Tag Archive for: Experimentieren

Experiment: Geldscheine anzünden

Geld verbrennen: Ein Experiment für Leute, die zu viel Geld haben? Keineswegs! Mit diesem chemischen Zaubertrick könnt ihr eure Zuschauer verblüffen (oder sogar erschrecken), ohne dabei arm zu werden!

Viel zu lange war es still in der Kiste – aber keine Sorge, Reto und mir geht es gut. Das ‚erzwungene‘ Innehalten während der COVID-Lockdowns hat mir bloss bewusst gemacht, wie sehr es mich nach einer Pause von allem verlangte. Und dann ergab sich die Möglichkeit, ein Traumprojekt endlich in die Tat umzusetzen!

Zu Keinsteins Kiste gibt es jetzt ein Buch!

Richtig gelesen: Nicht nur viele spannende Experimente aus Keinsteins Kiste, sondern auch zahlreiche neue Versuche und Wissenswertes findet ihr jetzt als „Chemische Spielereien“ im Verlag Wiley VCH Weinheim beim Buchhändler eurer Wahl!

Während der vermeintlichen Stille um die Kiste habe ich euch die spannendsten Experimentieranleitungen und interessante Einblicke in die Chemie eures Alltags auf 150 Seiten stets griffbereit als Hardcover oder E-Book zusammengestellt und freue mich, euch „Chemische Spielereien“ endlich präsentieren zu können.

Und… heisst das nun, dass das Geld ab jetzt in Strömen fliesst, sodass ich ohne Schmerz etwas davon verbrennen kann? Nicht ganz – weshalb ich in diesem Experiment zwar Geldscheine anzünde, aber keinen davon beschädige. Und ihr könnt das auch.

Haltet bei Experimenten mit offenem Feuer stets die Sicherheitsregeln zur Vermeidung von Bränden und Verletzungen ein! Kurz heisst das: Habt einen feuerfesten Experimentierplatz, tragt schwer entflammbare Kleidung, haltet leichtendzündliche Chemikalien von Zündquellen fern und habt bestenfalls ein passendes Löschmittel griffbereit!

Ihr braucht dazu

  • Geldschein, beliebiger Nennwert (z.B. Euro oder Schweizer Franken)
  • Tiefe Schale oder ähnlichen Behälter
  • Grosse Pinzette oder Grillzange aus Metall
  • Brennsprit/Spiritus (Ethanol)
  • Leitungswasser
  • Kochsalz
  • Messgefäss (z.B. Trinkglas)
  • Kerze oder Teelicht
  • Streichhölzer oder Feuerzeug
  • Feuerfesten Experimentierplatz!
Was ihr zum Geld verbrennen braucht

So geht’s

  • Mischt in der tiefen Schale einen Teil Alkohol mit einem Teil Wasser. Gebt einen gestrichenen Teelöffel Kochsalz dazu und rührt um, bis das Salz sich weitestgehend gelöst hat.
  • Stellt die Kerze auf der feuerfesten Unterlage oder z.B. im Badezimmer bereit und zündet sie an (behaltet die Schale mit dem Alkoholgemisch und die Brennsprit-Vorratsflasche abseits von Kerze und Feuerquelle!).
  • Greift den Geldschein an einem Ende mit der Pinzette oder Zange und tränkt ihn vollständig im Alkohol-Wasser-Gemisch.
Ich tauche den Geldschein mit Hilfe einer Tiegelzange sorgfältig in die Flüssigkeit.
Wichtig: Taucht euren Geldschein ganz und gründlich in die Flüssigkeit ein!
  • Haltet den triefnassen Schein kurz in die Kerzenflamme und dann weiter über die feuerfeste Unterlage.

Achtung! Es kann passieren, dass brennender Alkohol auf die Unterlage tropft. Das ist nicht weiter schlimm, denn er brennt innerhalb von Augenblicken aus. Aber die Unterlage muss deshalb unbedingt feuerfest sein!

Tragt beim Geld verbrennen zudem Kleidung aus schwer entflammbarer Baumwolle und ggfs. Schutzbrille. Bei der Durchführung mit meiner Tiegelzange (ca. 15 bis 20cm Abstand zwischen Feuer und Hand) habe ich die Wärme der Flammen deutlich, aber nicht unangenehm gespürt. Ich empfehle also ein mindestens ebenso langes feuerfestes Haltewerkzeug. Die Duschwanne als Experimentierplatz bietet übrigens nicht nur durch den hohen Rand, sondern auch durch die darüber bereithängende Dusche zusätzliche Sicherheit.

Das könnt ihr beobachten

Der triefnasse Geldschein geht sofort in Flammen auf…oder? Denn obwohl der Schein für ein paar Sekunden in ausladenden, bläulich bis orangegelben Flammen steht, bleibt er unversehrt! Der Versuch funktioniert mit der jüngsten Euro-Serie ebenso wie mit den neuesten Schweizer Franken. Wenn ihr den Geldschein noch einmal in der Flüssigkeit tränkt, könnt ihr den Versuch auch gleich nach dem ersten Durchgang wiederholen.

Geld verbrennen ohne Folgen: Obwohl ich hier vorsichtigerweise eine 10-Euro- bzw. 10-Franken-Note verwendet habe, funktioniert das Experiment mit allen Nennwerten. Verschafft eurem Publikum also ruhig den ultimativen Schreckmoment, indem ihr einen Hunderter anzündet.

Entsorgung

Die nassen Geldscheine könnt ihr einfach zum Trocknen aufhängen und anschliessend normal weiterverwenden. Das Alkohol-Wasser-Gemisch könnt ihr mit viel Wasser in den Abfluss entsorgen.



Wie kann man Geld verbrennen, ohne dass es zerstört wird?

Was tatsächlich reagiert

Brennsprit, genauer Ethanol, verbrennt mit Luftsauerstoff zu Kohlenstoffdioxid und Wasser:

Bei der Verbrennung wird Energie frei, die wir als Leuchten der Flammen sehen und als Wärme spüren können. Die auf vergleichbare Weise in der Kerzenflamme freiwerdende Wärme (das „Kerzenwachs“ Paraffin besteht aus Molekülen aus Kohlenstoff- und Wasserstoff-Atomen, die bei ihrer Verbrennung ebenfalls Kohlenstoffdioxid und Wasser bilden) reicht aus, um den flüssigen Ethanol, mit dem der Geldschein getränkt ist, sofort zu entzünden. Das Gleiche gilt eigentlich für das Papier und die Kunststoffe, aus denen eine Banknote besteht.

Schutz durch Wasser

Die Flüssigkeit, mit welcher euer Schein getränkt ist, besteht jedoch zur Hälfte aus Wasser, welches nicht brennt, dafür aber in der Wärme der Flamme verdampft. Und beim Verdampfen geschieht dasselbe wie beim Schmelzen: Die Wassermoleküle nehmen Wärme auf, um von einer geregelten Anordnung zu mehr Bewegungsfreiheit zu kommen. In flüssigem Wasser kleben die gegeneinander beweglichen Moleküle nämlich stets aneinander, während sie in Wasserdampf frei im Raum herumfliegen.

Wasser ist nun ein Stoff, der beim Verdampfen besonders viel Wärme aufnehmen kann. Sein hoher Schmelzpunkt von 100°C gibt uns eine Idee davon (zum Vergleich: Schwefelwasserstoff, H2S, der aus fast gleichartigen Molekülen aufgebaut ist, ist bereits bei Raumtemperatur gasförmig!). Während die bei der Verbrennung des Ethanols freigesetzte Energie also Wasser zum Verdampfen bringt, bleibt um den Geldschein nicht genügend Wärme übrig, um das Material ebenfalls zu entzünden!

Der Schmelzpunkt von Ethanol ist mit 78°C übrigens auch niedriger als der von Wasser. Der Ethanol im und auf dem Schein verdampft also noch eher als das Wasser. Was also tatsächlich brennt, ist nicht der flüssige Ethanol im Geldschein, sondern Ethanol-Dampf drumherum.

Fazit

Der Geldschein selbst geht in diesem Experiment aus zwei Gründen nicht in Flammen auf:

  1. Die heissen Flammen entstehen nicht am Geldschein, sondern darum herum.
  2. Verdampfendes Wasser in und um den Schein ‚verbraucht‘ so viel Wärme, dass das Geld nicht heiss genug wird, um selbst in Flammen aufzugehen.

Aus vergleichbaren Gründen brennt übrigens auch der Docht einer Kerze nicht sofort nieder, sondern verkohlt langsam der schrumpfenden Wachskerze folgend. Auch das Paraffin verdampft, bevor es in der Umgebung des Dochts verbrennt! In „Chemische Spielereien“, dem Buch zu Keinsteins Kiste, könnt ihr die spannenden Einzelheiten zu den Vorgängen in Kerzenflammen nachlesen und weitere feurige Experimente machen.

Und an welche Geldsummen traut ihr euch beim Anzünden so ran?

Spuk mit Physik: Gruselige Geräusche zu Halloween

Halloween zu Hause: Schaurige Geräusche für eure Gruselgeschichten und wie sie entstehen

Die unheimlichste Nacht des Jahres rückt näher – und das in einer denkbar ungünstigen Zeit – zumindest, was grosse Spukpartys betrifft. Aber richtig schaurig-schön wird so eine Nacht doch erst, wenn ihr sie im gemütlichen Kreis eurer Lieben verbringt und euch bei schummrigem Licht Gruselgeschichten erzählt. Damit die auch so richtig unter die Haut gehen, könnt ihr sie mit einfachen Zutaten mit passenden Gruselgeräuschen garnieren.

Hier sind einige Beispiele für euch!

Gruselige Geräusche mit Material aus dem Haushalt erzeugt

Heulender Wind (oder ein Gespenst?)

Blast mit leicht geöffnetem Mund und wechselnder Kraft waagerecht über die Öffnung einer Glasflasche. Es entsteht ein an- und abschwellender dunkler Heulton. Probiert aus, wie ihr für das passende Wind- (oder Gespenster-) Geheul blasen müsst. Macht zwischendurch Pausen, bevor euch vom Blasen schwindelig wird! Wenn ihr etwas Wasser in die Flasche füllt, wird der Ton höher.

Mächtiger Donner

Schüttelt ein dünnes Blech oder eine grosse Pappe kurz (oder länger für entfernten Donner) und kräftig.

Monsterstimmen

Schnarrende Vögel

Legt zwei Blatt DIN-A4-Papier so übereinander, dass das untere Blatt an der schmalen Kante gut einen Zentimeter unter dem oberen hervorschaut. Haltet die Blätter an den Enden dieser schmalen Kante und spannt sie straff. Blast nun scharf mit spitzen Lippen (fast) waagerecht gegen die Kante. Mit etwas Übung könnt ihr dem Papier ein laut schnarrendes Geräusch entlocken. Mir gelingt das am besten, wenn ich ein wenig von oben auf die doppelte Kante blase. Achtung: Macht auch hier ab und zu eine Pause, bevor euch schwindelig wird!

Quäkende Gnome

Schneidet aus Frischhaltefolie oder Zellophan ein Quadrat mit 5 bis 7 Zentimeter Kantenlänge. Greift zwei gegenüberliegende Kanten mit den Händen und spannt die Folie straff, während ihr sie vor euren Mund hebt. Blast nun wiederum sehr kräftig mit spitzen Lippen aus sehr kurzem Abstand gegen die euch zugewandte freie Kante. Mit etwas Übung könnt ihr so ein fies quäkendes Geräusch erzeugen. Wie bei allen geblasenen Geräuschen gilt: Pausen machen, bevor euch schwindelig wird!

Schaurige Geisterstimme

Sprecht durch ein langes Rohr, zum Beispiel eine leere Küchentuchrolle, in einen Eimer. Eure Stimme wird dumpf und hohl klingen. Durch Veränderung eurer Stimmlage könnt ihr den Effekt bei Bedarf anpassen.

Das blubbernde Schleim-Monster

Füllt eine tiefe Schale mit Wasser. Sprecht, am besten tonlos raunend, während ihr die Lippen so nah an den Rand und den Wasserspiegel haltet, dass der dabei ausgeatmete Luftstrom das Wasser blubbern lässt.

Der Todesschrei

Für diesen Effekt braucht ihr ein wenig technische Unterstützung – in Form eines Aufnahme- oder Sound-Bearbeitungs-Apps oder -geräts, das Aufnahmen mit unterschiedlicher Geschwindigkeit abspielen kann. Nehmt das Geschrei eines Babys auf (ein kurzer Ausschnitt reicht!) und spielt die Aufnahme langsamer ab (bzw. bearbeitet sie entsprechend). Probiert vor dem Einsatz aus, mit welcher Geschwindigkeit der Schrei am besten klingt. Spielt die vorbereitete Datei dann während eurer Geschichte ab.

Herzklopfen

Bei so viel Grusel fehlt jetzt eigentlich nur noch das passende angstvolle Herzklopfen. Nehmt dazu ein Küchen und greift es fest mit beiden Händen wenige Zentimeter unterhalb einer Kante. Macht die Hände dabei zu Fäusten, sodass die Daumen flach auf den gerollten Fingern und dem Tuch liegen und nach oben bzw. vorne weisen. Zwischen euren beiden Daumen sollten nun 15 bis 20 cm Stoff liegen. Strafft das Tuch zwischen euren Daumen leicht. Führt dann die Fäuste ein Stück zusammen und zieht das Tuch ruckartig wieder stramm. Es ertönt ein dumpfes „Bumm“, das einem Herzton sehr ähnlich ist. Wenn ihr unmittelbar vor dem nächsten Herzton locker lasst und das Tuch wiederum schnell stramm zieht, könnt ihr einen Herzrhythmus „da-Bumm – da-Bumm – da-Bumm“ nachstellen. Je schneller folgend ihr locker lasst und stramm zieht, desto höher steigt der Puls!


Wie Geräusche entstehen und wie wir sie hören können

Aber wie funktioniert das alles eigentlich?

