Beiträge

Experiment mit Wasser : Die Münzwippe

Endlich hat es gewittert und ein wenig abgekühlt! Dazu war heute vormittag noch Regen angesagt. Zeit für ein kleines Experiment für zwischendurch, das ihr sowohl draussen als auch drinnen machen könnt. Dabei geht es um die Superkräfte von Wasser ….oder doch nicht?

Unglaubliche Kräfte schlummern nämlich nicht nur in Wasser, sondern auch in der Luft! – Und diese Kräfte könnt ihr mit ganz einfachen Mitteln selbst erforschen:

Ihr braucht dazu

  • ein Trinkglas
  • einen glatten Pappstreifen, aus einem Tetrapack zugeschnitten
  • kleine Münzen (z.B. Fünfräppler, aber Eurocents tun es genauso)
  • Wasser
Für das Experiment braucht ihr: Trinkglas, Wasser, Pappstreifen aus Tetrapak, kleine Münzen

Die Idee habe ich von “Schule und Familie“. Wie dort beschrieben mit einem einfachen Pappstreifen funktioniert das Experiment aber nicht so recht: Die Pappe saugt sich im Nu mit Wasser voll, wird weich und krumm, sodass die Münzen vorzeitig abrutschen. Die “Innen-“seite eines Tetrapacks ist jedoch wasserdicht beschichtet (das Getränk soll ja im Karton bleiben). Da wird nichts krumm und die Münzwippe funktioniert wunderbar.

So geht’s

  • Füllt das Glas randvoll – und ein Bisschen darüber hinaus – mit Wasser. Das Wasser soll sich leicht über den Glasrand aufwölben. Eine saubere Tropfpipette (zum Beispiel der Deckel einer Nasentropfen-Flasche, gibt es auch einzeln für kleines Geld in der Drogerie!) kann dabei helfen, die letzten Tropfen vorsichtig einzufüllen.
  • Legt den Tetra-Pappstreifen mit der “Innenseite” nach unten und mit einem Ende so auf das Glas, dass er die Öffnung ganz verschliesst. Vielleicht merkt ihr schon, wie er sich festsaugt.
Alles bereit: Ein Ende der Pappe liegt mit der Beschichtung nach unten auf dem Glas.
Alles bereit: So liegt die Pappe richtig auf dem Glas!
  • Stapelt nun vorsichtig eine Münze nach der anderen auf das überhängende Ende. Der Streifen wird trotz Übergewicht eine ganze Weile auf dem Glas liegen bleiben! Ich habe fünf Fünfräppler geschafft, bevor der Streifen sich beim sechsten schliesslich doch gelöst hat. Wer schafft mehr?
Die Münzwippe in Aktion: Das Gewicht von fünf Fünfräpplern kann den Pappstreifen nicht vom Glas lösen!
Fünf “Füüferli” und es hält immernoch…

Was passiert da?

Superkraft von Wasser : Adhäsion

Das zunehmende Gewicht der Münzen auf dem überhängenden Ende lässt den Pappstreifen wie auf dem Glas festgeklebt erscheinen. Wie festgeklebt? Dabei handelt es sich bei Weitem nicht nur um einen Vergleich!

Wassermoleküle werden tatsächlich von vielen anderen Stoffen angezogen und ziehen selbst wiederum diese Stoffe an. Diese Erscheinung nennen die Physiker “Adhäsion” – und die anziehenden Kräfte “Adhäsionskräfte”. Es gibt verschiedene Theorien, wie diese Adhäsionskräfte zustande kommen. Aber die meisten davon haben gemeinsam, dass die Teilchen von Stoffen sich genau dann besonders anziehend finden, wenn bestimmte ihrer Eigenschaften sich ähneln.

Eine dieser Eigenschaften ist die Ausstattung von Teilchen mit elektrischer Ladung. Wenn ihr schon einmal den Zaubertrick mit dem krummen Wasserstrahl ausprobiert habt, wisst ihr, dass Wassermoleküle relativ starke Ladungen tragen (für die etwas fortgeschritteneren Forscher unter euch: Physiker nennen Wasser deshalb “polar”). So ziehen sie nicht nur einander stark an, sondern werden auch von anderen Stoffen mit elektrischen Ladungen angezogen.

Gemäss dieser “Polarisationstheorie” wäre also davon auszugehen, dass auch die Innenfläche des Getränkekartons elektrische Ladungen trägt bzw. polare Bestandteile hat, die Wassermoleküle anziehen und so zum Haftenbleiben bringen.

Aber eigentlich ist es doch gar nicht wünschenswert, dass das Getränk im Tetrapack kleben bleibt! Deshalb werden die Tetrapack-Entwickler doch sicher vermieden haben, ein all zu adhäsionsfreudiges Material für ihre Beschichtung zu verwenden. Und trotzdem klappt das Experiment…

Superkraft von Luft : Luftdruck

Eine zweite Erklärung für den “klebenden” Pappstreifen ist, dass die Pappe weniger am Wasser klebt, als dass sie durch die Luft darauf gedrückt wird. Die Erdatmosphäre, die aus unzähligen frei umherwuselnden Teilchen besteht, drückt nämlich von allen Seiten auf jedes Hindernis, das ihr in die Quere kommt.

Die wuselnden Teilchen trommeln laufend auf jede von Luft umgebene Oberfläche ein – und wir nehmen dieses Dauer-Trommelfeuer mit unseren groben Sinnen als Druck wahr. Der Luftdruck am Erdboden beträgt etwa 1 bar (oder 1000 Millibar), was eine beträchtliche Menge ist. Schliesslich drückt ja eine gut 30 Kilometer hohe Luftsäule auf die wuselnden Teilchen in eurer Nähe und drängt sie so eng zusammen, dass sie entsprechend dicht und heftig auf alle Oberflächen trommeln.

So auch auf den Pappstreifen, der auf dem Glas liegt. Dieser Luftdruck ist so stark, dass er – allenfalls gemeinsam mit einer ziehenden Adhäsionskraft – die Münzen auf dem freien Streifenende aufwiegt: Der Luftdruck (und die Adhäsion) drücken das Glasende des Pappstreifens zunächst stärker nach unten als das Gewicht der Münzen das freie Ende. Erst wenn das Gewicht der Münzen zu gross wird, wippt das freie Ende des Streifens nach unten, während das Glas-Ende nach oben schnellt.

Da diese “Wippe” nicht am Angelpunkt auf dem Glasrand befestigt ist, fällt der Aufbau damit sofort zusammen.

Münzwippe überlastet: Der Pappstreifen ist vom Glasrand gekippt.
…aber die sechste Münze war zu viel: Der Streifen wippt in Richtung der Münzen und stürzt vom Glasrand.

Bonus-Versuch für draussen

Ihr wollt sehen, wie stark der Luftdruck sein kann? Dann füllt wie oben beschrieben das Glas bis zum Rand mit Wasser und legt den Pappstreifen darauf, sodass die Öffnung vollständig bedeckt ist. Haltet den Streifen fest und dreht das Glas mit der Öffnung nach unten. Dann lasst den Pappstreifen los (das Glas natürlich nicht!). Wenn alles gutgeht, sorgt der Luftdruck allein dafür, dass die Pappe auf der Öffnung und das Wasser im Glas bleibt!

Weil dieses Experiment aber nicht immer auf Anhieb funktioniert empfehle ich euch dringend, das draussen oder im Badezimmer zu probieren! Da richtet eine mögliche Überschwemmung nämlich keinen grossen Schaden an.

Entsorgung

Die ist bei diesem Versuch denkbar einfach:

Da ich mit Trinkwasser aus der Leitung und ausschliesslich mit Hilfsmitteln aus der Küche experimentiert habe, trinke ich das Wasser gerade aus, während ich blogge 😉 . Auch sonst könnt ihr das Wasser noch für alles benutzen, wozu man Wasser braucht. Den Tetra-Pappstreifen könnt ihr aufheben, sodass ihr die Experimente jederzeit wieder vorführen und eure Lieblingsmenschen verblüffen könnt.

Nun wünsche ich euch viel Spass beim Experimentieren! Und…kennt ihr vielleicht Gelegenheiten aus eurem Alltag, bei welchen ihr (wirkliche) Adhäsionskräfte beobachten könnt?

Free Printable: So experimentiert ihr auch mit gefährlichen Chemikalien sicher!

Chemikalien können gefährlich sein. Das weiss jeder, und viele Stoffe werden dahingehend sogar überschätzt. Eigentlich sollte es heissen: Chemikalien können gefährlich sein – wenn man nicht richtig mit ihnen umgeht.

Die Experimente in Keinsteins Kiste könnt ihr mit Zutaten durchführen, die ihr im Haushalt findet oder im Bau- oder Supermarkt kaufen könnt. Nur manchmal ist eine Spezialzutat nötig, die ihr in der Regel in einer Apotheke oder Drogerie bestellen könnt. Krebserzeugende oder anderweitig “besonders besorgniserregende Stoffe” gibt es in den Versuchen in Keinsteins Kiste nicht.

Doch auch von Haushaltschemikalien und -zutaten können Gefahren für Umwelt und Gesundheit ausgehen. Deshalb gebe ich euch ein paar einfache Regeln zum Umgang damit auf den Weg. Wenn ihr euch daran haltet, sind die Experimente in Keinsteins Kiste praktisch ungefährlich!

Checkliste zum Sicheren Umgang mit Chemikalien

Druckt euch diese Liste am besten aus und habt sie griffbereit, wenn ihr euch ans Experimentieren macht. Hier geht es zum Download! So könnt ihr jederzeit nachschauen, was zu tun ist, wenn ihr unsicher seid. Denn Sicherheit geht immer vor!

1. Bevor ihr Chemikalien verwendet, lest euch die Warnhinweise auf der Verpackung durch!

Möglicherweise gefährliche Stoffe, die verkauft oder in Betrieben bzw. öffentlichen Einrichtungen verwendet werden, müssen dem “global harmonisierten System” (GHS) folgend deutlich gekennzeichnet werden. Folgende Symbole auf Chemikalienflaschen und -Verpackungen weisen euch auf die wichtigsten Gefahren hin:

GHS-Symbol Achtung gefährlich!

Vorsicht gefährlich: Geht achtsam mit diesem Stoff um. Neben dem Symbol wird schriftlich erläutert, wovor genau ihr euch in Acht nehmen müsst. Findet man zum Beispiel auf Stoffen, die Haut und Schleimhäute reizen oder Allergien auslösen können.

leicht_entzündlich

Leicht entzündlich: Dieser Stoff brennt sehr leicht und schnell. Haltet ihn unbedingt von offenem Feuer und Funken fern! Brennsprit (Spiritus) und andere organische Lösungsmittel tragen dieses Zeichen.

brandfoerdernd

Brandfördernd: Haltet auch diesen Stoff von offenem Feuer fern. Die meisten Stoffe mit diesem Symbol können Sauerstoff freisetzen oder sind auf andere Weise reaktionsfreudig, sodass sie einen Brand unkontrolliert anheizen können!

Ätzend: Schlimmer als reizend. Dieser Stoff kann Haut und Schleimhäute ernsthaft verletzen und empfindliche Materialien beschädigen. Findet man auf Säuren, Basen und starken Oxidationsmitteln.

umweltgefaehrdend

Umweltgefährdend: Dieser Stoff ist giftig für Wasserlebewesen wie Fische, Wirbellose und Kleinstorganismen. Gebt davon der Umwelt zuliebe nichts in den Abluss oder den Hausmüll, sondern bringt Reste zu einer Schadstoff-Sammelstelle!

Gas_unter_Druck

Gas unter Druck: In diesem Behälter befindet sich ein Gas, das sich stark ausdehnen kann. Lasst ihn nicht in der Sonne stehen oder auf andere Weise heiss werden, damit er keinen Grund zum Platzen hat! Auf Nachfüllkartuschen für Kohlensäure-Spender zu finden!

Gesundheitsgefährdend: Krebserzeugend, Erbgutschädigend oder auf andere Weise gefährlich für bestimmte Organe – möglicherweise auch langfristig. Nehmt diesen Stoff niemals ein und vermeidet, ihn einzuatmen. Verwendet ihn nur, wenn unbedingt nötig und haltet den Behälter fest geschlossen! Diese Kennzeichnung findet ihr auf Fleckbenzin und hochkonzentrierten ätherischen Ölen.

