Beiträge

Experiment für Kinder: Eis schneiden

Kann man einen Eiswürfel zerschneiden? Sicherlich…oder doch nicht? In diesem Experiment könnt ihr durch Eis schneiden, ohne es dabei zu zerteilen. Klingt nach Zauberei? In jedem Fall aber nach der wahrlich zauberhaften Physik von Wasser!

Ein Eiswürfel- Experiment für kalte coole Tage

Mit dem letzten Wochenende kamen die ersten kalten Tage des bevorstehenden Winters. Das ist genau die richtige Zeit für buchstäblich “coole” Experimente mit Eis und Wasser. Bei beiden handelt es sich natürlich um den gleichen Stoff – einmal fest, einmal flüssig. Und bestimmt wisst ihr auch, bei welcher Temperatur das Wasser am der Erdoberfläche diesen Zustand ändert. Richtig: Bei 0°C schmilzt Eis bzw. gefriert flüssiges Wasser.

Das ist an sich nichts besonderes. Die meisten Stoffe wechseln an der Erdoberfläche bei einer bestimmten Temperatur vom festen zum flüssigen Zustand und zurück. Nur manche Stoffe wie Kohlenstoffdioxid oder Jod werden ohne Umweg vom Feststoff zum Gas (Physiker sagen, diese Stoffe “sublimieren”, anstatt zu schmelzen).

Wasser hat darüber hinaus jedoch eine weitere Eigenschaft, dank derer ihr es für geradezu magische Phänomene und Experimente gut ist. Und ein solches Experiment für Kinder möchte ich euch heute vorstellen: So könnt ihr durch Eis schneiden ohne es zu zerteilen – und dabei nicht nur die Anomalie des Wassers nutzen, sondern auch lernen, wie Schlittschuhe funktionieren.

Ihr braucht dazu

  • Eiswürfel
  • eine Gabel
  • 1,5l-Getränkeflasche mit Inhalt oder ähnliches Gewicht (leichtere gehen auch, aber: je schwerer das Gewicht, desto besser!)
  • dünnen Draht
  • einen Tisch
  • Klebeband (Panzertape hält sehr gut und lässt sich erstaunlich einfach wieder ablösen)
  • einen grossen Behälter (Wanne, Backblech,…)

So geht’s

  • Klebt den Stiel der Gabel so auf dem Tisch fest, dass das Kopfstück mit den Zinken über den Rand der Tischplatte schaut.
Der Gabelstiel ist mit Panzertape an der Tischplatte festgeklebt. So trägt er das 1,5kg - Gewicht locker!
Mit Panzertape hält die Gabel bombenfest und lässt sich nach dem Experiment doch gut wieder lösen.
  • Platziert das grosse Gefäss unter der überhängenden Gabel. Der Boden soll schliesslich nicht nass werden, wenn euer Eiswürfel schmilzt.
  • Wickelt ein Stück Draht so um den Hals der gefüllten (ob mit Wasser oder sonst einem Getränk ist egal) Flasche, dass eine lange Schlaufe absteht.
  • Nehmt einen Eiswürfel aus dem Gefrierfach und legt ihn auf die Zinken der Gabel.
    Hängt die Drahtschlaufe über den Eiswürfel und lasst die daran hängende Flasche vorsichtig los.
  • Wartet einige Minuten ab und beobachtet!
Gabel, Eiswürfel und Wasserflaschen-Gewicht mit Auffangblech am Tisch
Aufbau im Ganzen: Oben an der Tischkante die Gabel mit dem Eiswürfel, darüber der Draht, an welchem die Flasche hängt. Das Backblech unten fängt Schmelzwasser auf – so bleibt der Parkettboden heil.
Im Hintergrund ein Blick hinter die Kulissen: Das Fotozelt – hier Lichtquelle – liefert bei den handlicheren Experimenten in Keinsteins Kiste den weissen Hintergrund!

Was ihr beobachten könnt

Der Draht sinkt langsam nach unten in das Eis. Dabei entsteht jedoch kein Spalt. Stattdessen verfestigt sich das Eis über dem  Draht erneut! Wenn der Eiswürfel nicht zu schnell schmilzt, schneidet sich der Draht den ganzen Weg hindurch – ohne das Eis zu zerteilen!

Sicht von vorne: Der Draht ist vollständig in den Eiswürfel eingesunken.
Nach einigen Minuten ist der Draht komplett in den Eiswürfel eingesunken!

Tipp: Je kühler die Umgebungsluft, desto weniger schnell schmilzt der Eiswürfel weg. Wenn es im  Zimmer zu warm ist, könnt ihr das Experiment ebenso gut im Garten oder auf dem Balkon machen. Je nachdem, wo ihr das Experiment aufbaut, braucht ihr dann auch kein Auffanggefäss für das Schmelzwasser.

Eiswürfel frei schwebend auf der Drahtschlaufe: Runterfallen ist unmöglich!
Der Beweis: Hier halte ich nur die Flasche fest! Der Eiswürfel ist wie eine Perle auf dem Draht “aufgefädelt” und schwebt somit abseits der Gabel frei.

Was passiert da?

Um Eis zu schmelzen ist Energie nötig (das könnt ihr mit diesem Experiment deutlich machen). Wenn man einen Stoff schmelzen möchte, führt man diese Energie normalerweise in Form von Wärme zu. Wasser – und das macht diesen Stoff so einzigartig – kann allerdings auch durch Druck zum Schmelzen gebracht werden.

Die Gewichtskraft, die auf die Flasche wirkt (und einer Masse von mindestens 1,5kg bei Erdanziehung auf Bodenhöhe entspricht), zieht den Draht nach unten. So übt er an der Auflagefläche Druck auf das Eis aus und lässt es unter dem Draht schmelzen.

Wie kann Druck zum Schmelzen von Eiskristallen führen?

Wasser ist ein ganz besonderer Stoff. Während die Dichte (die Masse eines bestimmten Volumens) der meisten Stoffe um so grösser wird, je kälter die Stoffe werden, hat Wasser bei +4°C die grösste Dichte.

Das heisst, ein Kilogramm Wasser bei 4°C braucht nicht nur weniger Platz als ein Kilogramm Wasser bei 20°C, sondern auch weniger als ein Eisblock von einem Kilogramm Gewicht (der höchstens 0°C warm sein kann). Dass Eis “grösser” ist als flüssiges Wasser, könnt ihr übrigens mit diesem Experiment zeigen: Eis wächst!

Wirkt ein Druck auf einen Stoff, wird dieser – wenig überraschend – zusammengedrückt. Die meisten Stoffe brauchen unter hohem Druck als Feststoffe am wenigsten Platz. Da Wasser jedoch als Flüssigkeit am “kleinsten” ist, wird es unter Druck flüssig – und das erst noch, ohne besonders warm zu werden. Denn denn wenigsten Platz braucht es ja bei nur 4°C oberhalb seines Schmelzpunktes.

Die Moleküle von flüssigem Wasser sind – anders als im Eiskristall – weitestgehend frei beweglich. So gelangen sie um den Draht herum, der somit nach unten auf das verbleibende Eis sinkt und es weiter schmelzen kann. Auf diese Weise “schneidet” sich der Draht durch den Eiswürfel.

Warum friert der Spalt über dem Draht wieder zu?

Sobald das flüssige Wasser einen Weg um den dünnen Draht herum gefunden hat, steht es kaummehr unter Druck (der Atmosphärendruck ist natürlich noch vorhanden, spielt hier aber keine massgebliche Rolle). So kann es sich wieder auf seine ursprüngliche Grösse ausdehnen. Da zum Ausdehnen Energie aufgewendet werden muss, kühlt die unmittelbare Umgebung dabei ab, und das Wasser oberhalb des Drahtes wird wieder zu festem Eis.

Schlittschuhspass dank der Anomalie des Wassers

Diese besondere Fähigkeit des Wassers habt ihr wahrscheinlich schon genutzt, ohne es zu wissen. Auf diese Weise funktionieren nämlich Schlittschuhe: Die Kufen üben Druck auf das Eis aus, sodass dessen Oberfläche direkt unter ihnen schmilzt. So entsteht ein dünner Film aus beweglichen Wassermolekülen, auf welchem eure Schlittschuhe fast ohne Reibungswiderstand über das Eis gleiten können!

Dabei müsst ihr euch keine Sorgen machen, dass eure Eisfläche durch das Schlittschuhlaufen wegschmilzt. Denn sobald eure Kufen weiter geglitten sind, kann sich das darunter zusammengedrückte Wasser wieder ausdehnen und gefrieren. Wenn ihr das nächste Mal auf der Eisbahn seid, achtet darauf: So lange die Lufttemperatur nicht übermässig hoch ist, werdet ihr keine flüssigen, sondern allenfalls fest wirkende Spuren hinterlassen.


Entsorgung

Wenn ihr die Eiswürfel aus Leitungswasser gemacht habt, könnt ihr das Schmelzwasser nachher wie Leitungswasser verwenden: In den Ausguss geben, die Blumen damit giessen,… Den Inhalt der Getränkeflasche könnt ihr selbstverständlich trinken – und damit zum Beispiel auf den gelungenen Versuch anstossen ;).

Sollte das Klebeband Rückstände auf dem Tisch hinterlassen, können Lösungsmittel wie Brennsprit/Spiritus (Ethanol), Fleckbenzin oder Aceton bei der Entfernung helfen. Testet vorher immer, ob eure Tischoberfläche sich mit dem Lösungsmittel eurer Wahl verträgt! Mein Panzertape habe ich übrigens ganz ohne Rückstände von der matt lackierten Holzplatte lösen können.

Nun wünsche ich euch viel Spass beim Experimentieren! Erzählt doch mal, wie das Experiment bei euch funktioniert – oder von euren Beobachtungen beim Schlittschuhlaufen!

Experiment: Blätter transportieren Wasser - und warum ein Kontrollversuch wichtig ist

Es ist Herbst, und langsam färben sich die Blätter bunt. Sie zu sammeln und aufzuheben macht Freude. Aber wenn man nicht achtgibt, rollen sie sich nur zu schnell ein und werden spröde. Aber warum werden lose Blätter trocken? Weil sie nichts mehr zu trinken haben, ist eine naheliegende Antwort. Aber nicht die einzige: Dazu kommt, dass Blätter ständig Wasser an die Luft abgeben – als Wasserdampf, der von ihrer Oberfläche verdunstet.

Dieses Experiment zeigt, wo Pflanzen das Wasser hernehmen – und dass sie es tatsächlich von einem Ort an einen anderen befördern können.

Ihr braucht dazu

  • 2 gleiche Gläser
  • Wasser
  • einen Zweig mit grünen Blättern
  • etwas Speiseöl
  • ggfs. Pasteurpipette (z.B. Deckel einer Nasentropfen-Flasche)
Links: Glas mit einem Blatt einer Glyzine (“Blauregen”), Rechts: Kontrolle ohne Blatt
Ich habe Olivenöl verwendet, dass eine gelbliche Farbe hat. Andere Speiseöle sind weniger farbig, funktionieren aber ebenso.
Bei dem dünnen Blattstiel hätte ich aber ewig warten können…

So geht’s

Füllt die Gläser etwa zwei Drittel hoch mit Wasser. Die Füllhöhe soll dabei in beiden Gläsern gleich sein. Schneidet den Zweig am unteren Ende schräg an und stellt ihn in ein Glas. Bedeckt nun die ganze Wasseroberfläche in beiden Gläsern mit einer Schicht Speiseöl. Eine Pipette kann beim sauberen Dosieren helfen. Ausserdem könnt ihr mit der Pipettenspitze das Öl zum Glasrand hin verstreichen, bis es daran kleben bleibt. Stellt anschliessend beide Gläser für einige Stunden, besser einen Tag lang an die Sonne oder in einen warmen Raum.

