischt.

Gebt dann langsam etwas Wasser hinzu. Für zwei Honigglas-Deckel Sand und einen Deckel Stärkemehl habe ich etwa 30ml Wasser gebraucht.

Mischt und knetet mit dem Löffel weiter, bis eine formbare Masse entsteht. Wenn ihr die Masse mit einer Hand aus der Schüssel heben könnt, knetet sie auf dem Tisch weiter und formt eine Mulde.

Sandmasse mit Mulde: Darin befinden sich 1-2ml Speiseöl.

Meine Probier-Portion: Die Mulde ist so gross wie ein Eidotter: Darin befinden sich 1-2ml Speiseöl. Jetzt verkneten!

Gebt etwas Speiseöl hinein und verknetet das Ganze. Wiederholt diesen Schritt allenfalls, bis euer Sand die gewünschte Geschmeidigkeit und Textur hat. Ich habe in die Hälfte meiner urpsrünglichen Mischung etwa 2ml Speiseöl eingeknetet.

Die richtige Mischung: Dieser Sandball hält zusammen!

So ist die Mischung gut: Der Sandball hält zusammen!

Dies ist ein Zeichen für eine gute Mischung: Kinetischer Sand lässt sich zu einem Ball formen, welcher nicht auseinander fällt! Dann hält der Sand nämlich so fest zusammen, dass der Ritter vom Titelbild darauf reiten kann!

Ein Pferd aus kinetischem Sand trägt den Spielzeug-Ritter

 

Inzwischen bin ich mit dem Bloggen fertig – drei Stunden sind vergangen: Das Pferd (wie auf dem Titelbild) steht immer noch unversehrt auf dem Küchentisch!

Wer es bunt mag, kann den Sand auch mit Lebensmittelfarbe einfärben (rührt dazu die Farbe ins Wasser ein, bevor ihr es zu Sand und Stärke gebt). Ich gebe aber keine Garantie, dass dann beim Spielen die Finger nicht auch bunt werden!

 

Wie funktioniert das?

Auch Stärke besteht aus Molekülketten – die einzelnen Kettenglieder sind Zucker-Ringe aus Kohlenstoff-, Sauerstoff- und Wasserstoffatomen. Wieder sind Sauerstoff-Atome im Spiel, die sich mit passenden anderen Atomen abwechseln. So können auch zwischen Stärke und Wasser und Sand anziehende zwischenmolekulare Kräfte wirken.

Kinetischer Sand braucht "Zement": Ausschnitt aus einem Stärkemolekül mit Verzweigung (Amylopektin)

Ein Ausschnitt aus einem Stärkemolekül mit Verzweigung (unverzweigte gibt es auch): Zu sehen sind vier Zucker-Einheiten, an den gestrichelten Linien folgen weitere. An jeder Ecke ohne Buchstaben befindet sich ein Kohlenstoff-Atom (C). Zwischen Wasserstoff- und Sauerstoff-Atomen gibt es sogenannte polare Bindungen, die für die anziehenden Kräfte zwischen Stärke und Wasser notwendig sind.

Die knäulen sich zu porösen Körnern zusammen, welche sich mit Wassermolekülen vollsaugen können (wie die Hydroperlen in diesem Experiment, nur sind Stärkekörner sehr, sehr viel kleiner!). So quellen die Körner und pappen dank den zwischenmolekularen Kräften mit dem Wasser zusammen. Vom Kuchenbacken kennt ihr das: Mehl und Wasser ergeben miteinander eine klebrige Pampe.

Wenn man Stärke erwärmt, können sogar richtige chemische Bindungen zwischen den Ketten entstehen: Das Ganze verkleistert – deshalb werden Kuchen fest. So weit wollen wir aber nicht gehen, denn der kinetische Sand soll ja “kinetisch”, also beweglich, sprich formbar bleiben.

Damit die Stärkepampe nicht an den Händen klebt, gebe ich – analog zum Einfetten einer Backform – noch einen Schuss Speiseöl dazu. Das Öl ist nicht mit Wasser mischbar, denn zwischen seinen Molekülen wirk eine andere Sorte Kräfte. So nimmt durch die Zugabe des Öls die pappende Wirkung der Stärke ein wenig ab. Ingesamt wird der Sand aber sehr geschmeidig und hält nach wie vor so gut, dass selbst mein Pferdekopf der Schwerkraft trotzt. Und: Das Speiseöl verdunstet nicht mal eben!

Was zu beachten ist/Entsorgung

Zu empfehlen: Indoor-Sandkasten

Vollkommen sauber ist wohl kein selbstgemachter kinetischer Sand. Ein paar Körner lösen sich immer davon und bleiben an Händen oder Umgebung haften. Deshalb empfehle ich, eine Kunststoff-Wanne oder ein Tablett zum Indoor-Sandkasten zu erklären, um den Sand etwas zu bändigen. Wenn dann doch mal was daneben geht, kann es einfach aufgefegt und in den Abfall entsorgt oder mit dem Staubsauger aufgesaugt werden.

Wascht eure Hände nach dem Spielen am besten mit Seife – dank der Superwaschkraft der Tenside darin bekommt ihr das Öl so ganz einfach wieder von den Fingern.

Haltbarkeit dieses kinetischen Sandes

Stärkemehl und Öl sind Lebensmittel – also nicht-sterile, biologische Produkte. Solche halten natürlich nicht ewig, zumal ich beim Anrühren ganz bewusst auf Konservierungsmittel verzichtet habe. Bewahrt den kinetischen Sand nach dem Spielen am besten in einer geschlossenen Tupper-Dose im Kühlschrank auf. Lasst ihn nach dem Herausnehmen ggfs. erst auf Raumtemperatur warm werden. Speiseöl wird nämlich in der Kälte fester, sodass der kalte Sand steif sein kann.

Dann sollte er einige Wochen oder gar Monate halten. Achtet einfach auf die Äusserlichkeiten: Wenn der Sand ranzig riecht oder schimmelt, macht besser neuen. Der alte Sand kann in den Restmüll entsorgt werden.

Jetzt wünsche ich euch aber erstmal viel Spass beim “Sändelen”! – Wie spielt ihr denn am liebsten mit Sand? Kennt ihr noch andere Rezepte für Indoor-Sand?

Blitz und Donner - Wie entstehen eigentlich Gewitter?

Wir alle haben lange unter der Hitze gestöhnt und sehnlichst darauf gewartet, dass endlich ein Gewitter kommt und uns Regen und lang ersehnte Abkühlung bringt. In den letzten Tagen hat es dann über der Schweiz gehörig geblitzt und gerumpelt…denn Gewitter bringen noch mehr als Regen: Blitze und Donner nämlich. Und um die soll es heute gehen.

Wie entstehen eigentlich Gewitter?

Sicher habt ihr schon beobachtet, dass Gewitter sich durch riesige Wolkenberge am Horizont ankündigen. Diese Wolkenberge werden immer schwärzer und bedrohlicher, während sie sich nähern. Irgendwann schliesslich blitzt und kracht es ganz gewaltig, und der Himmel öffnet seine Schleusen für stürmische Windböen und einen mächtigen Regenguss.

Damit Wolken überhaupt entstehen, muss allerdings erst einmal Wasser verdunsten. Das bewerkstelligt die warme Sommersonne, die auf Gewässer und feuchten Erdboden scheint. Das flüssige Wasser wird mit Hilfe der Sonnenenergie gasförmig, sodass die einzelnen Teilchen des Wasserdampfs sich in der Luft verteilen können – die somit feucht wird.

Schwülwarme Luft + Kaltfront = Gewitterwolken

Wenn es dann so richtig düppig bzw. schwül, d.h. feuchtwarm ist und ein Schwall kühlerer Luft (eine “Kaltfront”) auf den feuchtwarmen Teil der Atmosphäre zustrebt, schiebt sich die kalte Luft zunächst über die warme Schicht. Wer allerdings schon einmal Heissluftballon gefahren ist, weiss, dass warme Luft stets nach oben steigt (weil warme Luft eine geringere Dichte hat als kühlere). So steigt die feuchtwarme Luft in die kalte Schicht auf und wird dabei abgekühlt.

Warum wird die aufsteigende Luft kühl?

Das Abkühlen rührt nicht etwa daher, dass sich kühle und wärmere Luft vermischen. Stattdessen ist der Luftdruck dafür verantwortlich: Der nimmt nämlich in grossen Höhen rasch ab (wer schon einmal mit dem Auto ins Gebirge gefahren ist, kennt ein untrügliches Anzeichen dafür: Das Knacken in den Ohren, wenn sich der Luftdruck im Innenohr dem niedrigeren Aussendruck anpasst).

Mit dem sinkenden Druck dehnt sich die Luft aus – und das bedeutet Arbeit. Arbeit wiederum ist ein anderer Ausdruck für aufgewendete Energie. Und die Gesetze der Thermodynamik schreiben vor, dass aufgewendete Energie stets irgendwo her bezogen werden muss – zum Beispiel aus der Wärme der sich ausdehnenden Luft (auch Wärme ist eine Form von Energie). Und wenn die Wärme zum Ausdehnen “verbraucht” wird, wird es eben kalt.

Vom Schäfchen zur Gewitterwolke

Damit werden aus den anfangs gasförmigen Wasserteilchen winzige, flüssige Wassertröpfchen, die regelrechte Nebelballen bilden: Wolken. Ist nur wenig Luftfeuchtigkeit da, die sich verflüssigen (“kondensieren”) kann, entstehen so harmlose Quellwolken – mehr oder weniger grosse “Schäfchen”, die die Wetterforscher “Cumulus-Wolken” nennen.

Wenn genug Wasserdampf in der Luft ist, können diese Wolken allerdings sehr hoch werden. Der Umstand, dass beim Verflüssigen Energie frei wird (die sogenannte Verdampfungs- bzw. Kondensationswärme – eine Schwester der Schmelzwärme, die ihr in diesem Versuch erforschen könnt), sorgt dafür, dass die Ausdehnung der Luft nicht gleich zur völligen Abkühlung führt. So kann die feuchtwarme Luft sehr hoch steigen – bis die Temperatur der feuchten Luft schliesslich doch auf die Temperatur der Umgebung absinkt. Und die kann gut und gerne deutlich unter 0°C liegen, sodass sich die Wassertröpfchen teilweise zu Eiskristallen verfestigen.

Dann ist ziemlich plötzlich Schluss mit Aufstieg, sodass grosse Wolkentürme (die die Wetterforscher dann “Cumulonimbus” nennen) mitunter oben platt erscheinen.

Cumulonimbus-Wolke: Daraus wird ein Gewitter

Da braut sich etwas zusammen: Eine mächtige Cumulonimbus-Wolke türmt sich auf – hier ist ein Gewitter im Anzug! (Quelle: Pixabay)

Gewitterwolken sind Windkraftwerke

Das ganze Aufsteigen, Ausdehnen und allenfalls Absinken kälterer Luftmassen hält die Luft- und Wasserteilchen in der Wolke kräftig in Bewegung: In den Gewitterwolken toben wilde Winde (das ist ein Grund, weshalb man mit dem Flugzeug besser nicht da hinein fliegt). Und wo Wind weht, ist eines unvermeidbar: Reibung! Die Teilchen stossen und streifen einander…und wenn diese Begegnungen heftig genug sind, werden sie dabei “abgeschliffen”:

Einzelne Elektronen – jene Elementarteilchen, die eine negative elektrische Ladung tragen – lösen sich von den Eiskristallen und bleiben an den flüssigen Wassertröpfchen haften. Diese Tröpfchen, die nun zu viele Elektronen haben, sind folglich negativ geladen, während die “abgeschliffenen” Eiskristalle positiv geladen zurück bleiben.

Ladungstrennung dank Dichteunterschied

Die Besonderheit an Wasser ist nun, dass es im festen Zustand “leichter” (also weniger dicht) ist als kühles flüssiges Wasser (diese “Anomalie” könnt ihr mit diesem Experiment sichtbar machen: Eis wächst!). Deshalb werden die positiv geladenen Eiskristalle leicht nach oben getrieben, während die Wassertröpfchen eher absinken.

So sammeln sich die verschiedenen Ladungen getrennt voneinander: Positive oben, negative unten. Das kennt man doch woher……genau: Eine Gewitterwolke ist nichts anderes als eine riesenmegagrosse Batterie, die mittels Windkraft aufgeladen wird!

Schema Ladungstrennung in einer Gewitterwolke

Ladungstrennung in einer Gewitterwolke: Durch Reibung werden Eiskristalle positiv und Wassertröpfchen negativ geladen. Die leichteren Eiskristalle sammeln sich oben, während die Wassertröpfchen sich unten in der Wolke sammeln. Von dort aus können die angehäuften negativen Ladungen im Zuge einer Entladung (Blitz) zur Erde hin abfliessen. Fallböen sorgen zudem für die plötzlichen stürmischen Winde, die während eines Gewitters auftreten können. (nach einer Grafik der Helmholtz-Wissensplattform “Erde und Umwelt”, ESKP [CC BY 4.0 ], via Wikimedia Commons)

Strom aus der Himmelsbatterie

Eine Batterie ist an sich eine feine Sache – kann man darin doch elektrische Energie speichern, indem man elektrische Ladungen getrennt aufbewahrt. Stellvertretend für das Ausmass dieser Trennung wird die elektrische Spannung angegeben: Die kleinen Batterien aus eurem Alltag liefern in der Regel eine Spannung von 1,5 bis 9 Volt.

Eine Cumulonimbus-Wolkenbatterie, die einen Kilometer hoch ist, kann dagegen bis auf 170 Millionen (170’000’000) Volt aufgeladen werden!

