Beiträge

Farbkreis mit wandernden Farben

Seid ihr das winterliche Grau in Grau auch so leid wie ich? Dann ist es für uns alle an der Zeit, uns etwas Farbe zu gönnen. Die Blogparade #farbenfroh aus der Reihe #bloggenkunterbunt in Barbaras Paradies kommt da gerade recht. Barbara sammelt nämlich Blogbeiträge, die etwas mit Farben zu tun haben. Und das noch bis Ende Februar!

Farben, Licht und Glanz – Warum die Welt uns bunt erscheint

Farben sind natürlich auch ein grosses und spannendes Thema in den Naturwissenschaften. Wenn ihr euch schon einmal gefragt habt, was Farben sind und warum die Welt uns bunt erscheint, findet ihr hier in meinem ultimativen Artikel zur Physik der Farben die Antwort.

Für die Blogparade sind aber neue Artikel im Februar gewünscht. Deshalb gibt es heute Farbiges für euch zum Mitmachen: Ein faszinierend buntes Experiment. Und alles, was ihr dazu braucht, findet ihr in eurer Küche oder im Supermarkt.

Vom Lichtspektrum…

Die Farbe ist eine Eigenschaft des Lichtes: Je nach seiner Wellenlänge nehmen wir das Licht, das in unsere Augen fällt, in einer bestimmten Farbe wahr. Erst alle Farben miteinander ergeben den Eindruck “weiss”. Wenn man alle Wellenlängen in aufsteigender (oder absteigender) Reihenfolge nebeneinander stellt, erhält man einen wunderschönen Regenbogen: Eine Reihe aller Farben, die ineinander über zu gehen scheinen.

Diese Reihe nennen die Physiker das Spektrum des sichtbaren Lichtes. An seinen Enden geht es in Farben über, die für unsere Augen unsichtbar sind: Infrarot am langwelligen, ultraviolett am kurzwelligen Ende.

…zum Farbkreis

Nun wäre es aber reichlich aufwändig, für jede dieser Wellenlängen eine eigene Sinneszelle zu entwickeln, nur damit wir farbig sehen können. Ganz davon zu schweigen, dass die kaum alle auf unserer kleinen Netzhaut Platz hätten. Deswegen hat der Mensch nur drei Sorten Farb-Sinneszellen – und dahinter geschaltet eine leistungsfähige Rechenmaschine (das Gehirn), welche die Eindrücke der drei Farbspezialisten zu einem Gesamt-Farbeindruck verarbeitet.

Die drei Grundfarben, für welche wir Menschen eigene Sinneszellen haben, haben findige Künstler und Naturphilosophen schon erkannt, bevor sie wussten, was eine Zelle ist oder wie unsere Netzhaut samt Gehirn funktioniert: Rot, Gelb und Blau. Durch das Vermischen von Farbstoffen in diesen drei Tönen lassen sich nämlich alle anderen Farbeindrücke erzeugen. Reines Rot, Gelb und Blau bekommt man hingegen durch Mischen nicht hin.

Und noch etwas haben die Künstler festgestellt: Bestimmte Farbenpaare nebeneinander erzeugen einen besonders starken Kontrast. Diese Farbenpaare werden Komplementärfarben genannt.

(Technisch gesehen sind zwei Farben komplementär, die gemeinsam weiss (wenn farbige Lichtwellen zusammen kommen) bzw. schwarz (wenn die Farbeindrücke durch Auslöschung von Lichtwellen entstehen, sodass das Mischen zur vollständigen Auslöschung führt) ergeben. Die Gesamtheit aller Lichtwellen erscheint also deshalb weiss , weil zu jeder Farbe auch die Komplementärfarbe vorhanden ist.)

Wenn man nun die drei Grundfarben in einem Dreieck anordnet und die jeweiligen Mischungen zweier Grundfarben im Verhältnis 1:1 entlang der Kanten dieses Dreiecks, dann liegen komplementäre Farben einander gegenüber. Das gilt auch, wenn man die nun sechs Farben wieder je 1:1 miteinander mischt und die Ergebnisse zwischen die Ausgangsfarben setzt. So entsteht ein Farbkreis, auf welchem ähnliche Farben nebeneinander und komplementäre Farben einander gegenüber zu finden sind.

Die Herstellung eines solchen Farbkreises mit sechs Farben könnt ihr mit einer spannenden physikalischen Spielerei verbinden:

Experiment: Farbkreis mit wandernden Farben

Wasser und darin gelöste Farbstoffe können sich durch “saugfähiges” Papier bewegen, wobei die Beweglichkeit der Stoffe von der Beschaffenheit ihrer Moleküle abhängt. Dieser Umstand kann genutzt werden, um Farben zu trennen. Das könnt ihr zum Beispiel ganz einfach mit einem schwarzen Filzstift ausprobieren, oder etwas aufwändiger mit den Farbstoffen in Pflanzenblättern. Die Links führen euch zu meinen Anleitungen dazu.

Heute wollen wir die Lauffähigkeit von Wasser und Farbstoffen aber nutzen, um die Farben zu vermischen.

Ihr braucht dazu

  • Lebensmittelfarben rot, gelb, blau
  • 6 gleichhohe Gläser
  • weisse Papierservietten
  • Bastel- oder Küchenschere
  • Leitungswasser
  • einen Stab zum Umrühren
  • bis zu 24 Studen Zeit

So geht’s

  • Schneidet aus den Papierservietten mehrlagige Streifen, die vom Boden des einen zum Boden des nächsten Glases reichen. Ich habe dazu einfach eine zusammengefaltete Serviette in Streifen geschnitten. Der vorgegebene Falz kann dann auf den Glasrändern platziert werden, und die Enden hängen links und rechts herunter. Ich habe die Streifen dann so gekürzt, dass die Enden etwa 10 bis 15mm auf dem Glasboden aufliegen können.
  • Stellt die leeren Gläser in einem Sechseck auf, nehmt aber die Streifen nach dem Abmessen der Länge wieder heraus.
    Füllt das erste, dritte und fünfte Glas zu mindestens einem Drittel mit Wasser.
  • Löst in einem Wasserglas reichlich blaue, im nächsten gelbe und im dritten rote Lebensmittelfarbe auf. Rührt allenfalls gut um, bis sich die Farbe vollständig im Wasser verteilt hat.
  • Hängt nun die Papierstreifen über die Ränder der benachbarten Gläser: Jeder Streifen soll zu einer Seite in farbigem Wasser, zur anderen Seite in einem leeren Glas hängen. In jedem leeren Glas hängen somit nun zwei trockene Streifen
Der Aufbau zu Beginn des Experiments
  • Und jetzt zum grossen Unterschied zu vielen Varianten dieses Versuchs im Netz: Wartet nicht nur ein bis zwei Stunden, sondern allenfalls einen ganzen Tag ab und schaut euren Farbkreis zwischendurch immer wieder an!

Was ihr beobachten könnt

Das Wasser steigt zunächst zügig in den Serviettenstreifen nach oben. Die Farbstoffe folgen in der Regel deutlich langsamer. Schliesslich überwinden erst das Wasser, dann die Farben den Falz über dem Glasrand und laufen weiter bis zum Boden des nächsten Glases. Wenn ihr lang genug wartet, wird sich buntes Wasser in den leeren Gläsern sammeln, sodass die Farbstoffe sich vermischen!

Farbkreis mit gewanderten Farben nach 24 Stunden
Der Farbkreis nach 24 Stunden: Im Glas zwischen Blau und Rot sammelt sich Violett, im Glas zwischen Blau und Gelb ist das Wasser grünlich, und in der Mitte es Glases zwischen Gelb und Rot lässt sich Orange erkennen.

Wie funktioniert das?

Wie Wasser und Farbstoffe sich durch Papier bewegen, habe ich hier bei der Papierchromatographie mit Filzstiften erklärt. Im Unterschied dazu lassen wir dieses Experiment aber tatsächlich so lange laufen, dass Wasser und Farben durch den ganzen Papierstreifen wandern und schliesslich am anderen Ende wieder herauskommen. Das funktioniert theoretisch so lange, bis der Wasserspiegel in den anfangs leeren Gläsern ebenso hoch ist wie der in den Grundfarben-Gläsern. Dann erst nämlich verursachen die Wassermoleküle in den Misch-Gläsern so viel “Stau”, dass die ganze Bewegung zum Erliegen kommt.

Entsorgung

Lebensmittelfarben sind ungiftig, sodass die Lösungen in den Abluss und die farbigen Papierstreifen in den Restmüll entsorgt werden können. Anstatt sie wegzugiessen, könnt ihr die farbigen Lösungen aber ebenso gut aufheben oder gleich für weitere Experimente verwenden!

Warum dauert der Versuch so lange?

Die Geschwindigkeit, mit welcher die Farben durch die Papierstreifen wandern, hängt ebenso von der Beschaffenheit der Servietten als auch von jener der Farbstoffmoleküle ab. Und es gibt mehr als jeweils eine Sorte Moleküle, die gelb, rot oder blau sein können.

Die Papierservietten, welche ich hier verwendet habe, habe ich auch bei der Trennung von Filzstiftfarben mit vielen Primarschulkindern eingesetzt. Und die Filzstiftfarben liefen innerhalb von wenigen Minuten die Streifen hinauf. Die Lebensmittelfarben (vom Grossverteiler mit dem orangen M) bestehen offenbar aus weitaus sperrigeren Molekülen. In meinen Farben sind das laut Verpackung

  • -Gelb : Curcumin (E 100) – das Gelb der Kurkuma-Wurzel
  • -Rot : Echtes Karmin bzw. Cochenille (E 120) – das Rot aus Cochenille-Schildläusen
  • -Blau : Spirulinaextrakt – ein Farbstoff aus Cyanobakterien (“Blaualgen”) der Gattung Spirulina
Der Farbkreis nach 4 Stunden: Die rote Farbe ist deutlich im Papier zu sehen, die gelbe Farbe erscheint am Glasrand noch blass und die blaue Farbe ist dort noch kaum zu sehen. Erst später werden die Farben intensiver und mischen sich in den vormals leeren Gläsern.