Mit einem verholzten Zweig vom Kirschbaum samt sieben Blättern konnte ich schliesslich doch einen Effekt beobachten…

Was ihr beobachten könnt

Der Wasserspiegel im Glas mit dem Zweig sinkt mit der Zeit, während jener im Glas ohne Zweig unverändert bleibt.

Nach zwei bis drei Stunden an der Sonne steht das Wasser im Glas mit den Zweigen 1 bis 2 Millimeter weniger hoch als im Kontrollglas.
Nach einem zusätzlichen Tag im Innenraum fällt das Ergebnis noch deutlicher aus: Der Unterschied beträgt jetzt mehr als 5 Millimeter!

Was passiert da?

Blätter geben über kleine Poren (Spaltöffnungen) an ihrer Oberfläche ständig Wasser(-dampf) an die Luft ab.

Blätter unter dem Mikroskop, mit sichtbaren Spaltöffnungen
Dies ist die untere Aussenhaut eines frischen Blattes meiner Tomatenpflanze bei 100-facher Vergrösserung. Die winzigen Spaltöffnungen (sie sind ca. 0,05 – 0,1 mm klein!) sind als dunkelgrüne Punkte gut erkennen (die Ränder der Spalten enthalten den grünen Blattfarbstoff Chlorophyll, die übrigen Aussenhautzellen nicht). Diagonal durch das Bild verläuft eine “Blattader”, d.h. Leitungsbündel, in dessen Umgebung ebenfalls chlorophyllhaltige Zellen haften geblieben sind.

Durch den Wasserverlust entsteht ein Unterdruck, der über die Wurzeln der Pflanze Wasser aus dem Boden nach oben saugt. Als Leitungen dienen dabei dünne Röhren im Inneren der Stängel sowie die “Adern” in den Blättern. Da der geschnittene Zweig weder Wurzeln noch Boden hat, wird das Wasser im Experiment direkt aus dem Glas gezogen. Mit dem Stängel werden nämlich auch die Röhren darin angeschnitten, sodass sie nun offen ins Wasser ragen. Mit dem schrägen Schnitt vermeidet ihr, dass die Öffnungen der Röhren flach auf den Glasboden gedrückt und so verschlossen werden.

Warum rollen sich trockene Blätter nun ein?

Einen guten Teil des in die Blätter hinauf gesogenen Wassers gibt die Pflanze nicht sofort wieder ab. Stattdessen speichert sie es in kleinen Hohlräumen (Vakuolen) in ihren Zellen. Sind die Vakuolen prall gefüllt, sind auch die Zellen prall und das Blatt erscheint straff und fest.

Wenn der Wassernachschub ausbleibt, werden die Vakuolen zunehmend entleert: Die Blätter werden zunächst schlaff (dieser Teil lässt sich umkehren und die Pflanze “wiederbeleben” – wie genau, erfahrt ihr hier). Wenn die Wasservorräte ganz verbraucht sind, können die Blattzellen nicht mehr funktionieren und sterben ab. Ohne pralle, formgebende Wasserspeicher fallen die “Skelette” der sterbenden und toten Zellen regelrecht in sich zusammen, sodass das Blattgewebe krumm und spröde wird.

Und wozu das Speiseöl?

Das Speiseöl verhindert, dass Wasser über die Wasseroberfläche verdunstet. So muss das Wasser, das im Glas mit dem Zweig fehlt, von dessen Blättern “ausgeschwitzt” worden sein!


Ein Forschertrick: Sichere Ergebnisse durch Kontrollversuche

Das zweite, leere Glas dient als direkte Vergleichsmöglichkeit: Ihr könnt den Unterschied zwischen einem Glas mit Verdunstungsmöglichkeit über einen Zweig und einem Glas, aus dem nichts verdunsten kann, auf einen Blick sehen. So könnt ihr

  1. auch kleine Unterschiede rasch erkennen.
  2. sicher gehen, dass ihr den Zweig auch dann “schwitzen” seht, wenn doch etwas Wasser durch das Öl verdunsten sollte. Das geschähe dann nämlich in beiden Gläsern in gleicher Weise. Folglich muss ein sichtbarer Unterschied etwas mit dem Zweig zu tun haben.

Auch die grossen Forscher machen Kontrollversuche

In der wissenschaftlichen Forschung sind solche Kontrollversuche von entscheidender Wichtigkeit. Je komplizierter die Versuche nämlich sind, desto mehr Umstände können das Ergebnis beeinflussen. Besonders wenn Lebewesen an Experimenten beteiligt sind, sind Forscher oft gar nicht in der Lage, jeden einzelnen dieser Umstände nachzuvollziehen und seinen Einfluss auf das Ergebnis zu bestimmen.

Ein Kontrollversuch unter möglichst gleichen Bedingungen, aber ohne das Detail, das man untersuchen möchte, zeigt einem die Summe aller zusätzlichen Einflüsse. Wenn das zu untersuchende Detail zu einem davon unterschiedlichen Ergebnis führt, kann man sicher sein, dass eben dieses Detail auch die Ursache dafür ist. Und das, ohne jeden einzelnen Umstand mit Einfluss zu kennen!

Das gilt für einfache Experimente wie den Nachweis eines Stoffs mit einem Reagenz bis hin zu Studien, in welchen Medikamente an Menschen getestet werden.

Mit Kontrollversuchen lässt sich der Placebo-Effekt “ausblenden”

Bei solchen Studien erhält eine zusätzliche Gruppe von Versuchspersonen, die “Kontrollgruppe” genannt wird, ein Medikament ohne Wirkstoff – ein sogenanntes Placebo. Das menschliche Gehirn ist nämlich ein besonders schwer zu kontrollierender Einfluss auf Versuchsergebnisse: Es lässt uns selbst dann eine Veränderung unseres Befindens wahrnehmen, wenn kein Wirkstoff im genommenen Medikament ist (das nennen die Forscher den Placebo-Effekt)!

Der Placebo-Effekt tritt (wie viele andere Umstände) sowohl bei der Kontrollgruppe als auch bei der Gruppe mit Wirkstoff auf. Wenn das Ergebnis bei der Gruppe mit Wirkstoff trotzdem anders ist als das bei der Kontrollgruppe, hat das mit ziemlicher Sicherheit der Wirkstoff bewirkt. Gibt es dagegen keinen Unterschied zwischen der Gruppe mit Wirkstoff und der Kontrollgruppe, bewirkt der “Wirkstoff” ebenso sicher nichts.   


Zusammenfassung

Dieses einfache Experiment zeigt, dass Pflanzen Wasser aus dem Boden (oder einem Glas) “trinken” und als Wasserdampf an die Luft abgeben können.

Ein Kontrollversuch ohne Pflanze macht diesen Effekt im Vergleich direkt sichtbar. Ausserdem lässt sich mit seiner Hilfe ausschliessen, dass andere Faktoren für das Verschwinden des Wassers aus dem Glas verantwortlich sind. Derartige Kontrollen sind ein äusserst wichtiger Bestandteil wissenschaftlicher Forschung.

Ihr könnt euch die Trink- und Schwitz-Fähigkeit von Pflanzen übrigens direkt zu Nutze machen: Zimmerpflanzen im Raum sorgen dafür, dass auch im Winter die Raumluft nicht zu trocken wird!

Entsorgung

Den Zweig könnt ihr auf den Kompost oder in den Grünabfall geben. Oder ihr lasst ihn als Dekoration im Wasserglas stehen oder verwendet ihn für weitere Blatt-Experimente.

Wasser und Speiseöl könnt ihr in den Ausguss entsorgen. Die Super-Waschkraft von Spülseife hilft dabei, Ölreste von den Gläsern zu entfernen und fort zu spülen. Nicht verwendetes Speiseöl könnt ihr natürlich zum Kochen weiterverwenden.

Oder ihr nehmt bloss den Zweig aus dem Glas und verwendet es samt Inhalt für das Experiment mit der DIY-Lavalampe!

Ich wünsche euch viel Spass beim Experimentieren!

Experiment mit Wasser : Die Münzwippe

Endlich hat es gewittert und ein wenig abgekühlt! Dazu war heute vormittag noch Regen angesagt. Zeit für ein kleines Experiment für zwischendurch, das ihr sowohl draussen als auch drinnen machen könnt. Dabei geht es um die Superkräfte von Wasser ….oder doch nicht?

Unglaubliche Kräfte schlummern nämlich nicht nur in Wasser, sondern auch in der Luft! – Und diese Kräfte könnt ihr mit ganz einfachen Mitteln selbst erforschen:

Ihr braucht dazu

  • ein Trinkglas
  • einen glatten Pappstreifen, aus einem Tetrapack zugeschnitten
  • kleine Münzen (z.B. Fünfräppler, aber Eurocents tun es genauso)
  • Wasser
Für das Experiment braucht ihr: Trinkglas, Wasser, Pappstreifen aus Tetrapak, kleine Münzen

Die Idee habe ich von “Schule und Familie“. Wie dort beschrieben mit einem einfachen Pappstreifen funktioniert das Experiment aber nicht so recht: Die Pappe saugt sich im Nu mit Wasser voll, wird weich und krumm, sodass die Münzen vorzeitig abrutschen. Die “Innen-“seite eines Tetrapacks ist jedoch wasserdicht beschichtet (das Getränk soll ja im Karton bleiben). Da wird nichts krumm und die Münzwippe funktioniert wunderbar.

So geht’s

  • Füllt das Glas randvoll – und ein Bisschen darüber hinaus – mit Wasser. Das Wasser soll sich leicht über den Glasrand aufwölben. Eine saubere Tropfpipette (zum Beispiel der Deckel einer Nasentropfen-Flasche, gibt es auch einzeln für kleines Geld in der Drogerie!) kann dabei helfen, die letzten Tropfen vorsichtig einzufüllen.
  • Legt den Tetra-Pappstreifen mit der “Innenseite” nach unten und mit einem Ende so auf das Glas, dass er die Öffnung ganz verschliesst. Vielleicht merkt ihr schon, wie er sich festsaugt.
Alles bereit: Ein Ende der Pappe liegt mit der Beschichtung nach unten auf dem Glas.
Alles bereit: So liegt die Pappe richtig auf dem Glas!
  • Stapelt nun vorsichtig eine Münze nach der anderen auf das überhängende Ende. Der Streifen wird trotz Übergewicht eine ganze Weile auf dem Glas liegen bleiben! Ich habe fünf Fünfräppler geschafft, bevor der Streifen sich beim sechsten schliesslich doch gelöst hat. Wer schafft mehr?
Die Münzwippe in Aktion: Das Gewicht von fünf Fünfräpplern kann den Pappstreifen nicht vom Glas lösen!
Fünf “Füüferli” und es hält immernoch…

Was passiert da?

Superkraft von Wasser : Adhäsion

Das zunehmende Gewicht der Münzen auf dem überhängenden Ende lässt den Pappstreifen wie auf dem Glas festgeklebt erscheinen. Wie festgeklebt? Dabei handelt es sich bei Weitem nicht nur um einen Vergleich!