Alles darüber ist jedoch einfach zuviel: Es gibt unweigerlich einen Kurzschluss. Das bedeutet, die angehäuften negativen Ladungen fliessen in einen weniger negativen Bereich ab. Dieser Bereich kann der obere, positiv geladene Teil der Wolke sein, oder der Erdboden, welcher ebenfalls weniger negativ als der untere Wolkenteil geladen ist.

Für kurze Zeit fliesst also ein elektrischer Strom – und was für einer! Während mein modernes Handy-Ladegerät das Handy mit einer Stromstärke (Anzahl Ladungen, die in gegebener Zeit an einem Messpunkt vorbeikommen) von 1,5 Ampere auflädt, fliessen in einem Blitz kurzzeitig bis zu 100’000 Ampere! Bedenkt man, dass bereits 0,13 Ampere, die direkt durch einen menschlichen Körper fliessen, lebensgefährlich sein können, sollte man so einem Blitz wahrlich nicht zu nahe kommen.

Warum Blitze flackern: Von Leitblitz und Fangblitz zur Hauptentladung

Bevor so ein gewaltiger Strom fliessen kann, muss jedoch eine entsprechend gewaltige Leitung her. So beginnt eine Entladung der Wolkenbatterie damit, dass sich einige der an der Unterseite angehäuften negativen Ladungen einen Weg nach unten in Richtung Erde bahnen. Diesen ersten kleinen Strom nennen die Wetterforscher einen Leitblitz.

Am Erdboden gibt es bewegliche positive Ladungen, die von den herannahenden negativen Ladungen unweigerlich angezogen werden. So steigen sie durch die Luft nach oben auf. Wenn der so entstehende Fangblitz mit dem Leitblitz zusammentrifft, vereinigen sich beide zu einem regelrechten “Kabel” aus sehr leitfähiger Luft. Durch dieses Kabel kann dann die Hauptentladung mit ihrer ganzen Wucht abfliessen.

Wenn ein Blitz also flackert, dann deshalb, weil wir zunächst Leit- und Fangblitz und erst einen Sekundenbruchteil später die Hauptentladung aufleuchten sehen. Wirklich sichtbar machen lässt sich das Geschehen aber nur mit Zeitlupen-Aufnahmen mit einer Hochgeschwindigkeitskamera.

Bewegliche positive Ladungen sammeln sich in Bodennähe übrigens besonders in hohen, schmalen Gegenständen wie hohen Gebäuden oder freistehenden Bäumen. So bildet sich an solchen Dingen besonders leicht ein Fangblitz, der einen Leitblitz in der Nähe regelrecht einfangen und die Hauptentladung zu seinem Ursprung leiten kann. Deshalb werden hoch aufragende Dinge besonders leicht vom Blitz getroffen.

Was passiert mit der elektrischen Energie?

Ein Strom von solch gewaltiger Stärke enthält eine gewaltige Menge Energie – die letztlich irgendwo hin muss. Ein Teil dieser Energie wird schon auf dem Weg des Stromflusses umgewandelt. Zahllose geladene Teilchen, die gemeinsam durch ein “Luft-Kabel” rasen, verursachen nämlich eine Menge Reibung mit den Luftteilchen des Kabels. Folglich wird die Luft für einen Augenblick mächtig warm – so warm, dass sie hell aufleuchtet und sich um den Blitz herum schlagartig ausdehnt.

Da die Ausdehnung schon nach einem winzigen Sekundenbruchteil endet, breitet sie sich gleich einer einzelnen Druckwelle weiter aus – bis sie allenfalls unsere Ohren erreicht und wir (sofern wir dem Gewitter nahe genug sind) einen Knall hören: Den Donner. Wenn wir weiter vom Gewitter entfernt sind, wird diese Druckwelle mehr und mehr von Winden und Hindernissen auf ihrem Weg verzerrt und gedehnt, sodass der Donner mit wachsender Entfernung zum Gewitter immer mehr zu einem längeren Rumpeln und Grollen wird.

 

Wie Gewitter gefährlich werden können – und wie man sich davor schützt

Die Zerstörungskraft von Blitzen

Auch nach der Entstehung von Blitzlicht und Donner erreicht ein Blitz mit ungeheurer Energie den Boden – oder was eben darauf steht. Und genau dadurch müssen all die geladenen Teilchen nun weiter abfliessen. Wenn ein vom Blitz getroffener Gegenstand nun kein guter elektrischer Leiter ist, entsteht dabei wiederum eine Menge Reibung und damit Wärme und allenfalls Licht.

Wie man Gebäude vor Blitzen schützt

Brennbares Material wie Holz kann durch diese Wärme in Flammen aufgehen oder verkohlen auf der Stelle. So kann ein Blitz nicht nur einen Menschen töten, sondern auch einen ganzen Wald- oder Gebäudebrand auslösen. Damit das mit unseren Städten und Türmen nicht passiert, werden heute alle Gebäude mit einem Blitzableiter ausgerüstet. Das ist nichts anderes als ein dicker Draht aus leitfähigem Metall, der vom höchsten Punkt des Gebäudes bis in den Erdboden verläuft.

Die fliessenden Ladungen sind nämlich – wie alles in der Natur – ziemlich bequem: Wenn man ihnen einen besonders leichten Weg (durch den leitfähigen Draht) anbietet, dann nutzen sie diesen auch und geben sich mit dem weniger leitfähigen Material nicht ab. Im Erdboden angekommen haben die Ladungen schliesslich so viel Raum, dass sie sich verteilen können, ohne weiteren Schaden anzurichten.

Gewitter in Paris: Gleich drei Blitze schlage in den Eiffelturm ein

Einer der grössten Blitzableiter der Welt? Der Eiffelturm ragt 1902 (und heute noch) hoch über Paris auf und ist damit ein leichtes Ziel für Blitze. Ganz aus Metall würde er den Strom sehr gut leiten – wenn da die Rostschutzlackierung nicht wäre. Aber zum Glück waren Blitzableiter bereits vor 116 Jahren bekannt und in Verwendung (die wurden nämlich schon um 1750 von Benjamin Franklin erfunden). (Aus: Thunder and Lightning (Blitz und Donner) von Camille Flammarion, veröffentlicht 1906)

Das Auto als Faraday’scher Käfig – kein Mythos!

Auf ähnliche Weise sind übrigens Autos geschützt: Die Aussenhülle von Autos besteht aus leitfähigem Metall – und in die heutigen Autoreifen werden ebenfalls leitfähige Bestandteile eingearbeitet (das Gummi wäre allein nicht leitfähig), sodass die Hülle des Autos leitend mit dem Erdboden verbunden ist. Würde nun ein Blitz in das Auto einschlagen, flösse der Strom aussen herum durch die Hülle und die Reifen ab, während der Innenraum – samt Menschen darin – davon unberührt bliebe! Eine solche geschlossene, leitfähige Hülle, die ihr Inneres vor Stromschlägen schützen kann, nennen die Physiker einen “Faraday’schen Käfig” (weil tatsächlich schon ein Drahtnetz ausreichen kann, um den Strom vom Inneren fern zu halten).

Auch ein Verkehrsflugzeug stellt einen Faraday’schen Käfig dar. Wenn ein solches in ein Gewitter gerät und von einem Blitz getroffen wird (und das passiert jedem Flugzeug irgendwann in seiner “Lebenszeit”), fliesst der Strom durch die metallene Aussenhülle wieder zurück in die Luft ab. Passagiere, Crew, Turbinen und sogar die empfindliche Elektronik im Inneren bleiben davon in der Regel unbehelligt (abgesehen von dem Schreck, wenn es plötzlich kracht).

Wie ihr euch selbst vor Blitzen schützen könnt

Die einfachste Möglichkeit, euch selbst vor Blitzen zu schützen: Haltet euch bei einem Gewitter in einem Gebäude mit Blitzableiter oder in einem Faraday’schen Käfig auf. Wenn ihr abseits von Gebäuden draussen unterwegs seid und ein Auto in der Nähe ist, steigt ein und schliesst die Türen. Sollte das Gewitter euch sehr nahe kommen, ehe ihr einen sicheren Unterschlupf erreichen könnt, sucht euch einen möglichst tief gelegenen Ort (eine Senke oder dergleichen) und legt euch flach hin. Ihr wollt ja schliesslich nicht als hoch aufragendes Objekt Ausgangspunkt eines Fangblitzes werden.

Meidet aber freistehende Bäume und andere hohe Dinge – wenn die statt euch vom Blitz getroffen werden, könnten sie über euch einstürzen oder in Flammen aufgehen! Wenn es zudem stürmt, braucht es nicht einmal einen Blitz, um einen gefährlich schweren Ast vom Baum stürzen zu lassen.

Wie ihr die Entfernung eines Gewitters bestimmt

Wie nahe euch ein Gewitter ist, könnt ihr übrigens ganz einfach abschätzen. Das Licht von Blitzen breitet sich nämlich sehr viel schneller als der Schall des Donners aus! Tatsächlich ist die Lichtgeschwindigkeit so hoch, dass wir einen Blitz in “hörbarem” Abstand praktisch sofort sehen. Der Donner braucht dagegen für jede 300 Meter Abstand eine ganze Sekunde, bis er uns erreicht.

Wenn ihr einen Blitz seht, zählt also die Sekunden, bis ihr den Donner hört (wenn ihr keine Uhr mit Sekundenzeiger zur Hand habt, beginnt ruhig ab 21 (“einundzwanzig”) zu zählen, und nehmt die Einerstellen als gezählte Sekunden). Dann rechnet die Anzahl verstrichener Sekunden mal 300 und ihr erhaltet euren Abstand zum Gewitter.

Wenn ihr das Ganze mehrmals wiederholt, könnt ihr sogar feststellen, ob sich das Gewitter euch nähert oder sich entfernt: Werden die Abstände zwischen Blitz und Donner kürzer, kommt das Gewitter näher – dann ist draussen besondere Vorsicht angesagt – werden die Abstände länger, dann zieht es von euch weg. Sollten sich die Abstände gar nicht ändern, steht das Gewitter (im Vergleich zu eurer Position) oder bewegt sich allenfalls auf einer Kreisbahn um euch herum.

Was passiert mit den Ladungen im Boden?

Wenn ihr aufmerksam gelesen habt, ist euch vielleicht schon etwas aufgefallen: Wenn negative Ladungen aus dem unteren Teil von Gewitterwolken zum Erdboden abfliessen, müsste dieser sich zunehmend negativ aufladen, während die positiven Ladungen in der Wolke bzw. der Luft verbleiben. Genau das geschieht auch – jedoch sind diese Ansammlungen für eine schnelle Entladung zu weit voneinander entfernt.

Stattdessen gelangen die negativ geladenen Teilchen, sobald das Gewitter vorbei ist, durch zufällige Bewegung langsam, d.h. über Tage in die Luft zurück. Dort können sie, wenn sie auf positiv geladene Teilchen treffen, allmählich wieder entladen werden. Bis sie in die nächste windige Gewitterwolke geraten und eine neue elektrische Reise zur Erde antreten – oder in einem waagerechten Blitz von Wolke zu Wolke entladen werden.

Habt ihr nun Lust, mit elektrischen Ladungen zu experimentieren und eure eigenen Blitze zu machen? Dann schaut einmal hier in der Mitmachkiste vorbei und probiert die wahrhaft elektrisierenden Experimente vom letzten Freitag!

Experimente mit Elektrostatik: Blitze selber machen!

Ein langer, heisser Sommer geht heute zu Ende – sagen sie im Radio. Und wahrlich haben wir in den vergangenen Wochen oftmals vergeblich auf Gewitter mit reichlich Regen und Abkühlung im Gepäck gewartet. Seit vorgestern geht es aber endlich wieder ordentlich rund. Blitze längs und quer über den Himmel und dazu lauter Donner künden Wind und – endlich – Regen an.

Aber was sind Gewitter eigentlich? Die meisten von euch werden wissen, dass Blitze etwas mit Elektrizität zu tun haben. Aber was ist denn nun wieder Elektrizität?

Heute beantworte ich nicht nur diese Frage, sondern zeige euch auch ein paar ganz einfache Experimente, in welchen ihr selbst Elektrizität und sogar eure eigenen Blitze (im winzigkleinen Miniaturformat – ganz harmlos!) erzeugen könnt.

Was ist Elektrizität?

Landläufig werden mit “Elektrizität” alle möglichen Erscheinungen und Technik rund um elektrische Aufladung und elektrischen Strom bezeichnet. Das erklärt aber nicht, worum es sich dabei handelt. Um das zu verstehen, müssen wir uns die winzigkleinen Teilchen, aus denen alle Stoffe bestehen, genauer ansehen.

Der Ursprung der Elektrizität: Eine Eigenschaft von Teilchen

Ursache für alle elektrischen Erscheinungen ist nämlich eine Eigenschaft dieser kleinen Teilchen. Die vielleicht naheliegendste Eigenschaft von Teilchen (und allen anderen Dingen) ist ihre Masse. Eine weitere Eigenschaft – um die es mir heute geht, ist die “elektrische Ladung”. Die gehört zu vielen Teilchen ebenso, wie den Teilchen ihre Masse gehört, oder einem Legostein seine rote Farbe.

Die elektrische Ladung gibt es in zwei (ganz streng genommen in drei) Formen, so, wie Legosteine rot oder blau sein können. Die Physiker nennen diese beiden Formen jedoch nicht “rot” und “blau”, sondern “positiv” bzw. “+” (plus) und “negativ” bzw. “-” (minus). Ein Teilchen kann also eine Ladung “+” oder “-” haben – oder gar keine Ladung. Das nennen die Physiker die Ladung “0” (null).