Was ist Schall?

Vielleicht wisst ihr bereits: Schall besteht aus sich ausbreitenden Wellen. Dabei handelt es sich aber nicht um die bekannten Wellen mit Auf- und Abbewegungen, wie ihr sie von Wasserwellen oder Wellenlinien kennt. Die sind nämlich nur eine Spielart dessen, was Wellen tatsächlich sind: Nämlich wiederkehrende Muster von physikalischen Vorgängen, die sich im Raum ausbreiten.

Bei den Wellen, die wir in unserer Alltagswelt erleben, zum Beispiel den Wasserwellen, handelt es sich um Bewegungsmuster: Wenn Wellen über einen See laufen, bewegt sich die Wasseroberfläche immer wieder auf und ab. Und damit Bewegungsmuster sich ausbreiten können, braucht es etwas, das sich bewegt. Physiker nennen dieses „Etwas“ ein Medium. Das Medium, in dem sich Wasserwellen ausbreiten, ist zum Beispiel Wasser – oder besser dessen Oberfläche.

Luft als Medium für Schallwellen

Das Medium, in dem sich die Schallwellen ausbreiten, die wir hören, ist hingegen Luft. Und die wiederum besteht aus unzähligen winzigkleinen Teilchen, die sich durch ständiges Herumgewusel auf Abstand halten. Das Gewusel können wir freilich nicht wahrnehmen, sodass uns die Luft in einem geschlossenen Raum in der Regel als stehend erscheint.

Nichts desto trotz können wir mit der Hand durch die Luft streichen oder darin herum laufen: Die winzigen Luftteilchen sind beweglich – sie lassen sich herumschieben. Wenn man den Teilchen in einem bestimmten Bereich der Luft einen kräftigen Schubs gibt, kann man sie sogar enger zusammenschieben, als sie sonst in stehender Luft verteilt sind. Aber nur für einen kurzen Moment. Denn die zusammengeschobenen Teilchen stossen in ihrer Wuselei gegeneinander und gegen jene Teilchen, die hinter ihnen sind – und schieben auch diese zusammen. So erkämpfen sich die anfangs zusammengeschobenen Teilchen für einen Augenblick besonders viel Platz – bevor ihre Nachbarn sie wieder auf den anfänglichen Abstand zwingen.

Indessen drängen die weiter vom Schubs entfernten Teilchen wiederum die nächsten Teilchen zusammen. Das Gedränge – und der darauf folgende vermehrte Platz – wandern also fort vom Ort des Schubses in den luftgefüllten Raum hinein.

Animiertes Modell einer Längswelle: So verbreiten sich Geräusche
Schallwellen sind Längswellen: Denkt euch an jeder Kästchenecke ein Luftteilchen. Am linken Rand erhalten sie einen Schubs, der die Teilchen von links nach rechts zusammenschiebt. Der Impuls wandert ebenfalls von links nach rechts. (Christophe Dang Ngoc Chan (cdang), CC BY-SA 3.0, via Wikimedia Commons)

Schallwellen sind wandernde Dichteveränderungen

Wie dicht Teilchen in einem Gas gedrängt sind, messen Physiker mit einer Grösse, die sie passenderweise „Dichte“ nennen: Die Anzahl der Teilchen (gemessen wird ihre Gesamtmasse) in einem bestimmten Raum (Volumen). Wie beschrieben lässt sich die Dichte eines Gases durch Anschubsen grösserer Mengen Gasteilchen leicht verändern. Schallwellen sind somit nichts anderes als wiederkehrende Veränderungen der Dichte eines Gases wie Luft, die sich in diesem Gas ausbreiten.

Während die Bewegung bei einer Wasserwelle (dabei ändert sich die Höhe des Wasserspiegels in wiederkehrender Weise) senkrecht zur Ausbreitungsrichtung abläuft (Der Wasserspiegel bewegt sich auf und ab, die Wellen laufen aber die Oberfläche entlang), findet die Bewegung bei Schallwellen in die gleiche Richtung wie die Ausbreitung statt. Schallwellen sind damit „Längswellen“, während man Wasserwellen „Querwellen“ nennt.

a) Eine Längswelle: Die Schwingung, also die wiederkehrende Bewegung, erfolgt in die gleiche Richtung wie die Welle sich ausbreitet. b) Eine Querwelle: Die Schwingung („Auf und Ab“) erfolgt senkrecht zur Ausbreitungsrichtung (von links nach rechts) (Debianux, CC BY-SA 3.0, via Wikimedia Commons)

Wie wird Schall übertragen?

Wenn ihr mit dem Küchentuch Herztöne nachmacht, versetzt ihr den Luftteilchen durch das schnelle Straffen des Tuchs einen Schubs nach vorn. Die Luftteilchen vor dem Tuch werden zusammengeschoben und diese Verdichtung breitet sich in der Luft in alle Richtungen aus, bis sie auf ein festes Hindernis stösst. Das könnte eine Wand sein – oder die Haut, die unser Mittelohr verschliesst und „Trommelfell“ genannt wird.

Sobald sich die Luftteilchen direkt vor unserem Trommelfell verdichtet haben und wieder auseinander streben, schubsen sie die Teilchen des Trommelfells an. Das Trommelfell wiederum ist ein Feststoff. Das heisst, jedes Teilchen hat darin seinen festen Platz. So schwingen alle Teilchen des Trommelfells durch den Schubs gemeinsam nach innen, wodurch sie eine Reihe kleiner Knochen – die Gehörknöchelchen – in Bewegung versetzen.

Anatomie des menschlichen Ohrs
Damit können wir Geräusche hören: Schallwellen, die in den äusseren Gehörgang dringen, schubsen das Trommelfell an, das wiederum Hammer, Amboss und Steigbügel in Bewegung setzt. Letzterer klopft dabei an die Hörschnecke, welche die Klopfzeichen in Form elektrischer Signale an den Hörnerv weitergibt. Der wiederum führt ins Gehirn, das die Signale verarbeitet. (Lars Chittka; Axel Brockmann, CC BY 2.5, via Wikimedia Commons)

Das letzte von ihnen, seiner Form wegen „Steigbügel“ genannt, klopft schliesslich gegen die „Schnecke“, die eine Art Sensor darstellt, welcher das Klopfen in Nervenimpulse übersetzt. Die werden an den Zentralcomputer – unser Gehirn – weitergeleitet, der uns dann ausrechnet, was wir da gehört haben.

Töne oder Geräusche?

Die denkbar einfachste Form von Schall ist eine einfache, sich gleichmässig ausbreitende Schallwelle mit gleichbleibender Frequenz. Was das schon wieder ist? Noch eine physikalische Grösse, mit der man die Geschwindigkeit misst, in der dichtere und dünnere Luft aufeinander folgen.

Wenn wir den Kammerton A hören, nach dem Musiker ihre Instrumente stimmen, erreichen beispielsweise 440 Verdichtungen in einer Sekunde unser Ohr. Physiker sagen „die Frequenz des Tons beträgt 440 Hertz (Hz)“. Das klingt viel, ist es aber nicht. Grundsätzlich gilt: Je höher die Frequenz der Schallwellen, desto höher ist der Ton. Unser Gehör ist dafür geschaffen, Töne zwischen etwa 30 Hz und 20’000 Hz (20 Kilohertz) wahrzunehmen! Schallwellen mit noch höheren Frequenzen nennt man „Ultraschall“. Die können wir Menschen nicht mehr hören, manche Tiere, wie z.B. Fledermäuse, hingegen schon.

So einfache, reine Töne sind in unserer Welt jedoch selten. Selbst gut gestimmte Musikinstrumente geben stets eine Vielfalt von Schallwellen von sich. Wenn deren – zweifellos regelmässiges – Muster unsere Ohren erreicht, errechnet das Gehirn daraus die typische Klangfarbe des Instruments.

Am häufigsten erreichen jedoch hochkomplizierte Wellengebilde – oder regelrechter Wellensalat – unsere Ohren, die sich mit bestimmten Frequenzen nicht mehr beschreiben lassen. Die interpretiert das Gehirn als das, was wir Geräusche nennen. Im Laufe eines Menschenlebens lernt es eine grosse Zahl davon kennen und ordnet sie Eindrücken, Gefühlen und Ursachen zu.

Manche Geräusche können uns unangenehm sein (besonders, wenn unser Gehirn sie mit gruseligen Dingen verknüpft hat). Dahingegen empfinden wir Töne mit mittelgrossen Frequenzen meist als angenehm – sofern sie nicht zu laut sind.

Was ist „laut“?

Je dichter man Gasteilchen zusammendrängt, desto heftiger stossen sie gegeneinander und streben so auseinander. In einem dichten Gas herrscht also ein hoher Druck. Dementsprechend nennen Physiker auch das Ausmass, in welchem Gasteilchen in Schallwellen zusammengeschoben werden, den „Schalldruck“. Ein höherer Schalldruck führt dazu, dass die Schallwellen das Trommelfell heftiger schwingen und den Steigbügel folglich heftiger klopfen lassen. So werden stärkere Nervenimpulse erzeugt als bei niedrigerem Schalldruck.

Stark vereinfacht lässt sich also sagen: Je höher der Schalldruck eines Tons oder Geräuschs, desto lauter ist er. Tatsächlich kommen jedoch noch einige Faktoren – nicht zuletzt persönliche Eigenheiten eines jeden Menschen – dazu, wenn wir bestimmen wollen, was wir nun als ‚laut‘ empfinden und was nicht.

Schalldruckpegel: Eine lange Skala wird überschaubar

Möchte man den Schalldruck von Alltagsgeräuschen als wiederkehrende Veränderung des normalen Luftdrucks messen, braucht man dafür eine sehr, sehr lange Skala. Physiker verwenden dafür die gleiche Einheit wie für den Luftdruck auch – das Pascal (Pa). Ein Schalldruck im Alltag kann dabei etwa zwischen den 60 Millionstel Pascal (0,00006 Pa !) eines Blätterrauschens direkt am Ohr und den 600 Pascal eines Düsenflugzeugs, das in 30 Metern Entfernung abhebt, betragen.

Das ist im Alltag natürlich sehr unpraktisch, wenn es darum geht, euch im Alltag ein Gefühl zu vermitteln, wie laut etwas ist. Deshalb gibt man statt des Schalldrucks in der Regel den Schalldruckpegel in Dezibel (dB), also Zehntel „Bel“ an. Die Zahlen auf der Dezibel-Skala geben uns -vereinfacht gesagt – einen Eindruck, wie viele Nullen vor oder hinter dem Komma die Werte des Schalldrucks haben (es handelt sich um eine logarithmische Skala – die Umrechnung des Schalldrucks in Dezibel ist aber nicht so simpel, das man den Zusammenhang gleich mit dem blossen Auge erkennt).

Das Blätterrauschen beispielsweise bringt darauf einen Schalldruckpegel von 10 dB mit sich, während das Düsenflugzeug ganze 150 dB erzeugt. Es heisst, dass die kurzfristige Einwirkung von Schalldruckpegeln ab 120 dB bereits Gehörschäden verursachen kann. Deshalb tragen Flughafenangestellte auf dem Rollfeld meist einen Gehörschutz in Kopfhöhrerform (hier in der Schweiz nach dem führenden Modell des Militärs „Pamir“ genannt). Die Schalen, die um die Ohren liegen, absorbieren die heftigen Bewegungen, die Schallwellen unter den Luftteilchen verursachen und schubsen die Luft zwischen Ohr und Schale nur ganz schwach (oder gar nicht) an.

Künstliche Ohren und Stimmen

…kennt ihr alle. Denn es handelt sich um Mikrofone und Lautsprecher. Ein Mikrofon enthält Bauteile bzw. Sensoren, die von Schallwellen ähnlich angeschubst werden wie die Bestandteile unseres Innenohrs. Statt durch Nervenbahnen werden so erzeugte elektrische Signale durch Kabel in ein Aufnahmegerät weitergeleitet, das den Job des Gehirns übernimmt und die Töne und Geräusche speichert.

In einem Lautsprecher bringen elektrische Signale eine Membran, also eine Art Folie, zum Schwingen, die dann wiederum die Luft anschubst und so Schallwellen erzeugt.


Welche Geräusche sind am Halloween-tauglichsten?

Nun ist eure Kreativität gefragt: Abgesehen von meinen Beispielen oben – Welche weiteren Möglichkeiten kennt oder findet ihr, um Luftteilchen anzuschubsen und möglichst gruselige Geräusche zu erzeugen? Und welches ist eurer Meinung nach das schaurig-schönste Geräusch für Halloween?

Mehr Schauriges zu Halloween findet ihr hier in Keinsteins Kiste:

Kürbis und kaltes Feuer – Deko-Tipps für Forscher

Blut – die spannendste Chemikalie der Welt

Selbstgemachter Spielschleim – Wie er wirklich gelingt

13 Experimente im Sommer

Die Sonne verwöhnt uns an langen, warmen Tagen. Ab und zu sorgen lauer Regen oder wilde Gewitter dafür, dass indes alles grünt und blüht. Der Sommer ist eine tolle Zeit für Experimente im Garten oder auf dem Balkon. In Keinsteins Kiste findet ihr viele spannende Anregungen, wie ihr die Natur um euch erforschen, die Sonnenenergie für Experimente nutzen oder einfach draussen Spass haben könnt. Was macht Blätter grün? Welche buchstäblich coolen Experimente eignen sich für heisse Tage? Oder wollt ihr lieber eine Rakete starten?

In dieser Sammlung von Sommer-Experimenten werdet ihr fündig!

Sicherheit – für euch und euren Garten

Wenn ihr draussen experimentiert, beachtet die gleichen Sicherheits-Grundregeln wie beim Experimentieren drinnen: Sucht euch einen spritz- und allenfalls feuerfesten Experimentierplatz, tragt passende Schutzkleidung (Malschürze wie beim Umgang mit Wasserfarben und bei aggressiven Stoffen Schutzbrille) und esst und trinkt nicht dort, wo ihr experimentiert!