Wassermoleküle werden tatsächlich von vielen anderen Stoffen angezogen und ziehen selbst wiederum diese Stoffe an. Diese Erscheinung nennen die Physiker “Adhäsion” – und die anziehenden Kräfte “Adhäsionskräfte”. Es gibt verschiedene Theorien, wie diese Adhäsionskräfte zustande kommen. Aber die meisten davon haben gemeinsam, dass die Teilchen von Stoffen sich genau dann besonders anziehend finden, wenn bestimmte ihrer Eigenschaften sich ähneln.

Eine dieser Eigenschaften ist die Ausstattung von Teilchen mit elektrischer Ladung. Wenn ihr schon einmal den Zaubertrick mit dem krummen Wasserstrahl ausprobiert habt, wisst ihr, dass Wassermoleküle relativ starke Ladungen tragen (für die etwas fortgeschritteneren Forscher unter euch: Physiker nennen Wasser deshalb “polar”). So ziehen sie nicht nur einander stark an, sondern werden auch von anderen Stoffen mit elektrischen Ladungen angezogen.

Gemäss dieser “Polarisationstheorie” wäre also davon auszugehen, dass auch die Innenfläche des Getränkekartons elektrische Ladungen trägt bzw. polare Bestandteile hat, die Wassermoleküle anziehen und so zum Haftenbleiben bringen.

Aber eigentlich ist es doch gar nicht wünschenswert, dass das Getränk im Tetrapack kleben bleibt! Deshalb werden die Tetrapack-Entwickler doch sicher vermieden haben, ein all zu adhäsionsfreudiges Material für ihre Beschichtung zu verwenden. Und trotzdem klappt das Experiment…

Superkraft von Luft : Luftdruck

Eine zweite Erklärung für den “klebenden” Pappstreifen ist, dass die Pappe weniger am Wasser klebt, als dass sie durch die Luft darauf gedrückt wird. Die Erdatmosphäre, die aus unzähligen frei umherwuselnden Teilchen besteht, drückt nämlich von allen Seiten auf jedes Hindernis, das ihr in die Quere kommt.

Die wuselnden Teilchen trommeln laufend auf jede von Luft umgebene Oberfläche ein – und wir nehmen dieses Dauer-Trommelfeuer mit unseren groben Sinnen als Druck wahr. Der Luftdruck am Erdboden beträgt etwa 1 bar (oder 1000 Millibar), was eine beträchtliche Menge ist. Schliesslich drückt ja eine gut 30 Kilometer hohe Luftsäule auf die wuselnden Teilchen in eurer Nähe und drängt sie so eng zusammen, dass sie entsprechend dicht und heftig auf alle Oberflächen trommeln.

So auch auf den Pappstreifen, der auf dem Glas liegt. Dieser Luftdruck ist so stark, dass er – allenfalls gemeinsam mit einer ziehenden Adhäsionskraft – die Münzen auf dem freien Streifenende aufwiegt: Der Luftdruck (und die Adhäsion) drücken das Glasende des Pappstreifens zunächst stärker nach unten als das Gewicht der Münzen das freie Ende. Erst wenn das Gewicht der Münzen zu gross wird, wippt das freie Ende des Streifens nach unten, während das Glas-Ende nach oben schnellt.

Da diese “Wippe” nicht am Angelpunkt auf dem Glasrand befestigt ist, fällt der Aufbau damit sofort zusammen.

Münzwippe überlastet: Der Pappstreifen ist vom Glasrand gekippt.
…aber die sechste Münze war zu viel: Der Streifen wippt in Richtung der Münzen und stürzt vom Glasrand.

Bonus-Versuch für draussen

Ihr wollt sehen, wie stark der Luftdruck sein kann? Dann füllt wie oben beschrieben das Glas bis zum Rand mit Wasser und legt den Pappstreifen darauf, sodass die Öffnung vollständig bedeckt ist. Haltet den Streifen fest und dreht das Glas mit der Öffnung nach unten. Dann lasst den Pappstreifen los (das Glas natürlich nicht!). Wenn alles gutgeht, sorgt der Luftdruck allein dafür, dass die Pappe auf der Öffnung und das Wasser im Glas bleibt!

Weil dieses Experiment aber nicht immer auf Anhieb funktioniert empfehle ich euch dringend, das draussen oder im Badezimmer zu probieren! Da richtet eine mögliche Überschwemmung nämlich keinen grossen Schaden an.

Entsorgung

Die ist bei diesem Versuch denkbar einfach:

Da ich mit Trinkwasser aus der Leitung und ausschliesslich mit Hilfsmitteln aus der Küche experimentiert habe, trinke ich das Wasser gerade aus, während ich blogge 😉 . Auch sonst könnt ihr das Wasser noch für alles benutzen, wozu man Wasser braucht. Den Tetra-Pappstreifen könnt ihr aufheben, sodass ihr die Experimente jederzeit wieder vorführen und eure Lieblingsmenschen verblüffen könnt.

Nun wünsche ich euch viel Spass beim Experimentieren! Und…kennt ihr vielleicht Gelegenheiten aus eurem Alltag, bei welchen ihr (wirkliche) Adhäsionskräfte beobachten könnt?

Grosse Sommer - Blogparade : Mein Lieblingsexperiment

Ganze vier Jahre ist es nun her, seit Keinsteins Kiste das Licht der Welt erblickt hat! Und diesen Bloggeburtstag möchte ich mit euch allen feiern – mit der grossen Sommer-Blogparade!

Vier Jahre Keinsteins Kiste

Bis in die erste Hälfte 2015 waren “Blogger” in meinen Augen Werbegesichter für Mode, Kosmetik und allerlei Lifestyle-Produkte – kurzum das, was man heute vielleicht eher mit dem Begriff “Influencer” in Verbindung bringt. Und damit so ganz und gar nicht meine Welt.

Erst als ein Neuzugang in einer völlig themenfremden Facebook-Gruppe am Rande ihren Mama-Blog erwähnte, öffnete sich mir die Tür zur ganzen Welt der Blogger – und mir war sofort klar: Davon möchte ich auch ein Teil sein! So habe ich binnen weniger Wochen diesen Blog ins Leben gerufen.

Seitdem hat sich so vieles getan und verändert. Von Anfang an war Keinsteins Kiste als Sammlung naturwissenschaftlicher Inhalte gedacht – zunächst reichlich unspezifisch in Form von “Geschichten aus Natur und Alltag”. Naturwissenschaft besteht nun in grossen Teilen aus Beobachtung…und dazu sind aufmerksame Sinne unabdingbar. So kam ich zu der Umwidmung des Blogs zu “Natur und Wissenschaft für alle Sinne”.

Doch auf Dauer erschien mir auch dies zu ungenau. Zumal ich mit meinem in der deutschsprachigen Blogsphäre nach wie vor exotischen Genre lange nach meinem Platz in deren unendlichen Weiten gesucht habe. Schlussendlich führte diese Suche an den Anfang des Blogs zurück. Mit einem Mama-Blog fing die Geschichte der Kiste an, und mit Familienblogs und ihren Autoren kann ich mich nun wahrhaftig identifizieren. Und das, obwohl ich selbst gar keine Kinder habe.

Wozu Keinsteins Kiste? Um Chemie und anderen Naturwissenschaften ein positives Gesicht zu geben!

Nichts desto trotz arbeite ich mit Kindern, und habe dabei schnell festgestellt, dass es nichts wunderbareres gibt als die kindliche Neugier. Physik (und Chemie und…) ist schliesslich, wo man spielt.

Und diese Neugier ist ein grossartiger Ansatzpunkt, um mein grosses Ziel zu verfolgen: Der Naturwissenschaft im Allgemeinen und der Chemie in Besonderen in euren Köpfen ein besseres Ansehen zu verschaffen!

Die Welt ist nämlich voll von “Fake-News”, Fehlinformationen und teils gefährlichen Irrlehren, die viel zu oft auf fruchtbaren Boden stossen. Und solch “fruchtbarer Boden” entsteht, wenn junge Menschen die Fächer, in welchen sie lernen könne, wie die Welt funktioniert und wie sie selbst diese Funktionsweisen ergründen können, als “zu schwierig”, “abstrakt”, “realitätsfern” oder gar “unwichtig” erleben. Dann nämlich verlassen sie ihre Schulen oft ohne ein grundlegendes Verständnis für die Natur der Dinge – und entsprechend anfällig für jeglichen Unsinn, der darüber verbreitet wird.

Je früher jedoch Neugier und Freude an der Erforschung der Welt geweckt werden, desto grösser sehe ich auch die Chance, dass die Aufmerksamkeit für und die Freude an naturwissenschaftlichen Zusammenhängen erhalten bleibt und Chemie und Co in den Augen einstmaliger Jungforscher ihr gutartiges Gesicht behalten.

Chemie ist nämlich überall und alles ist Chemie. So tut ihr gut daran im Gedächtnis zu behalten, dass sie eben nur manchmal gefährlich, aber immer spannend ist!

Experimente wecken Spass und Neugier – nicht nur bei kleinen Forschern

Die eindrücklichste und zugleich spassigste Art und Weise, Naturwissenschaften zu lernen, ist, selbst zu experimentieren und zu forschen. So habe ich – besonders in den letzten beiden Jahren – mehr und mehr Experimente in Keinsteins Kiste einfliessen lassen, die ihr zu Hause oder in jedem beliebigen Klassenzimmer selbst machen könnt.

Und damit auch naturwissenschaftliche nicht “vorbelastete” Eltern und Lehrer ihren Kindern die unvermeidlichen Fragen junger Forscher beantworten können (allen voran “Wie funktioniert das bloss?”), liefere ich zu jeder Anleitung auch eine ausführliche Erklärung dessen, was hinter den spannenden Beobachtungen steckt.

So können Klein und Gross beim Experimentieren etwas lernen. Aber damit nicht genug: Ihr Grossen könnt euer naturwissenschaftliches Wissen auch direkt in eurem Alltag gebrauchen! Wie? Das könnt ihr in den gesammelten Haushalts- und Alltagstipps in der Alltagskiste lernen.

So ist Keinsteins Kiste nun schon seit einem Jahr offiziell gefüllt mit “Natur und Wissenschaft für die ganze Familie”.

Grosse Sommer-Blogparade zum Geburtstag

Doch nun könnt ihr in der Blogparade selbst mitfeiern und -forschen!

Thema der Blogparade: Mein Lieblings-Experiment!

Experimente mit Aha-Effekt

Denn die Freude an Naturwissenschaft beginnt oft mit einem besonders eindrücklichen Experiment, das einen regelrechten Aha-Effekt auslöst.

So war es zumindest bei mir: In der siebten Klasse bin ich erstmals der Schmelzwärme begegnet – einem Konzept, das mir bis dahin völlig unbekannt war. Und mit dieser einschneidenden Veränderung meines Weltbildes hatte ich mein Herz unrettbar an die Chemie verloren (und das, obwohl sich die Physiker mit den Chemikern um die Einordnung dieses Konzeptes streiten könnten!).

Die ganze Geschichte von diesem Aha-Erlebnis erfahrt ihr hier, und natürlich gibt es auch eine Anleitung für das Experiment zum Nachmachen!

Oder vielleicht kehrt eure Leidenschaft auch immer wieder zu dem einen Experiment zurück?

Experimente, die euch nicht loslassen

Ich habe zum Beispiel bei jeder sich bietenden Gelegenheit Eisensulfid aus den Elementen Eisen und Schwefel hergestellt (das Teufelchen in mir spielt immer wieder gern mit Schwefel herum…). Da das eine ziemlich stinkige Angelegenheit ist, müssen dafür besondere Anforderungen an die Umgebung erfüllt sein, weshalb es das Experiment (noch) nicht in Keinsteins Kiste gibt.