Elektrische Ladungen im Atom

Ein Atom besteht nun aus mehreren kleineren Teilchen mit verschiedenen elektrischen Ladungen. Im Atomkern befinden sich die Protonen, die eine Ladung “+” haben, und die Neutronen mit der Ladung “0”. In der Atomhülle findet man die Elektronen, die eine Ladung “-” tragen. Wenn man nun für jedes Proton +1, für jedes Neutron +0 und für jedes Elektron -1 rechnet, kommt man bei einem normalen Atom am Ende auf die Summe “0”. Das Atom hat – von aussen betrachtet – keine elektrische Ladung.

Es ist allerdings ganz leicht, Elektronen aus einem Atom zu entfernen oder weitere hinzuzufügen. Wenn das passiert, kommt bei der Addition aller Ladungen nicht mehr “0” heraus. Von aussen gesehen hat das Atom damit eine elektrische Ladung (Physiker und Chemiker nennen ein solches Atom ein “Ion”)! Die ist positiv, wenn Elektronen fehlen, und negativ, wenn zusätzliche Elektronen im Atom sind. Ebenso sind entferne Elektronen nun von aussen “sichtbar” elektrisch geladen. Und wenn man Elektronen und geladene Atome bewegt, bewegen sich ihre Ladungen natürlich mit.

Das Coulomb’sche Gesetz sorgt für Bewegung

Für elektrische Ladungen gelten zwei grundlegende physikalische Regeln, die gerne als das “Coulomb’sche Gesetz” zusammengefasst werden:

1. Verschiedenartige Ladungen ziehen einander an.
2. Gleichartige Ladungen stossen einander ab.

(Für diejenigen, die mit der Physik schon etwas weiter sind: Sowohl die Anziehung auch die Abstossung zwischen Ladungen nehmen um so mehr zu, je näher sich die Ladungen kommen.)

Diese beiden Regeln sorgen ungemein für Bewegung in der Teilchenwelt. So streben zwei einander nahe “freie” Elektronen, die beide eine Ladung “-” tragen, wie von Geisterhand voneinander weg, während ein Elektron unweigerlich auf ein Ion mit positiver Ladung zustrebt.

Teilchenwanderung im Alltag

Einzelne Teilchen können wir dabei freilich nicht mit unseren Sinnen beobachten. Aber wenn genügend geladene Teilchen in Bewegung sind, können wir die Folgen dieser Bewegung wahrnehmen. Und solche Bewegungen sind für uns heute alltäglich: In einer Batterie werden Elektronen (mit der Ladung “-“) und positiv geladene Teilchen (mit der Ladung “+”) getrennt voneinander aufbewahrt. Sobald man zwischen den Teilchenlagern eine Verbindung (z.B. durch ein Kabel) herstellt, wandern (oder besser: fliessen) die Elektronen durch das Kabel der Anziehung folgend zu den positiven Ladungen hin. Dieser Strom von Elektronen auf Wanderschaft ist das, was wir “elektrischen Strom” nennen!

Und wie alle bewegten Dingen enthält der elektrische Strom Energie, die in andere Energieformen wie Licht, Wärme oder Bewegung anderer Dinge umgewandelt werden kann (mehr zur Energie und ihren Formen erfahrt ihr hier).

 

Wie ihr selbst Ladungen trennen und Blitze machen könnt

Von den Atomen in vielen Stoffen könnt ihr ganz leicht Elektronen abreiben. Dazu zählen einige Kunststoffe, die ihr in eurem Haushalt finden könnt, das Fell von Tieren, aber auch eure eigenen Haare! Mit diesen Dingen könnt ihr ein paar einfache, aber wirkungsvolle Experimente machen. Sie alle funktionieren übrigens am besten bei trockener Witterung mit geringer Luftfeuchtigkeit. Dabei werden nämlich elektrische Ladungen getrennt gesammelt. Und die fliessen in feuchter Umgebung schnell wieder woandershin ab, anstatt am gewünschten Ort zu bleiben!

1.) Der klebende Luftballon

Diesen Klassiker hat schon mein Physikervater oft mit uns gemacht – und wir hatten als Kinder riesigen Spass daran: Blast einen Luftballon auf (nicht zu prall, damit er nicht platzt!) und reibt ihn kräftig an einem Wollpullover oder eurem Kopfhaar. Wenn es dabei hörbar knistert, legt den Ballon mit der geriebenen Seite an eine tapezierte Wand und lasst ihn los. Der Ballon bleibt an der Wand haften!

Oder haltet den Ballon mit etwas Abstand über einen Kopf mit feinem, trockenen Kinderhaar. Lasst das Kind dabei vor einem Spiegel stehen, denn: Die Haare werden angezogen – und die so entstehende Struwwelpeter-Frisur soll ja allen Beteiligten Spass machen!

Der durch Reibung aufgeladene Ballon zieht meine Haare an!

Funktioniert auch mit langen Erwachsenenhaaren (die am besten frisch gewaschen sind): Der Ballon zieht die Haare an!

 

2. Der “furchtsame” Kunststoffstab

Der Klassiker aus dem Physikunterricht: Knotet einen Bindfaden um den Schwerpunkt eines länglichen Gegenstands aus Kunststoff (zum Beispiel ein Stück Plastikbesteck) und haltet es am freien Ende des Fadens so, dass es frei und möglichst bewegungslos schwebt. Nähert ein zweites Kunststoff-Stück, das ihr zuvor kräftig an Wolle gerieben habt, langsam dem schwebenden Stück an. Das schwebende Stück wird sich von dem geladenen Kunststoff wegdrehen. Durch Annäherung aus der entgegengesetzten Richtung lässt sich die Drehrichtung auch umkehren!

Das aufgehängte Plastikmesser dreht sich in Pfeilrichtung vom aufgeladenen Plastik fort.

Gleiche Ladungen stossen sich ab: Der rote Pfeil deutet die Drehrichtung des aufgehängten Plastikmessers an.

 

3. Mit Abfall Blitze machen

So könnt ihr eure eigenen Blitze machen (die Idee dazu habe ich von Alli Sonnier von Learn-Play-Imagine): Ihr braucht dazu eine saubere Grillschale oder Lebensmittelverpackung aus Aluminium, einen Bleistift mit Radiergummi, eine Reisszwecke, ein Stück Styropor und ein Kleidungsstück aus Wolle.

Damit könnt ihr eure eigenen Blitze machen: Styropor, Aluminium-Schale, Wollschal, Bleistift und Reisszwecke

Damit könnt ihr eure eigenen Blitze machen!

 

Die Reisszwecke stecht ihr in der Mitte der Alu-Schale von unten durch den Boden und dann in den Radiergummi am Ende des Bleistifts. Jetzt könnt ihr das Ganze am Bleistift hochheben, ohne mit der Schale in Berührung zu kommen. Reibt nun das Styropor-Stück eine Weile kräftig an der Wolle (nehmt euch dafür ruhig rund 2 Minuten Zeit!). Legt den Styropor nun auf einem nicht-leitenden, trockenen Platz (z.B. einem Holztisch) ab und senkt die Alu-Schale am Bleistift langsam darüber ab. Hört dabei aufmerksam hin! Im besten Fall sollte die Schale den Styropor nicht berühren – gebt darauf gründlich acht, da Styropor und Alu-Schale einander anziehen.

Die aufgespiesste Aluschale schwebt über dem Styroporblock. Noch ein Bisschen näher, und die Funken werden vernehmlich knistern!

Langsam nähere ich meine Alu-Schale dem aufgeladenen Styroporblock an. Noch einen Moment, dann wird es knistern! Der Funkenschlag selbst geht allerdings so schnell, dass er sich nicht fotografieren lässt.

 

Wenn die Alu-Schale dem Styropor nahe kommt, könnt ihr ein verräterisches Knistern hören. Wenn ihr das Ganze in einem dunklen Raum ausprobiert, könnt ihr vielleicht sogar kleine Funken sehen. Richtig – das sind Blitze im Miniatur-Format, und das Knistern ist der Miniatur-Donner dazu!

Was geschieht da?

Durch das Reiben der Gegenstände aneinander werden geladene Teilchen geradezu von der Oberfläche der Dinge abgerubbelt – und bleiben an der Oberfläche des Gegenstücks haften. Wenn wir annehmen, dass Elektronen vom Kunststoff abgerieben werden und an der Wolle oder Haaren haften bleiben, trägt die Wolle nach dem Reiben negative Ladungen, während der Kunststoff – die Ballonhülle oder das Plastikmesser – positiv geladen ist.

Elektrostatische Anziehung und Abstossung

Diese unterschiedlichen Ladungen ziehen sich an – so stark, dass der geladene Ballon an der Wand (die ebenfalls negative Ladungen trägt) haftet, anstatt zu Boden zu fallen, oder dass die leichten Haare sich der Schwerkraft entgegen aufrichten!

Das schwebende und das geriebene Plastikmesser sind dagegen beide positiv geladen (ein paar Elektronen werden allein schon durch das Anfassen und die Bewegung des schwebenden Messers abgerieben), sodass sie einander abstossen – und zwar so stark, dass das sich langssam drehende Messer abbremst und sich in die Gegenrichtung zu bewegen beginnt!

Im Übrigen: Wenn euch die Plastikmesser bekannt vorkommen, dann nicht umsonst. Auf derselben Abstossung beruht nämlich auch das magische Harry-Potter-Experiment mit dem krummeln Wasserstrahl!

Wie aus elektrostatischer Aufladung Blitze werden

Durch das gründliche Reiben des Styropors sammeln sich schliesslich so viele Ladungen auf der Styropor-Oberfläche an, dass sie – der Anziehung folgend – den schmalen, luftgefüllen Spalt zwischen Styropor und Aluminium* überqueren können: Für einen Sekundenbruchteil fliesst Strom durch die Luft – ein Funke springt über. Genau das passiert auch bei einem Gewitter – nur sind die Funken dabei sehr, sehr, sehr viel grösser und werden dann Blitze genannt.

Wie in einer Gewitterwolke Ladungen für so grosse Funken zusammenkommen und warum Blitze (und eure Miniatur-Funken) leuchten und lärmen, erkläre ich euch am Montag ausführlich.

*Wenn ihr euch nun fragt, warum das funktioniert, obwohl ihr das Aluminium nicht aufgeladen habt: Aluminium ist ein Metall, in welchem – anders als in Kunststoffen – Elektronen sich prima bewegen können. So sorgt schon die Nähe der Ladung des Styropors dafür, dass die Elektronen im Aluminium sich so verschieben, dass an dessen Oberfläche eine dem Styropor entgegengesetzte Ladung entsteht: Die beiden Teile ziehen sich an und es kommt allenfalls zum Funkensprung.

Bis dahin wünsche ich euch viel Spass beim Experimentieren und Beobachten! Probiert doch auch aus, was ihr sonst noch aufladen und anziehen oder abstossen könnt (zum Beispiel: Wer bringt Styroporflocken zum Fliegen?)!

Abfluss auf Nord- und Südhalbkugel: Physik oder Fake?

Marion, eine Leserin, auf deren Blog ich schon mehr als einmal als Gastautorin gewirkt habe, schickte mir neulich einen Link zu einem Video, das gerade auf Facebook die Runde machte. Darin zu sehen sind Einwohner Kenias bzw. Tansanias, die filmenden Touristen ein Experiment vorführen. Das Spannende daran: Diese beiden Länder liegen auf dem Äquator!

Die Anrainer dieser Kreislinie, welche den Globus genau in Nord- und Südhalbkugel teilt, möchten den Touristen mit ihrem Experiment weismachen, dass Wasser, welches durch ein enges Loch abläuft, je nach Position auf der Erdkugel in eine bestimmte Richtung wirbelt: Links herum auf der Nordhalbkugel, Rechts herum auf der Südhalbkugel und genau auf dem Äquator ganz ohne Wirbel, d.h. gerade nach unten durch das Loch. Und das soll mit Hilfe eines Trichters und eines Eimers Wasser auf einem vielleicht 30 Meter langen Stück Strasse nachprüfbar sein.

“Das ist doch alles fake, oder?”, fragte mich die Leserin. Und mein Instinkt sagte gleich, dass ihrem Bauchgefühl zu trauen sei. Dennoch habe ich nachgelesen und schnell bestätigt bekommen – unter anderem in der Lehrmaterialsammlung der Uni Karlsruhe – dass Marion ganz richtig liegt: Alles fake!

Aber wie kommt es dazu, dass derlei Gerüchte um die Drehrichtung von abfliessendem Wasser sich so hartnäckig um die ganze Welt verbreiten (auch in südamerikanischen Ländern auf dem Äquator sollen entsprechende Experimente gezeigt werden)? Warum sollte das Wasser auf der Nordhalbkugel links- und auf der Südhalbkugel rechtsherum in den Abfluss wirbeln?

 

Was die Drehrichtung des Wassers bestimmen soll: Die Corioliskraft

Urheber der vorbestimmten Drehrichtung sei – so heisst es in den meisten Gerüchten – die Drehbewegung der Erde um sich selbst. Die führt nämlich wirklich dazu, dass eine geheimnisvolle Kraft – die Physiker nennen sie Corioliskraft – von der Erdkugel ausgehende Bewegungen in eine bestimmte Richtung ablenkt!

Welche Bewegungen werden abgelenkt?

Die Corioliskraft wirkt auf solche Bewegungen, die von einem Pol zum anderen, also entlang der Längengrade (jener Linien, die auf der Weltkarte oder dem Globus Nord- und Südpol miteinander verbinden) oder von der Drehachse der Erde fort bzw. zu ihr hin (aus Sicht eines Menschen auf der Erdoberfläche “nach oben” oder “nach unten” verlaufen.