Meine Checkliste zum sicheren Experimentieren findet ihr hier in Keinsteins Kiste zum Download.

Wenn ihr draussen experimentiert, habt ihr zudem einen unbestrittenen Vorteil: Für eine gute Belüftung ist immer gesorgt. Achtet aber darauf, dass eure Nachbarn nicht zu sehr unter stinkenden Experimenten leiden, falls ihr solche durchführt. Oder ladet sie einfach zum Mitforschen ein.

Ganz wichtig ist jedoch: Achtet darauf, dass keine flüssigen oder festen Bestandteile eurer Experimente an die Pflanzen oder in den Boden eures Gartens oder eurer Balkonkübel gelangen!

Das gilt besonders für Säuren und Basen wie Essig oder Natron und Seifen! Die können nämlich nicht nur unsere Haut, sondern auch Pflanzenteile beschädigen. Säuren und Basen können in grösseren Mengen zudem den pH-Wert im Boden so verändern, dass das Leben darin gehörig durcheinander gerät.

Seifen, genauer die Tenside darin, stören den Stoffaustausch zwischen Kleinstlebewesen und dem Wasser in ihrer Umgebung. So können sie für das Leben im Boden sehr gefährlich werden.

Sorgt deshalb für eine schützende Unterlage an eurem Experimentierplatz: Eine Maltischdecke, ein Tablett oder Backblech oder eine Plane auf dem Rasen können euch gute Dienste leisten.

Wenn ihr diese Sicherheitsvorkehrungen beachtet, steht dem Experimentierspass ohne Schaden an euch oder eurem Garten nichts mehr im Wege! Also los:

13 Experimente für draussen

Blätter transportieren Wasser – Ein Kontrollversuch macht es sichtbar

Experiment: Blätter transportieren Wasser - und warum ein Kontrollversuch wichtig ist

Mit diesem einfachen Experiment könnt ihr nicht nur sichtbar machen, dass Pflanzen trinken und schwitzen – und auf diese Weise Wasser aus dem Boden (oder einer Vase) in die Luft transportieren. Ihr könnt auch die Bedeutung eines Kontrollaufbaus (einer „Blindprobe“ oder auch einer Kontrollgruppe) für die Bewertung von Versuchsergebnissen aufzeigen. Oft zeigt sich das Ergebnis eines Versuch nämlich erst im Vergleich mit einem Aufbau ohne die entscheidende Zutat richtig deutlich. Das macht solche Kontrollversuche zu einem unverzichtbaren Werkzeug für die grossen Forscher! Da ihr im Sommer reichlich Zweige mit grünen Blättern finden könnt, können auch eure kleinen Forscher einen solchen Vergleich durchführen. Die Anleitung dazu findet ihr hier.

Das geheimnisvolle Leben der Pflanzen

Rund um Pflanzen gibt es ohnehin so viel zu entdecken. Wenn ihr ein Mikroskop habt – schon ein einfaches USB-Mikroskop genügt! – könnt ihr euch den spannenden Aufbau von Blättern ansehen. Unterwegs könnt ihr nach Sonnen- und Schattenblättern oder nach Standort-Spezialisten Ausschau halten. Und wusstet ihr, dass ihr eine Pflanze, die nach einem langen heissen Tag die Blätter hängen lässt, nicht gleich aufgeben müsst? Ihr könnt sie ganz einfach wiederbeleben! Eine ganze Sammlung von Tipps und Anleitungen rund um Pflanzen und ihre Blätter findet ihr hier.

Photosynthese erleben

Blogbild Photosynthese

Pflanzen leben von Luft und Licht…und von Wasser natürlich. Weitere Nährstoffe brauchen sie nur in vergleichweise winzigen Mengen. So kommt es, dass die wilden Gewächse, in die sich selbst unsere Topfpflanzen im Zimmer manchmal verwandeln, uns immer wieder zum Staunen bringen. Das Geheimnis dahinter: Pflanzen bauen aus CO2 und Wasser mit Hilfe von Lichtenergie Kohlenhydrate – die Bestandteile ihrer selbst – auf. Dabei entsteht praktischerweise Sauerstoff als Abfall. Den Vorgang, der dahinter steckt, nennen die Biochemiker Photosynthese. Und ihr könnt nicht nur die Entstehung von Sauerstoff, sondern auch die Bildung von Stärke in Pflanzenteilen einfach nachweisen. Wie das geht, erfahrt ihr hier. 

Raketenstart mit dem perfekt berechneten Treibstoff

Wer eine Rakete starten möchte, braucht möglichst viel Triebkraft bei möglichst wenig Gewicht. Essig und Natron geben einen prima Treibstoff ab, der für euch weitestgehend ungefährlich ist. Hier erfahrt ihr nicht nur, wie ihr aus Abfällen eure eigene Rakete baut, sondern auch wie ihr das perfekte Gemisch für euren Treibstoff ausrechnen könnt. Stöchiometrie nennen Chemiker diese Art zu rechnen. Wenn ihr eure Startrampe auf dem Rasen errichtet, empfehle ich euch eine Plane darunter zum Schutz des Grüns. Denn der Antrieb dieser Rakete beruht zwar darauf, dass Essig und Natron einander neutralisieren. Aber es hat wohl noch kein Raketen-Experiment gegeben, bei dem nicht einmal irgendetwas schief gelaufen wäre!

Spass mit Elefantenzahnpasta

Womit putzen Elefanten sich die Zähne? Mit einer grossen Menge schaumigem Zeug? Könnte man meinen…aber Scherz beiseite. Diesen Schaum solltet ihr besser nicht anfassen – aber Zuschauen allein macht grossen Spass! Auch für diesen Schaumvulkan ist ein Gasentstehung die Triebkraft. Hier sorgt Hefe, die mit Wasserstoffperoxid fertig zu werden versucht, für seine Entstehung. Und damit es richtig schäumt, gehört ein Schuss Seife dazu. Da weder die noch Wasserstoffperoxid gesund für den Garten sind, rate ich auch hier dringend zu einer Auffangwanne. Damit steht dem grossen Spass nichts mehr im Wege. Wie ihr die Elefantenzahnpasta anrichtet – vielleicht in einer grösseren Ausgabe als meiner? – erfahrt ihr hier.

Hefegärung mit Sonnenenergie

Experiment: Gärung - die Superkraft von Hefe

Hefe kann nicht nur blitzschnell Wasserstoffperoxid loswerden, sondern auch, was euren Kuchen zum Aufgehen bringt: Sich ernähren. Die Art und Weise, wie Hefezellen ihre Nahrung „verdauen“, nennt man Gärung. Und dabei entsteht eine richtig grosse Menge CO2. Die kann nicht nur dafür sorgen, dass euer Teig schön fluffig wird, sondern auch einen Luftballon aufblasen. So könnt ihr mit einem solchen die Gärung ganz einfach sichtbar machen! Und da Hefe es gerne lauschig warm hat, liefert die Sommersonne euch die passende Energie dazu. Wie ihr den Versuch macht, erfahrt ihr hier.

Blattfarbstoffe trennen

Wusstet ihr, dass Blätter im Herbst nicht gelb und rot werden, sondern einfach nur nicht länger grün bleiben? Richtig: In einem grünen Blatt sind stets alle seine möglichen Farben enthalten: Grün, Gelb, Rot. Das Grün ist im Sommer bloss derart in der Übermacht, dass es alle anderen Farben überstrahlt. Im Herbst lagern die Pflanzen es jedoch ein, und übrig bleiben Gelb und Rot, bevor ihre Blätter welken und abfallen. Ihr wollt einen Beweis? Mit diesem spannenden Experiment könnt ihr die Farbstoffe aus grünen Blättern trennen und einzeln begutachten! Da ihr dazu Lösungsmittel braucht, ist die gute Belüftung draussen euch dabei ein grosser Vorteil.

Die mysteriöse Pharaoschlange

Dieser faszinierende Partyspass erfordert ein wenig Vorbereitung seitens grosser Forscher – und eine Geheimzutat, die ihr in der Apotheke oder Drogerie kaufen müsst. Welche das ist, verrate ich hier mitsamt der Anleitung und zwei weiteren verblüffenden Experimenten. Das folgende Spektakel lohnt jedoch den Aufwand: Ihr könnt Zucker zum Brennen bringen und beobachten, wie ein mächtiger Aschewurm sich wie von Zauberhand aus dem Sand erhebt und windet! Und wenn ihr das Ganze draussen macht, braucht ihr euch um den Rauchabzug keine grossen Gedanken zu machen. Ein Spass für jede Gartenparty!

Für heisse Tage im Sommer: Herzen schmelzen…

Ein Herz aus Eis

…oder was immer ihr sonst schmelzen lassen wollt. An heissen Tagen sorgt dieses coole Experiment für viel Spass und allfällige Abkühlung. Beobachtet, in welcher Weise Eis schmilzt, beschleunigt den Vorgang mit Salz und erschafft mit bunten Farben surreale Eiswelten. Ganz junge Forscher haben hier ebenso viel Freude wie grössere Kameraleute, die gern farbenfrohe Bilder aufnehmen. Achtet aber darauf, ein Auffangblech oder eine Folie zu verwenden, damit die Farben bleiben, wo sie hingehören und nicht in den Garten laufen! Anleitung und Hintergründe zum Experiment findet ihr hier.

Brausende Herzen schmelzen…mit Essig-Eis

Experiment am Valentinstag: Essigeisherzen in Soda

Für diese Variante des Farbenspiels beim Schmelzen macht ihr Eiswürfel nicht aus Wasser, sondern aus Haushaltsessig! In einer Natron- oder Sodalösung zeigen die beim Schmelzen ihren wahrhaft aufbrausenden Charakter. Mit etwas Tinte oder Lebensmittelfarbe wird das Ganze zudem zu einem weiteren Farbspektakel. Aber bitte nicht trinken – auch wenn sie sich neutralisieren sollten, können Essig und Natron auf Schleimhäute ätzend wirken! Auffangblech oder Plane schützen zudem euren Garten, wenn es hoch her geht. Die Anleitung zum Experiment findet ihr hier.

Eis wächst!

gefrorenes Wasser : Das Glas wird voller

Zur Weiterverwendung zwecks Abkühlung an heissen Tagen ist das Eis aus diesem Experiment geeignet. Wusstet ihr, dass Wasser beim Gefrieren wächst? Das ist eine ganz besondere Eigenschaft dieses allgegenwärtigen Stoffes. Forscher nennen sie auch die „Dichteanomalie“ des Wassers: Sie wissen, dass Wasser bei etwa +4°C am „kleinsten“ ist und, wenn es kälter wird, wieder wächst! Auch dann, wenn es beim Kälterwerden gefriert. Deshalb solltet ihr niemals geschlossene Glasflaschen mit Inhalt ins Gefrierfach legen. Denn wenn der Inhalt zu stark wächst, platzen sie! Wie ihr das Wachstum von Eis ganz ohne Gefahr sichtbar machen könnt, erfahrt ihr dagegen hier.

Kinetischer Sand für drinnen und draussen

Experiment DIY Kinetischer Sand - und wie er funktioniert

Ihr habt Sehnsucht nach dem Strand? Der Sandkasten ist öde geworden? Ihr habt gar keinen Platz dafür? Oder der Sommer ist verregnet? Dann habe ich eine gute Nachricht für euch. Mit diesem Rezept könnt ihr kinetischen Sand ganz einfach selber machen! Mit diesem praktischen Sand können kleine Forscher nach Herzenslust bauen und spielen, ohne dass der berüchtigte Strandferien-Effekt eintritt: Sand überall! Denn diese Sandkörner bleiben beieinander, anstatt sich im Wohnraum zu verteilen. So steht dem Spielspass auf der Terrasse oder sogar drinnen nichts mehr im Wege.

Natur-Bingo für den Sommer-Spaziergang am See

Tier-Bingo am See

Wir haben in diesem besonderen Jahr auf Fernreisen verzichtet und verbringen die Ferien zu Hause. Da gibt es auch so viel zu entdecken! Wenn ihr an einem See oder Teich wohnt oder Urlaub macht, könnt ihr euren Spaziergang durch die Natur dort mit einem spannenden Forscher-Bingo verbinden. Die Anleitung samt Bingokarte zum Ausdrucken findet ihr hier. Wer entdeckt zuerst alle gesuchten Tiere?

Und noch mehr Experimente im Sommer

Viele weitere Versuche in Keinsteins Kiste könnt ihr nicht nur drinnen, sondern ebenso gut auf der Terrasse oder dem Balkon machen. Stöbert und probiert also ruhig nach Herzenslust weiter. Ich wünsche euch viel Spass beim Experimentieren in diesem Forschersommer!

Eure Kathi Keinstein

Und was ist euer Lieblings-Sommer-Experiment? Wenn ihr einen Blog habt oder gerne einmal einen Gastbeitrag schreiben würdet, nehmt damit doch gleich an meiner Jubiläums-Blogparade teil!

Grosse Jubiläums-Blogparade: Mein Lieblings-Experiment

Ganze 5 Jahre ist es nun her, dass Keinsteins Kiste das Licht der Welt erblickt hat. Fünf Jahre! Das ist ein halbes Jahrzehnt! Dieses „kleine“ Jubiläum möchte ich mit euch allen feiern – und mit euren Experimenten in einer Blogparade.

Da dieses Jubiläums-Jahr auch hinsichtlich des Weltgeschehens ein ganz besonderes ist (C. sei’s gedankt…), ist „Mein Lieblings-Experiment“ dieses Jahr das perfekte Motto. Denn nachdem mir genau diese Blogparade letztes Jahr aufgrund bombiger Auftragslage im Job und eigenen Ferienplänen völlig versandet ist, ist die Lage dieses Jahr eine völlig andere:

In kaum einem Jahr hatten wir so viel Gelegenheit – und werden sie noch haben – zu Hause zu experimentieren, zu lernen und zu entdecken. Monate des Heimlernens liegen hinter uns, Sommerferien mit eingeschränkten Reisemöglichkeiten vor uns. Das ist die Gelegenheit, euer Lieblings-Experiment zu finden – oder uns zu zeigen, was ihr schon gefunden habt!