Experimente, bei welchen ihr (bislang?) nur zugeschaut habt

Oder habt ihr euch bislang noch nicht selbst getraut, zu experimentieren, aber andere dabei beobachtet? Sei es der Lehrer in der Schule, der Dozent in der Uni, oder ein Show-Experimentator auf der Bühne? Welches Schau-Experiment hat euch besonders beeindruckt – vielleicht gar so sehr, dass ihr es gerne einmal selbst versuchen würdet – oder eben gerade nicht?

Im Rahmen der Lehrerausbildung hat uns unser Dozent ein wahrhaft beeindruckendes Demonstrations-Experiment gezeigt: Die Thermit-Reaktion!

Thermit-Versuch für die Schule: Die Reaktion findet im Blumentopf statt, glühendes flüssiges Eisen tropft unten heraus!

Hier bei wird Eisen(III)oxid mit Aluminium-Pulver zur Reaktion gebracht, wobei Temperaturen bis gut 2000°C entstehen! Mit grossem Getöse und Leuchtspektakel entsteht dabei flüssiges(!) metallisches Eisen. Folglich nutzen Eisenbahner diese Reaktion, um frisch verlegte Schienen zusammen zu “schweissen”. Der sehr grossen Brandgefahr wegen sollte ein solches Experiment immer ausserhalb des Schulhauses (z.B. auf dem asphaltierten Schulhof) gemacht werden.

Später habe ich dann für einige Zeit an der Berufsschule in Arth-Goldau unterrichtet und dort in der Chemikaliensammlung eine fertige Thermit-Mischung gefunden. Natürlich habe ich die ausprobieren müssen – aber leider habe ich es nicht fertig gebracht, das Ganze zu zünden (das ist nämlich – zum Glück – ohne einen speziellen Thermit-Zünder kaum zu bewerkstelligen). Die Enttäuschung bei mir und den extra auf den Hof geführten Schülern war entsprechend gross.

Aber wenn ich noch einmal die Gelegenheit bekäme, Thermit zu zünden, wäre ich sofort dabei.

Experimente in der Forschung

Oder seid ihr sogar selber Forscher (gewesen)?

In der Forschung müssen Wissenschaftler ihre Experimente immer wieder und wieder durchführen und immer das Gleiche beobachten, bevor sie ein belastbares (weil wiederholt beobachtbares) Ergebnis veröffentlichen können. Auch ich kann ein Lied davon singen.

Besonders aufregend wird das Ganze dann, wenn ein Experiment tatsächlich immer das gleiche Ergebnis liefert – und wenn andere Forscher, die den Versuch nachmachen, dieses Ergebnis ebenfalls beobachten. Dann hat man nämlich etwas gefunden, was den allgemeinen Wissenstand wirklich erweitern könnte!

Habt ihr als Forscher selbst einmal so ein eindrückliches Experiment gemacht?

Was ihr zur Blogparade wissen müsst:

Experimentiert ihr gerne – zu Hause, in der Schule oder sogar an eurem eigenen Forscher-Arbeitsplatz? Schaut ihr euch spannende Experimente lieber an? Oder würdet ihr gerne auch selbst experimentieren?

Mit dieser Blogparade möchte ich euch alle – ganz gleich welchen Bezug ihr zum Experimentieren habt – zum Mitmachen einladen:

Beschreibt in einem Blogartikel euer Lieblings-Experiment!

Erzählt, schreibt, fotografiert, filmt oder wie auch immer ihr euch ausdrückt von eurem Erlebnis beim Experimentieren oder Zusehen: Was beeindruckt euch besonders, und warum ist dies euer Lieblings-Experiment?

Und wenn ihr selbst experimentiert, habt ihr vielleicht auch eine Anleitung dazu? Und wenn ihr ganz versiert seid und die Beobachtung sogar erklären könnt, wäre das natürlich Spitzenklasse – aber nicht notwendig.

Bei Bedarf helfe ich beim Erklären auch gerne aus.

Veröffentlicht den Artikel bis zum 11. September 2019 auf eurem Blog bzw. Kanal, verlinkt darin auf diesen Artikel und postet den Link dazu hier in die Kommentare. So kann ich sie über meine Kanäle teilen und zum Abschluss in einer Zusammenfassung würdigen.

Ihr möchtet gerne ein Experiment vorstellen und habt keinen eigenen Blog? Dann könnt ihr euren Beitrag gerne als Gastbeitrag in Keinsteins Kiste einreichen! Insbesondere zwischen dem 13. Juli und 1. August habe ich drei Plätze, die sich damit wunderbar füllen liessen.

Ganz besonders würde ich mich freuen, wenn ihr anderen von dieser Blogparade “erzählt”, sodass möglichst viele die Chance haben, mit zu forschen!

Nun wünsche ich euch viel Spass beim Forschen, Experimentieren und Verbloggen,

Eure Kathi Keinstein

Experiment und Haushaltstipp: Kupfer mit Hausmitteln reinigen

Ein verregneter Frühling ist – wohl oder übel – Zeit für Schlechtwetterprogramm. Aber was tun? Experimentieren oder Haushalt? Warum nicht beides miteinander? Ich habe einen genialen Hack für euer Kupfer-Geschirr – mit Experiment für eure Kinder dazu!

Habt ihr einen Kupfertopf? Armaturen oder andere Gegenstände aus Messing? Und die sind mal wieder ziemlich angelaufen und sollten dringend geputzt werden? Dann legt los – und zwar ganz ohne kommerzielle Reinigungspaste. Denn was ihr braucht, findet ihr mit Sicherheit in der Küche.

Kupfer und Messing reinigen: Ihr braucht dazu

  • Angelaufenen Kupfertopf o.Ä.
  • Papiertücher (könnt ihr einfach entsorgen, da ihr sie nicht auswaschen müsst!)
  • Ggfs. Putzhandschuhe
  • Haushaltsessig
  • Kochsalz (Speisesalz, NaCl)

Und für ein simples, aber atemberaubendes Experiment für die Nachwuchs-Forscher das Ganze im Kleinformat…

Experiment: Kupfermünzen reinigen: Ihr braucht dazu

  • Kupfermünzen (nachweislich funktionieren Euro-Cents, britische Pennys und US-Cents, Münzen mit messinggoldener Oberfläche wie das Schweizer Füüferli oder tschechische 20 Kronen bringen kein gutes Ergebnis)
  • Haushaltsessig
  • Kochsalz
  • leeres Glas (z.B. Gewürzglas, praktisch mit gewölbtem Boden)
  • ggfs. Schutzbrille und Kittel für die Nachwuchs-Forscher

Haushaltsessig und andere Säuren wirken ätzend! Essigsäure ist jedoch eine schwache Säure, die unserer Haut dank deren Säureschutz nicht gleich Schaden zufügt. Deshalb trage ich beim Umgang mit solch kleinen Mengen keine Handschuhe.

Wenn ihr Essig auf die Haut bekommt, spült ihn einfach gründlich mit Wasser ab. Sollte euch ein Spritzer in die Augen geraten (die Schutzbrille sollte das verhindern!), spült die Augen sehr gründlich mit fliessendem Wasser aus (10 Minuten lang heisst es im Labor!) und geht bei bleibenden Beschwerden zur Sicherheit zum Augenarzt.

Wenn Spritzer auf die Kleidung kommen, zieht sie aus und wascht sie ebenfalls sofort sehr gründlich aus. Wenn die Säure die Textilien angreift, können sonst später beim Waschen in der Maschine noch Löcher entstehen!

So geht’s

Experiment

Gebt ca. 1 cm hoch Haushaltsessig ins Glas, dann eine angelaufene Kupfermünze hinein. Schliesslich gebt ihr reichlich – etwa einen Teelöffel – Kochsalz hinzu.

Münze im Essig-Kochsalz-Bad: Ein paar Sekunden reichen – ihr könnt zuschauen, wie sie blank wird! Das Kochsalz muss sich übrigens nicht vollständig im Essig lösen. Direkt auf die Münze gegeben wirkt es am besten.

Kupfertopf reinigen

Gebt einen Schuss Essig auf euren Lappen und streut Kochsalz auf den nassen Fleck. Nicht damit sparen! Dann poliert euren Kupfertopf oder Messinggegenstand mit dem Gemisch. Sobald der Topf blank ist, könnt ihr ihn mit einer kleinen Menge Speiseöl einreiben, damit er nicht sogleich wieder anläuft.

Was ihr beobachten könnt

Beim Experimentieren

Die dunkel angelaufene Kupfermünze wird innerhalb von Sekunden hell! Fischt die Münze aus dem Glas, sobald sie hell genug ist (eine Gabel ist dabei sehr hilfreich) und spült sie kurz mit Wasser ab.

Kupfermünze mit Essig und Kochsalz gereinigt: Die linke Münze ist nach wenigen Sekunden im Essig-Salz-Bad blank, die rechte, angelaufene dient als Vergleich
Rechts: Angelaufene 2-Eurocent-Münze; Links: eine vergleichbar angelaufene 2-Eurocent-Münze nach wenigen Sekunden im Essig-Kochsalz-Bad

Beim Reinigen des Kupfertopfes oder Messinggegenstandes

Das Kupfer oder Messing wird sofort blank, wie beim Putzen mit einer kommerziellen Reinigungspaste!

Entsorgung

Kupferionen sind giftig für Wasserorganismen und andere Kleinstlebewesen. Deshalb gehören sie grundsätzlich als Sondermüll entsorgt. Die winzigen Mengen, welche beim Experimentieren mit Münzen entstehen, könnt ihr aber mit dem Essig-und-Salz-Gemisch in den Abfluss entsorgen.

Die Papiertücher, mit welchen ihr Kupfertöpfe und Messing putzt, könnt ihr in den Hausmüll geben oder – wenn ihr die Kupfergeschirr-Komplettausstattung eurer Profi-Küche poliert und so grössere Mengen erzeugt habt 😉 – trocknen lassen und zur Sonderabfall-Sammelstelle bringen.

Was passiert da?

Die dunkle Farbe angelaufenen Kupfers ist ein Belag aus Kupferoxiden, hauptsächlich aus schwarzem Kupfer(II)oxid (CuO). Dieses Salz besteht aus Cu2+– und O2- -Ionen. Cu2+-Ionen können sich in Wasser lösen, wobei sie von Wassermolekülen umgeben werden.

Dabei nehmen sechs Wassermoleküle der innersten Wasserschicht um ein Cu2+-Ion ganz bestimmte, geometrische Positionen ein: Die Ecken eines lang gezogenen Oktaeders.

Hexaaquakupfer(II) - Komplex: Die beiden H2O auf der Längsachse sind etwas weiter vom Kupfer entfernt als die vier übrigen
Der Hexaaquakupfer(II)-Komplex: Die Pfeile deuten die Bindungen durch “geliehene” Elektronenpaare an. Die Wassermoleküle markieren die Ecken eines Oktaeders (eine viereckige Doppelpyramide), wobei die beiden Moleküle oben und unten etwas weiter weg vom Kupfer sind als die übrigen vier. Die Folge: Der Oktaeder erscheint etwas in die Länge gezogen.