Wie kommt es zu der Ablenkung?

Die Erdumdrehung als Ursache

Die Erde ist (mehr oder weniger) eine Kugel, die sich stetig um ihre Mittelachse dreht – also um die gerade Linie, die Nord- und Südpol durch die Kugel hindurch miteinander verbindet. Da diese Erdkugel im Grossen und Ganzen ein fester Körper ist, müssen sich alles Material, aus dem sie besteht und alles, was sonst noch darauf haftet (Meere, Pflanzen, Tiere, Menschen und sogar die Lufthülle, die den Planeten umgibt!) stets im gleicher Lage zueinander mitdrehen, damit alles seinen Platz behält. Schliesslich ist es noch nie vorgekommen, dass jemand seine Fortbewegung durch die Erddrehung verschlafen hätte und ein paar Tausend Kilometer weiter westlich wieder aufgewacht wäre.

Alle Orte auf der Erde drehen sich gemeinsam

Dieser feste Zusammenhalt aller Teile der Erdkugel führt auch dazu, dass die Entfernung zwischen Tunis, der Hauptstadt Tunesiens in Nordafrika, und der Norwegischen Hauptstadt Oslo zu jeder Tages- und Nachtzeit gleich ist. Wenn ihr nun Tunis und Oslo auf einem Globus-Modell ausfindig macht (beide Städte liegen nahezu auf demselben Längengrad!) und kleines Bisschen von Physik versteht, mag euch eine Ungereimtheit ins Auge fallen:

Nicht alle Punkte auf der Erdoberfläche drehen sich gleich schnell

Tunis liegt deutlich weiter aussen auf der Wölbung des Globus’ als Oslo, d.h. der Abstand von Tunis zur Mittelachse ist deutlich grösser als der Abstand von Oslo zur Mittelachse. Das bedeutet, dass der Kreis, welchen Tunis innerhalb eines Tages entlang bewegt wird, erheblich länger ist – d.h. einen grösseren Umfang hat – als der Kreis, welchen Oslo entlang bewegt wird!

Vom Abstand zum Kreisumfang

Die Länge einer Kreislinie, d.h. den Umfang U eines Kreises kann man berechnen, indem man seinen Radius r – den Abstand zwischen Kreislinie und Kreismittelpunkt – mit 2 und der Zahl Pi multipliziert.

Damit entspricht der (kürzeste) Abstand von Tunis bzw. Oslo zur Drehachse der Erde dem Radius, aus dem sich die Länge des Umlaufs der jeweiligen Stadt während eines Tages ergibt.

Damit die Entfernung zwischen beiden Städten stets gleich bleibt, müssen sowohl Tunis als auch Oslo sich an einem Tag (d.h. in 24 Stunden) genau einmal um die Erdachse wandern. Wegen des grösseren Abstands zur Drehachse muss Tunis dazu einen längeren Weg zurücklegen als Oslo. Das bedeutet: Tunis muss sich schneller bewegen als Oslo, um seine längere Umlaufstrecke am gleichen Tag zu schaffen!

Geschwindigkeit und Drehgeschwindigkeit

Die Geschwindigkeit v einer gleichförmigen, d.h. stetig in die gleiche Richtung verlaufenden Bewegung kann man ausrechnen, indem man einen zurückgelegten Streckenabschnitt durch die dafür benötigte Zeitspanne teilt:

Eine vergleichbare Beziehung gilt auch für eine gleichförmige Kreisbewegung, in welcher der zurückgelegte Winkel Phi (φ) den Streckenabschnitt ersetzt. Die so berechnete Grösse nennen die Physiker Dreh- oder Winkelgeschwindigkeit und schreiben dafür statt v ein kleines Omega (ω):

Wenn die benötigte Zeit für zwei Bewegungen gleich ist, aber ein Streckenabschnitt bzw. Winkel grösser als der andere, ergibt sich mit dem somit grösseren Zähler im Bruch auf der rechten Seite der Gleichung aus dem grösseren Streckenabschnitt bzw. Winkel eine grössere Geschwindigkeit.

Gut sichtbar wird das, wenn ihr euch die Erdkugel einmal von “oben” anseht:

Ablenkung eines Balls auf dem Weg von Oslo nach Tunis

Die Erde von einem Punkt über dem Nordpol aus gesehen: Die Nordhalbkugel erscheint als flache Scheibe mit dem Nordpol als Mittelpunkt. Ein Fussball fliegt von Oslo in der Nähe des Mittelpunkts nach Tunis, welches weiter vom Mittelpunkt entfernt liegt. Aus der Summe der Geschwindigkeiten von Oslo (kurzer blauer Pfeil) und der Südwärtsbewegung des Balles (durchgezogener roter bzw. langer blauer Pfeil) ergibt sich Punkt (2) als Zielpunkt für den Ball. Tunis, das sich schneller als Oslo bewegen muss, um seinen längeren Kreisabschnitt in gleicher Zeit zu schaffen, befindet sich dann aber schon an Punkt (3)! Der Weg des Balls kann auch durch die gekrümmte gepunktete Linie beschrieben werden: Eine Kraft – die Corioliskraft, die nach “rechts” wirkt, lenkt den Ball von der geraden Flugbahn ab.

Die Grafik zeigt die Erde aus der Sicht eines Astronauten, der über dem Nordpol (in der Grafik der Mittelpunkt der Kreise) schwebt. Die gestrichelte Kreisline markiert den Weg, auf dem sich Oslo mit der Erde dreht. Die mittlere, durchgezogene Kreislinie zeigt den Weg, den Tunis nimmt (da Tunis auf der Kugelwölbung weiter aussen liegt, ist dieser Kreis grösser). Der ganz äussere Kreis ist der Äquator – die Südhalbkugel ist aus dieser Richtung nicht zu sehen.

Ein Fussballspiel von Oslo nach Tunis

Stellt euch nun vor, ein besonders kräftiger Spieler würde einen Fussball vom Anstosspunkt im Osloer Stadion über die Stadionmauer in Richtung Tunis (also genau nach Süden) treten. Wenn der Fussballspieler nun als Kind in den Zaubertrank gefallen ist und der Ball seine Reise über Europa hinweg antritt…wo würde er dann – die Lufthülle der Erde mal ausser Acht gelassen – landen? Im Tor im Stadion von Tunis?

Die Krux mit der Impulserhaltung

Eines der grundlegenden Gesetze der Physik – das Gesetz der Impulserhaltung – schreibt vor, dass jede Bewegung eines jeden Gegenstands in jede Richtung erhalten bleibt, so lange keine Kraft in die der Bewegung entgegengesetzte Richtung wirkt und ihn ausbremst.

Da der Fussball vor dem Anstoss auf der Erde gelegen hat, hat er sich zunächst mit der Geschwindikgeit von Oslo um die Erdachse gedreht. Diese Drehrichtung und -geschwindigkeit bleibt dem Ball auch, nachdem der Fussballer ihn in Richtung Süden getreten hat. Die Bewegung in Richtung Süden wird einfach zur Bewegung in Richtung der Oslo-Kreisbahn hinzugezählt.

Wie man Bewegungen addiert

Die geraden Pfeile in der Grafik zeigen die Richtungen der Teilbewegungen an – die Länge der Pfeile steht für die Geschwindigkeit bzw. den Impuls in der jeweiligen Richtung. Verschiebt man nun das hintere Ende eines Pfeils an die Spitze des ersten, zeigt der neue Pfeil vom hinteren Ende des einen zur Spitze des anderen Pfeils die Richtung der Gesamtbewegung (und dessen Länge die Gesamtgeschwindigkeit). Dieses Verfahren nennen die Mathematiker Vektoraddition (denn die Pfeile heissen bei ihnen Vektoren).

Die Grafik zeigt: Obwohl nach Süden getreten bewegt sich der Fussball diagonal über Europa nach Südosten – wobei die Geschwindikeit in Ost-Richtung der von Oslo entspricht. Damit landet der Ball am Punkt 2 irgendwo an der tunesischen oder algerischen Mittelmeerküste und nicht in Tunis (das befindet sich inzwischen weiter östlich an Punkt 3). Denn weil Tunis sich schneller bewegt als Oslo, ist es während der Flugzeit des Fussballs weiter nach Osten gewandert als der von der Impulserhaltung als “südlich von Oslo” vorgegebene Punkt 2! Der Schuss geht also gründlich daneben.

Durch Drehbewegung auf die krumme Bahn

Wenn der Astronaut, der über dem Nordpol unbewegt schwebt, dieses unglaubliche Fussballspiel beobachtet und filmt, um anschliessend die Position des Balles in regelmässigen Zeitabschnitten einzublenden, erhält er eine Linie, die dem nach links gekrümmten gestrichelten Pfeil in der Grafik entspricht. Solch eine gekrümmte Flugbahn lässt sich mathematisch beschreiben, indem man annimmt, dass eine Kraft den Fussball in Ablenkungsrichtung beschleunigt – die sogenannte Corioliskraft.

Kraft und Beschleunigung: Zwei physikalische Grössen mit Richtung

Das Grundgesetz der Mechanik beschreibt die einfache Beziehung zwischen Kraft (F) und Beschleunigung (a):

Je grösser die Kraft ist, die auf einen Gegenstand mit der Masse m wirkt, desto grösser ist dessen Beschleunigung – d.h. desto schneller wird der Gegenstand schneller. Die physikalische Grösse für die Beschleunigung ist – wie auch jene für die Geschwindigkeit – stets mit einer Richtung versehen, die gemäss der Gleichung auch für die Kraft gilt.

Da die Corioliskraft mathematisch nur “in Erscheinung tritt”, wenn man das Fussballspiel wie der Astronaut von aussen beobachtet (die Zuschauer im Stadion in Oslo, die vor dem Abstoss mit Stadt und Ball um die Erdachse kreisen, kommen mit Hilfe der Vektoraddition weiter oben auf das Ziel des Balles), wird sie von den Physikern eine Scheinkraft genannt.

Die Corioliskraft ist aber durchaus real

Trotzdem könnt ihr selbst die Corioliskraft spüren, wenn ihr zum Beispiel versucht, auf einer sich drehenden Karussell-Scheibe auf dem Spielplatz geradewegs zu ihrem Mittelpunkt zu laufen. Das ist nämlich gar nicht so einfach – ihr müsst schon ordentlich gegenhalten, damit euch die Corioliskraft nicht von eurem direkten Weg ablenkt!

Ähnlich verhält es sich auch mit unserem unwahrscheinlichen Fussballspiel: Wenn die tunesische Küstenwache den Fussball aus dem Mittelmeer fischen und ins Stadion von Tunis bringt, sodass ein wiederum sehr starker Spieler den Ball in Richtung Oslo abstossen kann, würde auch er das Tor der Norweger nicht treffen. Denn da der Ball nun die höhere Drehgeschwindigkeit von Tunis mitnimmt, wird das langsamere Oslo den durch die Addition der Teilbewegungen ermittelten Zielpunkt beim Eintreffen des Balls noch nicht erreicht haben: Stattdessen fällt der Ball weiter östlich vielleicht auf die Grenze zwischen Norwegen und Schweden.

Die Regeln für die Ablenkung durch die Corioliskraft

Ganz gleich, in welche Richtung der Ball auf der Nordhalbkugel gespielt wird: In Flugrichtung gesehen lenkt die Corioliskraft den Ball stets “nach rechts” (d.h. in Nord-Süd-Richtung nach Westen und in Süd-Nord-Richtung nach Osten).

Würde man ein ebenso unwahrscheinliches Fussballspiel auf der Südhalbkugel austragen, müsstet ihr die Zeichnung oben in einem Spiegel betrachten: An die Stelle des Nordpols tritt der Südpol (der ist auch auf jeder europäischen Landkarte unten, sodass ihr euren Atlas nun richtig herum halten könnt) und Osten ist nun rechts, sodass die Erde sich nun rechts herum dreht. Demnach “wirkt” auch die Corioliskraft nun in spiegelverkehrter Richtung:

Ganz gleich, in welche Richtung der Ball auf der Südhalbkugel gespielt wird: In Flugrichtung gesehen lenkt die Corioliskraft den Ball stets “nach links” (d.h. in Nord-Süd-Richtung nach Osten und in Süd-Nord-Richtung nach Westen).
Warum das unwahrscheinliche Fussballspiel?

Vielleicht habt ihr euch schon gefragt, weshalb ich so eine hahnebüchene Begebenheit wie ein Fussballspiel von Oslo nach Tunis ersinne, um die Ablenkung durch die Corioliskraft zu beschreiben. Würden realistischere Umstände nicht den gleichen Zweck erfüllen?

Mit dieser klugen Frage kommen wir zu den Wasserwirbeln in Kenia und Tansania zurück. Der gekrümmte Pfeil in der Grafik deutet es schon an: Da die Ablenkung durch die Corioliskraft auf unterschiedlichen Geschwindigkeiten von Start- und Zielort einer Bewegung beruht, fällt eben diese Ablenkung um so grösser aus, je grösser der betreffende Geschwindigkeitsunterschied ist. Und der Geschwindigkeitsunterschied ist um so grösser, je weiter die Abstände von Start und Ziel von der Drehachse sich unterscheiden – d.h. je weiter Start und Ziel in Nord-Süd-Richtung voneinander entfernt liegen!