Die folgenden Symbole werden euch im Alltag und in Keinsteins Kiste selten bis gar nicht begegnen:

Giftig: Das Symbol kennt jeder. Schon kleine Mengen dieses Stoffs können eine gefährliche Wirkung entfalten. Daher niemals einnehmen oder einatmen und mit grosser Vorsicht behandeln! Rattengift trägt dieses Symbol.

explosiv

Explosiv: Dieser Stoff kann explosionsartig reagieren, zum Beispiel bei Kontakt mit Feuer, Funken, nach einem Schlag, Reibung, Hitzeeinwirkung oder falscher Lagerung, und beträchtlichen Schaden anrichten. Solche Stoffe gehören ausschliesslich in die Hände von Experten. Sprengstoffe tragen dieses Symbol.

Neben den Gefahrensymbolen findet ihr auf der Verpackung genauere Einzelheiten über die Gefahren und Anweisungen, wie ihr mit dem jeweiligen Stoff umgehen und euch bei einem Unfall damit verhalten solltet. Lest diese Hinweise gut durch und befolgt sie!

2. Findet für eure Experimente einen geeigneten, sicheren Arbeitsplatz!

An einem guten Experimentierplatz ist die Umgebung – mindestens aber die Unterlage – feuerfest, leicht zu reinigen und möglichst beständig gegenüber Säuren, Basen (Laugen), Lösungs- und Oxidationsmitteln. Und dort wird nicht mit Lebens- oder Körperpflegemitteln umgegangen.

Die Küche ist also kein geeigneter Ort zum Experimentieren! (Es sei denn, ihr verwendet ausschliesslich Lebensmittel.)

Ausserdem sollte sich euer Experimentierplatz leicht lüften lassen. Bei schönem Wetter kann er deshalb durchaus draussen sein.

Eine alte Küchenarbeitsplatte gibt eine ideale Unterlage zum Experimentieren ab – ein glatter, versiegelter bzw. lackierter Holztisch oder nicht poröser Stein bzw. Fliesen oder Edelstahl tun es aber ebenso. Marmor und Kalkstein sowie Aluminium sind allerdings ungeeignet – sie werden von Säuren angegriffen!

Wenn euch das makellose Aussehen des Möbels eurer Wahl wichtig ist, testet aus, ob die Oberfläche Lösungsmitteln oder aggressiven Stoffen, die ihr verwendet, standhält. Oder benutzt einfach einen alten Tisch, dem Flecken und Macken nicht mehr schaden.

3. Bewahrt gefährliche Chemikalien für Kinder unzugänglich auf!

Jeder Putzmittelschrank und jede Hausapotheke sollten dieser Anforderung entsprechen: Abschliessbar oder so hoch gelegen, dass unbedarfte kleine Forscher nicht allein herankommen und sich mit gefährlichen Stoffen verletzen oder vergiften können!

4. Tragt beim Experimentieren passende, sichere Kleidung!

Die perfekte Forscher-Bekleidung bedeckt den Körper möglichst weitgehend, ist schwer entflammbar und möglichst widerstandsfähig gegenüber ätzenden Stoffen. Laborkittel bestehen deshalb meist aus Baumwolle, die diese Eigenschaften erfüllt. Wer sich keinen Laborkittel leisten möchte, ist mit einem langärmeligen Baumwollhemd ebenso gut bedient.

Baumwoll-Herrenoberhemden geben übrigens tolle Labor- und Malkittel für Kinder ab: Einfach die Ärmel auf die richtige Länge umschlagen oder kürzen und umnähen und mit der Knopfleiste nach hinten über die Kleidung streifen!

Tragt zudem beim Umgang mit ätzenden Stoffen möglichst lange Hosen und geschlossene Schuhe, sowie Putz- oder Einmalhandschuhe und eine Schutzbrille (als Brillenträgerin begnüge ich mich beim Umgang mit “milden” Haushalts-Säuren wie Essig mit meiner “normalen” Brille – eine Schutzbrille mit Seitenflügeln ist letztendlich aber sicherer.

5. Beim Experimentieren wird nicht gegessen oder getrunken!

Wer Chemikalien an den Händen hat, läuft Gefahr, beim Essen oder Trinken etwas davon mit aufzunehmen. Haltet Essen und Getränke daher räumlich vom Experimentierplatz getrennt. Wenn ihr zwischendurch etwas essen oder trinken möchtet, zieht allfällige Handschuhe aus und wascht euch vorher (und nachher) die Hände. Das gleiche gilt für den Gang aufs stille Örtchen!

Bewahrt ausserdem niemals Chemikalien in Lebensmittelverpackungen auf! Wenn ihr PET-Flaschen, Honiggläser oder ähnliches beim Experimentieren wiederverwenden möchtet, entfernt zuvor alle Lebensmitteletiketten und beschriftet die Gefässe deutlich mit dem neuen Inhalt!

6. Kein offenes Feuer beim Experimentieren!

Beim Experimentieren wird also nicht geraucht! Haltet ausserdem Kerzen und andere Feuerquellen von eurem Experimentierplatz fern – ganz besonders, wenn ihr mit brennbaren Lösungsmitteln arbeitet! Wenn ihr bei einem Experiment etwas anzünden müsst, legt die Zündquelle – Streichhölzer, Feuerzeug oder ähnliches – gleich danach in sicherer Entfernung auf die Seite. Lasst Feuer ausserdem niemals unbeaufsichtigt.

7. Haltet Chemikalienbehälter immer sicher verschlossen!

Öffnet Chemikalienbehälter immer erst, wenn ihr etwas daraus entnehmen wollt, und macht sie danach sofort wieder zu! So wird nichts verschüttet, wenn ihr versehentlich mal etwas umstosst.

Wenn ihr Chemikalienbehälter durch die Wohnung tragen oder über längere Strecken transportieren müsst, stellt sie in eine Kunststoffwanne oder einen Eimer und tragt diese/n. Sollte beim Transport etwas auslaufen oder kaputtgehen, bleibt die potentiell gefährliche Sauerei so auf die Wanne / den Eimer beschränkt.

8. Lagert und verwendet Chemikalien in Gefässen aus Glas, reaktionsträgem Kunststoff oder Edelstahl!

Ihr wollt ja nicht, dass eure Zutaten mit dem Gefäss statt miteinander reagieren. Obwohl zerbrechlich ist Glas das ideale Material für Versuchsgefässe: Es hält allen Stoffen, die in den Versuchen in Keinsteins Kiste Verwendung finden, stand, kann schadlos erhitzt werden – und man kann durchschauen. Kunststoff-Behälter aus Polyethylen (PE) oder Polypropylen (PP) reagieren ebenfalls nicht mit ihrem Inhalt, halten allerdings nicht jeder Hitze stand. Ein grösseres Volumen, zum Beispiel ein Wasserbad, findet auch gut in einem ausrangierten Edelstahl-Kochtopf Platz.

9. Entsorgt Chemikalen gemäss den Hinweisen in der Versuchsbeschreibung oder auf der Verpackung!

DIE UMWELT WIRD ES EUCH DANKEN!

Wenn es nach den Experimenten in Keinsteins Kiste etwas zu entsorgen gibt, findet ihr entsprechende Hinweise am Ende des jeweiligen Artikels. Lest daher vor dem Experimentieren die Anleitung vollständig durch! Gehört ein Stoff über eine Schadstoff-Sammelstelle entsorgt oder seid ihr euch dessen unsicher, lagert die Reste sicher verschlossen, bis ihr sie dort hinbringen könnt.

Achtet darauf, besonders bei “Schadstoffen”, nicht mehr als unbedingt nötig von einem Stoff zu verwenden! Je weniger ihr einsetzt, desto weniger Reste müsst ihr nachher umständlich entsorgen!

Und wenn doch etwas passieren sollte:

Wenn ihr mit Chemikalien in Kontakt kommt

  • Wascht Chemikalienspritzer gründlich ab und zieht getränkte Kleidung sofort aus.
  • Wenn ihr etwas in die Augen bekommt: Spült die Augen gründlich, das heisst bis zu 10 Minuten, mit fliessendem Wasser aus und konsultiert bei Beschwerden oder wenn es sich um einen ätzenden Stoff handelt, einen Augenarzt.
  • Wenn ihr etwas eingeatmet habt, hindert die Dämpfe an der Ausbreitung (Gefäss schliessen!) und geht an die frische Luft.
  • Wendet euch mit Beschwerden nach dem Kontakt mit Chemikalien an euren Arzt oder den Giftnotruf:

In der Schweiz (und in Liechtenstein) erreicht ihr ToxInfo Suisse unter der Nummer 145 .

In Deutschland haben die Bundesländer unterschiedliche Giftnotruf-Nummern.

In Österreich erreicht ihr die Vergiftungsinformationszentrale unter +43 1 406 43 43 .

Wenn ein Feuer ausbricht

  • Wenn der Inhalt eines Gefässes brennt, deckt dieses schnell mit einem festen Gegenstand ab. Ein Buch oder ein glattes Holzbrett ersticken die Flammen im Gefäss, bevor sie Feuer fangen können! In einem feuerfesten Gefäss könnt ihr den Inhalt auch einfach ausbrennen lassen.
  • Löscht brennende Flüssigkeiten nicht mit Wasser! Wenn ihr einen CO2-Feuerlöscher habt, ist der die bessere Wahl.
  • Bringt Lösungsmittel und andere brennbare Stoffe auf Abstand!
  • Sollte eine Person oder deren Kleidung brennen, stellt sie zum Löschen sofort mit Kleidung und allem unter die laufende Dusche! Verbrennungen können ebenfalls unter fliessendem kalten Wasser effektiv gekühlt werden. Haltet Verbrennungen sofort – leichtere einige Minuten, schwerere bis zur ärztlichen Versorgung – unter den Wasserhahn oder die kalte Dusche!
  • Wenn ein Brand ausser Kontrolle zu geraten droht, alarmiert die Feuerwehr, schliesst, wenn möglich, Fenster und Türen (nicht verriegeln!) und verlasst das Haus!

Aber keine Sorge: Wenn ihr euch an die Vorsichtsmassnahmen aus dem ersten Teil des Artikels haltet, ist es höchst unwahrscheinlich, dass es so weit kommt.

Somit wünsche ich euch viel Spass beim entspannten und sicheren Experimentieren!

Ausstellung: Die Entdeckung der Welt - Wie aus Kindern Forscher werden

Das ist ein Ball…

Das ist ein Ball : Blaue Holzkugel

und das eine Reise in die Vergangenheit – in meine Vergangenheit:

Bunte Kunststoff-Windräder, wie sie vor 30 bis 40 Jahren jedes Strandgeschäft im Angebot hatte

Denn diese bunten Windräder und das einzigartige Geräusch ihres Flatterns im Seewind gehören zu meinen frühesten Kindheitserinnerungen. An die frühen Seeferien an der Ostsee, wo die bunten Räder zu Dutzenden vor jedem Strandgeschäft zum Verkauf angeboten wurden.

Damals war ich schon mittendrin im Welt entdecken – damit fangen kleine Kinder nämlich gleich nach der Geburt schon an. Oder sogar schon davor. Und sie tun es mit allen Sinnen, die von Geburt an einsatzbereit, wenn auch noch nicht vollständig entwickelt sind. Aber die Entwicklung kommt dann mit dem Forschen und Lernen.

Wie das vor sich geht, könnt ihr noch bis zum 16. Juni in der St. Leonhardskirche in St. Gallen entdecken. Dort findet nämlich die Wanderausstellung “Die Entdeckung der Welt” des Vereins Stimme Q statt. Und danach ist sie in Winterthur – und schliesslich in Bern.

Ich habe von der Stiftung Q für den Besuch der Ausstellung zwei Freikarten für Erwachsene erhalten. Eine davon darf ich am Ende dieses Beitrags für euch verlosen. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Mit dem Ball zurück in Kindertage

Die bunte Holzkugel, die so sehr an das beliebteste Kinderspielzeug erinnert, begleitet mich durch die ganze Ausstellung. Zum Auftakt setzt sie Dioramen in Betrieb, mit welchen verschiedene (heute erwachsene) Menschen mich in ihre Kindheit mitnehmen. Da leuchtet, glitzert, dreht und bewegt es sich symbolisch, während die Protagonisten via Lauschmuschel von ihren Kindheitserlebnissen und -eindrücken erzählen.

Wie bei einem Spint mit Pfandmünze kommt der Ball am Ende immer wieder zurück in meine Hand. Fast immer jedenfalls, denn genau bei den Windrädern bleibt die Kugel plötzlich verschwunden. Und nun?

Wenn es irgendwo klemmt, ist der Kassier am Eingang überaus hilfsbereit. Mit ein paar Handgriffen zaubert er das verlorene “Spielzeug” im Handumdrehen wieder hervor.