Wie sie dazu kommen? Ein Cu2+-Ion hat relativ wenig Elektronen (immerhin zwei weniger, als zum Ausgleich seiner Kernladung nötig wären). Wassermoleküle hingegen haben – zumindest am Sauerstoff-Ende – ziemlich viele davon, und zwar ganze zwei äussere Elektronenpaare, die für keine chemische Bindung innerhalb des Moleküls gebraucht werden. So können Wassermoleküle eines dieser nichtbindenden Elektronenpaare einem Cu2+-Ion “ausleihen”.

Damit entsteht eine chemische Bindung zwischen Wasser und Kupfer-Ion, die von den Chemikern “koordinative Bindung” oder “Komplexbindung” genannt wird. “Komplex” ist daran allerdings nur, dass ein Bindungspartner dem anderen ein Elekronenpaar ausleiht, anstatt dass wie bei der kovalenten oder Atombindung jeder Partner ein Elektron dazu beisteuert.

Komplexbildungsreaktionen sind Gleichgewichtsreaktionen

Cu2+-Ionen sind nun damit zufrieden, von sechs geliehenen Elektronenpaaren jeweils ein Bisschen zu haben. Allerdings lange nicht so zufrieden wie damit, einen Platz in einem CuO-Kristallgitter zu haben.

Stets kehren Cu2+-Ionen aus der Lösung in das Kristallgitter zurück: Die [Cu(H2O)6]2+ – Komplexe befinden sich stets mit dem Kupfer-Ionen im Kristallgitter in einem chemischem Gleichgewicht (Le Chatelier erklärt euch das Gleichgewicht hier auf dem Flughafen genauer).

Dieses Gleichgewicht liegt in Wasser allerdings ganz weit auf der Seite des Salzkristalls, es sind nur ganz wenige [Cu(H2O)6]2+ -Komplexe in Lösung.

Kochsalz übt einen Zwang aus

Gibt man nun reichlich Kochsalz (NaCl) in das Wasser, löst sich dessen Gitter auf: Na+– und Cl-Ionen gehen einzeln ins Wasser über . Die Cl-Ionen können ebenfalls Komplexe mit Kupfer bilden: Sie können Wassermoleküle im [Cu(H2O)6]2+ ersetzen, sodass Komplexe wie [Cu(H2O)5Cl]+ entstehen:

Die Art Reaktion nennen die Chemiker “Ligandenaustauschreaktion”: Die Teilchen, welche dem Kupfer-Ion (dem “Kern”) im Zentrum des Komplexes die Elektronenpaare leihen, heissen nämlich “Liganden” (von lateinisch ligare = binden).

Durch solche Reaktionen können bis zu vier Wassermoleküle ausgetauscht werden. Die zwei verbleibenden Wassermoleküle bilden nun die Spitzen des langgezogenen Oktaeders.

Tetrachlorocuprat(II) in wässriger Lösung: Der quadratisch-planare Kupfer-Komplex wird von zwei Wassermolekülen zum langgezogenen Oktaeder ergänzt.
Tetrachlorocuprat(II): So heisst der Komplex, welcher entsteht, wenn die maximal mögliche Anzahl Wassermoleküle gegen Chlorid-Ionen ausgetauscht wird.

All diese Komplexe stehen miteinander im Gleichgewicht. Das schiere Überangebot an Cl-Ionen allein sorgt dafür, dass diese Gleichgewichte jeweils auf die Seite mit mehr Chlorid im Komplex gedrängt werden. So einem Zwang wie dem Cl-Überschuss will das ganze System nämlich ausweichen.

Der Knackpunkt dabei: Durch die Entstehung der Komplexe mit Chlorid wird dem Gleichgewicht zwischen CuO und gelösten Kupferionen das  [Cu(H2O)6]2+ entzogen! Laut dem Prinzip von Le Chatelier strebt das Gleichgewicht danach, auh diesen Verlust auszugleichen: Der Verlust der Kupferionen mit reiner Wasserhülle zieht das Gleichgewicht förmlich auf die Seite des gelösten [Cu(H2O)6]2+. So geht in der Anwesenheit von reichlich Cl mehr Cu2+ aus dem CuO in Lösung.

Und was tut der Essig dabei?

Mit Kochsalz und blossem Wasser funktionieren diese Ligandenaustauschreaktionen kaum: Das Kupferoxid bleibt an der Oberfläche haften – der Kupfertopf bleibt dunkel.

So lautete meine erste Vermutung Die Säure (Haushaltsessig ist nichts anderes als Essigsäure gelöst in Wasser) fördert irgendwie die Entstehung der chloridhaltigen Komplexe. Befriedigend war diese Erklärung aber lange nicht.

Deshalb habe ich meine Chemiker-Gedanken weiter gesponnen und bin zu folgender Erklärung gelangt:

Wenn Cu2+-Ionen aus dem CuO in Lösung gehen, müssen die O2--Ionen aus dem Gitter auch irgendwo hin. Allerdings können die nicht einfach von Wassermolekülen umgeben existieren. Stattdessen reagieren sie mit dem Wasser zu OH-Ionen:

Auch zwischen diesen Reaktionspartnern besteht ein Gleichgewicht, das nicht all zu weit auf der Seite der OH-Ionen liegen mag. Ist im Wasser allerdings eine Säure (ein Stoff, der mit Wasser H3O+-Ionen erzeugen kann) vorhanden, reagieren die OH-Ionen allerdings gleich wieder zu Wasser:

Diese Gleichgewichtsreaktion nennen die Chemiker “Neutralisation”! Es liegt nämlich recht weit auf der Wasser-Seite, sodass eine Säure wie H3O+ und eine Base wie OH ganz von selbst miteinander reagieren. Durch den “Verbrauch” von OH-Ionen durch die Neutralisation wird wiederum das Gleichgewicht zwischen O2- im CuO-Gitter und den OH-Ionen in Lösung auf die OH-Seite gezogen.

Zum besseren Überblick habe ich die wichtigsten Gleichgewichte und ihre Abhängigkeiten voneinander noch einmal zusammengefasst:

Überblick über die Gleichgewichtsreaktionen: So löst sich Kupfer in Essig mit Kochsalz
Die roten Pfeile deuten die Verlagerung der Gleichgewichte an: Die Reaktionen ganz rechts “ziehen” die Gleichgewichte weiter links auf die Seite der Lösung: Das Kupferoxid an der Kupferoberfläche wird aufgelöst!

Wenn meine Erklärung zutrifft, müsste das Ganze auch mit Kochsalz in anderen Säuren funktionieren. Ich habe es ausprobiert: Kochsalz in Zitronensäure zeigt beim Polieren die gleiche Wirkung.

Aber Kupfer(II)-Komplexe sind doch farbig?

Die Chemie-Erfahreneren unter euch wissen vielleicht, dass die Komplexe mit Cu2+-Ionen eigentlich sehr farbig sind: [Cu(H2O)6]2+ ist zum Beispiel cyanblau, während die chloridhaltigen Komplexe zunehmend grün sind. Warum sieht man dann beim Reinigen der Münzen die Farben nicht?

Ich gehe davon aus, dass diese Komplexe insgesamt in so kleiner Menge entstehen, dass uns die äusserst blasse blau-grüne Färbung schlichtweg nicht auffällt.


Wie verträglich ist die Reinigung mit Essig und Kochsalz für die Kupfer-oberfläche?

Durch die Ligandenaustauschreaktionen wird das Kupfer-Metall nicht wieder hergestellt. Stattdessen wird bereits oxidiertes Kupfer in Wasser gelöst, sodass es abgewaschen werden kann. Wie bei allen anderen mir bekannten Mitteln zur Entfernung von Korrosionsspuren würde auch dieses bei wiederholtem Putzen irgendwann das Metall “aufbrauchen”.

Im praktischen Gebrauch bei der Reinigung von Kupfertöpfen und ähnlichen Gegenständen fällt diese Verlust jedoch nicht ins Gewicht. Zudem gehe ich davon aus, dass kommerzielle Reinigungspasten nach dem gleichen Prinzip funktionieren. Ihr könnt also getrost eure Kupfertöpfe mit Essig und Kochsalz polieren.

Und Messingoberflächen?

Messing ist eine Legierung – also ein Gemisch – aus den Metallen Kupfer und Zink. Auch in Messing sind also Kupferatome enthalten, die, wenn sie zu CuO oxidiert werden, dem Metall ein dunkles, stumpfes Aussehen geben. Damit sollte sich dieses Problem mit Hilfe der selben Reaktionen beheben lassen.

Tatsächlich habe ich auch den Messinggriff meines Kupfertopfes problemlos mit Essig und Kochsalz polieren können. Lasst dabei jedoch die Mischung nicht unnötig lange einwirken, sondern spült sie gleich nach dem Putzen ab!

Beim Experimentieren mit Messingmünzen habe ich nämlich festgestellt, dass die Mischung Zink oder/und andere Bestandteile der Legierung aus der Oberfläche herauslösen kann. Die Folge: Die ehemals messinggoldene Oberfläche wird zwar blank, aber rot wie Kupfer!

Zink ist nämlich ein ziemlich unedles Metall, sodass es von der Säure angegriffen werden könnte. Die Säurekorrosion habe ich hier zur Rostparade oder zum Anhören in der neuen Folge des Proton-Podcasts (erscheint in Kürze) erklärt.

Bild: Tschechische 20-Kronen-Münze rot verfärbt

Was euch die Verwendung dieses Hausmittels bringt

Wie bereits erwähnt vermute ich, dass im Handel erhältliche Reinigungspaste für Kupfer und Messing auf die gleiche Weise funktioniert wie das Gemisch aus Säure und Kochsalz – nämlich mit Chemie. Welchen Vorteil habt ihr dann aber von diesem Hausmittel?

Wie ihr seht: Ohne Chemie geht nichts im Haushalt. Anders als bei einer Reinigungspaste aus dem Handel wisst ihr beim Einsatz eines solchen Hausmittels oder Chemie-Hacks ganz genau, welche Chemie bzw. Chemikalien darin enthalten sind. Nämlich garantiert nichts, was euch gefährlich werden könnte (so lange ihr das Kochsalz nicht löffelweise esst oder euch die Säure in die Augen spritzt – aber das versteht sich ja von selbst). Das ist doch ein beruhigender Gedanke, oder?

Und wie reinigt ihr Kupfer und Messing in eurem Haushalt?

Es ist Frühling – eine wunderbare Zeit für Experimente, für die man etwas Platz braucht. Deshalb habe ich heute für euch ein lustiges wie lehrreiches Spektakel für Balkon und Terrasse (oder auch für drinnen): Die Elefantenzahnpasta!

Das bekannte Experiment zeigt eine weitere wichtige Fähigkeit (die Gärung könnt ihr ja hier erforschen), die nicht nur Hefezellen, sondern auch unsere Zellen haben: Die Fähigkeit, sich vor Oxidationsmitteln zu schützen. Und da dabei eine Menge Gas entsteht, kann man diese Fähigkeit für dieses spassige Experiment nutzen.

Ihr braucht dazu

  • Hefe: am einfachsten geht das Experiment mit Trockenhefe
  • ein Gefäss mit schmaler Öffnung: z.B. eine 0,5l PET-Flasche oder ein Reagenzglas
  • etwas warmes Wasser (lauwarm, wie Hefe es gern hat)
  • etwas Geschirrspülmittel
  • ein Oxidationsmittel: Wasserstoffperoxid, als Lösung (3 – 6%) aus der Apotheke/Drogerie
  • Optional: Lebensmittelfarbe
  • Einen Trichter, der auf das schmale Gefäss passt
  • Schutzbrille, ggfs. Labormantel/Malschürze
  • Ein Backblech oder Tablett als Unterlage
Wasserstoffperoxid, Trockenhefe, Spülmittel, Lebensmittelfarbe, Reagenzglas, Schutzbrille, Trichter - das braucht ihr für die Elefantenzahnpasta!