Warum die Corioliskraft für das Abfluss-Experiment keine Bedeutung hat

Beim Abfliessen aus einem vielleicht 40cm durchmessenden Trichter kommen die strömenden Wasserteilchen auf eine Bewegung von höchstens 20 Zentimeter in Nord-Süd-Richtung und wieder zurück. Dementsprechend winzig ist der Einfluss der Corioliskraft auf die Bewegungsrichtung der Teilchen – und dementsprechend einfach lässt sich die Bewegung durch andere Kräfte sehr gezielt beeinflussen.

Solche Kräfte lassen sich zum Beispiel durch eine angepasste Trichterform ausüben, welche die daran vorbei strömenden Wasserteilchen ganz unscheinbar in die gewünschte Richtung lenkt. Die Bemalung mit den auffälligen Spiralmustern lenkt recht erfolgreich von diesen kleinen Unterschieden ab.

Wenn ihr genau hinschaut, könnt ihr im Video erkennen, dass der Trichter, der “auf dem Äquator” zum Einsatz kommt (welcher übrigens den Wirbel mittig halbiert, sodass die entgegengesetzte Wirkung der Coriolis-Ablenkung in der Nord- und Südhälfte sich aufheben soll), eine andere Form zu haben scheint als die Trichter für den Norden und den Süden.

 

Wo ihr die Auswirkung der Corioliskraft wirklich beobachten könnt

Wenn bei der Wettervorhersage im Fernsehen eine bewegte Wetterkarte zum Einsatz kommt, sind darauf meist riesige Wolkenwirbel zu sehen, die sich in die eine oder andere Richtung drehen. Es handelt sich dabei um Gebiete mit besonders hohem oder besonders tiefem Luftdruck. Ein hoher Luftdruck führt dazu, dass Luft in alle Richtungen von dem Gebiet wegströmt, während tiefer Luftdruck dazu führt, dass aus allen Richtungen zum betreffenden Gebiet hinströmt.

Diese Luftströmungen sind Hunderte bis Tausende Kilometer lang – und da die Lufthülle des Planeten sich im Grossen und Ganzen mit der Erde mitdreht, wirkt auf die strömenden Teilchen eine Corioliskraft. Die führt dazu, dass die Luftströme nicht geradlinig auf ein “Tief” zu oder von einem “Hoch” weg strömen, sondern in krummen, einen abflussähnlichen Wirbel bildenden Bahnen.

Der Coriolis-Ablenkung wegen drehen sich die Wirbel um Hochdruckgebiete auf der Nordhalbkugel stets “nach rechts”, also im Uhrzeigersinn, während die Wirbel um Tiefdruckgebiete – hier strömt die Luft in umgekehrter Weise – sich stets “nach links”, also gegen den Uhrzeigersinn drehen. Auf der Südhalbkugel, wo die Corioliskraft in seitenverkehrter Weise wirkt, ist das genau umgekehrt.

Um dagegen die Wirkung der Corioliskraft auf Wasserwirbel sichtbar zu machen, müssen diese mindestens ein paar Meter durchmessen und in aufwändig vor äusseren Einflüssen geschützter Umgebung im Labor kreisen können – auf der Strasse in Kenia funktioniert das jedenfalls nicht!

Seid ihr dem Mythos um die Drehrichtung von abfliessendem Wasser auch schon begegnet?

Und wenn ihr anlässlich der kommenden Weltmeisterschaft nur noch Fussball im Kopf habt, habe ich auch eine passende Anekdote aus der Chemie: Die Natur hat nämlich ein originalgetreues Fussball-Molekül erfunden!

Experiment: Abendrot im Milchglas

Zur Zeit bekommen wir ihn hier am Zürichsee selten zu sehen: Den klaren, blauen Himmel. Im Winter hängt nämlich meistens dicker, grauer Hochnebel über dem See. Wenn der sich aber doch einmal verzieht, ist die Farbe des Tageshimmels um so auffälliger blau – mit einer weissen Sonne darin. Und wenn die Bewölkung bis zum Abend locker bleibt, ist Romantik pur angesagt: Die lockeren Wolken oder dünnen Schleier glühen bei Sonnenuntergang (und ebenso bei Sonnenaufgang) rosa oder sogar leuchtend rot, während die Sonne darin rotgolden strahlt.

Aber wie entsteht eigentlich das wechselnde Farbenspiel an unserem Tageshimmel? Mit diesem einfachen Experiment könnt ihr selbst erforschen, wie die Farben an den Himmel kommen!

 

Warum der Himmel blau ist

Wenn wir draussen nach oben schauen, blicken wir durch die Atmosphäre unserer Erde. Die besteht hauptsächlich aus Stickstoff und Sauerstoff – zwei Gasen, die eigentlich farblos, d.h. durchsichtig sind. Das zeigt sich uns nachts, denn dann sieht man die Atmosphäre tatsächlich nicht, sondern den dunklen Weltraum dahinter mitsamt der Sterne darin.

Bei Tag ist es allerdings vorbei mit der Durchsichtigkeit – sobald Licht auf unsere Atmosphäre fällt, erscheint der Himmel farbig, und die Sterne dahinter sieht man nicht mehr. Das liegt daran, dass Sonnenstrahlen, die auf die Atmosphäre treffen, von einigen Teilchen darin in verschiedene Richtungen abgelenkt – die Physiker sagen gestreut – werden. Ein Teil des geordneten Strahlenbündels, das von der Sonne kommt, erreicht uns am Ende des Weges durch die Atmosphäre somit als wildes Strahlendurcheinander, ohne dass wir den Ursprung der einzelnen Strahlen feststellen könnten.  So sehen wir den Himmel als helle Fläche aus unzähligen Einzel-Lichtstrahlen.

Und weil Himmel und Sonne zu gross und sperrig sind, um damit herum zu probieren, könnt ihr euch solch einen Himmel mit ein paar simplen Zutaten aus der Küche als handliches Modell nachbauen!

 

Ihr braucht dazu

  • Einen grossen Glasbehälter
  • Leitungswasser
  • Ein wenig Milch
  • Eine weiss leuchtende Taschenlampe
  • Einen dunklen Raum

 

Wie ihr das Experiment durchführt

  • Füllt das Glas mit Leitungswasser.
  • Gebt einen Schuss Milch dazu und rührt ggfs. um, bis sich die Milch gleichmässig im Wasser verteilt hat.
  • Nehmt das Glas und die Taschenlampe mit in den dunklen Raum.
  • Haltet die Taschenlampe direkt an das Glas und leuchtet so hindurch (ein dunkler Schal kann ggfs. Ritzen zwischen Glas und Lampe abdichten, sodass kein Streulicht hindurch dringt).
  • Leuchtet zunächst von der Seite durch das Glas und schaut von vorne bzw. oben, dann leuchtet von hinten bzw. unten und schaut durch das Glas hindurch direkt in das Licht. Ihr könnt natürlich auch andere Winkel ausprobieren!

 

Was passiert da?

Ein Glas mit sauberem Wasser ist durchsichtig, wie der Himmel in der Nacht: Ihr könnt sehen, was sich dahinter befindet. In Wasser wird das Licht praktisch nicht gestreut. Wenn ihr etwas Milch dazu gebt, mischt ihr Teilchen in das Wasser, die das Licht stark streuen (Milch enthält relativ grosse Teilchen, wie Fettmoleküle und Proteine, die sich zudem nicht gut mit Wasserteilchen mischen lassen). So erscheint das Wasser-Milch-Gemisch bei (unsortiertem) Tageslicht undurchsichtig weiss.

Die Taschenlampe ist in diesem Modell die Sonne: Sie sendet kegelförmig geordnete Strahlen aus – in unserem Experiment direkt durch das durchsichtige Glas in das Milchwasser. Die Strahlen werden von den Milchteilchen abgelenkt, sodass selbst dann einige selbst dann in eure Augen fallen, wenn ihr das Glas von der Seite anleuchtet: Das ganze Milchwasser leuchtet – wie der Himmel am Tag!

Die Milch bringt Farbe ins Modell

Wenn ihr ganz genau hinschaut, werdet ihr feststellen: Das Milchwasser strahlt bläulich, wenn ihr mit der Taschenlampe von der Seite leuchtet und von vorn schaut. Wenn ihr direkt durch das Milchwasser ins Licht schaut, erscheint dagegen rötlich-golden!

Wie das kommt?

Weisses Licht ist ein Strahlengemisch aus Strahlen mit allen möglichen Wellenlängen – das bedeutet mit allen möglichen Farben (diese Farben könnt ihr zum Beispiel mit einem DIY-Spektroskop sichtbar machen, das auf Lichtbrechung und nicht auf Lichtstreuung beruht). Diese Farben werden aber nicht alle in gleicher Weise gestreut. Wie die streuenden Teilchen in der Luft streuen auch die Milchteilchen die blauen Strahlen (mit kurzen Wellenlängen) stärker als die roten (mit langen Wellenlängen).

Mittag im Modell

Wenn das weisse Licht nun von der Seite oder von oben kommt, werden die blauen Strahlen besonders weit (etwa im rechten Winkel) abgelenkt, sodass vornehmlich solche unsere Augen erreichen. So erscheint das Milchwasser blau, wenn die Taschenlampe von der Seite, von oben oder von unten strahlt, und der Himmel erscheint ebenfalls blau, wenn die Sonne hoch oben steht.

Experiment : Im Milch - Modell ist der Mittagshimmel blau

Morgen und Abend im Modell

Schaut ihr dagegen durch das Milchwasser in die Lampe, werden vornehmlich die blauen Strahlen zu den Seiten abgelenkt, sodass vornehmlich rotes Licht eure Augen erreicht: Das Milchwasser erscheint rötlich – wie auch der Himmel beim Sonnenuntergang oder -aufgang. Wenn ihr einen solchen beobachtet, werdet ihr tatsächlich feststellen, dass der Himmel nur in Richtung der Sonne rot leuchtet – je weiter ihr nach Norden, Süden oder sogar in die entgegengesetzte Richtung schaut, desto weniger rot werdet ihr finden.

Experiment: Im Milch-Modell ist der Sonnenuntergang rot

Mit der Taschenlampe könnt ihr so den Lauf der Sonne nachstellen und die Farbänderung beobachten: Leuchtet zunächst von rechts nach links und bewegt die Lampe dann hinten um das Glas herum (Licht nach vorn!), bis sie schliesslich von links nach rechts leuchtet.

Und wie kommt es nach Sonnenuntergang zur “blauen Stunde”?

Wenn die Sonne erst einmal hinter dem Horizont verschwunden ist und kein direktes Licht mehr zum Streuen schickt, zeigt sich, dass ein Bestandteil der Atmosphäre tatsächlich blau ist: Das Ozon, welches in der Stratosphäre – also weit oben – die schützende Ozonschicht bildet, schluckt nämlich den roten Anteil der letzten Strahlen-Irrläufer, die auch nach Sonnenuntergang (und vor Sonnenaufgang) um die Erdkugel herum finden. So kommt vornehmlich der blaue Anteil dieses letzten Lichtes bei uns an und beschert uns eine “blaue Stunde”, ehe es wirklich dunkel und die Atmosphäre damit durchsichtig wird.

Die Ozonschicht ist natürlich auch bei Tag vorhanden – dann aber wird weitaus mehr blaues Licht auf die Erde gestreut, als das Ozon schlucken kann (wie Stoffe Licht schlucken und warum so “dezimiertes” Licht uns farbig erscheint, habe ich übrigens hier genauer erklärt).

Ich wünsche euch viel Spass beim Erkunden eures Modell-Himmels! Und verratet uns doch: Welche farbigen Himmelsphänomene habt ihr schon “in echt” beobachten können?

Was macht man, wenn man das nass-kalte Winterwetter satt hat und sich nach dem Frühling sehnt, der aber noch weit weg ist? Man geht dahin, wo es warm ist! Viele Zoos haben auch im Winter einladende Behausungen für Tiere und Pflanzen aus aller Herren Länder – auch solchen, in welchen es stets warm und häufig sonnig ist.

Der “ZOOh” in Zürich wartet diesbezüglich mit einem besonderen Leckerbissen auf: Der riesigen Masoala-Regenwaldhalle, in welcher man sich kurzerhand in den Dschungel auf Madagaskar versetzen lassen kann – auch mitten im Winter!

Nicht nur dort, sondern auf dem ganzen Zoo-Gelände habe ich bei unserem jüngsten Besuch viele faszinierende Tiere entdeckt, die sich Physik oder Chemie auf teils spektakuläre Weise zu Nutze machen. So kommen selbst Forscher, die sich mehr für diese beiden als für die Biologie der Tiere interessieren, im ZOOh voll auf ihre Kosten.

Hinter diesem Beitrag steht KEINE Kooperation mit dem ZOOh in Zürich, d.h. es gibt keine Vereinbarung über eine Gegenleistung – ich gehe liebend gern in den Zoo und bin nicht zuletzt der räumlichen Nähe wegen in Zürich Stammgast. Dieser Beitrag ist damit eine ausschliesslich persönliche Empfehlung aus Eigeninitiative!

Der zoologische Garten – zum Lernen und für den Artenschutz

Wenn ihr einmal nach Zürich kommt (oder sogar in der Nähe lebt), ist der Zoo für Naturfreunde immer einen Besuch wert. Wunderschöne und leider oft vom Aussterben bedrohte Tiere können hier in meist hochmodernen Anlagen bewundert werden. Diese Tiere werden hier oder in anderen Zoos ausserdem nachgezüchtet, womit sich die zoologischen Gärten aktiv an der Erhaltung der Arten beteiligen. Damit die genetische Vielfalt dabei erhalten bleibt, tauscht man den Nachwuchs gerne untereinander, d.h. von Zoo nach Zoo aus.