Letztes Jahr hat es trotz allem einen Beitrag zur Parade von Anne Nühm alias „breakpoint“ gegeben. Der soll nun hier seine Würdigung als erster Beitrag zur Neuauflage finden.

Und da auch mein Sommer vor allem zu Hause stattfinden wird, lasse ich diese Auflage der Blogparade auch ganz bestimmt nicht mehr versanden. Versprochen.

Fünf Jahre Keinsteins Kiste

Bis in die erste Hälfte 2015 waren “Blogger” in meinen Augen Werbegesichter für Mode, Kosmetik und allerlei Lifestyle-Produkte – kurzum das, was man heute vielleicht eher mit dem Begriff “Influencer” in Verbindung bringt. Und damit so ganz und gar nicht meine Welt.

Erst als ein Neuzugang in einer völlig themenfremden Facebook-Gruppe am Rande ihren Mama-Blog erwähnte, öffnete sich mir die Tür zur ganzen Welt der Blogger – und mir war sofort klar: Davon möchte ich auch ein Teil sein! So habe ich binnen weniger Wochen diesen Blog ins Leben gerufen.

Seitdem hat sich so vieles getan und verändert. Von Anfang an war Keinsteins Kiste als Sammlung naturwissenschaftlicher Inhalte gedacht – zunächst reichlich unspezifisch in Form von “Geschichten aus Natur und Alltag”. Naturwissenschaft besteht nun in grossen Teilen aus Beobachtung…und dazu sind aufmerksame Sinne unabdingbar. So kam ich zu der Umwidmung des Blogs zu “Natur und Wissenschaft für alle Sinne”.

Doch auf Dauer erschien mir auch dies zu ungenau. Zumal ich mit meinem in der deutschsprachigen Blogsphäre nach wie vor exotischen Genre lange nach meinem Platz in deren unendlichen Weiten gesucht habe. Schlussendlich führte diese Suche an den Anfang des Blogs zurück. Mit einem Mama-Blog fing die Geschichte der Kiste an, und mit Familienblogs und ihren Autoren kann ich mich nun wahrhaftig identifizieren. Und das, obwohl ich selbst gar keine Kinder habe.

Wozu Keinsteins Kiste? Um Chemie und anderen Naturwissenschaften ein positives Gesicht zu geben!

Nichts desto trotz arbeite ich mit Kindern, und habe dabei schnell festgestellt, dass es nichts wunderbareres gibt als die kindliche Neugier. Physik (und Chemie und…) ist schliesslich, wo man spielt.

Und diese Neugier ist ein grossartiger Ansatzpunkt, um mein grosses Ziel zu verfolgen: Der Naturwissenschaft im Allgemeinen und der Chemie in Besonderen in euren Köpfen ein besseres Ansehen zu verschaffen!

Die Welt ist nämlich voll von “Fake-News”, Fehlinformationen und teils gefährlichen Irrlehren, die viel zu oft auf fruchtbaren Boden stossen. Und solch “fruchtbarer Boden” entsteht, wenn junge Menschen die Fächer, in welchen sie lernen können, wie die Welt funktioniert und wie sie selbst diese Funktionsweisen ergründen können, als “zu schwierig”, “abstrakt”, “realitätsfern” oder gar “unwichtig” erleben. Dann nämlich verlassen sie ihre Schulen oft ohne ein grundlegendes Verständnis für die Natur der Dinge – und sind entsprechend anfällig für jeglichen Unsinn, der darüber verbreitet wird.

Je früher jedoch Neugier und Freude an der Erforschung der Welt geweckt werden, desto grösser sehe ich auch die Chance, dass die Aufmerksamkeit für und die Freude an naturwissenschaftlichen Zusammenhängen erhalten bleibt und Chemie und Co in den Augen einstmaliger Jungforscher ihr gutartiges Gesicht behalten.

Chemie ist nämlich überall und alles ist Chemie. So tut ihr gut daran im Gedächtnis zu behalten, dass sie eben nur manchmal gefährlich, aber immer spannend ist!

Experimente wecken Spass und Neugier – nicht nur bei kleinen Forschern

Die eindrücklichste und zugleich spassigste Art und Weise, Naturwissenschaften zu lernen, ist, selbst zu experimentieren und zu forschen. So habe ich – besonders in den letzten drei Jahren – mehr und mehr Experimente in Keinsteins Kiste einfliessen lassen, die ihr zu Hause oder in jedem beliebigen Klassenzimmer selbst machen könnt.

Und damit auch naturwissenschaftlich nicht “vorbelastete” Eltern und Lehrer ihren Kindern die unvermeidlichen Fragen junger Forscher beantworten können (allen voran “Wie funktioniert das bloss?”), liefere ich zu jeder Anleitung auch eine ausführliche Erklärung dessen, was hinter den spannenden Beobachtungen steckt.

So können Klein und Gross beim Experimentieren etwas lernen. Aber damit nicht genug: Ihr Grossen könnt euer naturwissenschaftliches Wissen auch direkt in eurem Alltag gebrauchen! Wie? Das könnt ihr in den gesammelten Haushalts– und Gesundheitstipps in der Keinsteins Kiste lernen.

So ist der Blog nun schon seit zwei Jahren offiziell gefüllt mit “Natur und Wissenschaft für die ganze Familie”.

Grosse Sommer-Blogparade zum Geburtstag

Doch nun könnt ihr in der Blogparade selbst mitfeiern und -forschen!

Thema der Blogparade: Mein Lieblings-Experiment!

Experimente mit Aha-Effekt

Denn die Freude an Naturwissenschaft beginnt oft mit einem besonders eindrücklichen Experiment, das einen regelrechten Aha-Effekt auslöst.

So war es zumindest bei mir: In der siebten Klasse bin ich erstmals der Schmelzwärme begegnet – einem Konzept, das mir bis dahin völlig unbekannt war. Und mit dieser einschneidenden Veränderung meines Weltbildes hatte ich mein Herz unrettbar an die Chemie verloren (und das, obwohl sich die Physiker mit den Chemiker um die Einordnung dieses Konzeptes streiten könnten!).

Die ganze Geschichte von diesem Aha-Erlebnis erfahrt ihr hier, und natürlich gibt es auch eine Anleitung für das Experiment zum Nachmachen!

Vielleicht kehrt eure Leidenschaft auch immer wieder zu dem einen Experiment zurück?

Experimente, die euch nicht loslassen

Ich habe zum Beispiel bei jeder sich bietenden Gelegenheit Eisensulfid aus den Elementen Eisen und Schwefel hergestellt (das Teufelchen in mir spielt immer wieder gern mit Schwefel herum…). Da das eine ziemlich stinkige Angelegenheit ist, müssen dafür besondere Anforderungen an die Umgebung erfüllt sein, weshalb es das Experiment (noch) nicht in Keinsteins Kiste gibt.

Experimente, bei welchen ihr (bislang?) nur zugeschaut habt

Oder habt ihr euch bislang noch nicht selbst getraut, zu experimentieren, aber andere dabei beobachtet? Sei es der Lehrer in der Schule, der Dozent in der Uni, oder ein Show-Experimentator auf der Bühne? Welches Schau-Experiment hat euch besonders beeindruckt – vielleicht gar so sehr, dass ihr es gerne einmal selbst versuchen würdet – oder eben gerade nicht?

Im Rahmen der Lehrerausbildung hat uns unser Dozent ein wahrhaft beeindruckendes Demonstrations-Experiment gezeigt: Die Thermit-Reaktion!

Thermit-Versuch für die Schule: Die Reaktion findet im Blumentopf statt, glühendes flüssiges Eisen tropft unten heraus!

Hier bei wird Eisen(III)oxid mit Aluminium-Pulver zur Reaktion gebracht, wobei Temperaturen bis gut 2000°C entstehen! Mit grossem Getöse und Leuchtspektakel entsteht dabei flüssiges(!) metallisches Eisen. Deshalb nutzen Eisenbahner diese Reaktion, um frisch verlegte Schienen zusammen zu “schweissen”. Der sehr grossen Brandgefahr wegen sollte ein solches Experiment immer ausserhalb des Schulhauses (z.B. auf dem asphaltierten Schulhof) gemacht werden.

Später habe ich dann für einige Zeit an der Berufsschule in Arth-Goldau unterrichtet und dort in der Chemikaliensammlung eine fertige Thermit-Mischung gefunden. Natürlich habe ich die ausprobieren müssen – aber leider habe ich es nicht fertig gebracht, das Ganze zu zünden (das ist nämlich – zum Glück – ohne einen speziellen Thermit-Zünder kaum zu bewerkstelligen). Die Enttäuschung bei mir und den extra auf den Hof geführten Schülern war entsprechend gross.

Aber wenn ich noch einmal die Gelegenheit bekäme, Thermit zu zünden, wäre ich sofort dabei.

Experimente in der Forschung

Oder seid ihr sogar selber Forscher (gewesen)?

In der Forschung müssen Wissenschaftler ihre Experimente immer wieder und wieder durchführen und immer das Gleiche beobachten, bevor sie ein belastbares (weil wiederholt beobachtbares) Ergebnis veröffentlichen können. Auch ich kann ein Lied davon singen.

Besonders aufregend wird das Ganze dann, wenn ein Experiment tatsächlich immer das gleiche Ergebnis liefert – und wenn andere Forscher, die den Versuch nachmachen, dieses Ergebnis ebenfalls beobachten. Dann hat man nämlich etwas gefunden, was den allgemeinen Wissenstand wirklich erweitern könnte!

Habt ihr als Forscher selbst einmal so ein eindrückliches Experiment gemacht?

Was ihr zur Blogparade wissen müsst:

Experimentiert ihr gerne – zu Hause, in der Schule oder sogar an eurem eigenen Forscher-Arbeitsplatz? Schaut ihr euch spannende Experimente lieber an? Oder würdet ihr gerne auch selbst experimentieren?

Mit dieser Blogparade möchte ich euch alle – ganz gleich welchen Bezug ihr zum Experimentieren habt – zum Mitmachen einladen:

Beschreibt in einem Blogartikel euer Lieblings-Experiment!

Erzählt, schreibt, fotografiert, filmt oder wie auch immer ihr euch ausdrückt von eurem Erlebnis beim Experimentieren oder Zusehen: Was beeindruckt euch besonders, und warum ist dies euer Lieblings-Experiment?

Und wenn ihr selbst experimentiert, habt ihr vielleicht auch eine Anleitung dazu? Und wenn ihr ganz versiert seid und die Beobachtung sogar erklären könnt, wäre das natürlich Spitzenklasse – aber nicht notwendig.

Bei Bedarf helfe ich beim Erklären auch gerne aus.

Veröffentlicht den Artikel bis zum 13. September 2020 auf eurem Blog bzw. Kanal, verlinkt darin auf diesen Artikel und postet den Link dazu hier in die Kommentare. So kann ich sie über meine Kanäle teilen und zum Abschluss in einer Zusammenfassung würdigen.

Ihr möchtet gerne ein Experiment vorstellen und habt keinen eigenen Blog? Dann könnt ihr euren Beitrag gerne als Gastbeitrag in Keinsteins Kiste einreichen!

Ganz besonders würde ich mich freuen, wenn ihr anderen von dieser Blogparade “erzählt”, sodass möglichst viele die Chance haben, mit zu forschen!

Nun wünsche ich euch viel Spass beim Forschen, Experimentieren und Verbloggen,

Eure Kathi Keinstein

Experiment mit Wasser : Die Münzwippe

Endlich hat es gewittert und ein wenig abgekühlt! Dazu war heute vormittag noch Regen angesagt. Zeit für ein kleines Experiment für zwischendurch, das ihr sowohl draussen als auch drinnen machen könnt. Dabei geht es um die Superkräfte von Wasser ….oder doch nicht?

Unglaubliche Kräfte schlummern nämlich nicht nur in Wasser, sondern auch in der Luft! – Und diese Kräfte könnt ihr mit ganz einfachen Mitteln selbst erforschen:

Ihr braucht dazu

  • ein Trinkglas
  • einen glatten Pappstreifen, aus einem Tetrapack zugeschnitten
  • kleine Münzen (z.B. Fünfräppler, aber Eurocents tun es genauso)
  • Wasser
Für das Experiment braucht ihr: Trinkglas, Wasser, Pappstreifen aus Tetrapak, kleine Münzen

Die Idee habe ich von „Schule und Familie„. Wie dort beschrieben mit einem einfachen Pappstreifen funktioniert das Experiment aber nicht so recht: Die Pappe saugt sich im Nu mit Wasser voll, wird weich und krumm, sodass die Münzen vorzeitig abrutschen. Die „Innen-„seite eines Tetrapacks ist jedoch wasserdicht beschichtet (das Getränk soll ja im Karton bleiben). Da wird nichts krumm und die Münzwippe funktioniert wunderbar.

So geht’s

  • Füllt das Glas randvoll – und ein Bisschen darüber hinaus – mit Wasser. Das Wasser soll sich leicht über den Glasrand aufwölben. Eine saubere Tropfpipette (zum Beispiel der Deckel einer Nasentropfen-Flasche, gibt es auch einzeln für kleines Geld in der Drogerie!) kann dabei helfen, die letzten Tropfen vorsichtig einzufüllen.
  • Legt den Tetra-Pappstreifen mit der „Innenseite“ nach unten und mit einem Ende so auf das Glas, dass er die Öffnung ganz verschliesst. Vielleicht merkt ihr schon, wie er sich festsaugt.
Alles bereit: Ein Ende der Pappe liegt mit der Beschichtung nach unten auf dem Glas.
Alles bereit: So liegt die Pappe richtig auf dem Glas!
  • Stapelt nun vorsichtig eine Münze nach der anderen auf das überhängende Ende. Der Streifen wird trotz Übergewicht eine ganze Weile auf dem Glas liegen bleiben! Ich habe fünf Fünfräppler geschafft, bevor der Streifen sich beim sechsten schliesslich doch gelöst hat. Wer schafft mehr?
Die Münzwippe in Aktion: Das Gewicht von fünf Fünfräpplern kann den Pappstreifen nicht vom Glas lösen!
Fünf „Füüferli“ und es hält immernoch…

Was passiert da?