Auch weiterhin spricht die ganze Ausstellung (fast) all unsere Sinne an: Augen, Ohren, aber auch der Tastsinn ist gefordert.

Wie aus Neugeborenen Forscher werden: Ein Parcours durch die frühkindliche Entwicklung

An grossräumig verteilten Stationen kann ich die Schritte der Entwicklung von Kindern von der Geburt bis zum vollendeten 4. Lebensjahr mitverfolgen. Gemeinsam entwickeln sich die Sinne, Bewegungs- und Sprachfertigkeiten und aus all dem soziale Kompetenzen – die Fähigkeiten zum Miteinander.

Neben reichlich Lesestoff zur Entwicklung Schritt für Schritt kommen Fachexperten zu einzelnen Tehmen via Lauschmuschel zu Wort. Dazwischen finde ich zur Auflockerung Beispiele, was und wie Kinder wann lernen können. Auf Bildschirmen laufen nämlich Kurzfilme der Bildungsdirektion Zürich (die ihr auch hier finden könnt), die Szenen direkt aus dem Alltag von Kindern und Eltern bzw. Tageseltern zeigen.

Rundblick über die Ausstellung "Die Welt entdecken" in der neugotischen St. Leonhardskirche
Die farbenfrohen Fenster der St. Leonhardskirche harmonieren selbst an einem trüben Tag wunderbar mit den Elementen der Ausstellung.

Forscher Kristóf und die Holzfrucht

Fasziniert beobachte ich gut 3 Minuten lang, wie ein 9 Monate altes Baby im Video zum Forscher wird – auf der Spieldecke und in Mamas Nähe sich selbst überlassen. Sein Forschungsobjekt: ein rotes, gerundetes Stück Holz!

“Kleinkinder können sich dann in etwas vertiefen, wenn sie sich sicher und geborgen fühlen, weder Hunger noch Durst haben, bequem gekleidet und ausgeschlafen sind.”

Fazit des Kurzfilms “Die Holzfrucht”

Dieser Schlussatz aus dem Film zieht sich wie ein roter Faden durch die weitere Entwicklungsgeschichte: Geborgenheit und gleichzeitige Gelegenheit zur Eigenständigkeit sind Grundvoraussetzungen für nachhaltiges Forschen und Lernen.

Naturkunde für die ganz Kleinen

Auch der erste Naturkundeunterricht, im Video um 2- bis 3-Jährige, beläuft sich aufs Schauen und Tasten (und je nach Gegenstand auf Riechen und allenfalls Schmecken): Wie fühlt sich das Schneckenhaus an? Was macht die Schnecke, wenn man sie antippt? Das Gespräch zwischen Kind und Erwachsenen über das Erleben fördert auch die Sprachentwicklung ungemein.

Dabei sein ist alles

Kinder lieben es, die Grossen nachzuahmen. Dabei finden sie wunderbare Lerngelegenheiten Werden sie in Alltagsarbeiten eingebunden, haben sie ausserdem noch das Gefühl, helfen zu können. Das gilt auch für gemeinsames Experimentieren: Wer mitmachen kann, hat daran gleich doppelt Spass!

Besondere Themenfelder: Generation Iphone

Wenn es um die Entwicklung und Förderung von (Klein-)Kindern geht, gibt es in bestimmten Feldern immer wieder heisse Diskussionen. Zwei solchen sind in der Ausstellung eigene Bereiche gewidmet: Den immer häufigeren “modernen” Familienformen von Patchwork bis zu homosexuellen Eltern und der Frage nach dem Einsatz digitaler Medien in der frühkindlichen Bildung und Erziehung. Und letztere macht mich als Bloggerin für Familien und eine der ältesten Digital Natives besonders neugierig.

Welchen Sinn macht es, die Jüngsten mit dem Smartphone spielen zu lassen oder bereits Kindergärten (dieser Begriff meint in der Schweiz die Vorschule!) oder gar Kitas mit Tablets auszustatten? Angebote für diese Altersklasse gibt es in den Appstores ja zuhauf.

Die Experten in der Ausstellung sagen: Keinen! Es gebe keinen Grund, 0 bis 4 Jährige mit Tablets&Co zu versorgen – im Gegenteil: In dieser Zeit lernen Kinder, die reale Welt zu be(greifen). Da bestehe das Risiko, dass in der virtuellen Welt fehlerhafte oder gar unbrauchbare Abläufe und Konzepte erlernt werden.

Meine Sicht auf Tablets & Co für die Kleinsten

Diese Aussage bestätigt mein Bauchgefühl. Ich selbst bin ja noch nicht in, sondern gemeinsam mit der digitalen Welt aufgewachsen. So kam der erste Computer zu uns ins Haus, als ich schon zur Schule ging, und unsere Eltern limitierten die Zeit, die wir Kinder daran verbrachten, streng. Verpasst habe ich dadurch aber nichts.

Im Gegenteil: Ich bin nun nicht nur eine der ersten Digital Natives, sondern auch Teil der letzten Generation, die noch komplett analog – auf die eigenen Sinne und Motorik angewiesen – ihre Welt entdeckt hat (vielleicht rührt daher ja meine ungebrochene Leidenschaft für das Selber-Experimentieren).

Vorerst zumindest: Meine Schwester erzieht ihre Töchter weitestgehend smartphone- und tabletfrei, und das seit mehr als zweieinhalb Jahren ziemlich konsequent. Meinem Bauchgefühl und vor allem nach dem Besuch der Ausstellung unterstütze ich diese Haltung gerne.

Für die Grossen: Frühkindliche Betreuung in der Schweiz

Die Reise durch die frühkindliche Entwicklung nimmt jedoch nur einen Teilbereich der Ausstellung ein. Darüber hinaus liefert die nämlich noch reichlich weiteres Futter für die Diskussion um frühkindliche Betreuung, Bildung und Erziehung, die die Stimme Q schliesslich in die breite Öffentlichkeit tragen will.

So findet sich in der Mitte des Kirchenschiffs ein fantasievolles Steuerpult für die Präsentation einer umfassenden Statistiksammlung. Wieder kommt der Holzball zum Einsatz und ruft selbstständig über das Pult hopsend ein Diagramm nach dem anderen auf der grossen Leinwand auf. Die Diagramme zeigen unter anderem: Es gibt in der Schweiz grosse Lücken betreffend familien- bzw. familiengründungsfördernder Gesetzgebung und Kleinkinderbetreuung.

Ich schwärme ja gerne davon, wie einfach es im Vergleich zu Deutschland hierzulande ist, eine selbstständige Arbeit aufzunehmen. Dagegen wäre eine Familie zu gründen und zu betreuen wohl eine weitaus härtere Nuss als daheim im “grossen Kanton”. Insbesondere in Sachen Elternzeit und Betreuungsangebot scheinen die Eidgenossen noch reichlich Verbesserungsbedarf zu haben.

Das Steuerpult für die Statistiksammlung: Der blaue Ball unterhalb der grünen Tafel zeigt: Obwohl oder gerade weil in der Schweiz sehr viele Frauen berufstätig sind, gibt es Verbesserungsbedarf in Sachen Elternzeit und Kleinkinderbetreuung.

Für die Kleinen: Spielspass im Ausstellungsraum

Während die Grossen sich mit Lesestoff, Filmen und Statistik vergnügen, kommen auch die kleinen Ausstellungsbesucher nicht zu kurz. Kriechtunnel und weiche Matten zwischen den Stationen laden zum Spielen und Toben ein – und hier beschwert sich niemand, wenn es dabei mal ein wenig laut wird.

Und wer lieber nah bei Mami und Papi bleibt, kann gleich noch das ein oder andere Exponat nach eigenen Vorstellungen gestalten. Einige der Schautafeln sind nämlich Magnetwände mit beweglichen Elementen, die nach Lust und Laune irgendwo angeheftet werden können.

Das Highlight ist aber die Spielstation im Herzen der Ausstellung. Die grosse Kugelibahn für den Holzball hat (nicht nur) meinen Spieltrieb gleich geweckt. Eine Rutsche, eine Höhle “nur für Kinder” (es sei denn, die Grossen schaffen es irgendwie durch den Kriechtunnel oder den niedrigen Seiteneingang hinein) und der grosse Konfetti-Touchscreen laden zu ganz eigenen Abenteuern ein.

Der mannshohe Konfetti-Screen, auf welchen ein Beamer bunte Formen projeziert, ist besonders bei den Primarschülern beliebt. Man kann mit den virtuellen Konfetti nämlich interagieren. Jede Konfettifarbe hat eine andere Eigenschaft, die bei Berührung mit den Händen zu Tage tritt: “Die Pinken sind die besten!”, heisst es bei den begeisterten Kids (die Pinken blähen sich nämlich riesig auf, ehe sie wie Seifenblasen platzen), die Blauen sind aber ebenso beliebt (sie fahren bei Berührung Zacken aus und können per Wisch quer über den Screen geschossen werden. Auf ihrem Weg bringen sie dann andere Konfetti zum Platzen).

Durch ein Bullauge in Elternhöhe kann ich den Screen und die Kinder, die direkt hinter der Wand in der Höhle stehen, im Spiegel beobachten. Dabei zeigt sich: So faszinierend die Möglichkeiten der digitalen Technik auch sind, die “klassischen” Spielgeräte wie Rutsche und Kugelibahn verlieren darüber nicht ihren Reiz: Alle Teile der Spielinsel werden von den jungen Gästen gleich eifrig bevölkert.

Ein kleines Mädchen ist fasziniert vom riesigen Konfetti-Bildschirm. Wenn er will, kann der Papi seine Tochter durch den Kriechtunnel jederzeit erreichen.
29.03.2017; “Die Entdeckung der Welt” mit dem Konfettiscreen in Bellinzona (Michela Locatelli/photolocatelli.ch)

Ihr wollt die Ausstellung besuchen? Das solltet ihr wissen

Habt ihr nun auch Lust zum Mitspielen und -lernen? Dann könnt ihr die Ausstellung “Entdeckung der Welt” noch bis zum 16. Juni 2019 jeden Dienstag bis Sonntag (ausser Karfreitag) von 10 bis 18 Uhr in der St.Leonhardskirche in St.Gallen besuchen. Die Kirche ist nur wenige Hundert Meter vom Hauptbahnhof entfernt und von dort aus nicht zu übersehen.

Der Eintritt kostet für Erwachsene CHF 8, für Schüler und Auszubildende über 16, Studenten, AHV- und IV-Bezüger CHF 6. Für Kinder unter 16 ist der Eintritt inklusive Spielspass frei.

So lange es draussen noch frisch ist: Zieht euch in jedem Fall warm an! Wie jede ältere Kirche lässt sich auch diese nur schwerlich beheizen – und ich habe nach all der spannenden Lektüre im Stehen in der dünnen Sommerjacke ziemlich gefroren!

Alle Infos und Daten zu den zahlreichen Zusatzveranstaltungen rund um das Projekt findet ihr zudem auf der Website zur Ausstellung.

Gewinnspiel: Eine Freikarte (Erwachsene) für euch!

Wie nehmt ihr teil?

Kommentiert bis zum 18.04.2019 unter diesem Beitrag, mit wem oder warum ihr die Ausstellung in St. Gallen besuchen möchtet und noch eine Karte braucht. Gebt dazu eine gültige Email-Adresse an – der Gewinner erhält die Karte von mir als pdf-Datei zum Ausdrucken oder digitalen Transport mit der Eventfrog-App!

Anschliessend werde ich den Gewinner unter den gültigen Kommentaren auslosen.

Teilnahmebedingungen

  • Das Gewinnspiel wird von Keinsteins Kiste in Zusammenarbeit mit dem Verein Stimme Q veranstaltet. Vielen Dank für die Bereitstellung des Preises!
  • Das Gewinnspiel startet am 13. April 2019 und endet am 18. April 2019 um 24.00 Uhr.
  • Die Teilnahme am Gewinnspiel ist kostenlos.
  • Ihr müsst mindestens 18 Jahre alt sein (Liebe Kinder: Tut euch mit euren Eltern, Grosseltern oder anderen Erwachsenen zusammen!).
  • Gewinnpreis ist eine Freikarte für die Ausstellung “Die Entdeckung der Welt” in der St.Leonhardskirche in St.Gallen, gültig an einem beliebigen Datum bis zum 16. Juni 2019.
  • Es gibt 1 Los für einen Kommentar mit gewünschtem Inhalt (s.o.).
  • Eine Auszahlung des Gewinns in bar ist nicht möglich. Der Rechtsweg ist ausgeschlossen.
  • Der Gewinner wird ausgelost und per eMail benachrichtigt.
  • Sofern die Ausschüttung eines Gewinns an einen in der Ziehung ermittelten Gewinner nicht möglich ist, weil eine Gewinnbenachrichtigung und/oder Gewinnzustellung scheitern und nicht binnen einer Woche nach der Ziehung nachgeholt werden können, verfällt der Gewinnanspruch.
  • Der Veranstalter behält sich das Recht vor, das Gewinnspiel aus sachlichen Gründen jederzeit ohne Vorankündigung zu modifizieren, abzubrechen oder zu beenden.