So geht’s

  • Rührt die Trockenhefe in das warme Wasser ein, bis es keine Klumpen mehr gibt.
  • Füllt Wasserstoffperoxid in das schmale Gefäss (bis es zu ca. einem Fünftel (mit 6% H2O2) bzw. zwei Fünftel (mit 3% H2O2) gefüllt ist – verwendet dazu den Trichter!) und mischt Lebensmittelfarbe und einen Schuss Spülmittel hinein.
  • Stellt das Gefäss in das Backblech.
  • Giesst das Hefewasser schnell in das Gefäss und tretet zurück! Die Reaktion beginnt sofort!
Wasserstoffperoxid ist mit roter Farbe und Spülmittel gemischt, die Hefe in Wasser suspendiert
Alles parat: Rechts im Reagenzglas Wasserstoffperoxid-Lösung (Drogisten benutzen gerne lateinisierte Stoffnamen – hier “Hydrogenii peroxidum” , die schonmal zu Kommunikationsschwierigkeiten mit einkaufenden Chemikern führen) mit roter Lebensmittelfarbe und Spülmittel. Links ein Teelöffel Trockenhefe in Wasser. Nun das Linke in das Rechte giessen und los gehts!

Was ihr beobachten könnt

Die Mischung beginnt sofort zu sprudeln und heftig zu schäumen. Wie ein Zahnpastastrang quillt der Schaum aus der Gefässöffnung und ergiesst/schlängelt sich auf dem Backblech aussen herum.

Elefantenzahnpasta quillt aus dem Reagenzglas!
Zahnpasta für Zwergelefanten: Einem der Chemiker-Grundsätze – so viel wie nötig, so wenig wie möglich – zuliebe habe ich den kleinen Massstab im Reagenzglas gewählt. Zudem hatte “meine” Drogerie gerade nur 3% H2O2-Lösung vorrätig – mit 6% käme wohl noch mehr Schaum heraus. Im Übrigen: Ein guter Drogist oder Apotheker fragt nach, was ihr mit der Lösung vorhabt. Nicht irritieren lassen und ehrlich sein – sie geben sie dann schon heraus!

Sicherheitshinweise

Auch wenn sie gerne so genannt wird: Die “Elefantenzahnpasta” eignet sich nicht zum Zähneputzen! Nehmt sie also nicht in den Mund!

Wasserstoffperoxid wirkt ätzend auf Haut und Schleimhäute (die typischen weissen Verletzungen werden manchmal erst verzögert sichtbar und tun manchmal auch dann erst weh). Wenn euch etwas von der Lösung auf die Haut gerät, spült es gründlich mit fliessendem Wasser ab. Sollte euch trotz aller Vorsicht etwas ins Auge spritzen, spült das Auge sehr gründlich mit fliessendem Wasser aus (10 Minuten lang ist Labor-Standard!) und geht bei Beschwerden zum Augenarzt!

Ausserdem kann Wasserstoffperoxid farbige Textilien bleichen. Der Labormantel bzw. die Malschürze soll eure Kleider davor schützen.

Die “Zahnpasta” selbst enthält kaum bis kein Wasserstoffperoxid mehr und kann daher gefahrlos angefasst werden.

Entsorgung

Die “Zahnpasta” und Reste im Reaktionsbehälter können mit viel Wasser in den Abfluss entsorgt werden. Übrige Wasserstoffperoxidlösung könnt ihr im dicht schliessenden Originalbehälter in einem dunklen Schrank aufbewahren und später für weitere Experimente verwenden.


Was passiert da – Wie entsteht die Elefantenzahnpasta?

Wasserstoffperoxid – H2O2 – ist eine recht instabile Verbindung. Unter alltäglichen Bedingungen ohne Reaktionspartner zerfällt es sehr langsam in Wasser und Sauerstoff:

2H_{2}O_{2}\rightarrow 2H_{2}O+O_{2}

Kommt Wasserstoffperoxid allerdings mit anderen Stoffen in Berührung, oxidiert es die meisten davon. Das gilt insbesondere für die Bestandteile von Lebewesen. Deshalb solltet ihr bei diesem Experiment Schutzbrille und -kleidung tragen!

Schutz vor Oxidation durch Aufräum-Enzyme

Wenn die Zellen sauerstoffatmender Lebewesen (Menschen, Tiere, Hefepilze,…) Energie aus Sauerstoff gewinnen, kann in ihnen jedoch H2O2 als unerwünschtes Nebenprodukt entstehen (so ausgeklügelt die Reaktionswege sind, fehlerfrei laufen sie noch lange nicht). Damit dieses Wasserstoffperoxid nicht wild herumoxidiert, haben die Zellen ein Aufräumkommando, das durch Fehler entstehendes H2O2 schnellstmöglich aus der Welt schafft.

Dabei handelt es sich um Enzyme mit dem Namen Katalase. Das sind Proteine, die die natürliche Zersetzung von Wasserstoffperoxid in Wasser und Sauerstoff um ein Vielfaches beschleunigen – indem sie den Ablauf der Reaktion erheblich erleichtern.

Ein Biokatalysator erleichtert den Reaktionsablauf

Denn Reaktionen laufen dann leichter ab, wenn weniger Energie nötig ist, um sie zu starten. Ein Stoff, der eine Reaktion beschleunigen kann (ohne selbst abzureagieren), indem er die zum Start der Reaktion nötige Aktivierungsenergie verringern kann, wird Katalysator genannt.

Im Auto ist der Katalysator eine Metalloberfläche, an welcher giftige Abgase zu weniger giftigen Stoffen reagieren (mehr dazu findet ihr hier). In Lebewesen heissen die Katalysatoren Enzyme. Enzyme sind also Proteine, die Reaktionen erleichtern und damit beschleunigen. Die Katalasen gehören unter diesen zu den schnellsten Enzymen überhaupt: Ein einziges Katalase-Molekül schätzungsweise bis zu 10 Millionen H2O2-Moleküle in der Sekunde umsetzen! Das hat zur Folge, dass die Geschwindigkeit des Wasserstoffperoxid-Abbaus mit Katalase praktisch nur davon abhängt, wie viel H2O2 das Enzym in gegebener Zeit “zu fassen” bekommt.

Gasentwicklung dank Katalase

Damit ist die Katalase bestens geeignet, um durch Fehler in anderen Reaktionsabläufen entstehendes Wasserstoffperoxid sofort wieder verschwinden zu lassen – oder um aus Wasserstoffperoxid, das von aussen eindringt, in kürzester Zeit grosse Mengen Sauerstoff-Gas freizusetzen.

Wenn wir unsere Hefe durch Mischen mit Wasserstoffperoxid-Lösung (relativ) grossen Mengen H2O2 aussetzen, stürmen diese kleinen Moleküle die Hefezellen und werden dort postwendend zu Wasser und Sauerstoff-Gas umgesetzt. Sollten die Zellen dabei platzen oder ihre Aussenwände kaputt oxidiert werden, kommt die Katalase zudem direkt mit der Wasserstoffperoxid-Lösung in Berührung und das Gas entsteht noch schneller.

Nun brauchen gasförmige Stoffe ein Vielfaches mehr an Platz als flüssige Stoffe aus den gleichen Teilchen, sodass sich das Sauerstoff-Gas sehr schnell ausdehnt. Da unser Gemisch aber Seife enthält, werden die entstehenden Sauerstoffportionen in winzige Seifenbläschen eingeschlossen (über diese und andere Superkräfte von Seife könnt ihr hier nachlesen): Es entsteht Schaum.

Elefantenzahnpasta von Nahem gesehen: Die Schaumbläschen sind erkennbar.
Wenn ihr euch die “Elefantenzahnpasta” ganz aus der Nähe anschaut, könnt ihr die kleinen Schaumbläschen erkennen.

Und dieser Schaum, nass von Seifenwasser und Hefezellresten, quillt als “Elefantenzahnpasta”-Schlange aus dem Gefäss heraus.

Zusammenfassung

Die “Elefantenzahnpasta” besteht also aus Schaum aus Seife und Sauerstoff, der durch “Überfütterung” der Oxidationsschutz-Enzyme von Hefezellen mit Wasserstoffperoxid entsteht.

Auch Menschenzellen haben Katalasen, die den Abbau von Wasserstoffperoxid in der gleichen Weise beschleunigen: Wenn Wasserstoffperoxid in unsere Haut gelangt, entstehen im Gewebe kleine Sauerstoffbläschen, welche wir als die weissen Verletzungen sehen können.

Wichtig: Die Schutzenzyme des Körpers sind genau darauf ausgelegt, solche Oxidationsmittel zu entfernen, die bei Fehlern in zelleigenen Prozessen entstehen. Andere Oxidations- und Bleichmittel, insbesondere unter dem Kürzel “MMS” als “Wunderheilmittel” vertriebene gefährliche Chlorverbindungen gehören da nicht zu! Gegen solche Stoffe hat der menschliche Körper keine eigenen Schutzmassnahmen!

Und habt ihr das Elefanzenzahnpasta-Experiment schon einmal ausprobiert? Wozu sonst verwendet ihr Wasserstoffperoxid?

Farbkreis mit wandernden Farben

Seid ihr das winterliche Grau in Grau auch so leid wie ich? Dann ist es für uns alle an der Zeit, uns etwas Farbe zu gönnen. Die Blogparade #farbenfroh aus der Reihe #bloggenkunterbunt in Barbaras Paradies kommt da gerade recht. Barbara sammelt nämlich Blogbeiträge, die etwas mit Farben zu tun haben. Und das noch bis Ende Februar!

Farben, Licht und Glanz – Warum die Welt uns bunt erscheint

Farben sind natürlich auch ein grosses und spannendes Thema in den Naturwissenschaften. Wenn ihr euch schon einmal gefragt habt, was Farben sind und warum die Welt uns bunt erscheint, findet ihr hier in meinem ultimativen Artikel zur Physik der Farben die Antwort.

Für die Blogparade sind aber neue Artikel im Februar gewünscht. Deshalb gibt es heute Farbiges für euch zum Mitmachen: Ein faszinierend buntes Experiment. Und alles, was ihr dazu braucht, findet ihr in eurer Küche oder im Supermarkt.

Vom Lichtspektrum…

Die Farbe ist eine Eigenschaft des Lichtes: Je nach seiner Wellenlänge nehmen wir das Licht, das in unsere Augen fällt, in einer bestimmten Farbe wahr. Erst alle Farben miteinander ergeben den Eindruck “weiss”. Wenn man alle Wellenlängen in aufsteigender (oder absteigender) Reihenfolge nebeneinander stellt, erhält man einen wunderschönen Regenbogen: Eine Reihe aller Farben, die ineinander über zu gehen scheinen.

Diese Reihe nennen die Physiker das Spektrum des sichtbaren Lichtes. An seinen Enden geht es in Farben über, die für unsere Augen unsichtbar sind: Infrarot am langwelligen, ultraviolett am kurzwelligen Ende.