Superkraft von Wasser : Adhäsion

Das zunehmende Gewicht der Münzen auf dem überhängenden Ende lässt den Pappstreifen wie auf dem Glas festgeklebt erscheinen. Wie festgeklebt? Dabei handelt es sich bei Weitem nicht nur um einen Vergleich!

Wassermoleküle werden tatsächlich von vielen anderen Stoffen angezogen und ziehen selbst wiederum diese Stoffe an. Diese Erscheinung nennen die Physiker „Adhäsion“ – und die anziehenden Kräfte „Adhäsionskräfte“. Es gibt verschiedene Theorien, wie diese Adhäsionskräfte zustande kommen. Aber die meisten davon haben gemeinsam, dass die Teilchen von Stoffen sich genau dann besonders anziehend finden, wenn bestimmte ihrer Eigenschaften sich ähneln.

Eine dieser Eigenschaften ist die Ausstattung von Teilchen mit elektrischer Ladung. Wenn ihr schon einmal den Zaubertrick mit dem krummen Wasserstrahl ausprobiert habt, wisst ihr, dass Wassermoleküle relativ starke Ladungen tragen (für die etwas fortgeschritteneren Forscher unter euch: Physiker nennen Wasser deshalb „polar“). So ziehen sie nicht nur einander stark an, sondern werden auch von anderen Stoffen mit elektrischen Ladungen angezogen.

Gemäss dieser „Polarisationstheorie“ wäre also davon auszugehen, dass auch die Innenfläche des Getränkekartons elektrische Ladungen trägt bzw. polare Bestandteile hat, die Wassermoleküle anziehen und so zum Haftenbleiben bringen.

Aber eigentlich ist es doch gar nicht wünschenswert, dass das Getränk im Tetrapack kleben bleibt! Deshalb werden die Tetrapack-Entwickler doch sicher vermieden haben, ein all zu adhäsionsfreudiges Material für ihre Beschichtung zu verwenden. Und trotzdem klappt das Experiment…

Superkraft von Luft : Luftdruck

Eine zweite Erklärung für den „klebenden“ Pappstreifen ist, dass die Pappe weniger am Wasser klebt, als dass sie durch die Luft darauf gedrückt wird. Die Erdatmosphäre, die aus unzähligen frei umherwuselnden Teilchen besteht, drückt nämlich von allen Seiten auf jedes Hindernis, das ihr in die Quere kommt.

Die wuselnden Teilchen trommeln laufend auf jede von Luft umgebene Oberfläche ein – und wir nehmen dieses Dauer-Trommelfeuer mit unseren groben Sinnen als Druck wahr. Der Luftdruck am Erdboden beträgt etwa 1 bar (oder 1000 Millibar), was eine beträchtliche Menge ist. Schliesslich drückt ja eine gut 30 Kilometer hohe Luftsäule auf die wuselnden Teilchen in eurer Nähe und drängt sie so eng zusammen, dass sie entsprechend dicht und heftig auf alle Oberflächen trommeln.

So auch auf den Pappstreifen, der auf dem Glas liegt. Dieser Luftdruck ist so stark, dass er – allenfalls gemeinsam mit einer ziehenden Adhäsionskraft – die Münzen auf dem freien Streifenende aufwiegt: Der Luftdruck (und die Adhäsion) drücken das Glasende des Pappstreifens zunächst stärker nach unten als das Gewicht der Münzen das freie Ende. Erst wenn das Gewicht der Münzen zu gross wird, wippt das freie Ende des Streifens nach unten, während das Glas-Ende nach oben schnellt.

Da diese „Wippe“ nicht am Angelpunkt auf dem Glasrand befestigt ist, fällt der Aufbau damit sofort zusammen.

Münzwippe überlastet: Der Pappstreifen ist vom Glasrand gekippt.
…aber die sechste Münze war zu viel: Der Streifen wippt in Richtung der Münzen und stürzt vom Glasrand.

Bonus-Versuch für draussen

Ihr wollt sehen, wie stark der Luftdruck sein kann? Dann füllt wie oben beschrieben das Glas bis zum Rand mit Wasser und legt den Pappstreifen darauf, sodass die Öffnung vollständig bedeckt ist. Haltet den Streifen fest und dreht das Glas mit der Öffnung nach unten. Dann lasst den Pappstreifen los (das Glas natürlich nicht!). Wenn alles gutgeht, sorgt der Luftdruck allein dafür, dass die Pappe auf der Öffnung und das Wasser im Glas bleibt!

Weil dieses Experiment aber nicht immer auf Anhieb funktioniert empfehle ich euch dringend, das draussen oder im Badezimmer zu probieren! Da richtet eine mögliche Überschwemmung nämlich keinen grossen Schaden an.

Entsorgung

Die ist bei diesem Versuch denkbar einfach:

Da ich mit Trinkwasser aus der Leitung und ausschliesslich mit Hilfsmitteln aus der Küche experimentiert habe, trinke ich das Wasser gerade aus, während ich blogge 😉 . Auch sonst könnt ihr das Wasser noch für alles benutzen, wozu man Wasser braucht. Den Tetra-Pappstreifen könnt ihr aufheben, sodass ihr die Experimente jederzeit wieder vorführen und eure Lieblingsmenschen verblüffen könnt.

Nun wünsche ich euch viel Spass beim Experimentieren! Und…kennt ihr vielleicht Gelegenheiten aus eurem Alltag, bei welchen ihr (wirkliche) Adhäsionskräfte beobachten könnt?

Hast du das Experiment nachgemacht: 

[poll id=“8″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Free Printable: So experimentiert ihr auch mit gefährlichen Chemikalien sicher!

Chemikalien können gefährlich sein. Das weiss jeder, und viele Stoffe werden dahingehend sogar überschätzt. Eigentlich sollte es heissen: Chemikalien können gefährlich sein – wenn man nicht richtig mit ihnen umgeht.

Die Experimente in Keinsteins Kiste könnt ihr mit Zutaten durchführen, die ihr im Haushalt findet oder im Bau- oder Supermarkt kaufen könnt. Nur manchmal ist eine Spezialzutat nötig, die ihr in der Regel in einer Apotheke oder Drogerie bestellen könnt. Krebserzeugende oder anderweitig „besonders besorgniserregende Stoffe“ gibt es in den Versuchen in Keinsteins Kiste nicht.

Doch auch von Haushaltschemikalien und -zutaten können Gefahren für Umwelt und Gesundheit ausgehen. Deshalb gebe ich euch ein paar einfache Regeln zum Umgang damit auf den Weg. Wenn ihr euch daran haltet, sind die Experimente in Keinsteins Kiste praktisch ungefährlich!

Checkliste zum Sicheren Umgang mit Chemikalien

Druckt euch diese Liste am besten aus und habt sie griffbereit, wenn ihr euch ans Experimentieren macht. Hier geht es zum Download! So könnt ihr jederzeit nachschauen, was zu tun ist, wenn ihr unsicher seid. Denn Sicherheit geht immer vor!

1. Bevor ihr Chemikalien verwendet, lest euch die Warnhinweise auf der Verpackung durch!

Möglicherweise gefährliche Stoffe, die verkauft oder in Betrieben bzw. öffentlichen Einrichtungen verwendet werden, müssen dem „global harmonisierten System“ (GHS) folgend deutlich gekennzeichnet werden. Folgende Symbole auf Chemikalienflaschen und -Verpackungen weisen euch auf die wichtigsten Gefahren hin:

GHS-Symbol Achtung gefährlich!

Vorsicht gefährlich: Geht achtsam mit diesem Stoff um. Neben dem Symbol wird schriftlich erläutert, wovor genau ihr euch in Acht nehmen müsst. Findet man zum Beispiel auf Stoffen, die Haut und Schleimhäute reizen oder Allergien auslösen können.

leicht_entzündlich

Leicht entzündlich: Dieser Stoff brennt sehr leicht und schnell. Haltet ihn unbedingt von offenem Feuer und Funken fern! Brennsprit (Spiritus) und andere organische Lösungsmittel tragen dieses Zeichen.

brandfoerdernd

Brandfördernd: Haltet auch diesen Stoff von offenem Feuer fern. Die meisten Stoffe mit diesem Symbol können Sauerstoff freisetzen oder sind auf andere Weise reaktionsfreudig, sodass sie einen Brand unkontrolliert anheizen können!

Ätzend: Schlimmer als reizend. Dieser Stoff kann Haut und Schleimhäute ernsthaft verletzen und empfindliche Materialien beschädigen. Findet man auf Säuren, Basen und starken Oxidationsmitteln.

umweltgefaehrdend

Umweltgefährdend: Dieser Stoff ist giftig für Wasserlebewesen wie Fische, Wirbellose und Kleinstorganismen. Gebt davon der Umwelt zuliebe nichts in den Abluss oder den Hausmüll, sondern bringt Reste zu einer Schadstoff-Sammelstelle!

Gas_unter_Druck

Gas unter Druck: In diesem Behälter befindet sich ein Gas, das sich stark ausdehnen kann. Lasst ihn nicht in der Sonne stehen oder auf andere Weise heiss werden, damit er keinen Grund zum Platzen hat! Auf Nachfüllkartuschen für Kohlensäure-Spender zu finden!

Gesundheitsgefährdend: Krebserzeugend, Erbgutschädigend oder auf andere Weise gefährlich für bestimmte Organe – möglicherweise auch langfristig. Nehmt diesen Stoff niemals ein und vermeidet, ihn einzuatmen. Verwendet ihn nur, wenn unbedingt nötig und haltet den Behälter fest geschlossen! Diese Kennzeichnung findet ihr auf Fleckbenzin und hochkonzentrierten ätherischen Ölen.

Die folgenden Symbole werden euch im Alltag und in Keinsteins Kiste selten bis gar nicht begegnen:

Giftig: Das Symbol kennt jeder. Schon kleine Mengen dieses Stoffs können eine gefährliche Wirkung entfalten. Daher niemals einnehmen oder einatmen und mit grosser Vorsicht behandeln! Rattengift trägt dieses Symbol.

explosiv

Explosiv: Dieser Stoff kann explosionsartig reagieren, zum Beispiel bei Kontakt mit Feuer, Funken, nach einem Schlag, Reibung, Hitzeeinwirkung oder falscher Lagerung, und beträchtlichen Schaden anrichten. Solche Stoffe gehören ausschliesslich in die Hände von Experten. Sprengstoffe tragen dieses Symbol.

Neben den Gefahrensymbolen findet ihr auf der Verpackung genauere Einzelheiten über die Gefahren und Anweisungen, wie ihr mit dem jeweiligen Stoff umgehen und euch bei einem Unfall damit verhalten solltet. Lest diese Hinweise gut durch und befolgt sie!

2. Findet für eure Experimente einen geeigneten, sicheren Arbeitsplatz!

An einem guten Experimentierplatz ist die Umgebung – mindestens aber die Unterlage – feuerfest, leicht zu reinigen und möglichst beständig gegenüber Säuren, Basen (Laugen), Lösungs- und Oxidationsmitteln. Und dort wird nicht mit Lebens- oder Körperpflegemitteln umgegangen.

Die Küche ist also kein geeigneter Ort zum Experimentieren! (Es sei denn, ihr verwendet ausschliesslich Lebensmittel.)

Ausserdem sollte sich euer Experimentierplatz leicht lüften lassen. Bei schönem Wetter kann er deshalb durchaus draussen sein.

Eine alte Küchenarbeitsplatte gibt eine ideale Unterlage zum Experimentieren ab – ein glatter, versiegelter bzw. lackierter Holztisch oder nicht poröser Stein bzw. Fliesen oder Edelstahl tun es aber ebenso. Marmor und Kalkstein sowie Aluminium sind allerdings ungeeignet – sie werden von Säuren angegriffen!

Wenn euch das makellose Aussehen des Möbels eurer Wahl wichtig ist, testet aus, ob die Oberfläche Lösungsmitteln oder aggressiven Stoffen, die ihr verwendet, standhält. Oder benutzt einfach einen alten Tisch, dem Flecken und Macken nicht mehr schaden.

3. Bewahrt gefährliche Chemikalien für Kinder unzugänglich auf!

Jeder Putzmittelschrank und jede Hausapotheke sollten dieser Anforderung entsprechen: Abschliessbar oder so hoch gelegen, dass unbedarfte kleine Forscher nicht allein herankommen und sich mit gefährlichen Stoffen verletzen oder vergiften können!

4. Tragt beim Experimentieren passende, sichere Kleidung!

Die perfekte Forscher-Bekleidung bedeckt den Körper möglichst weitgehend, ist schwer entflammbar und möglichst widerstandsfähig gegenüber ätzenden Stoffen. Laborkittel bestehen deshalb meist aus Baumwolle, die diese Eigenschaften erfüllt. Wer sich keinen Laborkittel leisten möchte, ist mit einem langärmeligen Baumwollhemd ebenso gut bedient.

Baumwoll-Herrenoberhemden geben übrigens tolle Labor- und Malkittel für Kinder ab: Einfach die Ärmel auf die richtige Länge umschlagen oder kürzen und umnähen und mit der Knopfleiste nach hinten über die Kleidung streifen!

Tragt zudem beim Umgang mit ätzenden Stoffen möglichst lange Hosen und geschlossene Schuhe, sowie Putz- oder Einmalhandschuhe und eine Schutzbrille (als Brillenträgerin begnüge ich mich beim Umgang mit „milden“ Haushalts-Säuren wie Essig mit meiner „normalen“ Brille – eine Schutzbrille mit Seitenflügeln ist letztendlich aber sicherer.