Viele Anlagen in Zürich sind zudem nach Naturreservaten rund um den Globus benannt, mit welchen der Zoo in enger Verbindung steht. So ist er auch am Schutz der Tiere in ihrer jeweiligen Heimat beteiligt. Und der fängt damit an, unsereinem ohne grossen Aufwand eine Weltreise zu ermöglichen und die Tiere und ihre Heimat kennen zu lernen. Denn inzwischen sind alle sieben (Teil-)Kontinente im ZOOh vertreten:

  • Asien mit Trampeltieren, indischen Löwen und Elefanten
  • Afrika mit den Dschelada-Pavianen und den Bewohnern der Masoala-Regenwaldhalle
  • Europa in Form der Storchenkolonie auf dem Zoogelände und mehreren Eulen-Arten
  • Südamerika mit zwei Lama-Arten und dem Flachlandtapir
  • Nordamerika mit Reptilien wie der Sidewinder-Klapperschlange
  • Australien mit einer neuen Anlage, die im März 2018 ihre Tore öffnet!
  • Die Antarktis – mit gutem Willen – mit den Königspinguinen (die leben tatsächlich auf Inseln etwas nördlich der Antarktis, doch ich lasse sie als kleine Brüder des Kaiserpinguins gerne durchgehen)

Das sind natürlich nur Beispiele für die vielen verschiedenen Arten, die es hier zu entdecken gibt.

Damit ihr bei eurem Zoobesuch inmitten der Artenvielfalt einen roten Faden habt, habe ich euch ein Quiz rund um die Physiker und Chemiker unter den Tieren im ZOOh zusammengestellt.

Wie das Quiz funktioniert

Nehmt die folgenden Fragen als Printable oder auf eurem Mobilgerät mit in den Zoo und haltet dort die Augen offen: Welche Tierarten werden in den einzelnen Abschnitten beschrieben? Die Tiere sind in keiner bestimmten Reihenfolge aufgelistet. Ihr könnt euch im ganzen Zoo frei bewegen und so die Anlagen in beliebiger Reihenfolge besuchen.

Tragt jeweils den deutschen Arten-Namen des gesuchten Tiers (wie auf der jeweiligen Beschreibungs-Tafel angegeben, Einzahl, ä = ae, ö = oe, ü =ue) in die Liste ein. Die markierten Buchstaben ergeben ein Lösungswort, das ihr als Password eingeben könnt, um hier eure Experten-Urkunde herunter zu laden!

Wie ihr zum ZOOh kommt

In Zürich ist das Parkieren teuer. Deshalb reist ihr am einfachsten mit dem Zug nach Zürich an. Vom Hauptbahnhof (“HB”) lauft ihr etwa 300 Meter zur Tram-Station “Central” und fahrt von dort mit dem Tram Nummer 6 in Richtung Zoo bis ganz nach oben zur Endstation. Von dort aus folgt ihr einfach den Tierspuren bis zum Haupteingang. Genaueres, auch zu Öffnungszeiten und Eintrittspreisen, erfahrt ihr auf der Homepage des Zoos!

Während der Anreise könnt ihr euch die Vorfreude übrigens wunderbar versüssen, indem ihr schon einmal die spannenden Infos zu den Tieren in den Quizfragen lest.

Wenn Zürich zu weit weg ist

Natürlich könnt ihr das Quiz auch in einem oder mehreren anderen Zoos (ein einziger anderer Zoo, der alle gesuchten Tiere hält, ist vermutlich schwer zu finden), mit Hilfe des Internets oder schlauer Bücher lösen.

Die gesuchten Tiere

Die lebende Batterie

Was ihr Menschen erst mit Hilfe von Sonne, Wind und Wasser mühsam erzeugen und in Batterien abfüllen müsst, trage ich in meinen eigenen Zellen bei mir!

Jede zweckentfremdete Zelle meiner elektrischen Organe ist eine winzigkleine Batterie, die ich mit der Energie aus meiner Körperchemie aufladen kann. Das funktioniert wie bei Muskelzellen – nur dass meine elektrischen Zellen sich nicht zusammenziehen, sondern ihre Ladung speichern.

Da all meine aufladbaren Zellen in Reihe geschaltet sind – wie die Batterien einer grossen Taschenlampe – können sie, wenn sie sich alle miteinander entladen, bei einer Gesamtspannung von bis zu 600 Volt für einige Sekunden einen Strom von bis zu 0,83 Ampere erzeugen. Das ergibt eine Leistung von 415 Watt – für einen Augenblick genug für den Betrieb eines Haarföhns.

Also ärgere mich lieber nicht, sonst bekommst du noch einen Schlag ab!

__ __ __ __ __ __ __ __ __

Doppelklebeband frei Haus

Meine kleineren Verwandten sind dafür bekannt, dass sie senkrecht oder gar kopfunter an Wänden, Zimmerdecken oder dem Glas ihres Terrariums hängen. Das kann ich auch, obwohl ich als Grösster meiner Familie bis zu 35cm lang und entsprechend schwer werde!

Möglich ist mir das dank unzähliger mikroskopisch winziger Härchen an meinen Fusssohlen, die zusammen eine wahnsinnig grosse Oberfläche haben. Und die vielen, vielen Moleküle auf dieser Oberfläche ziehen die Moleküle von Glas und Mauern an, bzw. werden von diesen angezogen.

So ergeben auch hier viele winzigkleine Effekte in der Summe einen Grossen: Meine Füsse kleben förmlich an der Oberfläche, ohne dass sie untrennbar damit verbunden wären. Übrigens nur, wenn es nicht zu nass ist: Auf einem Wasserfilm komme sogar ich ins Rutschen!

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Auch Tiere schätzen Lebensmittelfarben

Ich bin für meine auffällige, zuweilen als kitschig empfundene Farbe bekannt. Die ist aber nicht in meinen Genen festgeschrieben. Stattdessen nehme ich die Farbstoffe – es handelt sich um Carotinoide, die ihr z.B. von Herbstblättern, Eidotter bzw. als Vitamin A kennt – mit der Nahrung auf.

Hier im Zoo bekomme ich deshalb zum üblichen Futter extra orange Krevetten-Schwänze serviert, damit ich auch so ausschaue, wie ihr mich kennt!

__ __ __ __ __ – __ __ __ __ __ __ __ __

Hier stimmt die Chemie

Ich lebe eng mit einem giftigen Tier zusammen, das eigentlich mehr wie eine Pflanze erscheint. Diesen Partner zu berühren hat denn auch für die meisten Lebewesen einiges mit der Begegnung mit einer Brennnessel gemein: Es tut weh, und wer nicht aufpasst, wird gelähmt und gefressen.

Mir passiert das nicht, denn ich schmiere mich mit dem Schleim von der Oberfläche meines WG-Partners sein, sodass dieser glaubt, ich sei ein Teil von ihm selbst! Dafür gewinnt mein Partner aus meinen Hinterlassenschaften wertvolle Nährstoffe. So eine Symbiose ist schon praktisch.

Seit Anfang dieses Jahrtausends bin ich übrigens ein weltbekannter Disney-Star. Wer findet mich?

__ __ __ __ __ __ __ __ __ __ – __ __ __ __ __ __ __ __ __ __ __ __ __

Giftnudel

Ich bin eines der giftigsten Tiere der Erde! Mein Gift heisst Batrachotoxin und stört die Nervenreizleitung zu den Muskeln anderer Tiere. Die Folge sind Lähmungen, auch der Atemmuskeln, die meine Fressfeinde bis hin zu einem Menschen töten können!

Deshalb nutzten die Choco-Indianer in Kolumbien mein Gift für ihre Pfeile für die Jagd. Nichts desto trotz bin ich eine gute Mutter und kümmere mich um meinen Nachwuchs. Das ist in unserer Familie nicht selbstverständlich.

Achtung! Eine ganze Reihe meiner Verwandten leben ebenfalls im ZOOh! Deshalb ein Tipp: Mein deutscher Name, der meine Farbe beschreibt, enthält ein edles chemisches Element!

__ __ __ __ __ __ __ __   __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Lichtgestalt

Mein physikalisch-chemischer Trick gereicht für einem nicht meinem sondern eurem Vorteil. Ihr könnt mich dank ihr nämlich leichter entdecken, bevor ihr ungewollt über mich stolpert (ich bin nämlich klein und meistens giftig). Meine Oberfläche strahlt nämlich hell, wenn man sie mit UV-Licht, dem sogenannten Schwarzlicht, beleuchtet: Ich fluoresziere!

Hier im Zoo bin ich übrigens Untermieter in der Anlage einer sehr viel grösseren Tierart – und natürlich ist meine Behausung mit einer Schwarzlicht-Lampe ausgestattet, mit der ihr mich zum Leuchten bringen könnt (Kathi hat vergessen, mein Schild abzulichten, weshalb hier meine allgemeine Bezeichnung genügt)!

__ __ __ __ __ __ __ __

Lebendes Stimmungsbarometer

Bestimmt kennt ihr mich für meine Fähigkeit, innerhalb kürzester Zeit die Farbe zu wechseln. Das mache ich aber nicht, wie ihr oft erzählt, um mich zu tarnen, sondern um meine Laune kundzutun und mich den wechselnden Widrigkeiten meines Lebensraums anzupassen.

So bin ich bei Wärme hell, sodass ich einfallende Sonnenstrahlung und bei Kühle dunkel, um möglichst viel Strahlungswärme aufzunehmen. Als wechselwarmes Tier fällt es mir nämlich nicht leicht, meine Körpertemperatur stabil zu halten. Bei zu viel Sonne werde ich allerdings fast schwarz, damit ich keinen Sonnenbrand bekomme, und zur Paarungszeit ist bei uns Fasnacht: Um die Weibchen zu beeindrucken, werde ich dann so bunt wie möglich. Wie bunt, hängt davon ab, wo genau ich zu Hause bin.

Wie ich das hinbekomme? Meine Hautzellen enthalten Farbstofftröpfchen, die nach Bedarf umsortiert und neu geordnet werden können. Zusammen ergeben die Tröpfchen, die gerade oben liegen, ein farbiges Muster – wie Pixel ein Computerbild ergeben.

Wenn ihr mich in Zürich findet (das ist nicht einfach, weil ich hier unglaublich viele Möglichkeiten habe, mich zu verstecken), ist meine Grundfarbe in der Regel grün. Wenn Reto und Kathi mich besuchen, machen sie stets eine Wette: Wer mich zuerst findet, bekommt im Restaurant ein Dessert. Macht ihr mit?

__ __ __ __ __ __ __ – __ __ __ __ __ __ __ __ __ __

Geisterstunde

Ich bin ein Jäger und in der Regel nachts auf Beutezug. Deshalb muss ich besonders leise sein, damit die Mäuse und anderes kleines Getier mich nicht kommen hören.

An meinem samtig weichen Gefieder gleiten die Luftteilchen vorbei ohne zu verwirbeln. So ist, wenn ich fliege, kein Rascheln oder Flattern zu hören. Um so besser kann ich meine Beute hören – wenn ich sie nicht schon längst mit meinen grossen Augen gesehen habe – während ich lautlos auf sie herabstürze.

Ich bin übrigens nach einem tagsüber jagenden Verwandten benannt.

__ __ __ __ __ __ __ __ __ __ __ __

Wasserfreund – Wasserfeind

Obwohl ich ein Vogel bin, könnte man meinen, ich hätte Fell. Meine Federn sehen wirklich nach Haaren aus. Davon habe ich auch gleich besonders viele: Innen flauschige Daunen, die halten mich warm. Die haarfeinen Federn aussen fügen sich dagegen zu einer glatten Oberfläche zusammen, an der Wasser einfach abperlt.

Damit das funktioniert, muss ich mein Gefieder regelmässig putzen und mit einem öligen Stoff aus meiner Bürzeldrüse einschmieren. Man unterscheidet nämlich Stoffe in “wasserliebend” und “fettliebend”. Wasserliebende Stoffe mischen sich prima mit Wasser, aber nicht mit Fetten. Fettliebende Stoffe mischen sich dagegen prima mit Fetten, aber nicht mit Wasser. Und zu letzteren zählt mein Öl für die Federn.

Das ist auch gut so, denn meine Beute sind Fische, denen ich erst einmal hinterher “fliegen” muss.

__ __ __ __ __ __ __ __ __ __ __ __ __ __

Wärmetauscher gesucht

Wenn ihr Menschen warm habt, schwitzt ihr, und die Flüssigkeit auf eurer Haut nutzt eure Körperwärme, um zu verdampfen. So kühlt ihr euch ab. Da ich wie die meisten anderen Tiere keine Schweissdrüsen habe (die wären in meiner warmen und feuchten Heimat auch nicht besonders nützlich), muss ich mich anders kühlen.

Zum Glück ist mir ein Schnabel mit grosser Oberfläche gewachsen, über welchen ich überschüssige Körperwärme direkt aus dem Blut darin an die Luft abgeben kann!

__ __ __ __ __ __ __ __ __ __ __

Lösungswort:

__ __ __ __ __ __ __ __ __ __

Viel Spass bei eurem nächsten Zoo-Besuch

wünscht euch eure Kathi Keinstein!

Und erzählt doch in den Kommentaren, was ihr Spannendes im Zoo erlebt habt!

Luftschlangen und Konfetti - wie sie funktionieren

Ob Güdismäntig oder Rosenmontag: Heute geht es vielerorts bunt und lustig zu. Die grossen Festumzüge ziehen durch die Strassen, und bei all dem bunten Treiben dürfen besonders in Mitteleuropa zwei farbenfrohe Accessoires nicht fehlen: Luftschlangen und Konfetti.