…zum Farbkreis

Nun wäre es aber reichlich aufwändig, für jede dieser Wellenlängen eine eigene Sinneszelle zu entwickeln, nur damit wir farbig sehen können. Ganz davon zu schweigen, dass die kaum alle auf unserer kleinen Netzhaut Platz hätten. Deswegen hat der Mensch nur drei Sorten Farb-Sinneszellen – und dahinter geschaltet eine leistungsfähige Rechenmaschine (das Gehirn), welche die Eindrücke der drei Farbspezialisten zu einem Gesamt-Farbeindruck verarbeitet.

Die drei Grundfarben, für welche wir Menschen eigene Sinneszellen haben, haben findige Künstler und Naturphilosophen schon erkannt, bevor sie wussten, was eine Zelle ist oder wie unsere Netzhaut samt Gehirn funktioniert: Rot, Gelb und Blau. Durch das Vermischen von Farbstoffen in diesen drei Tönen lassen sich nämlich alle anderen Farbeindrücke erzeugen. Reines Rot, Gelb und Blau bekommt man hingegen durch Mischen nicht hin.

Und noch etwas haben die Künstler festgestellt: Bestimmte Farbenpaare nebeneinander erzeugen einen besonders starken Kontrast. Diese Farbenpaare werden Komplementärfarben genannt.

(Technisch gesehen sind zwei Farben komplementär, die gemeinsam weiss (wenn farbige Lichtwellen zusammen kommen) bzw. schwarz (wenn die Farbeindrücke durch Auslöschung von Lichtwellen entstehen, sodass das Mischen zur vollständigen Auslöschung führt) ergeben. Die Gesamtheit aller Lichtwellen erscheint also deshalb weiss , weil zu jeder Farbe auch die Komplementärfarbe vorhanden ist.)

Wenn man nun die drei Grundfarben in einem Dreieck anordnet und die jeweiligen Mischungen zweier Grundfarben im Verhältnis 1:1 entlang der Kanten dieses Dreiecks, dann liegen komplementäre Farben einander gegenüber. Das gilt auch, wenn man die nun sechs Farben wieder je 1:1 miteinander mischt und die Ergebnisse zwischen die Ausgangsfarben setzt. So entsteht ein Farbkreis, auf welchem ähnliche Farben nebeneinander und komplementäre Farben einander gegenüber zu finden sind.

Die Herstellung eines solchen Farbkreises mit sechs Farben könnt ihr mit einer spannenden physikalischen Spielerei verbinden:

Experiment: Farbkreis mit wandernden Farben

Wasser und darin gelöste Farbstoffe können sich durch “saugfähiges” Papier bewegen, wobei die Beweglichkeit der Stoffe von der Beschaffenheit ihrer Moleküle abhängt. Dieser Umstand kann genutzt werden, um Farben zu trennen. Das könnt ihr zum Beispiel ganz einfach mit einem schwarzen Filzstift ausprobieren, oder etwas aufwändiger mit den Farbstoffen in Pflanzenblättern. Die Links führen euch zu meinen Anleitungen dazu.

Heute wollen wir die Lauffähigkeit von Wasser und Farbstoffen aber nutzen, um die Farben zu vermischen.

Ihr braucht dazu

  • Lebensmittelfarben rot, gelb, blau
  • 6 gleichhohe Gläser
  • weisse Papierservietten
  • Bastel- oder Küchenschere
  • Leitungswasser
  • einen Stab zum Umrühren
  • bis zu 24 Studen Zeit

So geht’s

  • Schneidet aus den Papierservietten mehrlagige Streifen, die vom Boden des einen zum Boden des nächsten Glases reichen. Ich habe dazu einfach eine zusammengefaltete Serviette in Streifen geschnitten. Der vorgegebene Falz kann dann auf den Glasrändern platziert werden, und die Enden hängen links und rechts herunter. Ich habe die Streifen dann so gekürzt, dass die Enden etwa 10 bis 15mm auf dem Glasboden aufliegen können.
  • Stellt die leeren Gläser in einem Sechseck auf, nehmt aber die Streifen nach dem Abmessen der Länge wieder heraus.
    Füllt das erste, dritte und fünfte Glas zu mindestens einem Drittel mit Wasser.
  • Löst in einem Wasserglas reichlich blaue, im nächsten gelbe und im dritten rote Lebensmittelfarbe auf. Rührt allenfalls gut um, bis sich die Farbe vollständig im Wasser verteilt hat.
  • Hängt nun die Papierstreifen über die Ränder der benachbarten Gläser: Jeder Streifen soll zu einer Seite in farbigem Wasser, zur anderen Seite in einem leeren Glas hängen. In jedem leeren Glas hängen somit nun zwei trockene Streifen
Der Aufbau zu Beginn des Experiments
  • Und jetzt zum grossen Unterschied zu vielen Varianten dieses Versuchs im Netz: Wartet nicht nur ein bis zwei Stunden, sondern allenfalls einen ganzen Tag ab und schaut euren Farbkreis zwischendurch immer wieder an!

Was ihr beobachten könnt

Das Wasser steigt zunächst zügig in den Serviettenstreifen nach oben. Die Farbstoffe folgen in der Regel deutlich langsamer. Schliesslich überwinden erst das Wasser, dann die Farben den Falz über dem Glasrand und laufen weiter bis zum Boden des nächsten Glases. Wenn ihr lang genug wartet, wird sich buntes Wasser in den leeren Gläsern sammeln, sodass die Farbstoffe sich vermischen!

Farbkreis mit gewanderten Farben nach 24 Stunden
Der Farbkreis nach 24 Stunden: Im Glas zwischen Blau und Rot sammelt sich Violett, im Glas zwischen Blau und Gelb ist das Wasser grünlich, und in der Mitte es Glases zwischen Gelb und Rot lässt sich Orange erkennen.

Wie funktioniert das?

Wie Wasser und Farbstoffe sich durch Papier bewegen, habe ich hier bei der Papierchromatographie mit Filzstiften erklärt. Im Unterschied dazu lassen wir dieses Experiment aber tatsächlich so lange laufen, dass Wasser und Farben durch den ganzen Papierstreifen wandern und schliesslich am anderen Ende wieder herauskommen. Das funktioniert theoretisch so lange, bis der Wasserspiegel in den anfangs leeren Gläsern ebenso hoch ist wie der in den Grundfarben-Gläsern. Dann erst nämlich verursachen die Wassermoleküle in den Misch-Gläsern so viel “Stau”, dass die ganze Bewegung zum Erliegen kommt.

Entsorgung

Lebensmittelfarben sind ungiftig, sodass die Lösungen in den Abluss und die farbigen Papierstreifen in den Restmüll entsorgt werden können. Anstatt sie wegzugiessen, könnt ihr die farbigen Lösungen aber ebenso gut aufheben oder gleich für weitere Experimente verwenden!

Warum dauert der Versuch so lange?

Die Geschwindigkeit, mit welcher die Farben durch die Papierstreifen wandern, hängt ebenso von der Beschaffenheit der Servietten als auch von jener der Farbstoffmoleküle ab. Und es gibt mehr als jeweils eine Sorte Moleküle, die gelb, rot oder blau sein können.

Die Papierservietten, welche ich hier verwendet habe, habe ich auch bei der Trennung von Filzstiftfarben mit vielen Primarschulkindern eingesetzt. Und die Filzstiftfarben liefen innerhalb von wenigen Minuten die Streifen hinauf. Die Lebensmittelfarben (vom Grossverteiler mit dem orangen M) bestehen offenbar aus weitaus sperrigeren Molekülen. In meinen Farben sind das laut Verpackung

  • -Gelb : Curcumin (E 100) – das Gelb der Kurkuma-Wurzel
  • -Rot : Echtes Karmin bzw. Cochenille (E 120) – das Rot aus Cochenille-Schildläusen
  • -Blau : Spirulinaextrakt – ein Farbstoff aus Cyanobakterien (“Blaualgen”) der Gattung Spirulina
Der Farbkreis nach 4 Stunden: Die rote Farbe ist deutlich im Papier zu sehen, die gelbe Farbe erscheint am Glasrand noch blass und die blaue Farbe ist dort noch kaum zu sehen. Erst später werden die Farben intensiver und mischen sich in den vormals leeren Gläsern.

Das Karminrot wandert noch am schnellsten, gefolgt vom Curcumin-Gelb. Das Spirulina-Blau tut sich hingegen ganz schwer. Vielleicht findet ihr ja andere Farbstoffe, die schneller laufen?

Weitere Ideen zum Ausprobieren

-die unterschiedlichen Wandergeschwindigkeiten der Farben sichtbar machen: Mischt alle farbigen Lösungen in einem Glas und hängt einen Papierstreifen hinein. Welche eurer Farben läuft am weitesten hinauf, welche am wenigsten weit?
-probiert das Ganze mit Tinte, Kirschsaft oder anderen farbigen Flüssigkeiten auf Wasserbasis aus: Was läuft in euren Servietten am schnellsten?

Ich wünsche euch ganz viel Spass beim Experimentieren und Farben bestaunen!

Hier findet ihr übrigens noch mehr Farben in Keinsteins Kiste:

Und wie bringt ihr sonst Farbe in euren Februar-Alltag?

Rätsel-Experiment für Kinder: Womit funktioniert der Eiswürfel-Kran?

Wenn es draussen kalt und grau ist, mache ich es mir gerne im Warmen gemütlich. Aber was tun an langen Tagen daheim? Ich habe für euch ein winterliches Rate-Experiment:

Mit welcher “magischen” Substanz könnt ihr einen Eiswürfel an einem Bindfaden befestigen und hochheben?

Nein, ich meine nicht Klebstoff. Der würde an einem Eiswürfel soundso nicht haften, sondern ratzfatz wieder abgehen, wenn das Eis schmilzt. Es gibt jedoch einen anderen Stoff, der den Bindfaden dank eines raffinierten physiko-chemischen Tricks ganz wunderbar am Eiswürfel haften lässt.

Lasst die Kinder den “magischen” Stoff erraten!

Welcher Stoff kann sowas? Lasst insbesondere eure Nachwuchs-Forscher darüber nachdenken (und ratet selbst mit, wenn ihr noch nicht darauf gekommen seid), bevor ihr weiter (vor-)lest. Dann könnt ihr nach folgender Anleitung ganz einfach selbst ausprobieren, ob ihr recht hattet.


Experiment: Wir bauen einen Eiswürfel-Kran


Ihr braucht dazu

  • einen Eiswürfel
  • ein Glas Wasser
  • einen stabilen Holzstab(Schaschlikspiess etc.)
  • ein Stück Bindfaden
  • Zucker oder Salz oder Pfeffer oder Kaugummi
Das braucht ihr: Glas mit Wasser, Holzspiesse, Bindfaden, Eiswürfel

Nur mit einem dieser Stoffe funktioniert das Experiment. Nennt den Nachwuchs-Forschern ruhig diese Vier zur Auswahl. Vielleicht kommen sie selbst darauf, was sie wirklich brauchen. Stattdessen könnt ihr auch alle vier Möglichkeiten ausprobieren.

So geht’s

  • bindet das Stück Bindfaden an euren Stab, sodass ein kleiner Kran entsteht
  • legt den Eiswürfel in das Wasserglas: Er schwimmt (Wieso? s. hier–>Eis wächst)
  • fragt spätestens jetzt die Nachwuchs-Forscher: Was glaubt ihr: Welche der genannten Zutaten ist geeignet, um den Eiswürfel an den Faden zu heften?
  • streut etwas von der “magischen” Substanz auf den Eiswürfel und legt das freie Ende des Fadens dazu.
  • wartet ca. 30 Sekunden
  • hebt den Eiswürfel vorsichtig am Faden aus dem Wasser.