5. Beim Experimentieren wird nicht gegessen oder getrunken!

Wer Chemikalien an den Händen hat, läuft Gefahr, beim Essen oder Trinken etwas davon mit aufzunehmen. Haltet Essen und Getränke daher räumlich vom Experimentierplatz getrennt. Wenn ihr zwischendurch etwas essen oder trinken möchtet, zieht allfällige Handschuhe aus und wascht euch vorher (und nachher) die Hände. Das gleiche gilt für den Gang aufs stille Örtchen!

Bewahrt ausserdem niemals Chemikalien in Lebensmittelverpackungen auf! Wenn ihr PET-Flaschen, Honiggläser oder ähnliches beim Experimentieren wiederverwenden möchtet, entfernt zuvor alle Lebensmitteletiketten und beschriftet die Gefässe deutlich mit dem neuen Inhalt!

6. Kein offenes Feuer beim Experimentieren!

Beim Experimentieren wird also nicht geraucht! Haltet ausserdem Kerzen und andere Feuerquellen von eurem Experimentierplatz fern – ganz besonders, wenn ihr mit brennbaren Lösungsmitteln arbeitet! Wenn ihr bei einem Experiment etwas anzünden müsst, legt die Zündquelle – Streichhölzer, Feuerzeug oder ähnliches – gleich danach in sicherer Entfernung auf die Seite. Lasst Feuer ausserdem niemals unbeaufsichtigt.

7. Haltet Chemikalienbehälter immer sicher verschlossen!

Öffnet Chemikalienbehälter immer erst, wenn ihr etwas daraus entnehmen wollt, und macht sie danach sofort wieder zu! So wird nichts verschüttet, wenn ihr versehentlich mal etwas umstosst.

Wenn ihr Chemikalienbehälter durch die Wohnung tragen oder über längere Strecken transportieren müsst, stellt sie in eine Kunststoffwanne oder einen Eimer und tragt diese/n. Sollte beim Transport etwas auslaufen oder kaputtgehen, bleibt die potentiell gefährliche Sauerei so auf die Wanne / den Eimer beschränkt.

8. Lagert und verwendet Chemikalien in Gefässen aus Glas, reaktionsträgem Kunststoff oder Edelstahl!

Ihr wollt ja nicht, dass eure Zutaten mit dem Gefäss statt miteinander reagieren. Obwohl zerbrechlich ist Glas das ideale Material für Versuchsgefässe: Es hält allen Stoffen, die in den Versuchen in Keinsteins Kiste Verwendung finden, stand, kann schadlos erhitzt werden – und man kann durchschauen. Kunststoff-Behälter aus Polyethylen (PE) oder Polypropylen (PP) reagieren ebenfalls nicht mit ihrem Inhalt, halten allerdings nicht jeder Hitze stand. Ein grösseres Volumen, zum Beispiel ein Wasserbad, findet auch gut in einem ausrangierten Edelstahl-Kochtopf Platz.

9. Entsorgt Chemikalen gemäss den Hinweisen in der Versuchsbeschreibung oder auf der Verpackung!

DIE UMWELT WIRD ES EUCH DANKEN!

Wenn es nach den Experimenten in Keinsteins Kiste etwas zu entsorgen gibt, findet ihr entsprechende Hinweise am Ende des jeweiligen Artikels. Lest daher vor dem Experimentieren die Anleitung vollständig durch! Gehört ein Stoff über eine Schadstoff-Sammelstelle entsorgt oder seid ihr euch dessen unsicher, lagert die Reste sicher verschlossen, bis ihr sie dort hinbringen könnt.

Achtet darauf, besonders bei „Schadstoffen“, nicht mehr als unbedingt nötig von einem Stoff zu verwenden! Je weniger ihr einsetzt, desto weniger Reste müsst ihr nachher umständlich entsorgen!

Und wenn doch etwas passieren sollte:

Wenn ihr mit Chemikalien in Kontakt kommt

  • Wascht Chemikalienspritzer gründlich ab und zieht getränkte Kleidung sofort aus.
  • Wenn ihr etwas in die Augen bekommt: Spült die Augen gründlich, das heisst bis zu 10 Minuten, mit fliessendem Wasser aus und konsultiert bei Beschwerden oder wenn es sich um einen ätzenden Stoff handelt, einen Augenarzt.
  • Wenn ihr etwas eingeatmet habt, hindert die Dämpfe an der Ausbreitung (Gefäss schliessen!) und geht an die frische Luft.
  • Wendet euch mit Beschwerden nach dem Kontakt mit Chemikalien an euren Arzt oder den Giftnotruf:

In der Schweiz (und in Liechtenstein) erreicht ihr ToxInfo Suisse unter der Nummer 145 .

In Deutschland haben die Bundesländer unterschiedliche Giftnotruf-Nummern.

In Österreich erreicht ihr die Vergiftungsinformationszentrale unter +43 1 406 43 43 .

Wenn ein Feuer ausbricht

  • Wenn der Inhalt eines Gefässes brennt, deckt dieses schnell mit einem festen Gegenstand ab. Ein Buch oder ein glattes Holzbrett ersticken die Flammen im Gefäss, bevor sie Feuer fangen können! In einem feuerfesten Gefäss könnt ihr den Inhalt auch einfach ausbrennen lassen.
  • Löscht brennende Flüssigkeiten nicht mit Wasser! Wenn ihr einen CO2-Feuerlöscher habt, ist der die bessere Wahl.
  • Bringt Lösungsmittel und andere brennbare Stoffe auf Abstand!
  • Sollte eine Person oder deren Kleidung brennen, stellt sie zum Löschen sofort mit Kleidung und allem unter die laufende Dusche! Verbrennungen können ebenfalls unter fliessendem kalten Wasser effektiv gekühlt werden. Haltet Verbrennungen sofort – leichtere einige Minuten, schwerere bis zur ärztlichen Versorgung – unter den Wasserhahn oder die kalte Dusche!
  • Wenn ein Brand ausser Kontrolle zu geraten droht, alarmiert die Feuerwehr, schliesst, wenn möglich, Fenster und Türen (nicht verriegeln!) und verlasst das Haus!

Aber keine Sorge: Wenn ihr euch an die Vorsichtsmassnahmen aus dem ersten Teil des Artikels haltet, ist es höchst unwahrscheinlich, dass es so weit kommt.

Somit wünsche ich euch viel Spass beim entspannten und sicheren Experimentieren!

Ausstellung: Die Entdeckung der Welt - Wie aus Kindern Forscher werden

Das ist ein Ball…

Das ist ein Ball : Blaue Holzkugel

und das eine Reise in die Vergangenheit – in meine Vergangenheit:

Bunte Kunststoff-Windräder, wie sie vor 30 bis 40 Jahren jedes Strandgeschäft im Angebot hatte

Denn diese bunten Windräder und das einzigartige Geräusch ihres Flatterns im Seewind gehören zu meinen frühesten Kindheitserinnerungen. An die frühen Seeferien an der Ostsee, wo die bunten Räder zu Dutzenden vor jedem Strandgeschäft zum Verkauf angeboten wurden.

Damals war ich schon mittendrin im Welt entdecken – damit fangen kleine Kinder nämlich gleich nach der Geburt schon an. Oder sogar schon davor. Und sie tun es mit allen Sinnen, die von Geburt an einsatzbereit, wenn auch noch nicht vollständig entwickelt sind. Aber die Entwicklung kommt dann mit dem Forschen und Lernen.

Wie das vor sich geht, könnt ihr noch bis zum 16. Juni in der St. Leonhardskirche in St. Gallen entdecken. Dort findet nämlich die Wanderausstellung „Die Entdeckung der Welt“ des Vereins Stimme Q statt. Und danach ist sie in Winterthur – und schliesslich in Bern.

Ich habe von der Stiftung Q für den Besuch der Ausstellung zwei Freikarten für Erwachsene erhalten. Eine davon darf ich am Ende dieses Beitrags für euch verlosen. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Mit dem Ball zurück in Kindertage

Die bunte Holzkugel, die so sehr an das beliebteste Kinderspielzeug erinnert, begleitet mich durch die ganze Ausstellung. Zum Auftakt setzt sie Dioramen in Betrieb, mit welchen verschiedene (heute erwachsene) Menschen mich in ihre Kindheit mitnehmen. Da leuchtet, glitzert, dreht und bewegt es sich symbolisch, während die Protagonisten via Lauschmuschel von ihren Kindheitserlebnissen und -eindrücken erzählen.

Wie bei einem Spint mit Pfandmünze kommt der Ball am Ende immer wieder zurück in meine Hand. Fast immer jedenfalls, denn genau bei den Windrädern bleibt die Kugel plötzlich verschwunden. Und nun?

Wenn es irgendwo klemmt, ist der Kassier am Eingang überaus hilfsbereit. Mit ein paar Handgriffen zaubert er das verlorene „Spielzeug“ im Handumdrehen wieder hervor.

Auch weiterhin spricht die ganze Ausstellung (fast) all unsere Sinne an: Augen, Ohren, aber auch der Tastsinn ist gefordert.

Wie aus Neugeborenen Forscher werden: Ein Parcours durch die frühkindliche Entwicklung

An grossräumig verteilten Stationen kann ich die Schritte der Entwicklung von Kindern von der Geburt bis zum vollendeten 4. Lebensjahr mitverfolgen. Gemeinsam entwickeln sich die Sinne, Bewegungs- und Sprachfertigkeiten und aus all dem soziale Kompetenzen – die Fähigkeiten zum Miteinander.

Neben reichlich Lesestoff zur Entwicklung Schritt für Schritt kommen Fachexperten zu einzelnen Tehmen via Lauschmuschel zu Wort. Dazwischen finde ich zur Auflockerung Beispiele, was und wie Kinder wann lernen können. Auf Bildschirmen laufen nämlich Kurzfilme der Bildungsdirektion Zürich (die ihr auch hier finden könnt), die Szenen direkt aus dem Alltag von Kindern und Eltern bzw. Tageseltern zeigen.

Rundblick über die Ausstellung "Die Welt entdecken" in der neugotischen St. Leonhardskirche
Die farbenfrohen Fenster der St. Leonhardskirche harmonieren selbst an einem trüben Tag wunderbar mit den Elementen der Ausstellung.

Forscher Kristóf und die Holzfrucht

Fasziniert beobachte ich gut 3 Minuten lang, wie ein 9 Monate altes Baby im Video zum Forscher wird – auf der Spieldecke und in Mamas Nähe sich selbst überlassen. Sein Forschungsobjekt: ein rotes, gerundetes Stück Holz!

„Kleinkinder können sich dann in etwas vertiefen, wenn sie sich sicher und geborgen fühlen, weder Hunger noch Durst haben, bequem gekleidet und ausgeschlafen sind.“

Fazit des Kurzfilms „Die Holzfrucht“

Dieser Schlussatz aus dem Film zieht sich wie ein roter Faden durch die weitere Entwicklungsgeschichte: Geborgenheit und gleichzeitige Gelegenheit zur Eigenständigkeit sind Grundvoraussetzungen für nachhaltiges Forschen und Lernen.

Naturkunde für die ganz Kleinen

Auch der erste Naturkundeunterricht, im Video um 2- bis 3-Jährige, beläuft sich aufs Schauen und Tasten (und je nach Gegenstand auf Riechen und allenfalls Schmecken): Wie fühlt sich das Schneckenhaus an? Was macht die Schnecke, wenn man sie antippt? Das Gespräch zwischen Kind und Erwachsenen über das Erleben fördert auch die Sprachentwicklung ungemein.

Dabei sein ist alles

Kinder lieben es, die Grossen nachzuahmen. Dabei finden sie wunderbare Lerngelegenheiten Werden sie in Alltagsarbeiten eingebunden, haben sie ausserdem noch das Gefühl, helfen zu können. Das gilt auch für gemeinsames Experimentieren: Wer mitmachen kann, hat daran gleich doppelt Spass!

Besondere Themenfelder: Generation Iphone

Wenn es um die Entwicklung und Förderung von (Klein-)Kindern geht, gibt es in bestimmten Feldern immer wieder heisse Diskussionen. Zwei solchen sind in der Ausstellung eigene Bereiche gewidmet: Den immer häufigeren „modernen“ Familienformen von Patchwork bis zu homosexuellen Eltern und der Frage nach dem Einsatz digitaler Medien in der frühkindlichen Bildung und Erziehung. Und letztere macht mich als Bloggerin für Familien und eine der ältesten Digital Natives besonders neugierig.

Welchen Sinn macht es, die Jüngsten mit dem Smartphone spielen zu lassen oder bereits Kindergärten (dieser Begriff meint in der Schweiz die Vorschule!) oder gar Kitas mit Tablets auszustatten? Angebote für diese Altersklasse gibt es in den Appstores ja zuhauf.

Die Experten in der Ausstellung sagen: Keinen! Es gebe keinen Grund, 0 bis 4 Jährige mit Tablets&Co zu versorgen – im Gegenteil: In dieser Zeit lernen Kinder, die reale Welt zu be(greifen). Da bestehe das Risiko, dass in der virtuellen Welt fehlerhafte oder gar unbrauchbare Abläufe und Konzepte erlernt werden.

Meine Sicht auf Tablets & Co für die Kleinsten

Diese Aussage bestätigt mein Bauchgefühl. Ich selbst bin ja noch nicht in, sondern gemeinsam mit der digitalen Welt aufgewachsen. So kam der erste Computer zu uns ins Haus, als ich schon zur Schule ging, und unsere Eltern limitierten die Zeit, die wir Kinder daran verbrachten, streng. Verpasst habe ich dadurch aber nichts.

Im Gegenteil: Ich bin nun nicht nur eine der ersten Digital Natives, sondern auch Teil der letzten Generation, die noch komplett analog – auf die eigenen Sinne und Motorik angewiesen – ihre Welt entdeckt hat (vielleicht rührt daher ja meine ungebrochene Leidenschaft für das Selber-Experimentieren).