Die Schweizer Fasnacht kommt vor allem nicht ohne Konfetti aus. Säckeweise kann man die bunten Papierschnipsel zur Zeit in jedem Supermarkt erstehen, und beim Umzug und allen anderen närrischen Gelegenheiten bewirft man sich damit, was das Zeug hält.

Besonders berüchtigt ist dabei die Konfetti-Badewanne. Die wird von einer Gruppe furchterregender Hexen auf einem Wagen mit dem Umzug mitgerollt. Und wenn diese Truppe in Sicht kommt, heisst es besonders für weibliche Zuschauer Obacht – denn die verschlagenen Begleiter (meist sind die Hexen nur scheinbar weiblich) entführen immer wieder gern jemanden vom Strassenrand und stecken sie komplett mit allem Drum und Dran in die schnitzelbunte Wanne. Mich selbst hat es zum Glück noch nie getroffen – denn Reto, mein Partner, hasst Konfetti in der Wohnung. Und die wären danach wohl unvermeidlich.

Nichts einzuwenden hat er dafür gegen Dekoration mit Luftschlangen. Farbe im Haus hellt schliesslich auch seinen grauen Februar auf, und die hübsch gelockten Papierschlingen lassen sich auch ohne grossen Aufwand wieder beseitigen. Aber wie funktionieren Luftschlangen eigentlich? Und seit wann gibt es sie? Wer hat sie erfunden?

Wie funktionieren Luftschlangen?

Wir kennen sie alle, die bunten, schmalen Papierrollen, die mit einem kräftigen Luftstoss zu quirligem Eigenleben erwachen. Doch wie können sie sich eigentlich entrollen, wenn wir doch durch das Loch in der Mitte blasen?

Bernoulli machts möglich: Schon anlässlich der Antwort auf die Leserfrage, wie denn ein Helikopter fliege, habe ich den nach ihm benannten Effekt erklärt, dank welchem Luft die unwahrscheinlichsten Dinge in Bewegung setzen kann. Eine Luftströmung geht nämlich stets mit einem Unterdruck entlang ihrer selbst einher, sodass solch eine Strömung bewegliche Gegenstände regelrecht ansaugen kann.

Wenn diese Gegenstände Tragflächen eines Flugzeugs oder Rotorblätter eines Helikopters sind, hebt dieser Sog sie (unterstützt von einem höheren Druck von unten) in die Höhe. Wenn es sich aber um die leichtgewichtige Innenwand einer Papierrolle handelt, an welcher die Luft entlang strömt, wird diese Innenwand in Stromrichtung aus der Rolle hinaus gesogen – und was daran hängt, muss zwangsläufig folgen.

So setzt ein Luftstoss durch die Rolle das Eigenleben der Luftschlange in Gang. Und wenn erst einmal genügend Papier in Bewegung ist, nimmt die klassische Mechanik ihren Lauf. Denn was einmal in Bewegung ist, hört damit nicht mehr auf, so lange es nicht durch äussere Umstände – wie den Luftwiderstand – dazu gezwungen wird. Und wenn letzterer die Schlange auszubremsen droht, bringt die Gravitation das Ganze zuende: Die Papierrolle wird vollständig abgewickelt.

Im Übrigen wollen Wissenschaftler an der TU München herausgefunden haben, dass zwischen 25 und 30 cm der optimale Abstand zwischen Mund und Luftschlangen-Rolle ist, um den wirksamsten Sog damit ein spektakuläres Entkringeln zu erzeugen.

Seit wann gibt es Luftschlangen? Und wer hat sie erfunden?

Nein, nicht die Schweizer. Die Luftschlange ist, wie viele spannenden Erfindungen, ein Zufallsprodukt. Und zwar aus dem Jahre 1887.

Damals leitete der deutsche Buchbindermeister Paul Demuth in Berlin eine Firma, die nützliche Papierprodukte herstellte. Dazu gehörten auch Telegrafenrollen – fest aufgewickelte schmale Papierstreifen, die man in einen Telegrafen-Empfänger einlegte, damit dieser fortlaufend Morsezeichen darauf drucken oder stechen konnte.

Eines Tages, so heisst es, liess einer von Demuths Angestellten eine solche frisch produzierte Rolle versehentlich fallen. Da Demuth scheinbar ein jähzorniger Chef war, klaubte er die Rolle auf und schleuderte sie wütend durch den Raum. Der Fahrtwind, welcher dabei durch das Loch in der Mitte pfiff, führte dabei zum Bernoulli-Effekt und wickelte das Telegrafenband zu einer hübschen Spirale aus, die dann um so gemächlicher zu Boden geschwebt sein muss.

Einen Funken Humor (oder etwas mehr) muss Paul Demuth, der zu jener Zeit schon über 70 Jahre zählte, sich jedenfalls bewahrt haben. Denn er färbte die nächsten Papierrollen bunt ein und liess sein Spass-Produkt kurz darauf erfolgreich patentieren. Weniger humorvoll war damals, im deutschen Kaiserreich, die Berliner Polizei. Die wertete nämlich Demuths ersten Feldversuch mit der neuen Erfindung in Berlins Strassen als “Erregung öffentlichen Ärgernisses” an und nahm den Erfinder kurzerhand in Haft.

Und die Geschichte zu den Konfetti?

“Konfetti” leitet sich vom italienischen Wort für Konfekt ab. Mit diesen recht kostspieligen Süssigkeiten bewarfen sich dereinst die Wohlhabenden beim Karneval in Venedig. Unter der weniger reichen Bevölkerung, die sich diesen Spass nicht leisen konnte, wurden dazu entsprechende Attrappen aus Gips verwendet. Davon getroffen zu werden war allerdings eine ziemlich schmerzhafte Erfahrung.

Der Legende nach soll auch Paul Demuth zum Karneval in Venedig gewesen sein – und alsbald eine Idee gehabt haben, wie er das schmerzhafte Problem der Venzianer lösen konnte: Papierschnitzel sind billig, bunt und mangels Gewicht absolut nicht schmerzhaft (höchstens für die ordnungsliebende Seele). Und wenn man Anlagen zur Herstellung von Papierprodukten hat, kann man sie ganz einfach in grossen Mengen herstellen.

Noch heute werden übrigens Reste von buntem Luftschlangenpapier in grosse Locher-Maschinen gegeben, die die farbenfrohen Schnitzel daraus ausstechen. Allerdings hat Paul Wermuth es verpasst, auch diese Erfindung zum Patent anzumelden, sodass sie ihm nurmehr in der Legende zugeschrieben werden kann.

Während in Luzern auf meinem Neben-Bildschirm schon der Güdismäntigs-Umzug läuft, wünsche ich euch allen noch ein fröhliches Helau!, Alaaf!, Narri! Narro!, ä rüüdigi Fasnacht! Oder was man sonst noch bei euch wünscht und ruft!

Eure Kathi Keinstein

Verratet uns doch in den Kommentaren euren Fasnachts- bzw. Karnevalsruf oder – gruss – und erzählt vielleicht auch gleich von eurem närrischsten Erlebnis mit Luftschlangen oder Konfetti!

Experimente Zauber mit Oberflächenspannung

In der Schweizer Fasnacht sind Hexen zentrale Figuren, aber bestimmt sind auch Zauberer, Feen und andere magische Wesen bei der Kostümwahl beliebt. Mache dein magisches Kostüm wirklich einzigartig: Ich verrate dir, wie du wirklich zaubern und deine Freunde und (Mit-)Gäste verblüffen kannst! Die Physik bzw. Chemie machts möglich!

1. Die schwimmende Büroklammer

Du brauchst dazu

  • ein sauberes Glas mit Leitungswasser
  • ein wenig Flüssigseife
  • eine Büroklammer
  • eine Pinzette
  • deinen Zauberstab

 Material für Büroklammer vs. Oberflächenspannung

Wie du den Zauber durchführst

  • präpariere den Zauberstab, bevor die Zuschauer dabei sind: Gib ein wenig Flüssigseife auf die Spitze, sodass das nicht auffällt
  • In Gegenwart der Zuschauer: Lege die Büroklammer mit Hilfe der Pinzette vorsichtig auf die Oberfläche des Wassers im Glas. Die Klammer wird schwimmen.
  • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor
  • Führe den Zauberstab dabei nahe an die WasseroberflächeAlles bereit: Jetzt dein Zauberspruch!
  • Tippe, während du deinen Zauberspruch sagst, mit der seifigen Spitze des Stabes 1 – 2 cm von der Büroklammer entfernt auf die Wasseroberfläche. Klammer wird sofort auf den Grund des Glases sinken.Keine Oberflächenspannung mehr: Die Klammer ist versunken!

Was passiert da?

Wenn du schon das letzte Experiment rund um die Dichte und die Anomalie des Wassers gelesen hast, wirst du wissen: Nur Dinge, deren Dichte kleiner ist als die von flüssigem Wasser, können darauf schwimmen. So sollte es jedenfalls sein. Trotzdem schwimmt die Büroklammer aus Metall (zum Beispiel Eisen), dessen Dichte um ein Vielfaches höher als die flüssigen Wassers ist!

Die Oberflächenspannung machts möglich

Das rührt daher, dass Wasserteilchen ausserordentlich fest zusammenhalten. Zwischen den Wasserteilchen bzw. -molekülen wirken auch im flüssigen Zustand stark anziehende Kräfte, die sogenannten Wasserstoffbrücken, welche auch einen weiteren Zaubertrick – Harry Potter und der krumme Wasserstrahl – möglich machen. Dank dieser Wasserstoffbrücken halten die Wasserteilchen so dicht zusammen, dass sie an der Luft (mit welcher Wasserteilchen so gar nicht wechselwirken mögen) eine relativ schwer zu durchdringende Oberfläche bilden.

Diese Oberfläche ist so stabil, dass sie sogar der Erdanziehung standhalten kann: Wassertropfen zerlaufen auf einer Unterlage nicht, um der Schwerkraft folgend möglichst flach zu werden. Stattdessen erscheinen sie gewölbt (dazu findet ihr ein Experiment bei Forschen für Kinder)! Wie die Haut eines aufgeblasenen Luftballons steht die Wasseroberfläche dabei unter Spannung. Deshalb wird diese fesselnde Eigenschaft des Wassers (und anderer Stoffe) “Oberflächenspannung” genannt.

Dank der grossen Oberflächenspannung des Wassers können auch kleine Eisenteile schwimmen, obwohl sie eigentlich zu dicht dafür sind – wenn ihr Gewicht, wie bei der Büroklammer, auf genügend Auflagefläche verteilt wird. So ist nämlich an keiner Stelle die Last gross genug, um die film-artige Wasseroberfläche zu durchbrechen.

Die Zauberkraft der Tenside

Seife – nicht nur flüssige – besteht aus Tensiden. Das sind ganz besondere Teilchen: Sie haben nämlich zwei unterschiedliche Enden, die mit unterschiedlichen wechselwirken! Das macht die Tenside zu kleinen Diplomaten. Während nämlich das eine Ende Wasserteilchen anzieht und von ihnen angezogen wird, pflegt das andere Ende anziehende Wechselwirkungen mit solchen Teilchen, die sich nicht gern mit Wasser mischen.

Das verleiht den Tensiden nicht nur ihre Super-Waschraft, die darauf beruht, dass sie zwischen Wasser und Fett “vermitteln” und dem Fett ermöglichen, sich mit Wasser zu mischen. Tenside vermitteln nämlich ebenso zwischen Wasser und Luft – die sich in Bezug auf Wechselwirkungen wie Fett verhält, nämlich wasserabweisend.

Was dein Zauber bewirkt

Wenn du mit der Seife am Zauberstab auf die Wasseroberfläche tippst oder kurz hinein tauchst, lösen sich die Tenside vom Stab und ordnen sich an der Wasseroberfläche an: (wasserliebendes) Köpfchen in das Wasser, (fett- bzw. luftliebendes) Schwänzchen in die Höh!

Streichholzmodell: Tenside an der Wasseroberfläche

Dadurch wird der Zusammenhalt zwischen den einzelnen Wasermolekülen minimiert, wenn nicht gar aufgehoben, sodass die Oberflächenspannung zusammenbricht. Ohne den festen Oberflächenfilm ist nichts mehr da, was die Büroklammer tragen könnte, sodass sie wie ein Stein auf den Grund sinkt, wie ihre Dichte es vorschreibt.

2. Der furchtsame Pfeffer

Du brauchst dazu

  • ein sauberes Glas mit Leitungswasser
  • gemahlenen Pfeffer oder ein anderes wasserunlösliches Pulver
  • Flüssigseife
  • deinen Zauberstab

Material für den Zauber mit Pfeffer

Wie du den Zauber durchführst

  • Bringe wie im 1. Versuch vorab ein wenig Flüssigseife auf die Spitze deines Zauberstabs.
  • Wenn die Zuschauer da sind, bestreue die Wasseroberfläche auf dem Glas dicht mit gemahlenem Pfeffer. Das Pulver wird auf der Wasseroberfläche schwimmen.Pfeffer schwimmt auf der Wasseroberfläche
  • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor. Bringe dabei den Zauberstab in die Nähe der Wasseroberfläche.
  • Wenn du deinen Zauberspruch sagst, tippe die Stabspitze kurz – für höchstens ein bis zwei Sekunden – auf die Wasseroberfläche. Die Pulverkörner auf der Wasserfläche werden sofort vor der Stabspitze Reissaus nehmen und in Richtung der Glasränder drängen!Der Pfeffer flieht vor dem Zauberstab!

 

Was passiert da?

Es sind einmal mehr die Tenside, welche die Pfefferkörnchen zur Flucht bewegen. Wie eine Schar, die auseinanderstrebt, breiten sich die Seifenteilchen vom Zauberstab fort auf der Wasseroberfläche aus. Dabei schieben sie die schwimmenden Pulverkörner kurzerhand zur Seite.