Das Karminrot wandert noch am schnellsten, gefolgt vom Curcumin-Gelb. Das Spirulina-Blau tut sich hingegen ganz schwer. Vielleicht findet ihr ja andere Farbstoffe, die schneller laufen?

Weitere Ideen zum Ausprobieren

-die unterschiedlichen Wandergeschwindigkeiten der Farben sichtbar machen: Mischt alle farbigen Lösungen in einem Glas und hängt einen Papierstreifen hinein. Welche eurer Farben läuft am weitesten hinauf, welche am wenigsten weit?
-probiert das Ganze mit Tinte, Kirschsaft oder anderen farbigen Flüssigkeiten auf Wasserbasis aus: Was läuft in euren Servietten am schnellsten?

Ich wünsche euch ganz viel Spass beim Experimentieren und Farben bestaunen!

Hier findet ihr übrigens noch mehr Farben in Keinsteins Kiste:

Und wie bringt ihr sonst Farbe in euren Februar-Alltag?

Rätsel-Experiment für Kinder: Womit funktioniert der Eiswürfel-Kran?

Wenn es draussen kalt und grau ist, mache ich es mir gerne im Warmen gemütlich. Aber was tun an langen Tagen daheim? Ich habe für euch ein winterliches Rate-Experiment:

Mit welcher “magischen” Substanz könnt ihr einen Eiswürfel an einem Bindfaden befestigen und hochheben?

Nein, ich meine nicht Klebstoff. Der würde an einem Eiswürfel soundso nicht haften, sondern ratzfatz wieder abgehen, wenn das Eis schmilzt. Es gibt jedoch einen anderen Stoff, der den Bindfaden dank eines raffinierten physiko-chemischen Tricks ganz wunderbar am Eiswürfel haften lässt.

Lasst die Kinder den “magischen” Stoff erraten!

Welcher Stoff kann sowas? Lasst insbesondere eure Nachwuchs-Forscher darüber nachdenken (und ratet selbst mit, wenn ihr noch nicht darauf gekommen seid), bevor ihr weiter (vor-)lest. Dann könnt ihr nach folgender Anleitung ganz einfach selbst ausprobieren, ob ihr recht hattet.


Experiment: Wir bauen einen Eiswürfel-Kran


Ihr braucht dazu

  • einen Eiswürfel
  • ein Glas Wasser
  • einen stabilen Holzstab(Schaschlikspiess etc.)
  • ein Stück Bindfaden
  • Zucker oder Salz oder Pfeffer oder Kaugummi
Das braucht ihr: Glas mit Wasser, Holzspiesse, Bindfaden, Eiswürfel

Nur mit einem dieser Stoffe funktioniert das Experiment. Nennt den Nachwuchs-Forschern ruhig diese Vier zur Auswahl. Vielleicht kommen sie selbst darauf, was sie wirklich brauchen. Stattdessen könnt ihr auch alle vier Möglichkeiten ausprobieren.

So geht’s

  • bindet das Stück Bindfaden an euren Stab, sodass ein kleiner Kran entsteht
  • legt den Eiswürfel in das Wasserglas: Er schwimmt (Wieso? s. hier–>Eis wächst)
  • fragt spätestens jetzt die Nachwuchs-Forscher: Was glaubt ihr: Welche der genannten Zutaten ist geeignet, um den Eiswürfel an den Faden zu heften?
  • streut etwas von der “magischen” Substanz auf den Eiswürfel und legt das freie Ende des Fadens dazu.
  • wartet ca. 30 Sekunden
  • hebt den Eiswürfel vorsichtig am Faden aus dem Wasser.

Das könnt ihr beobachten

Wenn ihr die richtige Zutat gefunden habt, haftet der Eiswürfel am Faden, sodass ihr ihn aus dem Wasser heben könnt!

Der Eiswürfel hängt frei am Bindfaden!
Geht nur mit der richtigen Zutat: Der Eiswürfel hängt frei am Bindfaden!

Welches ist die richtige “magische” Substanz?

Erinnert ihr euch an die Wirkweise von Streusalz (die habe ich hier erklärt)? Wenn dessen Ionen sich mit Wasser mischen, bringt das Eis in der Umgebung zum Schmelzen. Die Wassermoleküle sind nämlich derart damit beschäftigt, die Salzionen zu umhüllen, dass sie nicht mehr am stetigen Schmelzen und Gefrieren, das sich zwischen Eis und Wasser abspielt, teilhaben können.

Und dann – so besagt es das Gesetz von Le Châtelier – müssen diese Wassermoleküle ersetzt werden. Indem mehr Eis zu flüssigem Wasser schmilzt, als es das normalerweise tut.

Das Schmelzen aber verbraucht Energie, entzieht der Umgebung also Wärme. Die Umgebung von Salz und Faden kühlt also ab, bis schliesslich selbst das Salzwasser mitsamt dem Faden am Eiswürfel festfriert!

Entsorgung

Sobald das Eis geschmolzen ist, könnt ihr das Salzwasser einfach in den Abfluss geben. Zum Blumengiessen eignet es sich wahrscheinlich nicht mehr, da die Pflanzen zu viel Salz nicht vertragen.

Alltagstipp: Eis und Salzwasser als Kühlmittel

Im Labor nutzen Chemiker die Abkühlung, die Salz in Eiswasser verursacht, zur Kühlung von Experimenten, bei denen zu viel Wärme frei wird. Streusalz ist ein billiges Mittel dafür. Das entstehende Salzwasser ist zudem nicht giftig, sodass es nachher einfach in den Abfluss entsorgt werden kann.

Tafelsalz ist zwar etwas teurer, funktioniert aber ebenso: Wenn eure Getränke im Eiswürfelbad einmal nicht kalt genug werden, gebt etwas Wasser und Salz dazu und rührt vorsichtig, um ein Eisbad zwischen 0°C und -10°C zu erhalten!

Und probiert ihr den Eiswürfelkran selbst aus? Über eure Erfahrungsberichte freue ich mich sehr!

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Weihnachten mit Keinsteins Kiste: Experimente und mehr im Advent

Liebe Leser, Ich verbringe die Adventszeit dieses Jahr ganz unweihnachtlich im warmen Australien. Das bedeutet aber nicht, dass ihr ganz auf adventliche Experimente und Weihnachtsgeschichten aus der Naturwissenschaft verzichten müsst. Davon habe ich nämlich in den letzten Jahren so einige gesammelt, die nach wie vor spannend sind und viel Spass machen. Und dazu kommt dieses Jahr noch ein ganz neuer Artikel mit sage und schreibe 13 Experimenten! Deshalb gibt es heute eine Übersicht über alle Beiträge in Keinsteins Kiste zu Chemie und mehr rund um Advent und Weihnachten, die bis Weihnachten 2018 erschienen sind.

Experiment: Wie setzt sich Kerzenlicht zusammen? Untersucht Lichtquellen mit einem selbstgebauten Spektroskop!

Ihr möchtet euch die Wartezeit im Advent mit Forscher-Aktivitäten versüssen? Dazu braucht es nicht viel – nur eine Pappschachtel und eine alte CD. Damit könnt ihr nach dieser Anleitung ganz einfach ein eigenes Spektroskop bauen!

Spektroskop im Einsatz

Ich probiere das Keksschachtel-Spektroskop am Adventskranz aus

Schaut durch dieses Gerät auf eine Lichtquelle, und ihr könnt die einzelnen Farben sehen, aus welchen das Licht besteht. Gibt es Unterschiede zwischen Kerzenlicht und LED-Lichterketten? Strahlen Leuchtstoffröhren anders als die Sonne? Findet dies und mehr hier selbst heraus!

Weihnachtsgeschichte: Was war der Weihnachtsstern wirklich?

Diese Frage hat die neunjährige Sarah ihrem Onkel Balthasar gestellt, der ein echter Himmelsforscher ist. Der nimmt sie mit an seinen Arbeitsplatz, eine richtig grosse Sternwarte. Mit Hilfe von Onkel Balthasars Forscher-Kollegen findet Sarah heraus, wie die bunten Farben eines Lichtspektrums den Wissenschaftlern von der Zusammensetzung der Sterne erzählen. Dabei begegnet sie einigen fantastischen Himmelserscheinungen. Ob der Weihnachtsstern, dem die drei “heiligen Könige” nach Betlehem folgten, auch dabei ist? Wissenschaft zum Vorlesen (und Selberlesen), verpackt in eine weihnachtliche Geschichte findet ihr in diesem Beitrag! Der Weihnachtsstern : Himmelsphänomen oder Fantasieprodukt?