Weitere Stationen der Wanderausstellung

St. Gallen ist euch zu weit weg oder es passt euch zeitlich nicht mehr? Auch dann könnt ihr die Ausstellung noch besuchen. Sie ist nämlich bis Ende des Jahres in der Schweiz unterwegs:

Vom 21.08. bis 20.10.2019 findet ihr sie im Eulachpark, Halle 710 in Winterthur und vom 15.11. bis 22.12.2019 im Kornhausforum in Bern.

Bis dahin habe ich aber noch eine Anregung zum Weltentdecken für eure Jüngsten zu Hause.

Und wie könnte ein altersgerechtes MINT-Experiment für Kleinkinder aussehen?

In der Ausstellung lernen wir: Voraussetzungen für nachhaltiges Erleben und Lernen – und das lässt sich auch auf Naturwissenschaften ummünzen – sind: Eine sichere, anregende Umgebung zum Selbsterkunden, und Gelegenheit zum Mitmachen bei gemeinsamen Experimenten. Ein spannender Versuchsgegenstand für Kleinkinder kann dabei aus Erwachsenensicht durchaus sehr simpel sein.

Naturwissenschaftliches zum Selbererkunden: Magnete!

Für Kinder megaspannende und ebenso sichere Gegenstände zum Selbsterkunden sind Dauermagnete! Ich habe schon in frühen Jahren die Magnetkupplungen meiner Holzeisenbahn-Wagen geliebt und fleissig damit experimentiert. Magnete gibt es aber auch in vielen Formen und Farben für den Kühlschrank oder die Magnettafel.

Welche Magnete sind für Kinder geeignet?

Wichtig ist, dass Magnete für Kinder ausreichend gross oder/und mit den sie umgebenden Materialien robust verarbeitet sind, sodass sie nicht verschluckt werden können. Dann nämlich könnt ihr die Kinder ganz beruhigt allein damit umgehen lassen (die Magnetfelder von einfachen Kühlschrank- oder Spielzeugeisenbahn-Magneten sind nicht gefährlich und vor allem nicht stark genug, um kleine Finger einzuklemmen.

Anders die sogenannten “Supermagnete” aus Legierungen mit dem Seltenerd-Metall Neodym: Wenn diese gross genug sind, um nicht verschluckt zu werden, sind ihre Magnetfelder so stark, dass sie für Kinder unlösbar an Eisen haften bleiben und (nicht nur) einen zarten Kinderfinger schmerzhaft quetschen können.

Was es über Magnete zu erforschen gibt

Mit einem oder mehreren Magneten können Kinder sich lange allein beschäftigen. Noch mehr Spass macht es jedoch, die wundersamen Magnetkräfte gemeinsam zu erkunden. Über folgende Fragen und Beobachtungen könnt ihr mit euren Kindern sprechen und dazu experimentieren:

  • Magnete ziehen Dinge an. Welche? Und welche nicht?
  • Magnete ziehen Dinge auch aus Entfernung an. Wie gross darf die sein?
  • Magnete ziehen Dinge auch durch andere hindurch an. Wie dick dürfen die sein?
  • Zwei Magnete ziehen sich nicht nur an, sie stossen sich auch ab. Sind die anziehenden und abstossenden Seiten eurer Magnete mit Farben markiert?

Dabei werden unweigerlich Fragen auftauchen. Woher rühren die “Zauberkräfte” der Magnete? Gibt es Magnete mit nur einer “Seite” (einem Pol)? Kann man solche erzeugen, indem man einen Magneten durchschneidet? Wenn ihr die richtigen Antworten auf solche Fragen parat haben wollt, findet ihr sie in meinem Artikel zu den Magnetkräften in Keinsteins Kiste.

Mehr Experimente für die ganz jungen Forscher

Da findet ihr auch viele weitere Experimente für kleine(re) Kinder. Hier sind einige Beispiele:

Und viele andere mehr.

Zu all diesen Experimenten findet ihr Erklärungen, die für die Kleinsten vielleicht zu weit gehen, aber euch Grossen dabei helfen sollen, den kleinen Forschern ihre Fragen zu ihren Beobachtungen zu beantworten.

Und wie habt ihr die Welt entdeckt? Wie entdeckt ihr sie mit euren Kindern?

Es ist Frühling – eine wunderbare Zeit für Experimente, für die man etwas Platz braucht. Deshalb habe ich heute für euch ein lustiges wie lehrreiches Spektakel für Balkon und Terrasse (oder auch für drinnen): Die Elefantenzahnpasta!

Das bekannte Experiment zeigt eine weitere wichtige Fähigkeit (die Gärung könnt ihr ja hier erforschen), die nicht nur Hefezellen, sondern auch unsere Zellen haben: Die Fähigkeit, sich vor Oxidationsmitteln zu schützen. Und da dabei eine Menge Gas entsteht, kann man diese Fähigkeit für dieses spassige Experiment nutzen.

Ihr braucht dazu

  • Hefe: am einfachsten geht das Experiment mit Trockenhefe
  • ein Gefäss mit schmaler Öffnung: z.B. eine 0,5l PET-Flasche oder ein Reagenzglas
  • etwas warmes Wasser (lauwarm, wie Hefe es gern hat)
  • etwas Geschirrspülmittel
  • ein Oxidationsmittel: Wasserstoffperoxid, als Lösung (3 – 6%) aus der Apotheke/Drogerie
  • Optional: Lebensmittelfarbe
  • Einen Trichter, der auf das schmale Gefäss passt
  • Schutzbrille, ggfs. Labormantel/Malschürze
  • Ein Backblech oder Tablett als Unterlage
Wasserstoffperoxid, Trockenhefe, Spülmittel, Lebensmittelfarbe, Reagenzglas, Schutzbrille, Trichter - das braucht ihr für die Elefantenzahnpasta!

So geht’s

  • Rührt die Trockenhefe in das warme Wasser ein, bis es keine Klumpen mehr gibt.
  • Füllt Wasserstoffperoxid in das schmale Gefäss (bis es zu ca. einem Fünftel (mit 6% H2O2) bzw. zwei Fünftel (mit 3% H2O2) gefüllt ist – verwendet dazu den Trichter!) und mischt Lebensmittelfarbe und einen Schuss Spülmittel hinein.
  • Stellt das Gefäss in das Backblech.
  • Giesst das Hefewasser schnell in das Gefäss und tretet zurück! Die Reaktion beginnt sofort!
Wasserstoffperoxid ist mit roter Farbe und Spülmittel gemischt, die Hefe in Wasser suspendiert
Alles parat: Rechts im Reagenzglas Wasserstoffperoxid-Lösung (Drogisten benutzen gerne lateinisierte Stoffnamen – hier “Hydrogenii peroxidum” , die schonmal zu Kommunikationsschwierigkeiten mit einkaufenden Chemikern führen) mit roter Lebensmittelfarbe und Spülmittel. Links ein Teelöffel Trockenhefe in Wasser. Nun das Linke in das Rechte giessen und los gehts!

Was ihr beobachten könnt

Die Mischung beginnt sofort zu sprudeln und heftig zu schäumen. Wie ein Zahnpastastrang quillt der Schaum aus der Gefässöffnung und ergiesst/schlängelt sich auf dem Backblech aussen herum.

Elefantenzahnpasta quillt aus dem Reagenzglas!
Zahnpasta für Zwergelefanten: Einem der Chemiker-Grundsätze – so viel wie nötig, so wenig wie möglich – zuliebe habe ich den kleinen Massstab im Reagenzglas gewählt. Zudem hatte “meine” Drogerie gerade nur 3% H2O2-Lösung vorrätig – mit 6% käme wohl noch mehr Schaum heraus. Im Übrigen: Ein guter Drogist oder Apotheker fragt nach, was ihr mit der Lösung vorhabt. Nicht irritieren lassen und ehrlich sein – sie geben sie dann schon heraus!

Sicherheitshinweise

Auch wenn sie gerne so genannt wird: Die “Elefantenzahnpasta” eignet sich nicht zum Zähneputzen! Nehmt sie also nicht in den Mund!

Wasserstoffperoxid wirkt ätzend auf Haut und Schleimhäute (die typischen weissen Verletzungen werden manchmal erst verzögert sichtbar und tun manchmal auch dann erst weh). Wenn euch etwas von der Lösung auf die Haut gerät, spült es gründlich mit fliessendem Wasser ab. Sollte euch trotz aller Vorsicht etwas ins Auge spritzen, spült das Auge sehr gründlich mit fliessendem Wasser aus (10 Minuten lang ist Labor-Standard!) und geht bei Beschwerden zum Augenarzt!

Ausserdem kann Wasserstoffperoxid farbige Textilien bleichen. Der Labormantel bzw. die Malschürze soll eure Kleider davor schützen.

Die “Zahnpasta” selbst enthält kaum bis kein Wasserstoffperoxid mehr und kann daher gefahrlos angefasst werden.

Entsorgung

Die “Zahnpasta” und Reste im Reaktionsbehälter können mit viel Wasser in den Abfluss entsorgt werden. Übrige Wasserstoffperoxidlösung könnt ihr im dicht schliessenden Originalbehälter in einem dunklen Schrank aufbewahren und später für weitere Experimente verwenden.


Was passiert da – Wie entsteht die Elefantenzahnpasta?

Wasserstoffperoxid – H2O2 – ist eine recht instabile Verbindung. Unter alltäglichen Bedingungen ohne Reaktionspartner zerfällt es sehr langsam in Wasser und Sauerstoff:

2H_{2}O_{2}\rightarrow 2H_{2}O+O_{2}

Kommt Wasserstoffperoxid allerdings mit anderen Stoffen in Berührung, oxidiert es die meisten davon. Das gilt insbesondere für die Bestandteile von Lebewesen. Deshalb solltet ihr bei diesem Experiment Schutzbrille und -kleidung tragen!

Schutz vor Oxidation durch Aufräum-Enzyme

Wenn die Zellen sauerstoffatmender Lebewesen (Menschen, Tiere, Hefepilze,…) Energie aus Sauerstoff gewinnen, kann in ihnen jedoch H2O2 als unerwünschtes Nebenprodukt entstehen (so ausgeklügelt die Reaktionswege sind, fehlerfrei laufen sie noch lange nicht). Damit dieses Wasserstoffperoxid nicht wild herumoxidiert, haben die Zellen ein Aufräumkommando, das durch Fehler entstehendes H2O2 schnellstmöglich aus der Welt schafft.

Dabei handelt es sich um Enzyme mit dem Namen Katalase. Das sind Proteine, die die natürliche Zersetzung von Wasserstoffperoxid in Wasser und Sauerstoff um ein Vielfaches beschleunigen – indem sie den Ablauf der Reaktion erheblich erleichtern.

Ein Biokatalysator erleichtert den Reaktionsablauf

Denn Reaktionen laufen dann leichter ab, wenn weniger Energie nötig ist, um sie zu starten. Ein Stoff, der eine Reaktion beschleunigen kann (ohne selbst abzureagieren), indem er die zum Start der Reaktion nötige Aktivierungsenergie verringern kann, wird Katalysator genannt.

Im Auto ist der Katalysator eine Metalloberfläche, an welcher giftige Abgase zu weniger giftigen Stoffen reagieren (mehr dazu findet ihr hier). In Lebewesen heissen die Katalysatoren Enzyme. Enzyme sind also Proteine, die Reaktionen erleichtern und damit beschleunigen. Die Katalasen gehören unter diesen zu den schnellsten Enzymen überhaupt: Ein einziges Katalase-Molekül schätzungsweise bis zu 10 Millionen H2O2-Moleküle in der Sekunde umsetzen! Das hat zur Folge, dass die Geschwindigkeit des Wasserstoffperoxid-Abbaus mit Katalase praktisch nur davon abhängt, wie viel H2O2 das Enzym in gegebener Zeit “zu fassen” bekommt.