Vorerst zumindest: Meine Schwester erzieht ihre Töchter weitestgehend smartphone- und tabletfrei, und das seit mehr als zweieinhalb Jahren ziemlich konsequent. Meinem Bauchgefühl und vor allem nach dem Besuch der Ausstellung unterstütze ich diese Haltung gerne.

Für die Grossen: Frühkindliche Betreuung in der Schweiz

Die Reise durch die frühkindliche Entwicklung nimmt jedoch nur einen Teilbereich der Ausstellung ein. Darüber hinaus liefert die nämlich noch reichlich weiteres Futter für die Diskussion um frühkindliche Betreuung, Bildung und Erziehung, die die Stimme Q schliesslich in die breite Öffentlichkeit tragen will.

So findet sich in der Mitte des Kirchenschiffs ein fantasievolles Steuerpult für die Präsentation einer umfassenden Statistiksammlung. Wieder kommt der Holzball zum Einsatz und ruft selbstständig über das Pult hopsend ein Diagramm nach dem anderen auf der grossen Leinwand auf. Die Diagramme zeigen unter anderem: Es gibt in der Schweiz grosse Lücken betreffend familien- bzw. familiengründungsfördernder Gesetzgebung und Kleinkinderbetreuung.

Ich schwärme ja gerne davon, wie einfach es im Vergleich zu Deutschland hierzulande ist, eine selbstständige Arbeit aufzunehmen. Dagegen wäre eine Familie zu gründen und zu betreuen wohl eine weitaus härtere Nuss als daheim im „grossen Kanton“. Insbesondere in Sachen Elternzeit und Betreuungsangebot scheinen die Eidgenossen noch reichlich Verbesserungsbedarf zu haben.

Das Steuerpult für die Statistiksammlung: Der blaue Ball unterhalb der grünen Tafel zeigt: Obwohl oder gerade weil in der Schweiz sehr viele Frauen berufstätig sind, gibt es Verbesserungsbedarf in Sachen Elternzeit und Kleinkinderbetreuung.

Für die Kleinen: Spielspass im Ausstellungsraum

Während die Grossen sich mit Lesestoff, Filmen und Statistik vergnügen, kommen auch die kleinen Ausstellungsbesucher nicht zu kurz. Kriechtunnel und weiche Matten zwischen den Stationen laden zum Spielen und Toben ein – und hier beschwert sich niemand, wenn es dabei mal ein wenig laut wird.

Und wer lieber nah bei Mami und Papi bleibt, kann gleich noch das ein oder andere Exponat nach eigenen Vorstellungen gestalten. Einige der Schautafeln sind nämlich Magnetwände mit beweglichen Elementen, die nach Lust und Laune irgendwo angeheftet werden können.

Das Highlight ist aber die Spielstation im Herzen der Ausstellung. Die grosse Kugelibahn für den Holzball hat (nicht nur) meinen Spieltrieb gleich geweckt. Eine Rutsche, eine Höhle „nur für Kinder“ (es sei denn, die Grossen schaffen es irgendwie durch den Kriechtunnel oder den niedrigen Seiteneingang hinein) und der grosse Konfetti-Touchscreen laden zu ganz eigenen Abenteuern ein.

Der mannshohe Konfetti-Screen, auf welchen ein Beamer bunte Formen projeziert, ist besonders bei den Primarschülern beliebt. Man kann mit den virtuellen Konfetti nämlich interagieren. Jede Konfettifarbe hat eine andere Eigenschaft, die bei Berührung mit den Händen zu Tage tritt: „Die Pinken sind die besten!“, heisst es bei den begeisterten Kids (die Pinken blähen sich nämlich riesig auf, ehe sie wie Seifenblasen platzen), die Blauen sind aber ebenso beliebt (sie fahren bei Berührung Zacken aus und können per Wisch quer über den Screen geschossen werden. Auf ihrem Weg bringen sie dann andere Konfetti zum Platzen).

Durch ein Bullauge in Elternhöhe kann ich den Screen und die Kinder, die direkt hinter der Wand in der Höhle stehen, im Spiegel beobachten. Dabei zeigt sich: So faszinierend die Möglichkeiten der digitalen Technik auch sind, die „klassischen“ Spielgeräte wie Rutsche und Kugelibahn verlieren darüber nicht ihren Reiz: Alle Teile der Spielinsel werden von den jungen Gästen gleich eifrig bevölkert.

Ein kleines Mädchen ist fasziniert vom riesigen Konfetti-Bildschirm. Wenn er will, kann der Papi seine Tochter durch den Kriechtunnel jederzeit erreichen.
29.03.2017; „Die Entdeckung der Welt“ mit dem Konfettiscreen in Bellinzona (Michela Locatelli/photolocatelli.ch)

Ihr wollt die Ausstellung besuchen? Das solltet ihr wissen

Habt ihr nun auch Lust zum Mitspielen und -lernen? Dann könnt ihr die Ausstellung „Entdeckung der Welt“ noch bis zum 16. Juni 2019 jeden Dienstag bis Sonntag (ausser Karfreitag) von 10 bis 18 Uhr in der St.Leonhardskirche in St.Gallen besuchen. Die Kirche ist nur wenige Hundert Meter vom Hauptbahnhof entfernt und von dort aus nicht zu übersehen.

Der Eintritt kostet für Erwachsene CHF 8, für Schüler und Auszubildende über 16, Studenten, AHV- und IV-Bezüger CHF 6. Für Kinder unter 16 ist der Eintritt inklusive Spielspass frei.

So lange es draussen noch frisch ist: Zieht euch in jedem Fall warm an! Wie jede ältere Kirche lässt sich auch diese nur schwerlich beheizen – und ich habe nach all der spannenden Lektüre im Stehen in der dünnen Sommerjacke ziemlich gefroren!

Alle Infos und Daten zu den zahlreichen Zusatzveranstaltungen rund um das Projekt findet ihr zudem auf der Website zur Ausstellung.

Gewinnspiel: Eine Freikarte (Erwachsene) für euch!

Wie nehmt ihr teil?

Kommentiert bis zum 18.04.2019 unter diesem Beitrag, mit wem oder warum ihr die Ausstellung in St. Gallen besuchen möchtet und noch eine Karte braucht. Gebt dazu eine gültige Email-Adresse an – der Gewinner erhält die Karte von mir als pdf-Datei zum Ausdrucken oder digitalen Transport mit der Eventfrog-App!

Anschliessend werde ich den Gewinner unter den gültigen Kommentaren auslosen.

Teilnahmebedingungen

  • Das Gewinnspiel wird von Keinsteins Kiste in Zusammenarbeit mit dem Verein Stimme Q veranstaltet. Vielen Dank für die Bereitstellung des Preises!
  • Das Gewinnspiel startet am 13. April 2019 und endet am 18. April 2019 um 24.00 Uhr.
  • Die Teilnahme am Gewinnspiel ist kostenlos.
  • Ihr müsst mindestens 18 Jahre alt sein (Liebe Kinder: Tut euch mit euren Eltern, Grosseltern oder anderen Erwachsenen zusammen!).
  • Gewinnpreis ist eine Freikarte für die Ausstellung „Die Entdeckung der Welt“ in der St.Leonhardskirche in St.Gallen, gültig an einem beliebigen Datum bis zum 16. Juni 2019.
  • Es gibt 1 Los für einen Kommentar mit gewünschtem Inhalt (s.o.).
  • Eine Auszahlung des Gewinns in bar ist nicht möglich. Der Rechtsweg ist ausgeschlossen.
  • Der Gewinner wird ausgelost und per eMail benachrichtigt.
  • Sofern die Ausschüttung eines Gewinns an einen in der Ziehung ermittelten Gewinner nicht möglich ist, weil eine Gewinnbenachrichtigung und/oder Gewinnzustellung scheitern und nicht binnen einer Woche nach der Ziehung nachgeholt werden können, verfällt der Gewinnanspruch.
  • Der Veranstalter behält sich das Recht vor, das Gewinnspiel aus sachlichen Gründen jederzeit ohne Vorankündigung zu modifizieren, abzubrechen oder zu beenden.

Weitere Stationen der Wanderausstellung

St. Gallen ist euch zu weit weg oder es passt euch zeitlich nicht mehr? Auch dann könnt ihr die Ausstellung noch besuchen. Sie ist nämlich bis Ende des Jahres in der Schweiz unterwegs:

Vom 21.08. bis 20.10.2019 findet ihr sie im Eulachpark, Halle 710 in Winterthur und vom 15.11. bis 22.12.2019 im Kornhausforum in Bern.

Bis dahin habe ich aber noch eine Anregung zum Weltentdecken für eure Jüngsten zu Hause.

Und wie könnte ein altersgerechtes MINT-Experiment für Kleinkinder aussehen?

In der Ausstellung lernen wir: Voraussetzungen für nachhaltiges Erleben und Lernen – und das lässt sich auch auf Naturwissenschaften ummünzen – sind: Eine sichere, anregende Umgebung zum Selbsterkunden, und Gelegenheit zum Mitmachen bei gemeinsamen Experimenten. Ein spannender Versuchsgegenstand für Kleinkinder kann dabei aus Erwachsenensicht durchaus sehr simpel sein.

Naturwissenschaftliches zum Selbererkunden: Magnete!

Für Kinder megaspannende und ebenso sichere Gegenstände zum Selbsterkunden sind Dauermagnete! Ich habe schon in frühen Jahren die Magnetkupplungen meiner Holzeisenbahn-Wagen geliebt und fleissig damit experimentiert. Magnete gibt es aber auch in vielen Formen und Farben für den Kühlschrank oder die Magnettafel.

Welche Magnete sind für Kinder geeignet?

Wichtig ist, dass Magnete für Kinder ausreichend gross oder/und mit den sie umgebenden Materialien robust verarbeitet sind, sodass sie nicht verschluckt werden können. Dann nämlich könnt ihr die Kinder ganz beruhigt allein damit umgehen lassen (die Magnetfelder von einfachen Kühlschrank- oder Spielzeugeisenbahn-Magneten sind nicht gefährlich und vor allem nicht stark genug, um kleine Finger einzuklemmen.

Anders die sogenannten „Supermagnete“ aus Legierungen mit dem Seltenerd-Metall Neodym: Wenn diese gross genug sind, um nicht verschluckt zu werden, sind ihre Magnetfelder so stark, dass sie für Kinder unlösbar an Eisen haften bleiben und (nicht nur) einen zarten Kinderfinger schmerzhaft quetschen können.

Was es über Magnete zu erforschen gibt

Mit einem oder mehreren Magneten können Kinder sich lange allein beschäftigen. Noch mehr Spass macht es jedoch, die wundersamen Magnetkräfte gemeinsam zu erkunden. Über folgende Fragen und Beobachtungen könnt ihr mit euren Kindern sprechen und dazu experimentieren:

  • Magnete ziehen Dinge an. Welche? Und welche nicht?
  • Magnete ziehen Dinge auch aus Entfernung an. Wie gross darf die sein?
  • Magnete ziehen Dinge auch durch andere hindurch an. Wie dick dürfen die sein?
  • Zwei Magnete ziehen sich nicht nur an, sie stossen sich auch ab. Sind die anziehenden und abstossenden Seiten eurer Magnete mit Farben markiert?

Dabei werden unweigerlich Fragen auftauchen. Woher rühren die „Zauberkräfte“ der Magnete? Gibt es Magnete mit nur einer „Seite“ (einem Pol)? Kann man solche erzeugen, indem man einen Magneten durchschneidet? Wenn ihr die richtigen Antworten auf solche Fragen parat haben wollt, findet ihr sie in meinem Artikel zu den Magnetkräften in Keinsteins Kiste.

Mehr Experimente für die ganz jungen Forscher

Da findet ihr auch viele weitere Experimente für kleine(re) Kinder. Hier sind einige Beispiele:

Und viele andere mehr.

Zu all diesen Experimenten findet ihr Erklärungen, die für die Kleinsten vielleicht zu weit gehen, aber euch Grossen dabei helfen sollen, den kleinen Forschern ihre Fragen zu ihren Beobachtungen zu beantworten.

Und wie habt ihr die Welt entdeckt? Wie entdeckt ihr sie mit euren Kindern?

Es ist Frühling – eine wunderbare Zeit für Experimente, für die man etwas Platz braucht. Deshalb habe ich heute für euch ein lustiges wie lehrreiches Spektakel für Balkon und Terrasse (oder auch für drinnen): Die Elefantenzahnpasta!

Das bekannte Experiment zeigt eine weitere wichtige Fähigkeit (die Gärung könnt ihr ja hier erforschen), die nicht nur Hefezellen, sondern auch unsere Zellen haben: Die Fähigkeit, sich vor Oxidationsmitteln zu schützen. Und da dabei eine Menge Gas entsteht, kann man diese Fähigkeit für dieses spassige Experiment nutzen.

Ihr braucht dazu

  • Hefe: am einfachsten geht das Experiment mit Trockenhefe
  • ein Gefäss mit schmaler Öffnung: z.B. eine 0,5l PET-Flasche oder ein Reagenzglas
  • etwas warmes Wasser (lauwarm, wie Hefe es gern hat)
  • etwas Geschirrspülmittel
  • ein Oxidationsmittel: Wasserstoffperoxid, als Lösung (3 – 6%) aus der Apotheke/Drogerie
  • Optional: Lebensmittelfarbe
  • Einen Trichter, der auf das schmale Gefäss passt
  • Schutzbrille, ggfs. Labormantel/Malschürze
  • Ein Backblech oder Tablett als Unterlage
Wasserstoffperoxid, Trockenhefe, Spülmittel, Lebensmittelfarbe, Reagenzglas, Schutzbrille, Trichter - das braucht ihr für die Elefantenzahnpasta!