Spannende Wissenschaft: Der molekulare Weihnachtsmann

Auch in unseren Zellen weihnachtet es – und das das ganze Jahr über. Da spaziert nämlich ein Molekül von den Fabriken im Zellinnern zur Zellaussenhaut und schleppt einen grossen Sack voller Geschenke mit sich….ja, richtig gelesen: Da _spaziert_ ein Molekül! Dieses Molekül ist das Transportprotein Kinesin, das sich tatsächlich auf eigenen Füssen an den Streben des Zellskeletts entlang bewegen kann. In vielfacher Ausführung kann es so säckeweise frisch produzierter Hormone zum Versand durch Aussenhülle der Zelle verfrachten. Und einige dieser Hormone können uns wahrhaft glücklich machen. Damit wird der molekulare Weihnachtsmann wahrlich seiner Rolle gerecht. Ein Kinesin-Molekül läuft mitsamt Geschenkesack über ein Aktin-Filament Erfahrt in diesem Einblick in die Zellbiologie, wie Kinesin-Moleküle laufen lernen und mit Hilfe fleissiger Weihnachtselfen ihre Geschenke ausliefern. Und wo es einen Weihnachtsmann gibt, gilt immer (auch hier): Obacht vor dem Grinch! Oder möchtet ihr selbst im Forscher-Labor Geschenke basteln? Da habe ich gleich drei Vorschlage:

Experiment: Weihnachtskugeln mit Silberspiegel

Warum kann man sich eigentlich in Christbaumkugeln spiegeln? Weil sie mit Silber beschichtet sind – und zwar von innen! Aber wie kommt das Silber in die Glaskugel? Das könnt ihr in diesem Experiment ausprobieren und dabei eure eigenen Kugeln verspiegeln.

Links eine unbehandelte Ersatzkugel, rechts die selbst verspiegelte Kugel

Dazu benötigt ihr Silbernitrat – ein Salz, das Silber-Ionen enthält. Ihr bekommt es in der Drogerie oder Apotheke – für ein paar Franken oder Euros, die in diese ganz besondere “Bastelarbeit” gut angelegt sind. Schliesslich kommt ja echtes Silber dabei raus! Um aus diesen Silber-Ionen das spiegelnde Edelmetall zu machen, braucht ihr nichts weiter als Zucker und eine Wärmequelle. Den Rest – wie ihr das Silbersalz dazu bringt, auf der Kugeloberfläche zu Silber zu reagieren und wie ihr die Reste sicher entsorgt (Silber ist ein Schwermetall!) – erfahrt ihr hier in der Experimentier-Anleitung.

Experiment: Kristalle züchten

Neben spiegelnden Christbaumkugeln machen sich auch funkelnde Kristallsterne gut als Baumschmuck. Und die könnt ihr ganz einfach selber züchten. Ihr braucht dazu Alaun – ein Salz, das ihr in der Apotheke oder Drogerie kaufen könnt, und destillatgleiches Wasser (“Bügelwasser”), das ihr in jedem Supermarkt beim Haushaltszubehör findet. Dazu kommen ein paar Tage Geduld und ihr könnt wunderschönen Kristallen beim Wachsen zusehen. Mit diesen Kristallen lassen sich natürlich nicht nur Sterne züchten – eurer Fantasie sind keine Grenzen gesetzt: Sollen es lieber Herzen, Engel, Tannenbäume sein? Und wenn ihr Zugang zu anderen, farbigen Salzen habt (wie Kupfersulfat oder Chrom-Alaun), könnt ihr sogar farbigen Baumschmuck züchten! Hier in der Experimentier-Anleitung bei den Monstamoons stelle ich die schneeweisse Ausführung mit einfachem (Kali-)Alaun vor.

Experiment: Schneekugeln selber machen

Eine selbstgestaltete Schneekugel ist ein wunderschönes Geschenk für eure Lieben! In der ganz einfachen Ausführung wird einfach Glitzer in destillatgleiches Wasser gemischt und in ein gestaltetes Glas gefüllt. Was aber, wenn ihr “richtige” Schneeflocken in eurer Kugel haben wollt? DIY Schneekugeln mit Benzoesäure Die könnt ihr aus Benzoesäure selbst herstellen. Dem Namen zum Trotz ist Benzoesäure ein Feststoff, eine organische Verbindung, die oft als Lebensmittelzusatzstoff zum Einsatz kommt. Deshalb könnt ihr sie auch problemlos in der Drogerie oder Apotheke kaufen. Zur Herstellung von Schneeflocken wird das kochsalzähnliche Pulver direkt im Schneekugel-Wasser “umkristallisiert”. Wie das geht, zeige ich euch hier in der Experimentier-Anleitung gemeinsam mit Mikkis Weihnachtengeln.

Experimente: 13 Versuche mit Kerzen

Und damit euch auch ganz bestimmt nicht langweilig wird, gibt es zum Schluss noch etwas Neues: Im Rahmen der Advents-Blogparade der IG Schweizer Familienblogs bei den Angelones stelle ich euch 13 ganz einfache Experimente mit Kerzen vor. Ganz einfach heisst dabei aber nicht weniger spektakulär. Denn eine Kerzenflamme ist nicht nur heiss und hell, sondern über alle Massen faszinierend. Warum brennen Kerzen eigentlich? Könnt ihr eine Kerzenflamme um ein Hindernis herum ausblasen? Wie erschafft man eine halbe Flamme? Was passiert, wenn man ein Glas über eine Kerze stülpt? Warum sind Adventskranz und Weihnachtsbaum brandgefährlich? Die Antworten auf diese und mehr Fragen könnt ihr in dieser Experimentier-Anleitung und vor allem durch selbst Ausprobieren finden! Forscher-Advent: 13 Experimente mit Kerzen   Nun wünsche ich euch viel Spass beim Lesen, Stöbern, Basteln und Experimentieren im Advent! Zumindest rechtzeitig zu Weihnachten werden wir wieder im Lande sein. Und dann würde ich mich sehr über eure Berichte und Ergebnisse vom Nachbasteln und -Experimentieren freuen! Eure Kathi Keinstein

Experiment: Gärung - die Superkraft von Hefe

Vor ein paar Tagen war es einmal wieder soweit: Ich hatte Geburtstag. Zur Feier des Tages habe ich mich in die Küche gestellt und der Biochemie gewidmet….ähm, Kuchen gebacken. Und zwar mit Hefe! Und damit wird das Kuchenbacken tatsächlich echte Küchen-Biochemie.

Was ist eigentlich Hefe?

Unsere Backhefe besteht aus richtigen Lebewesen! Aber nicht aus Pflanzen oder Tieren, sondern aus Pilzen mit dem komplizierten Namen “Saccharomyces cervisiae”.

Wenn ihr euch jetzt an Asterix und Obelix erinnert fühlt…richtig: Das Lieblingsgetränk der beiden Comic-Gallier ist lauwarme Cervisia – ein Bier. Tatsächlich ist die Backhefe der gleiche Pilz, der auch zum Bierbrauen verwendet wird.

Der erste Teil des Namens bedeutet übrigens so viel wie “Zuckerpilz”, womit der ganze Name sich etwa mit “Bier-Zuckerpilz” übersetzen lässt. Damit ist auch geklärt, wovon diese Pilze sich ernähren.

Hefen bilden übrigens keine Schirme und Hüte im Wald, wie ihr sie von anderen Pilzen kennt. Sie gehören nämlich zu den Einzellern und vermehren sich durch Zellteilung oder die Bildung von Ablegern. Deswegen sehen wir von ihnen ohne Mikroskop auch nicht mehr als eine gelblich-graue Masse. Mit einem Mikroskop hingegen kann man die einzelnen Hefezellen sehen:

Backhefe unter dem Mikroskop: Die Einzelzellen sind jetzt gut erkennbar.

Backhefe unter dem Mikroskop: Die Teilstriche der Skala sind jeweils 11 Mikrometer (Millionstel Meter!) voneinander entfernt. By Bob Blaylock [CC BY-SA 3.0 or GFDL], from Wikimedia Commons

Was macht ein Pilz in Brot und Kuchen?

Er lebt! Zumindest vor dem Backen. Und zwar wie alle Lebewesen von Zuckern. Nur ist Hefe dabei nicht zwingend auf Sauerstoff zum Atmen angewiesen. Während Menschen Sauerstoff als Oxidationsmittel brauchen, um aus den Zuckern chemische Energie zu gewinnen, können Hefen dazu auch andere chemische Reaktionen nutzen, die ohne Sauerstoff auskommen.

Solche Reaktionen werden zusammengefasst “Gärung” genannt. Bei der Gärung durch Hefe entsteht als “Abfall” der Trink-Alkohol “Ethanol” (auf den es die Bierbrauer abgesehen haben), und… findet es selbst heraus!

 

Experiment 1: Hefegärung sichtbar machen

Ihr braucht dazu

Eine Glasflasche mit engem Hals (ca. 0,5l),
Einen Luftballon, nicht aufgeblasen
Backhefe (1 Päckchen Trockenhefe)
Wasser (lauwarm)
Einen Teelöffel Haushaltszucker

Das braucht ihr für das Experiment

So geht es

Blast den Luftballon mehrmals hintereinander auf und lasst die Luft immer wieder heraus. So wird die Ballonhülle schon einmal gedehnt und lässt sich später leichter aufblasen.

Füllt die Flasche halb mit lauwarmem Wasser und löst den Zucker darin auf. Gebt die Hefe dazu und schwenkt die Flasche kurz, sodass sich alles gut mischt.

Stülpt dann die Öffnung des Luftballons über die Flaschenöffnung und stellt das Ganze an einen warmen Ort (ideal sind 28-32°C).

Wartet ab und beobachtet, was geschieht: In der Flasche geht es sichtlich geschäftig zu, und: Der Ballon bläht sich auf!

Im Laufe von 45 Minuten bläht der Ballon sich immer weiter auf!

Ein Gas entsteht: Links der Aufbau zu Beginn des Experiments, dann von links nach rechts: nach 15min, 30min, 45min

Was geschieht da?