Gasentwicklung dank Katalase

Damit ist die Katalase bestens geeignet, um durch Fehler in anderen Reaktionsabläufen entstehendes Wasserstoffperoxid sofort wieder verschwinden zu lassen – oder um aus Wasserstoffperoxid, das von aussen eindringt, in kürzester Zeit grosse Mengen Sauerstoff-Gas freizusetzen.

Wenn wir unsere Hefe durch Mischen mit Wasserstoffperoxid-Lösung (relativ) grossen Mengen H2O2 aussetzen, stürmen diese kleinen Moleküle die Hefezellen und werden dort postwendend zu Wasser und Sauerstoff-Gas umgesetzt. Sollten die Zellen dabei platzen oder ihre Aussenwände kaputt oxidiert werden, kommt die Katalase zudem direkt mit der Wasserstoffperoxid-Lösung in Berührung und das Gas entsteht noch schneller.

Nun brauchen gasförmige Stoffe ein Vielfaches mehr an Platz als flüssige Stoffe aus den gleichen Teilchen, sodass sich das Sauerstoff-Gas sehr schnell ausdehnt. Da unser Gemisch aber Seife enthält, werden die entstehenden Sauerstoffportionen in winzige Seifenbläschen eingeschlossen (über diese und andere Superkräfte von Seife könnt ihr hier nachlesen): Es entsteht Schaum.

Elefantenzahnpasta von Nahem gesehen: Die Schaumbläschen sind erkennbar.
Wenn ihr euch die “Elefantenzahnpasta” ganz aus der Nähe anschaut, könnt ihr die kleinen Schaumbläschen erkennen.

Und dieser Schaum, nass von Seifenwasser und Hefezellresten, quillt als “Elefantenzahnpasta”-Schlange aus dem Gefäss heraus.

Zusammenfassung

Die “Elefantenzahnpasta” besteht also aus Schaum aus Seife und Sauerstoff, der durch “Überfütterung” der Oxidationsschutz-Enzyme von Hefezellen mit Wasserstoffperoxid entsteht.

Auch Menschenzellen haben Katalasen, die den Abbau von Wasserstoffperoxid in der gleichen Weise beschleunigen: Wenn Wasserstoffperoxid in unsere Haut gelangt, entstehen im Gewebe kleine Sauerstoffbläschen, welche wir als die weissen Verletzungen sehen können.

Wichtig: Die Schutzenzyme des Körpers sind genau darauf ausgelegt, solche Oxidationsmittel zu entfernen, die bei Fehlern in zelleigenen Prozessen entstehen. Andere Oxidations- und Bleichmittel, insbesondere unter dem Kürzel “MMS” als “Wunderheilmittel” vertriebene gefährliche Chlorverbindungen gehören da nicht zu! Gegen solche Stoffe hat der menschliche Körper keine eigenen Schutzmassnahmen!

Und habt ihr das Elefanzenzahnpasta-Experiment schon einmal ausprobiert? Wozu sonst verwendet ihr Wasserstoffperoxid?

Rätsel-Experiment für Kinder: Womit funktioniert der Eiswürfel-Kran?

Wenn es draussen kalt und grau ist, mache ich es mir gerne im Warmen gemütlich. Aber was tun an langen Tagen daheim? Ich habe für euch ein winterliches Rate-Experiment:

Mit welcher “magischen” Substanz könnt ihr einen Eiswürfel an einem Bindfaden befestigen und hochheben?

Nein, ich meine nicht Klebstoff. Der würde an einem Eiswürfel soundso nicht haften, sondern ratzfatz wieder abgehen, wenn das Eis schmilzt. Es gibt jedoch einen anderen Stoff, der den Bindfaden dank eines raffinierten physiko-chemischen Tricks ganz wunderbar am Eiswürfel haften lässt.

Lasst die Kinder den “magischen” Stoff erraten!

Welcher Stoff kann sowas? Lasst insbesondere eure Nachwuchs-Forscher darüber nachdenken (und ratet selbst mit, wenn ihr noch nicht darauf gekommen seid), bevor ihr weiter (vor-)lest. Dann könnt ihr nach folgender Anleitung ganz einfach selbst ausprobieren, ob ihr recht hattet.


Experiment: Wir bauen einen Eiswürfel-Kran


Ihr braucht dazu

  • einen Eiswürfel
  • ein Glas Wasser
  • einen stabilen Holzstab(Schaschlikspiess etc.)
  • ein Stück Bindfaden
  • Zucker oder Salz oder Pfeffer oder Kaugummi
Das braucht ihr: Glas mit Wasser, Holzspiesse, Bindfaden, Eiswürfel

Nur mit einem dieser Stoffe funktioniert das Experiment. Nennt den Nachwuchs-Forschern ruhig diese Vier zur Auswahl. Vielleicht kommen sie selbst darauf, was sie wirklich brauchen. Stattdessen könnt ihr auch alle vier Möglichkeiten ausprobieren.

So geht’s

  • bindet das Stück Bindfaden an euren Stab, sodass ein kleiner Kran entsteht
  • legt den Eiswürfel in das Wasserglas: Er schwimmt (Wieso? s. hier–>Eis wächst)
  • fragt spätestens jetzt die Nachwuchs-Forscher: Was glaubt ihr: Welche der genannten Zutaten ist geeignet, um den Eiswürfel an den Faden zu heften?
  • streut etwas von der “magischen” Substanz auf den Eiswürfel und legt das freie Ende des Fadens dazu.
  • wartet ca. 30 Sekunden
  • hebt den Eiswürfel vorsichtig am Faden aus dem Wasser.

Das könnt ihr beobachten

Wenn ihr die richtige Zutat gefunden habt, haftet der Eiswürfel am Faden, sodass ihr ihn aus dem Wasser heben könnt!

Der Eiswürfel hängt frei am Bindfaden!
Geht nur mit der richtigen Zutat: Der Eiswürfel hängt frei am Bindfaden!

Welches ist die richtige “magische” Substanz?

Erinnert ihr euch an die Wirkweise von Streusalz (die habe ich hier erklärt)? Wenn dessen Ionen sich mit Wasser mischen, bringt das Eis in der Umgebung zum Schmelzen. Die Wassermoleküle sind nämlich derart damit beschäftigt, die Salzionen zu umhüllen, dass sie nicht mehr am stetigen Schmelzen und Gefrieren, das sich zwischen Eis und Wasser abspielt, teilhaben können.

Und dann – so besagt es das Gesetz von Le Châtelier – müssen diese Wassermoleküle ersetzt werden. Indem mehr Eis zu flüssigem Wasser schmilzt, als es das normalerweise tut.

Das Schmelzen aber verbraucht Energie, entzieht der Umgebung also Wärme. Die Umgebung von Salz und Faden kühlt also ab, bis schliesslich selbst das Salzwasser mitsamt dem Faden am Eiswürfel festfriert!

Entsorgung

Sobald das Eis geschmolzen ist, könnt ihr das Salzwasser einfach in den Abfluss geben. Zum Blumengiessen eignet es sich wahrscheinlich nicht mehr, da die Pflanzen zu viel Salz nicht vertragen.

Alltagstipp: Eis und Salzwasser als Kühlmittel

Im Labor nutzen Chemiker die Abkühlung, die Salz in Eiswasser verursacht, zur Kühlung von Experimenten, bei denen zu viel Wärme frei wird. Streusalz ist ein billiges Mittel dafür. Das entstehende Salzwasser ist zudem nicht giftig, sodass es nachher einfach in den Abfluss entsorgt werden kann.

Tafelsalz ist zwar etwas teurer, funktioniert aber ebenso: Wenn eure Getränke im Eiswürfelbad einmal nicht kalt genug werden, gebt etwas Wasser und Salz dazu und rührt vorsichtig, um ein Eisbad zwischen 0°C und -10°C zu erhalten!

Und probiert ihr den Eiswürfelkran selbst aus? Über eure Erfahrungsberichte freue ich mich sehr!

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Experiment im Frühling: Blumen färben

Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

Blogparade: Kinder sind Forscher!

Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

Papa daraufhin: “Aber wir haben doch schon Hortensien im Garten…”

Klein-Kathi: “Aber die sind rosa!” (Und meine Lieblingsfarbe war -und ist- eben blau.)

Papa: “Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.”

Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

Experiment: Wir färben Blumen um

Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

Ihr braucht dazu

  • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
  • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
  • Ggfs. Gummi- bzw. Einmalhandschuhe
  • Eine kleine Vase oder anderes Glasgefäss
  • Ein paar Stunden, ggfs. einen Tag Zeit
Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

Wie ihr das Experiment durchführt

  • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
  • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

  • Füllt das farbige Wasser in die Vase mit den Blumen.

Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

  • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

Was passiert da?

Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen “Rohrleitungen” durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

Die Adern in den Blütenblättern sind deutlich blau gefärbt

Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

Und was ist der “Antrieb” dieser Wasserversorgung?

Pflanzen sind in der Lage zu “schwitzen”: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

Warum funktioniert das nicht mit Topfpflanzen?

Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der “Topf” geradezu unendlich gross ist.

Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel “Wasserblau”.

Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach “Chemie”. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

Entsorgung

Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

Wasser ist spooky: Ein Zaubertrick für Gross und Klein

Bald ist Halloween: Für viele kleine und grosse Hexen und Zauberer rückt damit ein grosser Tag immer näher. Aber was wäre, wenn ihr im schaurig-schönen Kostüm auch tatsächlich zaubern könntet? Ich habe einen einfachen, aber verblüffenden Zauber für euch, mit dem ihr an eurer Halloween-Party sicher für Aufregung sorgen könnt! Und um Ärger mit dem EZD (dem Eidgenössischen Zauberei-Departement…) zu vermeiden, gibt’s auch eine wasserdichte naturwissenschaftliche Erklärung dazu.

Von Harry Potter zum verhexten Wasser

Bestimmt kennst du Harry-Potter – und vielleicht auch seine wilde Begegnung mit einem Drachen in “Harry Potter und der Feuerkelch”. Um eine Aufgabe in einem Wettkampf zu erfüllen, muss Harry diesem Drachen in einer Arena ein Ei entwenden. Um überhaupt eine Chance gegen den wildgewordenen Feuerspeier zu haben, ruft der Jungzauberer  dazu mit einem einfachen Zauber seinen Flugbesen in die Arena. Die Wirkung des Spruchs: Der Besen saust von seinem Lagerplatz ausserhalb der Arena auf den Zauberstab und seinen Besitzer zu.

Diesen Kunstgriff kannst auch du ganz einfach nachmachen – vielleicht nicht mit einem Besen und nicht über eine so grosse Entfernung – aber mit einem einfachen Kunststoff-Zauberstab und Wasser. Und schon das wird deine Freunde verblüffen und vielleicht sogar zum Gruseln bringen!

Was du dazu brauchst

  • Einen Wasserhahn am Waschbecken oder einem Getränkespender – hauptsache, du kannst einen millimeterdünnen Wasserstrahl daraus fliessen lassen
  • Einen Kunststoff-Zauberstab (ein Spielzeug ist ebenso geeignet wie der Einweg-Plastiklöffel, den ich verwende – aber probiere das Experiment vor der grossen Aufführung aus, denn nicht jeder Kunststoff funktioniert gleich gut!)
  • Ein Kleidungsstück aus echter Wolle – zum Beispiel ein Schal, Wollhandschuhe oder eine Strickjacke. Besonders eindrücklich wirkt das Ganze, wenn das Woll-Stück Teil deines Kostüms ist.

Wie du den Zauber vorführst

  1. Öffne den Wasserhahn nur ein wenig, sodass so gerade eben ein stetiger, aber millimeterdünner Wasserstrahl herausläuft.
  2. Reibe deinen Zauberstab kräftig mit dem Kleidungsstück aus Wolle (ein guter Zauberer “beschäftigt” sein Publikum währenddessen anderweitig, zum Beispiel im Gespräch).
  • Führe den Stab vorsichtig in die Nähe des Wasserstrahls und sprich “Accio Wasserstrahl!”. Berühre dabei in keinem Fall das Wasser mit dem Stab!
  • Der zuvor senkrecht fallende Strahl wird sich in Richtung des Stabes krümmen!
dünner Wasserstrahl und verhextes Wasser
Links: Ein dünner Wasserstrahl – Rechts: “Accio Wasserstrahl” – deutliche Krümmung um einen elektrostatisch aufgeladenem Plastik-Löffelstiel!

Was dabei passiert

Letzte Woche habe ich ein Experiment gezeigt, das einen Hinweis darauf gibt, wie Wasser und andere Stoffe aufgebaut sind: Wasser besteht, wie andere Stoffe, aus ganz vielen winzig kleinen Teilchen. Die Wasserteilchen haben dabei eine besondere Eigenschaft: Sie sind elektrisch geladen!