Da wir die winzigen Seifenteilchen nicht sehen können, erscheint dies so, als würden die sichtbaren Pulverkörner vor dem Stab zurückweichen!

 

Damit dir und allen anderen Lesern ein fröhliches Ohhh Häx!, Helau!, Alaaf!, Narri! Narro! und was man im durch die Länder sonst noch alles ruft!

gefrorenes Wasser : Das Glas wird voller

Warum ist es eigentlich keine gute Idee, eine geschlossene Glasflasche mit Wasser ins Tiefkühlfach zu legen? Dieses Experiment zeigt euch eine ungewöhnliche, verblüffende Eigenschaft des Wassers – seine Dichteanomalie!

Der Januar war hier in den niedrigen Regionen der Schweiz viel zu warm, aber der Februar grüsst heute Morgen mit einer feinen Puderzucker-Schneeschicht. So könnt ihr in diesem Winter vielleicht doch noch Beobachtungen machen, die spannende Fragen aufwerfen: Warum friert bei einem Teich zuerst die Oberfläche zu, während das Wasser darunter flüssig bleibt? Und warum sieht ein Wasserkübel voller aus, wenn das Wasser darin zu Eis erstarrt?

Dass der Kübel tatsächlich voller ist, könnt ihr mit diesem einfachen Experiment nachweisen!

Ihr braucht dazu

  • Ein – möglichst schmales – Trinkglas, das in euer Tiefkühlfach passt
  • Ein Tiefkühlfach (wenn es draussen friert, genügt auch Platz auf Balkon oder Terrasse)
  • Kaltes Leitungswassser
  • Einen wasserfesten Filzstift
  • Ein Lineal
  • Optional: Gefäss mit Skala und eine Küchen- oder Laborwaage
Material für das Experiment

Das ist alles was ihr braucht, um Wasser wachsen zu lassen!

Wie ihr das Experiment durchführt

  1. Füllt das Glas etwa zwei Drittel hoch mit Leitungswasser und stellt es auf eine waagerechte Fläche.
  2. Markiert die Höhe des Wasserspiegels mit einem Filzstift-Strich. Mit dem Lineal könnt ihr die Füllhöhe zudem auch in Zentimetern messen.
  3. Stellt das Glas mit dem Wasser in euer Tiefkühlfach oder bei Frost nach draussen und wartet einige Stunden.
  4. Wenn das Wasser vollständig gefroren ist, nehmt das Glas wieder aus dem Tiefkühlfach bzw. nach drinnen und wartet wenige Minuten, bis die Luftfeuchtigkeit nicht mehr sofort einen weissen Schleier auf der Glasoberfläche bildet. Wischt eventuelle Reste dieses Schleiers ab (gebt dabei acht, dass der Filzstift-Strich erhalten bleibt!).
  5. Vergleicht die Höhe der Eissäule im Glas mit eurer Markierung. Mit dem Lineal könnt ihr den Höhenunterschied in Millimetern messen!

Wenn ihr eine Waage und ein Gefäss mit unterteilter Skala, zum Beispiel einen Messzylinder, habt, könnt ihr auch die Veränderung der Dichte des Wassers messen:

  1. Wiegt das Glasgefäss vor und nach dem Einfüllen des Wassers. Der Gewichtsunterschied entspricht der Masse des eingefüllten Wassers. Lest dann das Volumen des eingefüllten Wassers (in Millilitern oder Kubikzentimetern cm3) von der Skala des Gefässes ab. Notiert beide Werte.
  2. Um die Dichte des Wassers zu erhalten, teilt die Masse des Wassers durch sein Volumen (die Zahlen werden sich sehr ähneln, sodass das Ergebnis in der Nähe von 1 g/cm3 liegen wird).
  3. Nachdem das Wasser gefroren ist, lest das Volumen noch einmal ab (wenn die Oberfläche der Eissäule sich gewölbt hat, versucht den Wert zu schätzen!) und rechnet die Dichte des Eises wie in 2. aus (ein zweites Mal wiegen müsst ihr dazu nicht – die Masse des Wassers ändert sich nicht!).

Was ihr beobachten könnt

Nach dem Gefrieren reicht die Oberfläche der Eissäule deutlich über den ursprünglichen Wasserspiegel hinaus: Eis nimmt mehr Platz ein als das flüssige Wasser, aus dem es entsteht – das Wasser ist beim Einfrieren gewachsen! In meinem Glas ist die Eissäule ganze 8 Millimeter (wenn ich zudem die Wölbung berücksichtige, mindestens 1 Zentimeter) höher als das Wasser, das ich eingefüllt hatte!

Dichteanomalie sichtbar gemacht: Das Wasser ist gewachsen!

Wenn ihr die Dichte von Wasser und Eis bestimmt, werdet ihr feststellen, dass der Wert für das Eis etwas kleiner ist als der für das Wasser (die Masse bleibt dabei unverändert: Vor und nach dem Gefrieren ist (annähernd) gleich viel Wasser im Glas).

[yellow_box]

Wie kann Wasser wachsen, wenn es friert?

Nur ganz wenige Stoffe können das. Normalerweise werden Stoffe grösser, je wärmer sie werden. Das rührt daher, dass die Teilchen in warmen Stoffen sich heftiger bewegen als die gleichen Teilchen in kalten Stoffen. Und was ständig herumzappelt oder gar -wuselt, braucht einfach mehr Platz. Das heisst auch, dass diese Stoffe kleiner werden, wenn man sie abkühlt – also auch, wenn sie gefrieren.

Wasser und einige wenige Stoffe, wie die Elemente Bismut, Gallium, Germanium, Plutonium, Silicium und Tellur , fallen da allerdings aus dem Rahmen: Sie werden mitunter grösser, wenn sie abkühlen.

Wasser verhält sich nicht “ganz normal”

Flüssiges Wasser verhält sich genaugenommen ganz normal, so lange seine Temperatur über rund 4°C liegt. Dann gilt auch hier: Je wärmer das Wasser ist, desto wuseliger sind die Teilchen, aus denen es besteht, und desto mehr Platz nimmt es ein. Oder umgekehrt: Je kälter das Wasser ist, desto weniger wuseln die Teilchen und desto weniger Platz nehmen sie ein.

Bei rund 4°C passiert dann etwas neues: Wenn das Wasser noch kälter wird, bereiten die Wasserteilchen sich darauf vor, Eiskristalle zu bilden: Sie rotten sich zusammen und bewegen sich nurmehr in der Nähe der Plätze, die sie in einem Eiskristall-Gitter einnehmen würden. So wie Kinder, die “die Reise nach Jerusalem” spielen und – wenn sie erwarten, dass die Musik abbricht – darauf aus sind, in der Nähe der freien Stühle zu sein.

Und das Eiskristall-Gitter hat es in sich: Das Muster , in dem die Wasserteilchen darin angeordnet werden, ist nämlich ziemlich grobmaschig. Die anziehenden Wechselwirkungen, “Wasserstoffbrücken” genannt, welche die Wasserteilchen im Gitter zusammenhalten, halten sie nämlich gleichzeitig ziemlich auf Abstand voneinander.

Ein Modell des Eiskristall-Gitters : Jeder schwarze Knoten ist ein Wasserteilchen. Die Wasserstoffbrücken – dargestellt als grüne Streben – halten die Teilchen auf Abstand!

So kommt es, dass die Wasserteilchen schon beim Zusammenrotten vor dem Gefrieren auf Abstand gehen – so wie es die spielenden Kinder wohl täten, wenn man die freien Stühle voneinander entfernt aufstellen würde. Deshalb braucht flüssiges Wasser zunehmend mehr Platz, wenn es kälter als 4°C wird.

Unmittelbar vor dem Gefrieren sind die Wasserteilchen am weitesten – also entsprechend der Maschen im Eiskristallgitter – verteilt und nehmen schliesslich ihre festen Plätze im Gitter ein: Wenn Wasser einmal erstarrt ist, wächst das Eis nicht mehr weiter!

Weil das “Wachsen” eines abkühlenden Stoffes im Vergleich zu den meisten anderen Stoffen nicht ganz normal ist, nennen Chemiker und Physiker diese ungewöhnliche Eigenschaft eine Dichteanomalie.

Dichte – und warum Teiche stets von oben zufrieren

Der eingefrorene Wasserkübel sieht also nicht nur voller aus – er ist tatsächlich voller! Man kann das Ganze jedoch auch aus einem anderen Blickwinkel betrachten:

Würde die Wasserteilchen in einem Milliliter kaltem Wasser zählen und ihn dann einfrieren, dann wäre der entstehende Eisklumpen grösser. Um einen ordentlichen Vergleich anzustellen, könnte man aus diesem Eisklumpen einen Eiswürfel herausschneiden, der einen Milliliter fasst (das Volumen des Eiswürfels beträgt einen Milliliter). Würde man die Teilchen in diesem Eiswürfel zählen, wäre das Ergebnis eine kleinere Zahl als für einen Milliliter flüssiges Wasser – denn die Wasserteilchen, die nach dem Wachsen keinen Platz mehr im Würfel fanden, hat man schliesslich vorher weggeschnitten.

Da man mit dem Zählen von Stoffteilchen aber eine schiere Ewigkeit beschäftigt wäre, ist es wesentlich praktischer, die Teilchen alle zusammen zu wiegen. Denn jedes Teilchen hat seine Masse, die es zur Gesamtmasse eines Milliliters beisteuert. Da in einem Milliliter Eis weniger Teilchen sind, als in einem Milliliter flüssigen Wassers, wiegt ein Milliliter Eis entsprechend weniger.

Um diese veränderliche Eigenschaft von Stoffen zu beschreiben, verwenden Physiker die “Dichte”: Sie geben die Masse für ein bestimmtes Volumen des jeweiligen Stoffes an: rho = m/V . Damit lassen sich verschiedene Gesetzmässigkeit einfach ausdrücken: Aus “die meisten (flüssigen) Stoffe werden um so kleiner, je kälter sie werden” wird so “die Dichte der meisten (flüssigen) Stoffe nimmt zu (d.h. mehr Teilchen drängen sich in einem festgelegten Volumen zusammen – das Volumen wird schwerer), wenn sie kälter werden”.

Warum Eis schwimmt

Die wenigen Stoffe, für die das nicht uneingeschränkt gilt, weisen damit eine Dichteanomalie auf. Dieser Anomalie wegen hat Eis eine geringere Dichte als Wasser.

Und damit kommen wir zu einer weiteren Gesetzmässigkeit über die Dichte von Stoffen: Füllt man zwei Stoffe (davon ist mindestens einer flüssig und keiner ein Gas) mit unterschiedlicher Dichte, die sich nicht vollständig mischen, in ein Gefäss, dann schwimmt der Stoff mit der geringeren Dichte oben.*

*Tatsächlich gilt dies nur unter Vernachlässigung einiger äusserer Umstände, zu denen ihr bald hier mehr erfahren könnt.

Das gilt natürlich auch für Eis und Wasser – deshalb schwimmen die Eiswürfel im gekühlten Drink stets obenauf!

Warum Teiche von oben einfrieren

Darüber hinaus gilt das Gesetz auch innerhalb ein und desselben flüssigen Stoffs, wenn dieser in verschiedenen Bereichen eine unterschiedliche Dichte hat (weil diese Bereiche unterschiedlich warm sind). Wenn ein anfangs warmer Teich abkühlt, ordnet sich das kalte Wasser (das die höhere Dichte hat) unterhalb des wärmeren Wassers (mit niedrigerer Dichte) an. Da Wasser bei rund 4°C die höchste Dichte hat, landet das 4°C kalte Wasser somit ganz unten – darüber sind die Schichten wärmer.

Wenn es nun im Winter richtig kalt wird, kühlen die oberen Wasserschichten unter 4°C ab. Der Dichteanomalie wegen nimmt ihre Dichte dabei jedoch ab – und die kalten Schichten bleiben oben. Mehr noch: Die kälteste Sicht – mit der geringsten Dichte – ordnet sich ganz oben an, und erstarrt dort schliesslich als erstes zu Eis.

Wasser im Teich nach Dichte sortiert

Dichteverteilung im Teich: Links wenn es warm ist: unten – bei 4° ist das Wasser am dichtesten. Rechts wenn es kalt ist: Das dichteste Wasser ist unten – kälteres Wasser ist weniger dicht! By Klaus-Dieter Keller, details from KnowItSome, Tango! Desktop Project, Julo, Spax89 [CC BY-SA 3.0], via Wikimedia Commons

So freuen wir uns, wenn wir auf der Teichoberfläche Schlittschuh laufen können, während die Fische darunter sicher sein können, flüssiges Wasser zum Schwimmen und Atmen zu finden, wenn sie nur nach ganz unten tauchen (so lange der Teich nicht komplett durchfriert).

Dank der Dichteanomalie des Wassers können nicht nur Fische den Winter überleben – womöglich hat auch das Leben auf der Erde dank dieser ungewöhnlichen Eigenschaft mehrere Eiszeiten überdauern können – sodass wir die Anomalie heute in einem Glas im Tiefkühlfach beobachten können. Spannend, nicht?

[/yellow_box]

Und nun zum Abschluss eine Quizfrage: Welche “äusseren Umstände” führen dazu, dass das Gesetz “der Stoff mit der geringeren Dichte schwimmt oben” in Wirklichkeit mehr eine Faustregel ist, die oftmals nicht streng zu gelten scheint?

Die Auflösung samt einem spannenden Experiment gibt es nächste Woche hier in Keinsteins Kiste!