Die Hefe verdaut den Zucker. Dabei entsteht ein Gas, das den Ballon füllt!

Was für ein Gas ist das?

Ihr könnt es selbst nachweisen!

Experiment 2: Gas-Nachweis

Ihr braucht dazu

Die Hefemischung in der Flasche aus Experiment 1
Ein Streichholz, etwas zum Anzünden
Eine Pinzette

So geht es

Entfernt den Luftballon von der Flasche. Entzündet das Streichholz und führt es mit Hilfe der Pinzette in die Flasche mit der Hefemischung (nicht eintauchen!). Beobachtet: Das Streichholz geht aus!

Was passiert da?

Das Gas, welches die Hefe produziert, ist Kohlenstoffdioxid (CO2)! Es ist schwerer als Luft und verdrängt so den Sauerstoff nach oben aus der Flasche. Ohne Sauerstoff kann Feuer nicht brennen – und geht aus.

 

Was in den Hefezellen passiert

Der wichtigste Zucker, von dem Hefe sich ernährt, ist Traubenzucker (Glucose). Das ist ein “Einfachzucker” (ein Monosaccharid), besteht also aus überschaubar kleinen, einzelnen Zuckermolekülen.

alpha-D-Glucose in 6-Ringform: Haworth-Strukturformel

Ein Glucose-Molekül

Aus Traubenzucker- bzw. Glucose-Molekülen können alle Lebewesen schnell Energie gewinnen. Die Hefe verwendet dazu eine Folge von Reaktionen, die die Biochemiker als “anaerobe Glykolyse” bezeichnen.

Dabei wird aus einem Molekül Glucose in mehreren Schritten ein Molekül “Pyruvat” hergestellt. Im Zuge dieser Schritte werden zwei Energieträger-Moleküle, die die Biochemiker abgekürzt “ADP” nennen, “aufgeladen”, indem je ein Phosphorsäure-Anion an jedes dieser Moleküle gehängt wird (die aufgeladenen Energieträger-Moleküle heissen dann “ATP”).

Für das Aufladen sind jedoch weitere Reaktionspartner (Moleküle namens NAD+) nötig, die ihrerseits recycelt werden müssen.

Gärung: Aus Pyruvat wird Ethanol. Dabei wird ein Molekül CO2 frei und ein Molekül NAD+ rezykliert.

Alkoholische Gärung By Arne “Norro” Nordmann. [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5 ], via Wikimedia Commons

Deswegen haben die Hefepilze ein weiteres Enzym (die Pyruvatdecarboxylase), das von den Pyruvat-Molekülen je ein Molekül Kohlenstoffdioxid (CO2) abspaltet.

Das Kohlenstoffdioxid wird danach aus den Zellen entsorgt und füllt euren Luftballon!

Übrig bleibt ein Molekül Acetaldehyd. Das ist für Zellen giftig und wird deshalb schnell zu Ethanol weiterverarbeitet, wobei die Abfall-Moleküle NADH aus der Glykolyse zu NAD+ recycelt werden.

Der Trink-Alkohol “Ethanol” ist übrigens für uns Menschen giftig, weil es in unseren Zellen das Enzym Alkoholdehydrogenase auch gibt – nur fördert es da die Reaktion in umgekehrter Richtung: Aus Ethanol wird Acetaldehyd. Und das beschert und einen mächtigen Kater (über diesen biochemischen Katzenjammer könnt ihr hier mehr lesen).

Wie wird dann Haushaltszucker vergoren?

Die Moleküle des Haushaltszuckers (Saccharose) bestehen aus je zwei verbundenen Einfachzuckern: dem Traubenzucker Glucose und dem Fruchtzucker Fructose.

Saccharose, unser Haushaltszucker dargestellt in der Haworth-Strukturformel

Ein Saccharose-Molekül

In den Hefepilz-Zellen gibt es deshalb ein Enzym, das diese Paare spalten kann, bevor die Einzelteile wie oben gezeigt “verdaut” werden.

Diese Fähigkeit – Haushaltszucker zu spalten und zu verwerten – hat der Backhefe schliesslich ihren wissenschaftlichen Namen (Saccharomyces…) eingebracht.

Wie “geht” Hefe in Milch?

Normale Vollmilch besteht zu ca. 5% aus Milchzucker (Laktose) – das sollte ja genug Futter für die Hefe sein, oder? Weil Reto laktoseintolerant ist, habe ich allerdings laktosefreie Milch für den Kuchen benutzt…und hatte schon Sorge, die Hefe würde damit nicht aufgehen. Stattdessen ging meine Hefe aber schon nach dem Mischen mit der Milch ab wie Schmitz’ Katze!

Hefe in laktosefreier Milch

Laktose ist auch ein Zweifachzucker, sie besteht aus je einem Molekül Glucose und Galactose.

Ein Laktose-Molekül: Haworth-Strukturformel

Auch Laktose ist ein Zweifach-Zucker, der vor der Verwertung gespalten werden muss

Unglücklicherweise hat die Back-Hefe aber kein Enzym, um Laktose zu spalten und so an die Glucose zu gelangen (sie ist also “laktoseintolerant”, wenngleich Hefepilze keinen Darm haben, der deswegen verstimmt sein könnte). Zum Glück für die Hefe enthält normale Vollmilch jedoch immer auch freie Glucose.

Laktosefreie Milch wird nun hergestellt, indem man das Enzym Laktase dazugibt, welches die Laktose in Glucose und Galactose spaltet (deshalb ist laktosefreie Milch ein wenig süsser als normale). So findet die Hefe in laktosefreier Milch sogar mehr zu fressen als in normaler Vollmilch und geht dementsprechend eifrig auf!

Was im Ofen mit der Hefe passiert

Und bevor euch nun bei all den lebendigen Pilzen der Appetit auf Brot und Kuchen vergeht: Wie alle Lebewesen sind Hefepilze auf gemässigte Temperaturen angewiesen. Wenn ihr euren Hefeteig also in den Ofen schiebt und erhitzt, sterben alle Pilze ab.

Das Kohlenstoffdioxid, das sie vorher im Teig freigesetzt haben, dehnt sich jedoch in der Hitze aus und lässt so Kuchen und Brot aufgehen und so wunderbar fluffig werden. Wenn indessen Stärke, Proteine, Fett und Zucker im Teig zu einem festen Molekülgerüst reagieren (zum Beispiel im Zuge der Maillard-Reaktion, zu der ihr hier lesen könnt), fällt das Ganze nach dem Abkühlen auch nicht mehr zusammen.

 

Entsorgung

Das Hefe-Wasser-Gemisch könnt ihr in den Ausguss entsorgen – oder vielleicht ein Brot damit backen? Den Luftballon könnt ihr nach Belieben weiter benutzen.

 

Ich wünsche euch viel Spass beim Ausprobieren und Beobachten! Was macht ihr sonst am liebsten mit Hefe bzw. Hefeteig?

Experiment DIY Kinetischer Sand - und wie er funktioniert

Die grossen Ferien sind auch in den spätesten Kantonen und Bundesländern vorbei und der Sommer geht zu Ende. Wer denkt da nicht manchmal wehmütig an die Strandferien zurück? An das Gefühl von Sand zwischen Zehen und Fingern, an Sandburgen und andere Küsten-Kunstwerke?

Das alles muss aber nicht bis zum nächsten Jahr warten. Für Sehnsuchtsvolle gibt es nämlich ein Spielzeug, mit dem es sich auch an Schlechtwettertagen herrlich “sändelen” lässt: Kinetischer Sand. Den kann man entweder im Kaufhaus kaufen, online bestellen (Kinetic Sand® und ähnliche) – oder selber machen.

Ich habe meinen kinetischen Sand selbst gemacht und zeige euch, wie ich das hinbekommen habe. Und natürlich auch die Chemie, die dahinter steckt (und ganz und gar ungefährlich ist!). Denn wenn man versteht, was man da zusammenrührt, funktioniert es am besten und macht auch noch am meisten Spass.

 

Wie aus Sand Burgen werden

Jedes Kind, das gerne Sandburgen baut, weiss eines: Dazu braucht man nassen Sand. Wenn man trockenen Sand auftürmen oder gar formen will, fliesst der nämlich sofort auseinander und verteilt sich überall.

Nasser Sand dagegen pappt zusammen. Aber wieso eigentlich? Der gewöhnliche Strandsand besteht zu grössten Teilen aus Quarz, also aus Siliciumdioxid, SiO2. Das sind Kristalle, in denen Sauerstoff-Atome abwechslungsweise mit Silicium-Atomen verbunden sind. Darin ähnelt Quarz in gewisser Weise dem Wasser (und noch mehr einem Eiskristall): Darin wechseln sich nämlich Sauerstoffatome mit Wasserstoffatomen ab.

Aus diesem Grund finden sich Quarz und Wasser überaus anziehend – sie werden von “zwischenmolekularen Kräften” zusammen gehalten. Diese Kräfte wirken auch zwischen verschiedenen Wassermolekülen (wie das genau funktioniert, erkläre ich beim Experiment mit dem krummen Wasserstrahl). So können Wassermoleküle untereinander zusammenhalten und zwischen den Oberflächen von Sandkörnern regelrechte Wasserbrücken formen – sodass feuchte Sandkörner unwillkürlich zusammen pappen. Das Wasser wirkt also wie ein formbarer “Zement” zwischen den Sandkörnern!

Dort wo sich die Oberflächen der runden Sandkörner nicht so nahe kommen, bleiben Zwischenräume, die mit ein Bisschen Luft gefüllt sind.