Über elektrisch geladene Teilchen

Elektrisch geladene Teilchen spielen in unserem Alltag eine grosse Rolle. So fliessen solche Teilchen durch Stromkabel, wenn wir das Licht einschalten, und bringen die Lampe zum Leuchten. Diese Teilchen haben meist nur eine Ladung – und die ist positiv (+) oder negativ (-). Dafür, dass solche Teilchen überhaupt strömen, sorgt eine grundlegende physikalische Gesetzmässigkeit: Gleichartige Ladungen stossen sich ab, verschiedene Ladungen ziehen sich an. So bewegen sich die negativ geladenen “Strom-Teilchen” oder “Elektronen” vom negativ geladenen Minuspol einer Stromquelle weg und zum positiv geladenen Pluspol hin.


Wasserteilchen tragen dagegen zwei verschiedene Ladungen: Wie ein Magnet tragen sie an jeder Seite eine! (Da zwei verschiedene Ladungen einander aufheben, merkt man das den winzigen Wasserteilchen mit unseren groben Sinnen normalerweise nicht an.)

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Ein Wasserteilchen trägt zwei elektrische Ladungen: Die negative Seite (-) ist rot, die positive Seite (+) ist blau schattiert.

Das führt dazu, dass die Plus-Seiten der Wasserteilchen die Minus-Seiten anziehen und umgekehrt. Im Wasser ordnen sich die Teilchen daher so, dass Plus-Seiten den Minus-Seiten gegenüber liegen und niemals gleiche Seiten einander zugewandt sind:

Wasserteilchen: Entgegengesetzte Ladungen ziehen sich an.
By User Qwerter at Czech wikipedia: Qwerter. Transferred from cs.wikipedia to Commons by sevela.p. Translated to english by by Michal Maňas (User:snek01). Vectorized by Magasjukur2[CC BY-SA 3.0], via Wikimedia Commons

Der Kunststoffstab besteht dagegen zunächst aus ungeladenen Kunststoff-Teilchen. Durch das Reiben an der Wolle wird er jedoch aufgeladen (die Wolle übrigens auch – du kannst vielleicht die darauf folgenden Entladungen in der Wollkleidung knistern hören). Wenn er danach in die Nähe des Wasserstrahls kommt, ordnen sich die Wasserteilchen so, dass ihre dem Stab entgegengesetzt geladene Seite zum Stab weist. Die Anziehungskraft zwischen den verschiedenen Ladungen zieht die Teilchen so aus ihrer Flussrichtung – der Wasserstrahl krümmt sich in Richtung des Stabes!

Damit wünsche ich dir viel Spass beim Zaubern – und erzähl doch mal, wie es funktioniert hat!

Von der verschwundenen Flüssigkeit zum Stoffteilchenmodell

Flüssigkeiten – sie sind “nass”, formlos und machen sich überall hin davon, wenn man sie nicht in einem Glas beisammen hält. Und wenn man ein Glas mit Flüssigkeit füllt, ist es voll….oder?

Dieses einfache Experiment zeigt dir eine echt verblüffende Eigenschaft von Flüssigkeiten – und gibt dir und deinen Kindern Anlass, euch mit einem einfachen Teilchenmodell für den Aufbau der Stoffe zu beschäftigen!

Für dieses Experiment brauchst du

  • rund 50ml Brennsprit (Spiritus, “Alkohol”, Ethanol)
  • rund 150ml Wasser, zum Beispiel aus der Leitung
  • 3 Gefässe mit geeichter Skala mit 10-Milliliter-Teilstrichen, zum Beispiel Standzylinder

oder:

  • 1 durchsichtiges Gefäss für mindestens 50ml Flüssigkeit
  • 1 durchsichtiges Gefäss für mindestens 100ml Flüssigkeit
  • einen wasserfesten Filzschreiber (nicht zu dick!)

 

So führst du das Experiment durch

Vorbereitung:

Miss im ersten Standzylinder genau 50 ml Wasser, im zweiten Standzylinder genau 50 ml Brennsprit ab. Schaue dabei von der Seite auf die Linie des Flüssigkeitsspiegels (die Linie sollte dazu auf Augenhöhe sein – setze oder knie dich hin oder beuge dich entsprechend). Wenn beim Wasser eine doppelte Linie bzw. ein unscharfer Ring zu sehen ist: Richte dessen unteren Rand an der Skala aus!

Oder:

  1. Fülle etwa 50 ml in das kleinere Gefäss mit Wasser und markiere den Flüssigkeitsspiegel an der Seite mit dem Filzstift.
  2. Fülle das Wasser vollständig in das grosse Gefäss um. Dann fülle das kleine Gefäss noch einmal – exakt bis zur Markierung (beachte dazu die Hinweise im oberen Abschnitt!) – und fülle den Inhalt erneut vollständig in das grosse Gefäss.
  3. Nun enthält das grosse Gefäss genau doppelt so viel Wasser wie das kleine Gefäss bis zur Markierung fasst. Markiere nun den Füllstand des grossen Gefässes mit dem Filzstift. Danach giesse das Wasser vollständig aus.

Das eigentliche Experiment:

Fülle die zuvor abgemessenen Flüssigkeiten zusammen in einen Standzylinder, schwenke ihn etwas und warte, bis die Flüssigkeiten zur Ruhe kommen.

Oder:

  1. Fülle das kleine Gefäss bis zur Markierung mit Wasser und giesse es vollständig(!) in das grosse Gefäss um.
  2. Wiederhole Schritt 4 mit Brennsprit.
  3. Nun befinden sich Wasser und Brennsprit zusammen im grossen Gefäss. Schwenke es ein wenig und warte, bis die Flüssigkeiten zur Ruhe kommen.
2 mal Flüssigkeit gibt weniger als das 2-fache Volumen!

Links: Einmal Wasser, einmal Brennsprit bis zur Markierung links am Glas. Rechts: Beide Flüssigkeiten gemeinsam im Glas: Zwei Portionen Wasser wurden zur Markierung links am Glas genutzt, eine Portion Wasser und eine Portion Brennsprit miteinander nehmen ein kleineres Volumen ein!

Was du beobachten kannst

Schaue den Flüssigkeitsspiegel von der Seite (auf Augenhöhe) an. Du wirst den Flüssigkeitsspiegel ein wenig unterhalb des Teilstrichs für 100ml bzw. deiner Markierung für “zwei kleine Gefässe” finden! Mehrere Milliliter Flüssigkeit sind scheinbar nach dem Mischen verschwunden!

Für kleine Mathematiker:

Ihr kennt sicher das kleine 1×1: 2×1 = 2 heisst es da. Das bedeutet: Auch 2x die Füllung des kleinen Gefässes (“1”) geben zusammen eine grosse Füllung (“2”), die zwei kleinen Füllungen gleicht. Sollte sie jedenfalls. Trotzdem ist die grosse Füllung aus dem Gemisch von Wasser und Brennsprit ein wenig kleiner als 2!

 

Wo ist die fehlende Flüssigkeit hin verschwunden? Wurde sie weggehext?

Keine Sorge, da bekäme ich ja Schwierigkeiten mit dem eidgenössischen Zauberei-Departement (hätte ich nur nichts gesagt…). Um das Rätsel der verschwundenen Flüssigkeit zu lösen, musst du dir Wasser und Brennsprit einmal genauer ansehen. Sehr viel genauer.

Auf den ersten Blick sind Wasser und Brennsprit sich zum Verwechseln ähnlich: Beide sind farblos und praktisch gleich flüssig. Brennsprit riecht allerdings ein wenig streng, sauberes Wasser dagegen gar nicht. Ausserdem kann man Brennsprit leicht anzünden, Wasser aber nicht. Noch mehr Unterschiede findet man, wenn man sich die Flüssigkeiten noch näher ansieht.

Stell dir vor, du füllst das kleine Gefäss mit Wasser und giesst die Hälfte davon in ein anderes Gefäss. Die beiden Hälften werden sich und der vorherigen ganzen Menge gleichen. Dann teilst du die Wassermenge noch einmal, und noch einmal, und noch einmal. Bald wirst du kleine Tropfen haben, die immernoch wie Wasser aussehen – und übrigens auch wie Alkohol, der sich genauso in immer kleinere Portionen teilen lässt (wenn du das wirklich ausprobierst: Alkohol-Tropfen werden tatsächlich eine etwas andere Form als Wassertropfen haben – das liegt an ihrer unterschiedlichen Oberflächenspannung, die Andrea von Forschen für Kinder hier erklärt).

Irgendwann würdest du eine Lupe brauchen, um die kleinen Tropfen noch zu sehen, dann ein Mikroskop, dann ein stärkeres Mikroskop… Und schliesslich, beim superstarken Hightech-Mikroskop im Forschungslabor, ist Schluss. Die wirklich winzig-, winzig-, winzigkleinen Wasserportiönchen lassen sich nicht weiter halbieren. Und beim Alkohol ist es das Gleiche.

Wasser und Alkohol – und auch alle anderen Stoffe – bestehen aus einer riesigen Anzahl total winzigkleiner Teilchen!

Wenn sich diese Teilchen von einem Gefäss ins anderer giessen lassen, erscheinen sie alle zusammen deinen Sinnen – die zu grob sind, um die winzigkleinen Teilchen einzeln wahrzunehmen – als Flüssigkeit. Halten sie dagegen fest zusammen, siehst und fühlst du sie als festen Gegenstand.

Das Spannende daran ist, dass jeder Stoff aus einer ihm eigenen Sorte Teilchen besteht: Wasser-Teilchen und Alkohol-Teilchen unterscheiden sich – sie sind zum Beispiel unterschiedlich gross!

Stell dir vor, du bist selbst sehr, sehr klein, sodass die Wasserteilchen für dich aussehen wie Reiskörner (oder kleine Perlen). Dann könnten Alkohol-Teilchen aussehen wie getrocknete Kichererbsen (oder grössere Perlen). Was passiert, wenn du diese beiden Teilchen-Sorten miteinander mischst, kannst du tatsächlich ausprobieren:

 

Das Experiment im Modell

Trockne die Gefässe vom Versuch mit Wasser und Brennsprit gut ab. Dann fülle wie in der Versuchsanleitung für die Flüssigkeiten beschrieben Reiskörner und Kichererbsen (oder kleine und grosse Perlen) ab und schütte sie im grossen Behälter zusammen. Schüttle den Behälter gründlich (halte die Öffnung zu, damit deine “Teilchen” nicht hinausfliegen und verloren gehen!) und schaue dir den Inhalt genau an.

Die Füllhöhe des Reis-Erbsen-Gemischs im grossen Behälter, wird unterhalb der Markierung liegen. Die Erklärung dafür ist nun offensichtlich: Die kleinen Reiskörner sind in die Zwischenräume zwischen den grösseren Kichererbsen gerutscht.

Modellversuch mit Reis und Kichererbsen

Reiskörner stehen für Wasser-Teilchen, Kichererbsen für Alkohol-Teilchen. Im Gemisch füllen die Reiskörner die Lücken zwischen den Erbsen: Das spart Platz!

Das können die winzigkleinen Wasser- und Alkohol-Teilchen auch! Die kleineren Wasser-Teilchen füllen die Zwischenräume zwischen den grösseren Alkohol-Teilchen! So nehmen beide miteinander gemischt weniger Platz ein als vgoneinander getrennt  – ohne dass wirklich Flüssigkeit verschwindet.

Und wenn du noch einen Beweis dafür möchtest: Wiege die Flüssigkeiten vor und nach dem Mischen – das Gewicht ändert sich beim Mischen nicht!

 

Entsorgung

Brennsprit, auch auf 50% verdünnt, muss als Sonderabfall entsorgt werden! Fülle ihn in einen dicht schliessenden Behälter und bringe ihn zur Sondermüll-Entsorgungsstelle. Du kannst das Alkohol-Wasser-Gemisch ebenso gut für spätere Experimente oder zum Reinigen aufheben. Die Markierungen mit wasserfestem Filzstift lassen sich zum Beispiel damit von den Gläsern wischen.

Dank Maike “Miss Declare” und Instagram habe ich eine ungewöhnliche Blogparade entdeckt, die um so besser in Keinsteins Kiste passt. Denn es geht bei Meike auf Mathsparks um Mathematik – und ohne Mathematik wäre die Chemie wohl kaum halb so spannend, wie sie ist.