So geht’s

  • Rührt die Trockenhefe in das warme Wasser ein, bis es keine Klumpen mehr gibt.
  • Füllt Wasserstoffperoxid in das schmale Gefäss (bis es zu ca. einem Fünftel (mit 6% H2O2) bzw. zwei Fünftel (mit 3% H2O2) gefüllt ist – verwendet dazu den Trichter!) und mischt Lebensmittelfarbe und einen Schuss Spülmittel hinein.
  • Stellt das Gefäss in das Backblech.
  • Giesst das Hefewasser schnell in das Gefäss und tretet zurück! Die Reaktion beginnt sofort!
Wasserstoffperoxid ist mit roter Farbe und Spülmittel gemischt, die Hefe in Wasser suspendiert
Alles parat: Rechts im Reagenzglas Wasserstoffperoxid-Lösung (Drogisten benutzen gerne lateinisierte Stoffnamen – hier „Hydrogenii peroxidum“ , die schonmal zu Kommunikationsschwierigkeiten mit einkaufenden Chemikern führen) mit roter Lebensmittelfarbe und Spülmittel. Links ein Teelöffel Trockenhefe in Wasser. Nun das Linke in das Rechte giessen und los gehts!

Was ihr beobachten könnt

Die Mischung beginnt sofort zu sprudeln und heftig zu schäumen. Wie ein Zahnpastastrang quillt der Schaum aus der Gefässöffnung und ergiesst/schlängelt sich auf dem Backblech aussen herum.

Elefantenzahnpasta quillt aus dem Reagenzglas!
Zahnpasta für Zwergelefanten: Einem der Chemiker-Grundsätze – so viel wie nötig, so wenig wie möglich – zuliebe habe ich den kleinen Massstab im Reagenzglas gewählt. Zudem hatte „meine“ Drogerie gerade nur 3% H2O2-Lösung vorrätig – mit 6% käme wohl noch mehr Schaum heraus. Im Übrigen: Ein guter Drogist oder Apotheker fragt nach, was ihr mit der Lösung vorhabt. Nicht irritieren lassen und ehrlich sein – sie geben sie dann schon heraus!

Sicherheitshinweise

Auch wenn sie gerne so genannt wird: Die „Elefantenzahnpasta“ eignet sich nicht zum Zähneputzen! Nehmt sie also nicht in den Mund!

Wasserstoffperoxid wirkt ätzend auf Haut und Schleimhäute (die typischen weissen Verletzungen werden manchmal erst verzögert sichtbar und tun manchmal auch dann erst weh). Wenn euch etwas von der Lösung auf die Haut gerät, spült es gründlich mit fliessendem Wasser ab. Sollte euch trotz aller Vorsicht etwas ins Auge spritzen, spült das Auge sehr gründlich mit fliessendem Wasser aus (10 Minuten lang ist Labor-Standard!) und geht bei Beschwerden zum Augenarzt!

Ausserdem kann Wasserstoffperoxid farbige Textilien bleichen. Der Labormantel bzw. die Malschürze soll eure Kleider davor schützen.

Die „Zahnpasta“ selbst enthält kaum bis kein Wasserstoffperoxid mehr und kann daher gefahrlos angefasst werden.

Entsorgung

Die „Zahnpasta“ und Reste im Reaktionsbehälter können mit viel Wasser in den Abfluss entsorgt werden. Übrige Wasserstoffperoxidlösung könnt ihr im dicht schliessenden Originalbehälter in einem dunklen Schrank aufbewahren und später für weitere Experimente verwenden.


Was passiert da – Wie entsteht die Elefantenzahnpasta?

Wasserstoffperoxid – H2O2 – ist eine recht instabile Verbindung. Unter alltäglichen Bedingungen ohne Reaktionspartner zerfällt es sehr langsam in Wasser und Sauerstoff:

2H_{2}O_{2}\rightarrow 2H_{2}O+O_{2}

Kommt Wasserstoffperoxid allerdings mit anderen Stoffen in Berührung, oxidiert es die meisten davon. Das gilt insbesondere für die Bestandteile von Lebewesen. Deshalb solltet ihr bei diesem Experiment Schutzbrille und -kleidung tragen!

Schutz vor Oxidation durch Aufräum-Enzyme

Wenn die Zellen sauerstoffatmender Lebewesen (Menschen, Tiere, Hefepilze,…) Energie aus Sauerstoff gewinnen, kann in ihnen jedoch H2O2 als unerwünschtes Nebenprodukt entstehen (so ausgeklügelt die Reaktionswege sind, fehlerfrei laufen sie noch lange nicht). Damit dieses Wasserstoffperoxid nicht wild herumoxidiert, haben die Zellen ein Aufräumkommando, das durch Fehler entstehendes H2O2 schnellstmöglich aus der Welt schafft.

Dabei handelt es sich um Enzyme mit dem Namen Katalase. Das sind Proteine, die die natürliche Zersetzung von Wasserstoffperoxid in Wasser und Sauerstoff um ein Vielfaches beschleunigen – indem sie den Ablauf der Reaktion erheblich erleichtern.

Ein Biokatalysator erleichtert den Reaktionsablauf

Denn Reaktionen laufen dann leichter ab, wenn weniger Energie nötig ist, um sie zu starten. Ein Stoff, der eine Reaktion beschleunigen kann (ohne selbst abzureagieren), indem er die zum Start der Reaktion nötige Aktivierungsenergie verringern kann, wird Katalysator genannt.

Im Auto ist der Katalysator eine Metalloberfläche, an welcher giftige Abgase zu weniger giftigen Stoffen reagieren (mehr dazu findet ihr hier). In Lebewesen heissen die Katalysatoren Enzyme. Enzyme sind also Proteine, die Reaktionen erleichtern und damit beschleunigen. Die Katalasen gehören unter diesen zu den schnellsten Enzymen überhaupt: Ein einziges Katalase-Molekül schätzungsweise bis zu 10 Millionen H2O2-Moleküle in der Sekunde umsetzen! Das hat zur Folge, dass die Geschwindigkeit des Wasserstoffperoxid-Abbaus mit Katalase praktisch nur davon abhängt, wie viel H2O2 das Enzym in gegebener Zeit „zu fassen“ bekommt.

Gasentwicklung dank Katalase

Damit ist die Katalase bestens geeignet, um durch Fehler in anderen Reaktionsabläufen entstehendes Wasserstoffperoxid sofort wieder verschwinden zu lassen – oder um aus Wasserstoffperoxid, das von aussen eindringt, in kürzester Zeit grosse Mengen Sauerstoff-Gas freizusetzen.

Wenn wir unsere Hefe durch Mischen mit Wasserstoffperoxid-Lösung (relativ) grossen Mengen H2O2 aussetzen, stürmen diese kleinen Moleküle die Hefezellen und werden dort postwendend zu Wasser und Sauerstoff-Gas umgesetzt. Sollten die Zellen dabei platzen oder ihre Aussenwände kaputt oxidiert werden, kommt die Katalase zudem direkt mit der Wasserstoffperoxid-Lösung in Berührung und das Gas entsteht noch schneller.

Nun brauchen gasförmige Stoffe ein Vielfaches mehr an Platz als flüssige Stoffe aus den gleichen Teilchen, sodass sich das Sauerstoff-Gas sehr schnell ausdehnt. Da unser Gemisch aber Seife enthält, werden die entstehenden Sauerstoffportionen in winzige Seifenbläschen eingeschlossen (über diese und andere Superkräfte von Seife könnt ihr hier nachlesen): Es entsteht Schaum.

Elefantenzahnpasta von Nahem gesehen: Die Schaumbläschen sind erkennbar.
Wenn ihr euch die „Elefantenzahnpasta“ ganz aus der Nähe anschaut, könnt ihr die kleinen Schaumbläschen erkennen.

Und dieser Schaum, nass von Seifenwasser und Hefezellresten, quillt als „Elefantenzahnpasta“-Schlange aus dem Gefäss heraus.

Zusammenfassung

Die „Elefantenzahnpasta“ besteht also aus Schaum aus Seife und Sauerstoff, der durch „Überfütterung“ der Oxidationsschutz-Enzyme von Hefezellen mit Wasserstoffperoxid entsteht.

Auch Menschenzellen haben Katalasen, die den Abbau von Wasserstoffperoxid in der gleichen Weise beschleunigen: Wenn Wasserstoffperoxid in unsere Haut gelangt, entstehen im Gewebe kleine Sauerstoffbläschen, welche wir als die weissen Verletzungen sehen können.

Wichtig: Die Schutzenzyme des Körpers sind genau darauf ausgelegt, solche Oxidationsmittel zu entfernen, die bei Fehlern in zelleigenen Prozessen entstehen. Andere Oxidations- und Bleichmittel, insbesondere unter dem Kürzel „MMS“ als „Wunderheilmittel“ vertriebene gefährliche Chlorverbindungen gehören da nicht zu! Gegen solche Stoffe hat der menschliche Körper keine eigenen Schutzmassnahmen!

Und habt ihr das Elefanzenzahnpasta-Experiment schon einmal ausprobiert? Wozu sonst verwendet ihr Wasserstoffperoxid?

Hast du das Experiment nachgemacht: 

[poll id=“10″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Rätsel-Experiment für Kinder: Womit funktioniert der Eiswürfel-Kran?

Wenn es draussen kalt und grau ist, mache ich es mir gerne im Warmen gemütlich. Aber was tun an langen Tagen daheim? Ich habe für euch ein winterliches Rate-Experiment:

Mit welcher „magischen“ Substanz könnt ihr einen Eiswürfel an einem Bindfaden befestigen und hochheben?

Nein, ich meine nicht Klebstoff. Der würde an einem Eiswürfel soundso nicht haften, sondern ratzfatz wieder abgehen, wenn das Eis schmilzt. Es gibt jedoch einen anderen Stoff, der den Bindfaden dank eines raffinierten physiko-chemischen Tricks ganz wunderbar am Eiswürfel haften lässt.

Lasst die Kinder den „magischen“ Stoff erraten!

Welcher Stoff kann sowas? Lasst insbesondere eure Nachwuchs-Forscher darüber nachdenken (und ratet selbst mit, wenn ihr noch nicht darauf gekommen seid), bevor ihr weiter (vor-)lest. Dann könnt ihr nach folgender Anleitung ganz einfach selbst ausprobieren, ob ihr recht hattet.


Experiment: Wir bauen einen Eiswürfel-Kran


Ihr braucht dazu

  • einen Eiswürfel
  • ein Glas Wasser
  • einen stabilen Holzstab(Schaschlikspiess etc.)
  • ein Stück Bindfaden
  • Zucker oder Salz oder Pfeffer oder Kaugummi
Das braucht ihr: Glas mit Wasser, Holzspiesse, Bindfaden, Eiswürfel

Nur mit einem dieser Stoffe funktioniert das Experiment. Nennt den Nachwuchs-Forschern ruhig diese Vier zur Auswahl. Vielleicht kommen sie selbst darauf, was sie wirklich brauchen. Stattdessen könnt ihr auch alle vier Möglichkeiten ausprobieren.

So geht’s

  • bindet das Stück Bindfaden an euren Stab, sodass ein kleiner Kran entsteht
  • legt den Eiswürfel in das Wasserglas: Er schwimmt (Wieso? s. hier–>Eis wächst)
  • fragt spätestens jetzt die Nachwuchs-Forscher: Was glaubt ihr: Welche der genannten Zutaten ist geeignet, um den Eiswürfel an den Faden zu heften?
  • streut etwas von der „magischen“ Substanz auf den Eiswürfel und legt das freie Ende des Fadens dazu.
  • wartet ca. 30 Sekunden
  • hebt den Eiswürfel vorsichtig am Faden aus dem Wasser.

Das könnt ihr beobachten

Wenn ihr die richtige Zutat gefunden habt, haftet der Eiswürfel am Faden, sodass ihr ihn aus dem Wasser heben könnt!

Der Eiswürfel hängt frei am Bindfaden!
Geht nur mit der richtigen Zutat: Der Eiswürfel hängt frei am Bindfaden!

Welches ist die richtige „magische“ Substanz?

Erinnert ihr euch an die Wirkweise von Streusalz (die habe ich hier erklärt)? Wenn dessen Ionen sich mit Wasser mischen, bringt das Eis in der Umgebung zum Schmelzen. Die Wassermoleküle sind nämlich derart damit beschäftigt, die Salzionen zu umhüllen, dass sie nicht mehr am stetigen Schmelzen und Gefrieren, das sich zwischen Eis und Wasser abspielt, teilhaben können.

Und dann – so besagt es das Gesetz von Le Châtelier – müssen diese Wassermoleküle ersetzt werden. Indem mehr Eis zu flüssigem Wasser schmilzt, als es das normalerweise tut.

Das Schmelzen aber verbraucht Energie, entzieht der Umgebung also Wärme. Die Umgebung von Salz und Faden kühlt also ab, bis schliesslich selbst das Salzwasser mitsamt dem Faden am Eiswürfel festfriert!

Entsorgung

Sobald das Eis geschmolzen ist, könnt ihr das Salzwasser einfach in den Abfluss geben. Zum Blumengiessen eignet es sich wahrscheinlich nicht mehr, da die Pflanzen zu viel Salz nicht vertragen.

Alltagstipp: Eis und Salzwasser als Kühlmittel

Im Labor nutzen Chemiker die Abkühlung, die Salz in Eiswasser verursacht, zur Kühlung von Experimenten, bei denen zu viel Wärme frei wird. Streusalz ist ein billiges Mittel dafür. Das entstehende Salzwasser ist zudem nicht giftig, sodass es nachher einfach in den Abfluss entsorgt werden kann.

Tafelsalz ist zwar etwas teurer, funktioniert aber ebenso: Wenn eure Getränke im Eiswürfelbad einmal nicht kalt genug werden, gebt etwas Wasser und Salz dazu und rührt vorsichtig, um ein Eisbad zwischen 0°C und -10°C zu erhalten!

Und probiert ihr den Eiswürfelkran selbst aus? Über eure Erfahrungsberichte freue ich mich sehr!

Hast du das Experiment nachgemacht: 

[poll id=“13″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Hast du die Experimente nachgemacht: 

[poll id=“14″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!