Die Kräfte zwischen den Molekülen sind dabei eben so stark, dass die Sandkörner aneinander haften, aber so schwach, dass Kinderhände das Netzwerk aus Wasserbrücken zwischen Sandkörnern spielend leicht verformen können.

Dabei gibt es allerdings ein Problem: Wasser verdunstet relativ schnell – besonders an trockener Luft oder gar an der Sonne. Und dann beginnt die schöne Sandburg rasch wieder zu bröseln und zu Sandlawinen zu zerfallen.

 

Was ist kinetischer Sand?

Was wäre aber, wenn man einen “Zement” hätte, der nicht so leicht verdunstet? Das haben sich wohl die Erfinder von “Kinetic Sand®” gedacht – und ihren trockenen Sand mit Silikonöl (genauer gesagt “Polydimethylsiloxan”, PDMS) gemischt.

Silikon: Ein ganz besonderer Kunststoff

Silikone sind Kunststoffe aus langen Molekülketten, sogenannte Polymere. Anders als die meisten anderen Kunststoffe aus Kohlenstoff bestehen die Ketten der Silikone jedoch aus Silicium-Atomen, die sich mit Sauerstoff-Atomen abwechseln (Silicium ist Kohlenstoff in vielen chemischen Dingen sehr ähnlich). Das hatten wir doch schon….genau: Quarz. Tatsächlich sind sich die Silikon-Ketten und Quarz so ähnlich, dass auch zwischen ihnen anziehende zwischenmolekulare Kräfte wirken können.

Beim PDMS trägt übrigens jedes Siliciumatom noch zwei “Methylgruppen” aus Kohlenstoff- und Wasserstoffatomen, daher der Name:

Kinetischer Sand braucht "Zement" - Hier das Original: Polydimethylsiloxan

Ein Glied einer PDMS-Kette: Der Buchstabe n steht für eine beliebige Zahl solcher Glieder, die eine Kette bilden.

Und dazu kommt noch etwas: Silikone sind bei “lebendigen” Bedingungen, also in und um Körper von Lebewesen, sehr reaktionsträge, was sie unter den Kunststoffen besonders ungiftig macht. So sind Silikone als Material für Brustimplantate berühmt geworden und finden in der Medizin noch viele andere Anwendungen. Im Haushalt kennt ihr sie vielleicht als Material für elastische Backformen und -pinsel oder als Fugenmasse im Badezimmer.

Je nach der Länge und Vernetzung ihrer Moleküle können Silikone unterschiedliche Eigenschaften haben. Sind die Moleküle kurz genug und wenig bis gar nicht vernetzt, bilden sie bei Raumtemperatur mehr oder weniger zähe Flüssigkeiten: Silikonfette oder -öle. Die sind ihrer Reaktionsträgheit wegen bei Labor-Chemikern als Schmiere für ihre Glasapparaturen oder als Wärmeüberträger (Silikonöle verdunsten kaum und können viel heisser als Wasser werden, bevor sie zu kochen beginnen!) sehr beliebt.

Silikon als perfekter “Zement” für Sandburgen?

Eine ölig-zähe Flüssigkeit, die chemisch inert ist und schwer verdunstet – und zu den passenden Wechselwirkungen zu Sandkörnern fähig ist… die wäre doch ein perfekter “Zement” für Spielsand für kleine Kinder! Leider bekommt man Silikonöl nicht einfach so im Supermarkt. Deshalb haben schon viele DIY-begeisterte Mütter und BloggerInnen nach passenden Ersatzstoffen für PDMS gesucht. Mit mehr oder weniger grossem Erfolg.

Ich habe mitgesucht und zeige euch meinen persönlichen Favoriten: Der besteht ausschliesslich aus Quarzsand und Lebensmittelzutaten, lässt sich prima formen und kneten. Damit eignet sich dieser kinetische Sand auch für die ganz Kleinen, die schonmal etwas davon in den Mund nehmen.

 

Rezept: Kinetischer Sand selbstgemacht

Ihr braucht dazu

2 Tassen feinen Sand (Dekorsand oder gesiebten Vogelsand)
1 Tasse Maisstärke (Stärkemehl, z.B. Maizena)
Etwas Wasser
Etwas Speiseöl
Eine runde Schüssel, Schneebesen, Löffel

Was ihr braucht: Sand, Stärkemehl,Wasser,Schüssel,Schneebesen - dazu kommen: Löffel,Öl

Wenn ihr mehr Sand zum Spielen möchtet, nehmt einfach mehr von den Zutaten. Auf ein beliebiges Volumen Sand kommt dabei immer die Hälfte dieses Volumens an Stärkemehl!

So geht es

Gebt den Sand und Stärke trocken in die Schüssel und vermischt sie mit dem Schneebesen sehr gründlich. Es sollten am Ende keine Stärkeklumpen mehr zu sehen sein.

Kinetischer Sand gut gemischt: Sand und Stärke lassen sich fast nicht mehr auseinander halten

So sind Sand und Stärke gründlich vermischt.

Gebt dann langsam etwas Wasser hinzu. Für zwei Honigglas-Deckel Sand und einen Deckel Stärkemehl habe ich etwa 30ml Wasser gebraucht.

Mischt und knetet mit dem Löffel weiter, bis eine formbare Masse entsteht. Wenn ihr die Masse mit einer Hand aus der Schüssel heben könnt, knetet sie auf dem Tisch weiter und formt eine Mulde.

Sandmasse mit Mulde: Darin befinden sich 1-2ml Speiseöl.

Meine Probier-Portion: Die Mulde ist so gross wie ein Eidotter: Darin befinden sich 1-2ml Speiseöl. Jetzt verkneten!

Gebt etwas Speiseöl hinein und verknetet das Ganze. Wiederholt diesen Schritt allenfalls, bis euer Sand die gewünschte Geschmeidigkeit und Textur hat. Ich habe in die Hälfte meiner urpsrünglichen Mischung etwa 2ml Speiseöl eingeknetet.

Die richtige Mischung: Dieser Sandball hält zusammen!

So ist die Mischung gut: Der Sandball hält zusammen!

Dies ist ein Zeichen für eine gute Mischung: Kinetischer Sand lässt sich zu einem Ball formen, welcher nicht auseinander fällt! Dann hält der Sand nämlich so fest zusammen, dass der Ritter vom Titelbild darauf reiten kann!

Ein Pferd aus kinetischem Sand trägt den Spielzeug-Ritter

 

Inzwischen bin ich mit dem Bloggen fertig – drei Stunden sind vergangen: Das Pferd (wie auf dem Titelbild) steht immer noch unversehrt auf dem Küchentisch!

Wer es bunt mag, kann den Sand auch mit Lebensmittelfarbe einfärben (rührt dazu die Farbe ins Wasser ein, bevor ihr es zu Sand und Stärke gebt). Ich gebe aber keine Garantie, dass dann beim Spielen die Finger nicht auch bunt werden!

 

Wie funktioniert das?

Auch Stärke besteht aus Molekülketten – die einzelnen Kettenglieder sind Zucker-Ringe aus Kohlenstoff-, Sauerstoff- und Wasserstoffatomen. Wieder sind Sauerstoff-Atome im Spiel, die sich mit passenden anderen Atomen abwechseln. So können auch zwischen Stärke und Wasser und Sand anziehende zwischenmolekulare Kräfte wirken.

Kinetischer Sand braucht "Zement": Ausschnitt aus einem Stärkemolekül mit Verzweigung (Amylopektin)

Ein Ausschnitt aus einem Stärkemolekül mit Verzweigung (unverzweigte gibt es auch): Zu sehen sind vier Zucker-Einheiten, an den gestrichelten Linien folgen weitere. An jeder Ecke ohne Buchstaben befindet sich ein Kohlenstoff-Atom (C). Zwischen Wasserstoff- und Sauerstoff-Atomen gibt es sogenannte polare Bindungen, die für die anziehenden Kräfte zwischen Stärke und Wasser notwendig sind.

Die knäulen sich zu porösen Körnern zusammen, welche sich mit Wassermolekülen vollsaugen können (wie die Hydroperlen in diesem Experiment, nur sind Stärkekörner sehr, sehr viel kleiner!). So quellen die Körner und pappen dank den zwischenmolekularen Kräften mit dem Wasser zusammen. Vom Kuchenbacken kennt ihr das: Mehl und Wasser ergeben miteinander eine klebrige Pampe.

Wenn man Stärke erwärmt, können sogar richtige chemische Bindungen zwischen den Ketten entstehen: Das Ganze verkleistert – deshalb werden Kuchen fest. So weit wollen wir aber nicht gehen, denn der kinetische Sand soll ja “kinetisch”, also beweglich, sprich formbar bleiben.

Damit die Stärkepampe nicht an den Händen klebt, gebe ich – analog zum Einfetten einer Backform – noch einen Schuss Speiseöl dazu. Das Öl ist nicht mit Wasser mischbar, denn zwischen seinen Molekülen wirk eine andere Sorte Kräfte. So nimmt durch die Zugabe des Öls die pappende Wirkung der Stärke ein wenig ab. Ingesamt wird der Sand aber sehr geschmeidig und hält nach wie vor so gut, dass selbst mein Pferdekopf der Schwerkraft trotzt. Und: Das Speiseöl verdunstet nicht mal eben!

 

Was zu beachten ist/Entsorgung

Zu empfehlen: Indoor-Sandkasten

Vollkommen sauber ist wohl kein selbstgemachter kinetischer Sand. Ein paar Körner lösen sich immer davon und bleiben an Händen oder Umgebung haften. Deshalb empfehle ich, eine Kunststoff-Wanne oder ein Tablett zum Indoor-Sandkasten zu erklären, um den Sand etwas zu bändigen. Wenn dann doch mal was daneben geht, kann es einfach aufgefegt und in den Abfall entsorgt oder mit dem Staubsauger aufgesaugt werden.