Deshalb geht es heute um Mathematik in der Chemie. Und wer nun abgehobenes Zeug wie die Quantenmechanik fürchtet, kann beruhigt sein: Die Mathematik, die ich meine, erfordert einzig Grundschul- bzw. Primarschul-Kenntnisse und kann euch beim Experimentieren sehr nützlich sein. Denn ich spreche…ähm schreibe… von der Stöchiometrie.

Mit der Stöchiometrie können Chemiker nämlich berechnen, in welchem Verhältnis sie Stoffe einsetzen müssen, damit diese möglichst vollständig miteinander reagieren können.  Und weil sie dabei von der jeweiligen Reaktionsgleichung ausgehen, erkläre ich euch heute

  • Wie man Reaktionsgleichungen richtig liest und versteht
  • Wie die Chemiker sich unvertretbar grosser Zahlen entledigen
  • Wie man von einer Reaktionsgleichung auf abmessbare Stoffportionen kommt

Und damit es auch wirklich Spass macht zeige ich euch, wie ihr damit und mit ein paar Dingen aus dem Haushalt eure eigene Rakete starten lasst!

Wie du Reaktionsgleichungen liest und verstehst

Atome und Moleküle reagieren nicht irgendwie miteinander, sondern in festgelegten Verhältnissen. Diese Verhältnisse werden in einer Reaktionsgleichung zum Ausdruck gebracht. Und obwohl darin anstelle eines Gleichheitszeichens ein Pfeil von links nach rechts auftaucht, handelt es sich dabei um eine richtige mathematische Gleichung. Denn es gilt stets das Gesetz der Massen- bzw. Stoffmengenerhaltung:

Bei einer chemischen Reaktion geht kein Teilchen verloren!

Das bedeutet, links und rechts des Reaktionspfeils steht immer die gleiche Anzahl Atome:

Dabei werden einzelne Atome der jeweiligen Sorten durch Elementsymbole dargestellt. So steht ein “H” in Gleichung (1) für ein Wasserstoff-Atom. Wenn in einem Molekül bzw. Teilchen mehrere Atome der gleichen Sorte vorkommen, verwendet man das Elementsymbol einmal und gibt die Anzahl der Atome als Index an: H2 steht also für ein Molekül, das aus zwei Wasserstoffatomen besteht!

Wenn mehrere einzelne Atome einer Sorte vorkommen, verwendet man das Elementsymbol einmal und schreibt die Anzahl der Atome als Faktor davor:

Gleichung (2) meint das gleiche wie Gleichung (1): Zwei mal ein Wasserstoffatom bzw. zwei Wasserstoffatome reagieren zu einem Wasserstoffmolekül, das aus zwei Wasserstoffatomen besteht.

Auch ganze Moleküle können durch einen Faktor vervielfacht werden:

Gleichung (3) meint also: Vier Wasserstoffatome reagieren zu zwei Wasserstoffmolekülen aus je zwei Wasserstoffatomen. Dabei stehen auf jeder Seite des Pfeils insgesamt 4 Wasserstoffatome – die beiden Seiten der Gleichung sind damit “gleich”, wie es sich für eine richtige Gleichung gehört.

Verschiedene Teilchen werden schliesslich durch “+”-Zeichen verbunden aufgelistet:

Gleichung (4) meint also: Zwei Wasserstoffmoleküle und ein Sauerstoffmolekül (Chemiker sind ebenso bequem wie Mathematiker und sparen sich den Faktor “1”) reagieren zu zwei Wasser-Molekülen. Zur Kontrolle: Links wie rechts stehen insgesamt 4 Wasserstoff- und 2 Sauerstoff-Atome – die Gleichung stimmt soweit.

Das Mol als Chemikerdutzend

Beim Experimentieren geht man allerdings nicht mit einzelnen, sondern mit sehr, sehr, sehr vielen Atomen um. Ein Gramm Wasserstoff besteht aus rund 602’000’000’000’000’000’000’000 (6,02•1023) Atomen! Um die vielen Nullen bzw. die Gleitkommazahlen mit unvorstellbaren Exponenten zu vermeiden, haben die Chemiker festgelegt:

6,02*1023 Atome sind ein Mol Atome.

Dieser Trick ist auch in jedermanns Alltag verbreitet: Wem 12 Eier als eine schwer zu begreifende Menge erscheinen, der  bestellt ein Dutzend Eier und kann mit Hilfe des kleinen 1×1 der 12 auch den Output eines produktiven Hühnerstalls spielend bewältigend (zwei Dutzend sind 24, drei Dutzend 36,…).

Jetzt können Stoffmengen bequem in der Einheit “mol” (ein Mol = 1 mol) angegeben und verwendet werden. Die Gleichung (2) kann man damit auch so lesen: Zwei Mol Wasserstoffatome reagieren zu einem Mol Wasserstoffmolekülen.

Damit gibt die Reaktionsgleichung auch Auskunft über anfassbare Mengen!

Da das Abzählen von Atomen in Zahlen mit 23 Nullen aber mehr als mühsam ist, misst man Stoffmengen in der Praxis mit praktischeren Grössen – wie der Masse, die man wiegen kann. Die Masse/das Gewicht eines Mols Atome eines jeden Elements findet man in fast jedem Periodensystem. Die klugen Chemiker haben die Einheit der dort angegebenen Masse eines Atoms so gewählt, dass der Betrag des Atomgewichts dem Betrag der Masse eines Mols Atome in Gramm entspricht!

Das heisst, sie haben festgelegt, dass das aus 12 Kernteilchen bestehende Kohlenstoffatom 12 atomare Masseneinheiten (“u”) bzw. ein Mol Kohlenstoffatome 12 Gramm wiegt. Damit wiegt ein Kernteilchen rund 1 u, bzw. ein Mol Wasserstoffatome, deren Kerne aus jeweils nur einem Proton bestehen, rund 1 Gramm. Kurz gesagt: Die molare Masse des Wasserstoffatoms beträgt rund ein Gramm pro Mol (1 g/mol).

Die molare Masse eines Moleküls erhält man, indem man die molaren Massen seiner Atome einfach zusammenzählt. Ein Mol Wasserstoffmoleküle H2 wiegt also 1 + 1 = 2 Gramm, d.h. die molare Masse des Wasserstoffmoleküls beträgt 2 g/mol.

Von der molaren Masse zur fertigen Stöchiometrie

Wer also eine Reaktionsgleichung kennt, die über verwendete Stoffmengen Auskunft gibt, kann die Zutaten für eine Reaktion entsprechend abwiegen:

Gleichung (4) bedeutet: 2 Mol Wasserstoff-Moleküle und 1 Mol Sauerstoff-Moleküle reagieren zu 1 Mol Wassermolekülen.

1 Mol Wasserstoff-Moleküle wiegen 2g, 1 Mol Sauerstoff-Moleküle wiegen 32g (das Periodensystem verrät: 1 Mol O-Atome wiegt rund 16g), 1 Mol Wassermoleküle wiegen 1 + 1 + 16 = 18g.

Man kann also auch lesen:  2 * 2 = 4 Gramm Wasserstoff und 32 Gramm Sauerstoff reagieren zu 2 * 18 = 36 Gramm Wasser (der Massenerhaltung ist damit wiederum Genüge getan!).

Wenn ich also 36 Gramm Wasser (z.B. in einer Brennstoffzelle) herstellen möchte, brauche ich dazu 4 Gramm Wasserstoff und 32 Gramm Sauerstoff. Benötige ich mehr Wasser, kann ich diese Zahlen einfach vervielfältigen (für 360g Wasser brauche ich 40g Wasserstoff und 320g Sauerstoff), benötige ich weniger, kann ich mit Bruchteilen arbeiten (für 3,6g Wasser brauche ich 0,4g Wasserstoff und 3,2g Sauerstoff).

Wer sich nun fragt, wie er Gase wiegen soll: Da 1 Mol jedes beliebigen Gases aus kleinen Molekülen bei gegebener Temperatur und gegebenem Druck das gleiche Volumen einnimmt (22,4 l bei 0°C und 1bar), können die Stoffmengen ebenso gut in Volumina, die sich leichter messen lassen, umgerechnet werden. Aber das ist eine andere Geschichte.

Wie Essig und Natron eine Rakete zum Fliegen bringen

Für den Praxistest eurer Stöchiometrie-Kenntnisse eignen sich vielmehr feste und flüssige Reaktionspartner. Die kann man nämlich wesentlich einfacher abmessen. Zum Beispiel für den Start einer Rakete. Und den könnt ihr mit ein paar einfachen Zutaten aus dem Haushalt verwirklichen: Natron und Haushaltsessig!

Im Artikel zu den 3 Party- und Fasnachtsspektakeln mit CO2 könnt ihr nachlesen, wie ihr aus diesen beiden Stoffen reichlich Kohlenstoffdioxid-Gas gewinnen und damit zum Beispiel einen Leuchtvulkan zum Ausbruch bringen könnt. In Reaktionsgleichungen lässt sich das Ganze so darstellen:

Essigsäure (CH3COOH) ist – wie der Name sagt – eine Säure und wird von Natriumcarbonat (Natron, Na2CO3), das eine Base ist, neutralisiert, wobei Kohlensäure (H2CO3) und Natriumacetat (CH3COOH) entstehen. Für den Antrieb entscheiden ist jedoch, was danach passiert:

Kohlensäure ist instabil und zerfällt in Wasser und gasförmiges Kohlenstoffdioxid (CO2)! Und Gase haben die Eigenschaft, dass sie sehr viel Platz einnehmen – wenn sie können. So kann das Kohlenstoffdioxid, wenn es aus einer Düse ausströmt, als Rückstossantrieb für eine Modell-Rakete herhalten. Dazu lässt man die Reaktionen (5) und (6) zwischen Essig und Natron in einem geschlossenen Behälter ablaufen, dessen einziger Ausgang die Antriebsdüse am hinteren Ende der Rakete ist, sodass das Gas dort ausströmen muss, sobald es im Behälter zu eng wird.

Das Problem dabei: Bei den Reaktionen bleibt eine ganze Menge gewichtiger “Abfall” in der Rakete zurück, der mitfliegen muss, zum Beispiel das Natriumacetat aus Reaktion (5) und eine grosse Menge Wasser, die schon im Haushaltsessig enthalten ist und als Lösungsmittel dient. Damit die Rakete bestmöglich fliegen kann, ist es daher wichtig,  dass sie nicht unnötig mit überflüssigem, aber schwerem Material beladen wird (das gilt übrigens für alle Raketentreibstoffe, auch für jene von “richtigen” Weltraum-Raketen).

Mit anderen Worten: Die Reaktionsteilnehmer, mit denen die Rakete beladen wird, sollten so vollständig wie möglich miteinander reagieren, sodass möglichst wenig davon übrig bleibt. Und ihr könnt die Stöchiometrie nutzen, um das zu erreichen!

Wie du den perfekten Treibstoff für deine Rakete berechnest

Zunächst sehen wir uns die Reaktionsgleichungen für die Antriebs-Reaktion an: Wenn ihr Gleichung (6) als Folge von Gleichung (5) betrachtet, erkennt ihr, dass zwei Moleküle Essigsäure und ein Äquivalent* Natron nötig sind, um ein Molekül Kohlenstoffdioxid zu erzeugen. Kurz ausgedrückt kann man dies auch so schreiben:

*Natron ist ein Salz, d.h. es ist nicht aus Molekülen aufgebaut, sondern ein beliebig grosser Ionenkristall (bzw. ein Pulver aus solchen Kristallen). Die Formel gibt das Verhältnis an, in welchem die Ionen im Kristall vorkommen und wird in Reaktionsgleichungen und beim Rechnen genauso (also äquivalent) verwendet wie die Summenformel eines Moleküls.

Optimal ist demnach ein Treibstoffgemisch, das zwei Mol Essigsäure-Moleküle und 1 Mol Natron Äquivalente enthält. (Für die Schlaumeier unter euch: Ich lasse hier die besonderen Regeln für chemische Gleichgewichte, zu welchen diese Reaktionen zählen, ausser Acht (Mit Le Châtelier erkläre ich auf dem Flughafen genauer, was es damit auf sich hat). Für den Nachbau der Modell-Rakete genügt jedoch auch die Stöchiometrie allein!)

Um zu erfahren, wieviel der Stoffe ihr verwenden müsst, benötigt ihr nun die molaren Massen der Moleküle bzw. Äquivalente, die ihr aus den molaren Massen ihrer Atome zusammensetzen könnt. Das Periodensystem verrät dazu:

Wasserstoff (H) wiegt rund 1 g/mol, Kohlenstoff ( C) rund 12 g/mol, Sauerstoff (O) rund 16 g/mol, Natrium (Na) rund 23 g/mol.