Das könnt ihr beobachten

Wenn ihr die richtige Zutat gefunden habt, haftet der Eiswürfel am Faden, sodass ihr ihn aus dem Wasser heben könnt!

Der Eiswürfel hängt frei am Bindfaden!
Geht nur mit der richtigen Zutat: Der Eiswürfel hängt frei am Bindfaden!

Welches ist die richtige “magische” Substanz?

Erinnert ihr euch an die Wirkweise von Streusalz (die habe ich hier erklärt)? Wenn dessen Ionen sich mit Wasser mischen, bringt das Eis in der Umgebung zum Schmelzen. Die Wassermoleküle sind nämlich derart damit beschäftigt, die Salzionen zu umhüllen, dass sie nicht mehr am stetigen Schmelzen und Gefrieren, das sich zwischen Eis und Wasser abspielt, teilhaben können.

Und dann – so besagt es das Gesetz von Le Châtelier – müssen diese Wassermoleküle ersetzt werden. Indem mehr Eis zu flüssigem Wasser schmilzt, als es das normalerweise tut.

Das Schmelzen aber verbraucht Energie, entzieht der Umgebung also Wärme. Die Umgebung von Salz und Faden kühlt also ab, bis schliesslich selbst das Salzwasser mitsamt dem Faden am Eiswürfel festfriert!

Entsorgung

Sobald das Eis geschmolzen ist, könnt ihr das Salzwasser einfach in den Abfluss geben. Zum Blumengiessen eignet es sich wahrscheinlich nicht mehr, da die Pflanzen zu viel Salz nicht vertragen.

Alltagstipp: Eis und Salzwasser als Kühlmittel

Im Labor nutzen Chemiker die Abkühlung, die Salz in Eiswasser verursacht, zur Kühlung von Experimenten, bei denen zu viel Wärme frei wird. Streusalz ist ein billiges Mittel dafür. Das entstehende Salzwasser ist zudem nicht giftig, sodass es nachher einfach in den Abfluss entsorgt werden kann.

Tafelsalz ist zwar etwas teurer, funktioniert aber ebenso: Wenn eure Getränke im Eiswürfelbad einmal nicht kalt genug werden, gebt etwas Wasser und Salz dazu und rührt vorsichtig, um ein Eisbad zwischen 0°C und -10°C zu erhalten!

Und probiert ihr den Eiswürfelkran selbst aus? Über eure Erfahrungsberichte freue ich mich sehr!

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Weihnachten mit Keinsteins Kiste: Experimente und mehr im Advent

Liebe Leser, Ich verbringe die Adventszeit dieses Jahr ganz unweihnachtlich im warmen Australien. Das bedeutet aber nicht, dass ihr ganz auf adventliche Experimente und Weihnachtsgeschichten aus der Naturwissenschaft verzichten müsst. Davon habe ich nämlich in den letzten Jahren so einige gesammelt, die nach wie vor spannend sind und viel Spass machen. Und dazu kommt dieses Jahr noch ein ganz neuer Artikel mit sage und schreibe 13 Experimenten! Deshalb gibt es heute eine Übersicht über alle Beiträge in Keinsteins Kiste zu Chemie und mehr rund um Advent und Weihnachten, die bis Weihnachten 2018 erschienen sind.

Adventskränzchen 2019
Dieser Beitrag ist Teil des Adventskränzchens 2019!
Weitere Beiträge zum Tagesthema “Basteln, malen, Gestalten” findet ihr hier:
www.marie-theres-schindler.de
http://cosmic-blue.jimdofree.com
https://50percentgreen.de
www.mamarausch.de
https://wilder-hearts.de/

Experiment: Wie setzt sich Kerzenlicht zusammen? Untersucht Lichtquellen mit einem selbstgebauten Spektroskop!

Ihr möchtet euch die Wartezeit im Advent mit Forscher-Aktivitäten versüssen? Dazu braucht es nicht viel – nur eine Pappschachtel und eine alte CD. Damit könnt ihr nach dieser Anleitung ganz einfach ein eigenes Spektroskop bauen!

Spektroskop im Einsatz
Ich probiere das Keksschachtel-Spektroskop am Adventskranz aus

Schaut durch dieses Gerät auf eine Lichtquelle, und ihr könnt die einzelnen Farben sehen, aus welchen das Licht besteht. Gibt es Unterschiede zwischen Kerzenlicht und LED-Lichterketten? Strahlen Leuchtstoffröhren anders als die Sonne? Findet dies und mehr hier selbst heraus!

Weihnachtsgeschichte: Was war der Weihnachtsstern wirklich?

Der Weihnachtsstern : Himmelsphänomen oder Fantasieprodukt?

Diese Frage hat die neunjährige Sarah ihrem Onkel Balthasar gestellt, der ein echter Himmelsforscher ist. Der nimmt sie mit an seinen Arbeitsplatz, eine richtig grosse Sternwarte. Mit Hilfe von Onkel Balthasars Forscher-Kollegen findet Sarah heraus, wie die bunten Farben eines Lichtspektrums den Wissenschaftlern von der Zusammensetzung der Sterne erzählen. Dabei begegnet sie einigen fantastischen Himmelserscheinungen. Ob der Weihnachtsstern, dem die drei “heiligen Könige” nach Betlehem folgten, auch dabei ist? Wissenschaft zum Vorlesen (und Selberlesen), verpackt in eine weihnachtliche Geschichte findet ihr in diesem Beitrag!

Spannende Wissenschaft: Der molekulare Weihnachtsmann

Ein Kinesin-Molekül läuft mitsamt Geschenkesack über ein Aktin-Filament

Auch in unseren Zellen weihnachtet es – und das das ganze Jahr über. Da spaziert nämlich ein Molekül von den Fabriken im Zellinnern zur Zellaussenhaut und schleppt einen grossen Sack voller Geschenke mit sich….ja, richtig gelesen: Da _spaziert_ ein Molekül! Dieses Molekül ist das Transportprotein Kinesin, das sich tatsächlich auf eigenen Füssen an den Streben des Zellskeletts entlang bewegen kann. In vielfacher Ausführung kann es so säckeweise frisch produzierter Hormone zum Versand durch Aussenhülle der Zelle verfrachten. Und einige dieser Hormone können uns wahrhaft glücklich machen. Damit wird der molekulare Weihnachtsmann wahrlich seiner Rolle gerecht. Erfahrt in diesem Einblick in die Zellbiologie, wie Kinesin-Moleküle laufen lernen und mit Hilfe fleissiger Weihnachtselfen ihre Geschenke ausliefern. Und wo es einen Weihnachtsmann gibt, gilt immer (auch hier): Obacht vor dem Grinch! Oder möchtet ihr selbst im Forscher-Labor Geschenke basteln? Da habe ich gleich drei Vorschlage:

Experiment: Weihnachtskugeln mit Silberspiegel

Warum kann man sich eigentlich in Christbaumkugeln spiegeln? Weil sie mit Silber beschichtet sind – und zwar von innen! Aber wie kommt das Silber in die Glaskugel? Das könnt ihr in diesem Experiment ausprobieren und dabei eure eigenen Kugeln verspiegeln.

Links eine unbehandelte Ersatzkugel, rechts die selbst verspiegelte Kugel

Dazu benötigt ihr Silbernitrat – ein Salz, das Silber-Ionen enthält. Ihr bekommt es in der Drogerie oder Apotheke – für ein paar Franken oder Euros, die in diese ganz besondere “Bastelarbeit” gut angelegt sind. Schliesslich kommt ja echtes Silber dabei raus! Um aus diesen Silber-Ionen das spiegelnde Edelmetall zu machen, braucht ihr nichts weiter als Zucker und eine Wärmequelle. Den Rest – wie ihr das Silbersalz dazu bringt, auf der Kugeloberfläche zu Silber zu reagieren und wie ihr die Reste sicher entsorgt (Silber ist ein Schwermetall!) – erfahrt ihr hier in der Experimentier-Anleitung.

Experiment: Kristalle züchten

Neben spiegelnden Christbaumkugeln machen sich auch funkelnde Kristallsterne gut als Baumschmuck. Und die könnt ihr ganz einfach selber züchten. Ihr braucht dazu Alaun – ein Salz, das ihr in der Apotheke oder Drogerie kaufen könnt, und destillatgleiches Wasser (“Bügelwasser”), das ihr in jedem Supermarkt beim Haushaltszubehör findet. Dazu kommen ein paar Tage Geduld und ihr könnt wunderschönen Kristallen beim Wachsen zusehen. Mit diesen Kristallen lassen sich natürlich nicht nur Sterne züchten – eurer Fantasie sind keine Grenzen gesetzt: Sollen es lieber Herzen, Engel, Tannenbäume sein? Und wenn ihr Zugang zu anderen, farbigen Salzen habt (wie Kupfersulfat oder Chrom-Alaun), könnt ihr sogar farbigen Baumschmuck züchten! Hier in der Experimentier-Anleitung bei den Monstamoons stelle ich die schneeweisse Ausführung mit einfachem (Kali-)Alaun vor.

Experiment: Schneekugeln selber machen

DIY Schneekugeln mit Benzoesäure

Eine selbstgestaltete Schneekugel ist ein wunderschönes Geschenk für eure Lieben! In der ganz einfachen Ausführung wird einfach Glitzer in destillatgleiches Wasser gemischt und in ein gestaltetes Glas gefüllt. Was aber, wenn ihr “richtige” Schneeflocken in eurer Kugel haben wollt? Die könnt ihr aus Benzoesäure selbst herstellen. Dem Namen zum Trotz ist Benzoesäure ein Feststoff, eine organische Verbindung, die oft als Lebensmittelzusatzstoff zum Einsatz kommt. Deshalb könnt ihr sie auch problemlos in der Drogerie oder Apotheke kaufen. Zur Herstellung von Schneeflocken wird das kochsalzähnliche Pulver direkt im Schneekugel-Wasser “umkristallisiert”. Wie das geht, zeige ich euch hier in der Experimentier-Anleitung gemeinsam mit Mikkis Weihnachtengeln.

Experimente: 13 Versuche mit Kerzen

Forscher-Advent: 13 Experimente mit Kerzen

Und damit euch auch ganz bestimmt nicht langweilig wird, gibt es zum Schluss noch etwas Neues: Im Rahmen der Advents-Blogparade der IG Schweizer Familienblogs bei den Angelones stelle ich euch 13 ganz einfache Experimente mit Kerzen vor. Ganz einfach heisst dabei aber nicht weniger spektakulär. Denn eine Kerzenflamme ist nicht nur heiss und hell, sondern über alle Massen faszinierend. Warum brennen Kerzen eigentlich? Könnt ihr eine Kerzenflamme um ein Hindernis herum ausblasen? Wie erschafft man eine halbe Flamme? Was passiert, wenn man ein Glas über eine Kerze stülpt? Warum sind Adventskranz und Weihnachtsbaum brandgefährlich? Die Antworten auf diese und mehr Fragen könnt ihr in dieser Experimentier-Anleitung und vor allem durch selbst Ausprobieren finden!   Nun wünsche ich euch viel Spass beim Lesen, Stöbern, Basteln und Experimentieren im Advent! Zumindest rechtzeitig zu Weihnachten werden wir wieder im Lande sein. Und dann würde ich mich sehr über eure Berichte und Ergebnisse vom Nachbasteln und -Experimentieren freuen! Eure Kathi Keinstein