Wascht eure Hände nach dem Spielen am besten mit Seife – dank der Superwaschkraft der Tenside darin bekommt ihr das Öl so ganz einfach wieder von den Fingern.

Haltbarkeit dieses kinetischen Sandes

Stärkemehl und Öl sind Lebensmittel – also nicht-sterile, biologische Produkte. Solche halten natürlich nicht ewig, zumal ich beim Anrühren ganz bewusst auf Konservierungsmittel verzichtet habe. Bewahrt den kinetischen Sand nach dem Spielen am besten in einer geschlossenen Tupper-Dose im Kühlschrank auf. Lasst ihn nach dem Herausnehmen ggfs. erst auf Raumtemperatur warm werden. Speiseöl wird nämlich in der Kälte fester, sodass der kalte Sand steif sein kann.

Dann sollte er einige Wochen oder gar Monate halten. Achtet einfach auf die Äusserlichkeiten: Wenn der Sand ranzig riecht oder schimmelt, macht besser neuen. Der alte Sand kann in den Restmüll entsorgt werden.

Jetzt wünsche ich euch aber erstmal viel Spass beim “Sändelen”! – Wie spielt ihr denn am liebsten mit Sand? Kennt ihr noch andere Rezepte für Indoor-Sand?

Experimente mit Elektrostatik: Blitze selber machen!

Ein langer, heisser Sommer geht heute zu Ende – sagen sie im Radio. Und wahrlich haben wir in den vergangenen Wochen oftmals vergeblich auf Gewitter mit reichlich Regen und Abkühlung im Gepäck gewartet. Seit vorgestern geht es aber endlich wieder ordentlich rund. Blitze längs und quer über den Himmel und dazu lauter Donner künden Wind und – endlich – Regen an.

Aber was sind Gewitter eigentlich? Die meisten von euch werden wissen, dass Blitze etwas mit Elektrizität zu tun haben. Aber was ist denn nun wieder Elektrizität?

Heute beantworte ich nicht nur diese Frage, sondern zeige euch auch ein paar ganz einfache Experimente, in welchen ihr selbst Elektrizität und sogar eure eigenen Blitze (im winzigkleinen Miniaturformat – ganz harmlos!) erzeugen könnt.

Was ist Elektrizität?

Landläufig werden mit “Elektrizität” alle möglichen Erscheinungen und Technik rund um elektrische Aufladung und elektrischen Strom bezeichnet. Das erklärt aber nicht, worum es sich dabei handelt. Um das zu verstehen, müssen wir uns die winzigkleinen Teilchen, aus denen alle Stoffe bestehen, genauer ansehen.

Der Ursprung der Elektrizität: Eine Eigenschaft von Teilchen

Ursache für alle elektrischen Erscheinungen ist nämlich eine Eigenschaft dieser kleinen Teilchen. Die vielleicht naheliegendste Eigenschaft von Teilchen (und allen anderen Dingen) ist ihre Masse. Eine weitere Eigenschaft – um die es mir heute geht, ist die “elektrische Ladung”. Die gehört zu vielen Teilchen ebenso, wie den Teilchen ihre Masse gehört, oder einem Legostein seine rote Farbe.

Die elektrische Ladung gibt es in zwei (ganz streng genommen in drei) Formen, so, wie Legosteine rot oder blau sein können. Die Physiker nennen diese beiden Formen jedoch nicht “rot” und “blau”, sondern “positiv” bzw. “+” (plus) und “negativ” bzw. “-” (minus). Ein Teilchen kann also eine Ladung “+” oder “-” haben – oder gar keine Ladung. Das nennen die Physiker die Ladung “0” (null).

Elektrische Ladungen im Atom

Ein Atom besteht nun aus mehreren kleineren Teilchen mit verschiedenen elektrischen Ladungen. Im Atomkern befinden sich die Protonen, die eine Ladung “+” haben, und die Neutronen mit der Ladung “0”. In der Atomhülle findet man die Elektronen, die eine Ladung “-” tragen. Wenn man nun für jedes Proton +1, für jedes Neutron +0 und für jedes Elektron -1 rechnet, kommt man bei einem normalen Atom am Ende auf die Summe “0”. Das Atom hat – von aussen betrachtet – keine elektrische Ladung.

Es ist allerdings ganz leicht, Elektronen aus einem Atom zu entfernen oder weitere hinzuzufügen. Wenn das passiert, kommt bei der Addition aller Ladungen nicht mehr “0” heraus. Von aussen gesehen hat das Atom damit eine elektrische Ladung (Physiker und Chemiker nennen ein solches Atom ein “Ion”)! Die ist positiv, wenn Elektronen fehlen, und negativ, wenn zusätzliche Elektronen im Atom sind. Ebenso sind entferne Elektronen nun von aussen “sichtbar” elektrisch geladen. Und wenn man Elektronen und geladene Atome bewegt, bewegen sich ihre Ladungen natürlich mit.

Das Coulomb’sche Gesetz sorgt für Bewegung

Für elektrische Ladungen gelten zwei grundlegende physikalische Regeln, die gerne als das “Coulomb’sche Gesetz” zusammengefasst werden:

1. Verschiedenartige Ladungen ziehen einander an.
2. Gleichartige Ladungen stossen einander ab.

(Für diejenigen, die mit der Physik schon etwas weiter sind: Sowohl die Anziehung auch die Abstossung zwischen Ladungen nehmen um so mehr zu, je näher sich die Ladungen kommen.)

Diese beiden Regeln sorgen ungemein für Bewegung in der Teilchenwelt. So streben zwei einander nahe “freie” Elektronen, die beide eine Ladung “-” tragen, wie von Geisterhand voneinander weg, während ein Elektron unweigerlich auf ein Ion mit positiver Ladung zustrebt.

Teilchenwanderung im Alltag

Einzelne Teilchen können wir dabei freilich nicht mit unseren Sinnen beobachten. Aber wenn genügend geladene Teilchen in Bewegung sind, können wir die Folgen dieser Bewegung wahrnehmen. Und solche Bewegungen sind für uns heute alltäglich: In einer Batterie werden Elektronen (mit der Ladung “-“) und positiv geladene Teilchen (mit der Ladung “+”) getrennt voneinander aufbewahrt. Sobald man zwischen den Teilchenlagern eine Verbindung (z.B. durch ein Kabel) herstellt, wandern (oder besser: fliessen) die Elektronen durch das Kabel der Anziehung folgend zu den positiven Ladungen hin. Dieser Strom von Elektronen auf Wanderschaft ist das, was wir “elektrischen Strom” nennen!

Und wie alle bewegten Dingen enthält der elektrische Strom Energie, die in andere Energieformen wie Licht, Wärme oder Bewegung anderer Dinge umgewandelt werden kann (mehr zur Energie und ihren Formen erfahrt ihr hier).

 

Wie ihr selbst Ladungen trennen und Blitze machen könnt

Von den Atomen in vielen Stoffen könnt ihr ganz leicht Elektronen abreiben. Dazu zählen einige Kunststoffe, die ihr in eurem Haushalt finden könnt, das Fell von Tieren, aber auch eure eigenen Haare! Mit diesen Dingen könnt ihr ein paar einfache, aber wirkungsvolle Experimente machen. Sie alle funktionieren übrigens am besten bei trockener Witterung mit geringer Luftfeuchtigkeit. Dabei werden nämlich elektrische Ladungen getrennt gesammelt. Und die fliessen in feuchter Umgebung schnell wieder woandershin ab, anstatt am gewünschten Ort zu bleiben!

1.) Der klebende Luftballon

Diesen Klassiker hat schon mein Physikervater oft mit uns gemacht – und wir hatten als Kinder riesigen Spass daran: Blast einen Luftballon auf (nicht zu prall, damit er nicht platzt!) und reibt ihn kräftig an einem Wollpullover oder eurem Kopfhaar. Wenn es dabei hörbar knistert, legt den Ballon mit der geriebenen Seite an eine tapezierte Wand und lasst ihn los. Der Ballon bleibt an der Wand haften!

Oder haltet den Ballon mit etwas Abstand über einen Kopf mit feinem, trockenen Kinderhaar. Lasst das Kind dabei vor einem Spiegel stehen, denn: Die Haare werden angezogen – und die so entstehende Struwwelpeter-Frisur soll ja allen Beteiligten Spass machen!

Der durch Reibung aufgeladene Ballon zieht meine Haare an!

Funktioniert auch mit langen Erwachsenenhaaren (die am besten frisch gewaschen sind): Der Ballon zieht die Haare an!

 

 

2. Der “furchtsame” Kunststoffstab

Der Klassiker aus dem Physikunterricht: Knotet einen Bindfaden um den Schwerpunkt eines länglichen Gegenstands aus Kunststoff (zum Beispiel ein Stück Plastikbesteck) und haltet es am freien Ende des Fadens so, dass es frei und möglichst bewegungslos schwebt. Nähert ein zweites Kunststoff-Stück, das ihr zuvor kräftig an Wolle gerieben habt, langsam dem schwebenden Stück an. Das schwebende Stück wird sich von dem geladenen Kunststoff wegdrehen. Durch Annäherung aus der entgegengesetzten Richtung lässt sich die Drehrichtung auch umkehren!

Das aufgehängte Plastikmesser dreht sich in Pfeilrichtung vom aufgeladenen Plastik fort.

Gleiche Ladungen stossen sich ab: Der rote Pfeil deutet die Drehrichtung des aufgehängten Plastikmessers an.