Daraus ergibt sich für

  • Essigsäure (CH3COOH bzw. C2H4O2): 2*12 + 4*1 + 2*16 = 60 g/mol
  • Natron (Na2CO3): 2*23 + 1*12 + 3*16 = 106 g/mol

Zwei Mol Essigsäure sind demnach 120 Gramm, die mit 106 Gramm Natron reagieren können. Bevor ihr ans Wiegen geht, gibt es aber noch ein Problem: Haushaltsessig besteht nur zu einem Bruchteil aus Essigsäure – der Rest ist Wasser. Der Haushaltsessig aus dem Supermarkt hier in der Schweiz enthält so nur rund 10 (Volumen-)% Essigsäure.

Glücklicherweise haben sowohl Essigsäure als auch Wasser eine Dichte von rund 1 g/cm3 (bzw. 1g/ml), sodass ihr auch für die Dichte des Gemischs aus beiden eine Dichte von rund 1g/ml annehmen könnt. Das bedeutet, dass ihr die Masse der Flüssigkeiten in Gramm 1:1 in das Volumen in Kubikzentimetern bzw. Millilitern umrechnen könnt.

Damit enthalten 10g bzw. 10ml Schweizer Haushaltsessig nur 1g Essigsäure und 9g Wasser. Für zwei Mol Essigsäure benötigt ihr also 1200g oder 1,2 Liter Essig – und eine ziemlich grosse Rakete. Deshalb macht es Sinn, die Menge der eingesetzten Stoffe auf ein Zehntel (oder noch weiter) herunter zu rechnen:

0,2 Mol Essigsäure sind 12g – das entspricht 120g bzw. 120ml Schweizer Haushaltsessig – und 0,1 Mol Natron sind 10,6g. Diese Mengen finden problemlos in einer 0,5l PET-Flasche Platz.

Tipp: Wer noch mehr Gewicht sparen möchte, verwendet “Essigessenz”, die in Deutschland im Supermarkt erhältlich ist und 25% Essigsäure enthält. So muss nicht das Zehnfache, sondern nur das Vierfache der berechneten Menge Essigsäure eingesetzt werden!

Nun steht eurem Raketenstart nichts mehr im Wege!

EXPERIMENT: RAKETENSTART MIT ESSIG UND NATRON

Ihr benötigt

  • Eine 0,5l PET-Flasche
  • Etwas Pappe zum Basteln, eine Untertasse oder einen Zirkel, eine Schere, Klebeband
  • Haushaltsessig oder Essigessenz (aus der Reinigungsabteilung im Supermarkt)
  • Waage und ggfs. Messbecher mit 10ml- oder 20ml-Teilstrichen
  • Frischhaltefolie
  • Natron-Pulver (als Backtriebmittel bei den Backzutaten im Supermarkt)
  • Eine Luftballon-Hülle
  • Eine Ahle oder einen spitzen Schraubenzieher
  • 3 kleine Blumentöpfe oder andere gleich hohe Gegenstände
  • Eine spitze Nadel
  • Schutzbrille, Laborkittel oder entbehrliche Kleidung, ggfs. eine grosse Giesskanne oder einen Eimer voll Wasser
  • Platz für die Startrampe und trockenes Wetter 😉

Durchführung

Die PET-Flasche wird eure Rakete sein. Der Schraubverschluss wird dabei zur Antriebsdüse, der Boden der Flasche zur Raketenspitze. Damit das Ganze auch nach einer Rakete aussieht, könnt ihr eurer Flasche eine spitze Kappe und ein Leitwerk aus Pappe basteln:

  • Zeichnet mit Hilfe der Untertasse oder des Zirkels einen Kreis auf die Pappe und schneidet ihn aus. Schneidet anschliessend ein “Tortenstück” (etwa ein Sechstel des Kreisumfangs) aus dem Kreis heraus und schiebt die geraden Kanten übereinander, sodass ein Kegel entsteht, der genau über den Boden eurer PET-Flasche passt. Fixiert den Kegel mit Klebeband (Flüssig- oder Heisskleber eignen sich dazu auch, allerdings benötigen sie geraume Zeit zum Trocknen. Eine Büroklammer hält den Kegel währenddessen zusammen. Klebeband hält hingegen sofort!).
  • Klebt den fixierten (und trockenen) Kegel auf den Boden eurer Flasche, indem ihr einen Streifen Klebeband halb um den Flaschenkörper, halb um den Kegel legt und vorsichtig andrückt.
  • Fertigt für das Leitwerk mindestens drei Finnen (“Flügel”) aus Pappe an.
Vorlage für das Leitwerk der Rakete
  • Das Bild zeigt eine Vorlage für meine Leitwerk-Finnen: Zeichnet diese dreimal auf die Pappe oder klebt Schablonen aus Papier darauf und schneidet sie aus. Faltet jede Finne entlang der mittleren gestrichelten Linie nach “innen”. Dann faltet die beiden Seitenflügel in die andere Richtung, also nach “aussen”.Befestigt die Seitenflügel mit Klebeband so am Flaschenkörper, dass die Spitzen der Finnen ein wenig über den aufgeschraubten Deckel hinausragen. Der Abstand zwischen den Finnen beträgt bei 3 Finnen einen Drittelkreis (120°), bei 4 Finnen einen Viertelkreis (90°) etc (Ich möchte Gewicht sparen, weshalb ich nur 3 Finnen verwende).

Da die Öffnung der Flasche zu weit ist, um den Ausstoss ausreichend zu bündeln, verengt ihr ihn als nächstes zu einer Antriebsdüse.

  • Durchbohrt den (abgeschraubten) Deckel der Flasche in der Mitte mit der Ahle bzw. dem Schraubenzieher, sodass ein wenige Millimeter durchmessendes Loch entsteht. Schneidet zudem ein Stück aus der Ballonhülle, das sich bequem über die Flaschenöffnung legen lässt (Durchmesser ca. 4 bis 5 cm) und legt dieses zum Start bereit.

Jetzt ist es an der Zeit, den Raketentreibstoff vorzubereiten.

  • Legt ein Stück Frischhaltefolie auf die Waage, tariert sie und wiegt 10,6g (auf der Haushaltswaage rund 11g) Natron darauf ab. Rollt anschliessend das Pulver so in die Folie ein, dass ein Päckchen entsteht, welches durch die Öffnung der PET-Flasche passt.
Einwaage und Verpackung von Natron
links: Natronpulver auf der Waage; rechts: das fertige Natron-Päckchen
  • Messt 120 Milliliter Haushaltsessig ab (wenn ihr keinen ausreichend genauen Messbecher habt, könnt ihr auch 120g Haushaltsessig in einem Gefäss (tarieren!) abwiegen) und stellt ihn zum Start bereit.

Und nun zu den Startvorbereitungen:

  • Stellt die Blumentöpfe so auf dem Startplatz auf, dass ihr die Rakete auf den Finnen darauf stellen könnt. Klebt die Töpfe mit etwas Klebeband fest, damit sie nicht verrutschen können.
  • Nun solltet ihr folgendes am Startplatz griffbereit haben: Die Flaschen-Rakete, den durchbohrten Deckel, das Stück Luftballonhaut, das Gefäss mit dem Essig, das Natron-Päckchen und die spitze Nadel.
  • Dreht die Rakete mit der Spitze nach unten und füllt vorsichtig den Essig durch die Flaschenöffnung ein (ein Trichter kann dabei hilfreich sein).
  • Schiebt das Natron-Päckchen fast vollständig in die Öffnung, sodass es zunächst mit dem hinteren Ende darin hängenbleibt. Legt die Luftballonhaut über die Öffnung und das Ende – erst dann drückt das Päckchen vollständig in die Flasche!

Jetzt muss es zügig gehen – denn die Reaktion zur CO2-Erzeugung ist nicht mehr aufzuhalten: Achtung! Von jetzt an steht die Rakete zunehmend unter Druck! Der Essig wird langsam in das Folienpäckchen eindringen und mit dem Natron zu reagieren beginnen. Das entstehende CO2 treibt das Päckchen zunehmend auseinander, sodass die Reaktion sich beschleunigt. Wenn ihr ungeduldig seid, schüttelt die Flasche etwas, sodass das Päckchen schneller auseinanderfällt.

  • Schraubt den Deckel sorgfältig über der Ballonhaut fest und stellt die Rakete wieder aufrecht auf ihre Sockel.
  • Wartet, bis die Gasentwicklung in der Rakete (das Sprudeln und Brausen) weitgehend zum Stillstand gekommen ist. Nehmt dann grösstmöglichen Abstand zur Rakete hinein und stecht mit gestrecktem Arm die Nadel durch das Loch im Deckel in die Ballonhaut (Wer wirklich sicher leben möchte, montiert die Nadel auf eine Stange und übt vorher, bis er die Spitze damit aus grösserem Abstand durch das Loch befördern kann!).

Die Rakete wird sich sofort mit lautem Zischen in die Luft erheben – verliert nicht die Nadel vor Schreck 😉 und geht sofort nach dem Stich auf Abstand! Mit dem CO2 strömt nämlich unweigerlich auch essighaltige Flüssigkeit aus der Düse!

Sicherheitshinweise

Essigsäure ist eine schwache Säure, die – besonders auf 10% verdünnt – auf menschlicher Haut kaum ätzend wirkt. Wenn ihr Essigspritzer abbekommt, genügt es daher, sie mit viel Wasser abzuwaschen.

Auf Basen wie Natron reagiert der Körper wesentlich empfindlicher – gebt Acht, dass ihr das Natronpulver nicht in die Augen bekommt oder einatmet!

Die Augen schützt ihr deshalb mit der Schutzbrille – falls trotzdem etwas ins Auge geht, spült es gründlich (mindestens 10 Minuten!) mit Wasser aus und lasst im Zweifelsfall einen Augenarzt darauf schauen. Zuschauer sollten vorsorglich einige Meter Abstand zur Startrampe einhalten!

Viele Materialien werden dennoch von Essigsäure angegriffen: Wenn Spritzer auf eure Kleidung kommen, wascht diese sofort gründlich aus (und tragt zur Sicherheit entbehrliche Kleidung oder/und einen Kittel – Säurelöcher zeigen sich manchmal erst nach der nächsten Maschinenwäsche!). Marmor und Kalkstein eignen sich zudem nicht als Startrampe, da auch sie von Essigsäure angegriffen werden (sie bestehen aus Calciumcarbonat, einem chemischen Verwandten des Natrons!). Wenn ihr eure Rakete auf dem Rasen startet, verwendet einen Tisch oder eine Kiste als Startrampe und legt eine Plane darunter, denn auch Pflanzen mögen Essigsäure nicht (tatsächlich wird Haushaltsessig hierzulande im Baumarkt auch als glyphosatfreier Unkrautvernichter verkauft).

Und sollte aller Vorsicht zum Trotz der Raketentreibstoff irgendwo landen, wo er nicht hin soll und ihr ihn nicht aufnehmen könnt, giesst am besten reichlich Wasser darüber (dafür stehen Giesskanne oder Eimer bereit). Denn da weder Essigsäure noch Natron noch die Produkte ihrer Reaktion giftig sind, sind sie in grosser Verdünnung für Mensch und Umwelt harmlos.

Entsorgung

Dementsprechend können die Treibstoffreste auch (am besten miteinander) mit viel Wasser in den Ausguss entsorgt werden.


Ich habe meine “Aceto”-Rakete draussen auf dem Land gestartet, weit entfernt vom nächsten Supermarkt. Und nachdem ich einige Versuche brauchte, um Anpassungen an der Antriebsdüse zu machen, ist “Aceto-3” mit meiner letzten Natron-Portion dann endlich abgehoben – zumindest für einen Augenblick! Und dass ich dabei noch eines Rechenfehlers wegen doppelt so viel Flüssigkeit wie nötig geladen hatte, gibt Anlass zur Annahme, dass ohne Fehler noch wesentlich mehr geht:

Dies ist nur ein Beispiel dafür, was für spannende Dinge ihr mit ein paar einfachen Rechenkenntnissen anstellen könnt. Wenn eure Kinder einmal wieder fragen, warum bitteschön sie unbedingt das “Plusrechnen” oder das Einmaleins (oder ähnliches) üben müssen, antwortet doch: “Damit ihr damit eine Rakete starten könnt”. Ich bin sicher, das tönt auch und gerade in Kinderohren spannend!

Und wenn ihr selbst eine Rakete starten lasst, erzählt uns doch nachher, wie weit sie geflogen ist!

Viel Spass wünscht

Eure Kathi Keinstein