 

3. Mit Abfall Blitze machen

So könnt ihr eure eigenen Blitze machen (die Idee dazu habe ich von Alli Sonnier von Learn-Play-Imagine): Ihr braucht dazu eine saubere Grillschale oder Lebensmittelverpackung aus Aluminium, einen Bleistift mit Radiergummi, eine Reisszwecke, ein Stück Styropor und ein Kleidungsstück aus Wolle.

Damit könnt ihr eure eigenen Blitze machen: Styropor, Aluminium-Schale, Wollschal, Bleistift und Reisszwecke

Damit könnt ihr eure eigenen Blitze machen!

 

Die Reisszwecke stecht ihr in der Mitte der Alu-Schale von unten durch den Boden und dann in den Radiergummi am Ende des Bleistifts. Jetzt könnt ihr das Ganze am Bleistift hochheben, ohne mit der Schale in Berührung zu kommen. Reibt nun das Styropor-Stück eine Weile kräftig an der Wolle (nehmt euch dafür ruhig rund 2 Minuten Zeit!). Legt den Styropor nun auf einem nicht-leitenden, trockenen Platz (z.B. einem Holztisch) ab und senkt die Alu-Schale am Bleistift langsam darüber ab. Hört dabei aufmerksam hin! Im besten Fall sollte die Schale den Styropor nicht berühren – gebt darauf gründlich acht, da Styropor und Alu-Schale einander anziehen.

Die aufgespiesste Aluschale schwebt über dem Styroporblock. Noch ein Bisschen näher, und die Funken werden vernehmlich knistern!

Langsam nähere ich meine Alu-Schale dem aufgeladenen Styroporblock an. Noch einen Moment, dann wird es knistern! Der Funkenschlag selbst geht allerdings so schnell, dass er sich nicht fotografieren lässt.

 

Wenn die Alu-Schale dem Styropor nahe kommt, könnt ihr ein verräterisches Knistern hören. Wenn ihr das Ganze in einem dunklen Raum ausprobiert, könnt ihr vielleicht sogar kleine Funken sehen. Richtig – das sind Blitze im Miniatur-Format, und das Knistern ist der Miniatur-Donner dazu!

Was geschieht da?

Durch das Reiben der Gegenstände aneinander werden geladene Teilchen geradezu von der Oberfläche der Dinge abgerubbelt – und bleiben an der Oberfläche des Gegenstücks haften. Wenn wir annehmen, dass Elektronen vom Kunststoff abgerieben werden und an der Wolle oder Haaren haften bleiben, trägt die Wolle nach dem Reiben negative Ladungen, während der Kunststoff – die Ballonhülle oder das Plastikmesser – positiv geladen ist.

Elektrostatische Anziehung und Abstossung

Diese unterschiedlichen Ladungen ziehen sich an – so stark, dass der geladene Ballon an der Wand (die ebenfalls negative Ladungen trägt) haftet, anstatt zu Boden zu fallen, oder dass die leichten Haare sich der Schwerkraft entgegen aufrichten!

Das schwebende und das geriebene Plastikmesser sind dagegen beide positiv geladen (ein paar Elektronen werden allein schon durch das Anfassen und die Bewegung des schwebenden Messers abgerieben), sodass sie einander abstossen – und zwar so stark, dass das sich langssam drehende Messer abbremst und sich in die Gegenrichtung zu bewegen beginnt!

Im Übrigen: Wenn euch die Plastikmesser bekannt vorkommen, dann nicht umsonst. Auf derselben Abstossung beruht nämlich auch das magische Harry-Potter-Experiment mit dem krummeln Wasserstrahl!

Wie aus elektrostatischer Aufladung Blitze werden

Durch das gründliche Reiben des Styropors sammeln sich schliesslich so viele Ladungen auf der Styropor-Oberfläche an, dass sie – der Anziehung folgend – den schmalen, luftgefüllen Spalt zwischen Styropor und Aluminium* überqueren können: Für einen Sekundenbruchteil fliesst Strom durch die Luft – ein Funke springt über. Genau das passiert auch bei einem Gewitter – nur sind die Funken dabei sehr, sehr, sehr viel grösser und werden dann Blitze genannt.

Wie in einer Gewitterwolke Ladungen für so grosse Funken zusammenkommen und warum Blitze (und eure Miniatur-Funken) leuchten und lärmen, erkläre ich euch am Montag ausführlich.

*Wenn ihr euch nun fragt, warum das funktioniert, obwohl ihr das Aluminium nicht aufgeladen habt: Aluminium ist ein Metall, in welchem – anders als in Kunststoffen – Elektronen sich prima bewegen können. So sorgt schon die Nähe der Ladung des Styropors dafür, dass die Elektronen im Aluminium sich so verschieben, dass an dessen Oberfläche eine dem Styropor entgegengesetzte Ladung entsteht: Die beiden Teile ziehen sich an und es kommt allenfalls zum Funkensprung.

Bis dahin wünsche ich euch viel Spass beim Experimentieren und Beobachten! Probiert doch auch aus, was ihr sonst noch aufladen und anziehen oder abstossen könnt (zum Beispiel: Wer bringt Styroporflocken zum Fliegen?)!

Abfluss auf Nord- und Südhalbkugel: Physik oder Fake?

Marion, eine Leserin, auf deren Blog ich schon mehr als einmal als Gastautorin gewirkt habe, schickte mir neulich einen Link zu einem Video, das gerade auf Facebook die Runde machte. Darin zu sehen sind Einwohner Kenias bzw. Tansanias, die filmenden Touristen ein Experiment vorführen. Das Spannende daran: Diese beiden Länder liegen auf dem Äquator!

Die Anrainer dieser Kreislinie, welche den Globus genau in Nord- und Südhalbkugel teilt, möchten den Touristen mit ihrem Experiment weismachen, dass Wasser, welches durch ein enges Loch abläuft, je nach Position auf der Erdkugel in eine bestimmte Richtung wirbelt: Links herum auf der Nordhalbkugel, Rechts herum auf der Südhalbkugel und genau auf dem Äquator ganz ohne Wirbel, d.h. gerade nach unten durch das Loch. Und das soll mit Hilfe eines Trichters und eines Eimers Wasser auf einem vielleicht 30 Meter langen Stück Strasse nachprüfbar sein.

“Das ist doch alles fake, oder?”, fragte mich die Leserin. Und mein Instinkt sagte gleich, dass ihrem Bauchgefühl zu trauen sei. Dennoch habe ich nachgelesen und schnell bestätigt bekommen – unter anderem in der Lehrmaterialsammlung der Uni Karlsruhe – dass Marion ganz richtig liegt: Alles fake!

Aber wie kommt es dazu, dass derlei Gerüchte um die Drehrichtung von abfliessendem Wasser sich so hartnäckig um die ganze Welt verbreiten (auch in südamerikanischen Ländern auf dem Äquator sollen entsprechende Experimente gezeigt werden)? Warum sollte das Wasser auf der Nordhalbkugel links- und auf der Südhalbkugel rechtsherum in den Abfluss wirbeln?

 

Was die Drehrichtung des Wassers bestimmen soll: Die Corioliskraft

Urheber der vorbestimmten Drehrichtung sei – so heisst es in den meisten Gerüchten – die Drehbewegung der Erde um sich selbst. Die führt nämlich wirklich dazu, dass eine geheimnisvolle Kraft – die Physiker nennen sie Corioliskraft – von der Erdkugel ausgehende Bewegungen in eine bestimmte Richtung ablenkt!

Welche Bewegungen werden abgelenkt?

Die Corioliskraft wirkt auf solche Bewegungen, die von einem Pol zum anderen, also entlang der Längengrade (jener Linien, die auf der Weltkarte oder dem Globus Nord- und Südpol miteinander verbinden) oder von der Drehachse der Erde fort bzw. zu ihr hin (aus Sicht eines Menschen auf der Erdoberfläche “nach oben” oder “nach unten” verlaufen.

Wie kommt es zu der Ablenkung?

Die Erdumdrehung als Ursache

Die Erde ist (mehr oder weniger) eine Kugel, die sich stetig um ihre Mittelachse dreht – also um die gerade Linie, die Nord- und Südpol durch die Kugel hindurch miteinander verbindet. Da diese Erdkugel im Grossen und Ganzen ein fester Körper ist, müssen sich alles Material, aus dem sie besteht und alles, was sonst noch darauf haftet (Meere, Pflanzen, Tiere, Menschen und sogar die Lufthülle, die den Planeten umgibt!) stets im gleicher Lage zueinander mitdrehen, damit alles seinen Platz behält. Schliesslich ist es noch nie vorgekommen, dass jemand seine Fortbewegung durch die Erddrehung verschlafen hätte und ein paar Tausend Kilometer weiter westlich wieder aufgewacht wäre.

Alle Orte auf der Erde drehen sich gemeinsam

Dieser feste Zusammenhalt aller Teile der Erdkugel führt auch dazu, dass die Entfernung zwischen Tunis, der Hauptstadt Tunesiens in Nordafrika, und der Norwegischen Hauptstadt Oslo zu jeder Tages- und Nachtzeit gleich ist. Wenn ihr nun Tunis und Oslo auf einem Globus-Modell ausfindig macht (beide Städte liegen nahezu auf demselben Längengrad!) und kleines Bisschen von Physik versteht, mag euch eine Ungereimtheit ins Auge fallen:

Nicht alle Punkte auf der Erdoberfläche drehen sich gleich schnell

Tunis liegt deutlich weiter aussen auf der Wölbung des Globus’ als Oslo, d.h. der Abstand von Tunis zur Mittelachse ist deutlich grösser als der Abstand von Oslo zur Mittelachse. Das bedeutet, dass der Kreis, welchen Tunis innerhalb eines Tages entlang bewegt wird, erheblich länger ist – d.h. einen grösseren Umfang hat – als der Kreis, welchen Oslo entlang bewegt wird!

Vom Abstand zum Kreisumfang

Die Länge einer Kreislinie, d.h. den Umfang U eines Kreises kann man berechnen, indem man seinen Radius r – den Abstand zwischen Kreislinie und Kreismittelpunkt – mit 2 und der Zahl Pi multipliziert.

Damit entspricht der (kürzeste) Abstand von Tunis bzw. Oslo zur Drehachse der Erde dem Radius, aus dem sich die Länge des Umlaufs der jeweiligen Stadt während eines Tages ergibt.

Damit die Entfernung zwischen beiden Städten stets gleich bleibt, müssen sowohl Tunis als auch Oslo sich an einem Tag (d.h. in 24 Stunden) genau einmal um die Erdachse wandern. Wegen des grösseren Abstands zur Drehachse muss Tunis dazu einen längeren Weg zurücklegen als Oslo. Das bedeutet: Tunis muss sich schneller bewegen als Oslo, um seine längere Umlaufstrecke am gleichen Tag zu schaffen!

Geschwindigkeit und Drehgeschwindigkeit

Die Geschwindigkeit v einer gleichförmigen, d.h. stetig in die gleiche Richtung verlaufenden Bewegung kann man ausrechnen, indem man einen zurückgelegten Streckenabschnitt durch die dafür benötigte Zeitspanne teilt:

Eine vergleichbare Beziehung gilt auch für eine gleichförmige Kreisbewegung, in welcher der zurückgelegte Winkel Phi (φ) den Streckenabschnitt ersetzt. Die so berechnete Grösse nennen die Physiker Dreh- oder Winkelgeschwindigkeit und schreiben dafür statt v ein kleines Omega (ω):

Wenn die benötigte Zeit für zwei Bewegungen gleich ist, aber ein Streckenabschnitt bzw. Winkel grösser als der andere, ergibt sich mit dem somit grösseren Zähler im Bruch auf der rechten Seite der Gleichung aus dem grösseren Streckenabschnitt bzw. Winkel eine grössere Geschwindigkeit.

Gut sichtbar wird das, wenn ihr euch die Erdkugel einmal von “oben” anseht:

Ablenkung eines Balls auf dem Weg von Oslo nach Tunis

Die Erde von einem Punkt über dem Nordpol aus gesehen: Die Nordhalbkugel erscheint als flache Scheibe mit dem Nordpol als Mittelpunkt. Ein Fussball fliegt von Oslo in der Nähe des Mittelpunkts nach Tunis, welches weiter vom Mittelpunkt entfernt liegt. Aus der Summe der Geschwindigkeiten von Oslo (kurzer blauer Pfeil) und der Südwärtsbewegung des Balles (durchgezogener roter bzw. langer blauer Pfeil) ergibt sich Punkt (2) als Zielpunkt für den Ball. Tunis, das sich schneller als Oslo bewegen muss, um seinen längeren Kreisabschnitt in gleicher Zeit zu schaffen, befindet sich dann aber schon an Punkt (3)! Der Weg des Balls kann auch durch die gekrümmte gepunktete Linie beschrieben werden: Eine Kraft – die Corioliskraft, die nach “rechts” wirkt, lenkt den Ball von der geraden Flugbahn ab.

Die Grafik zeigt die Erde aus der Sicht eines Astronauten, der über dem Nordpol (in der Grafik der Mittelpunkt der Kreise) schwebt. Die gestrichelte Kreisline markiert den Weg, auf dem sich Oslo mit der Erde dreht. Die mittlere, durchgezogene Kreislinie zeigt den Weg, den Tunis nimmt (da Tunis auf der Kugelwölbung weiter aussen liegt, ist dieser Kreis grösser). Der ganz äussere Kreis ist der Äquator – die Südhalbkugel ist aus dieser Richtung nicht zu sehen.

Ein Fussballspiel von Oslo nach Tunis

Stellt euch nun vor, ein besonders kräftiger Spieler würde einen Fussball vom Anstosspunkt im Osloer Stadion über die Stadionmauer in Richtung Tunis (also genau nach Süden) treten. Wenn der Fussballspieler nun als Kind in den Zaubertrank gefallen ist und der Ball seine Reise über Europa hinweg antritt…wo würde er dann – die Lufthülle der Erde mal ausser Acht gelassen – landen? Im Tor im Stadion von Tunis?

Die Krux mit der Impulserhaltung

Eines der grundlegenden Gesetze der Physik – das Gesetz der Impulserhaltung – schreibt vor, dass jede Bewegung eines jeden Gegenstands in jede Richtung erhalten bleibt, so lange keine Kraft in die der Bewegung entgegengesetzte Richtung wirkt und ihn ausbremst.

Da der Fussball vor dem Anstoss auf der Erde gelegen hat, hat er sich zunächst mit der Geschwindikgeit von Oslo um die Erdachse gedreht. Diese Drehrichtung und -geschwindigkeit bleibt dem Ball auch, nachdem der Fussballer ihn in Richtung Süden getreten hat. Die Bewegung in Richtung Süden wird einfach zur Bewegung in Richtung der Oslo-Kreisbahn hinzugezählt.

Wie man Bewegungen addiert

Die geraden Pfeile in der Grafik zeigen die Richtungen der Teilbewegungen an – die Länge der Pfeile steht für die Geschwindigkeit bzw. den Impuls in der jeweiligen Richtung. Verschiebt man nun das hintere Ende eines Pfeils an die Spitze des ersten, zeigt der neue Pfeil vom hinteren Ende des einen zur Spitze des anderen Pfeils die Richtung der Gesamtbewegung (und dessen Länge die Gesamtgeschwindigkeit). Dieses Verfahren nennen die Mathematiker Vektoraddition (denn die Pfeile heissen bei ihnen Vektoren).

Die Grafik zeigt: Obwohl nach Süden getreten bewegt sich der Fussball diagonal über Europa nach Südosten – wobei die Geschwindikeit in Ost-Richtung der von Oslo entspricht. Damit landet der Ball am Punkt 2 irgendwo an der tunesischen oder algerischen Mittelmeerküste und nicht in Tunis (das befindet sich inzwischen weiter östlich an Punkt 3). Denn weil Tunis sich schneller bewegt als Oslo, ist es während der Flugzeit des Fussballs weiter nach Osten gewandert als der von der Impulserhaltung als “südlich von Oslo” vorgegebene Punkt 2! Der Schuss geht also gründlich daneben.

Durch Drehbewegung auf die krumme Bahn

Wenn der Astronaut, der über dem Nordpol unbewegt schwebt, dieses unglaubliche Fussballspiel beobachtet und filmt, um anschliessend die Position des Balles in regelmässigen Zeitabschnitten einzublenden, erhält er eine Linie, die dem nach links gekrümmten gestrichelten Pfeil in der Grafik entspricht. Solch eine gekrümmte Flugbahn lässt sich mathematisch beschreiben, indem man annimmt, dass eine Kraft den Fussball in Ablenkungsrichtung beschleunigt – die sogenannte Corioliskraft.

Kraft und Beschleunigung: Zwei physikalische Grössen mit Richtung

Das Grundgesetz der Mechanik beschreibt die einfache Beziehung zwischen Kraft (F) und Beschleunigung (a):

Je grösser die Kraft ist, die auf einen Gegenstand mit der Masse m wirkt, desto grösser ist dessen Beschleunigung – d.h. desto schneller wird der Gegenstand schneller. Die physikalische Grösse für die Beschleunigung ist – wie auch jene für die Geschwindigkeit – stets mit einer Richtung versehen, die gemäss der Gleichung auch für die Kraft gilt.

Da die Corioliskraft mathematisch nur “in Erscheinung tritt”, wenn man das Fussballspiel wie der Astronaut von aussen beobachtet (die Zuschauer im Stadion in Oslo, die vor dem Abstoss mit Stadt und Ball um die Erdachse kreisen, kommen mit Hilfe der Vektoraddition weiter oben auf das Ziel des Balles), wird sie von den Physikern eine Scheinkraft genannt.

Die Corioliskraft ist aber durchaus real

Trotzdem könnt ihr selbst die Corioliskraft spüren, wenn ihr zum Beispiel versucht, auf einer sich drehenden Karussell-Scheibe auf dem Spielplatz geradewegs zu ihrem Mittelpunkt zu laufen. Das ist nämlich gar nicht so einfach – ihr müsst schon ordentlich gegenhalten, damit euch die Corioliskraft nicht von eurem direkten Weg ablenkt!

Ähnlich verhält es sich auch mit unserem unwahrscheinlichen Fussballspiel: Wenn die tunesische Küstenwache den Fussball aus dem Mittelmeer fischen und ins Stadion von Tunis bringt, sodass ein wiederum sehr starker Spieler den Ball in Richtung Oslo abstossen kann, würde auch er das Tor der Norweger nicht treffen. Denn da der Ball nun die höhere Drehgeschwindigkeit von Tunis mitnimmt, wird das langsamere Oslo den durch die Addition der Teilbewegungen ermittelten Zielpunkt beim Eintreffen des Balls noch nicht erreicht haben: Stattdessen fällt der Ball weiter östlich vielleicht auf die Grenze zwischen Norwegen und Schweden.

Die Regeln für die Ablenkung durch die Corioliskraft

Ganz gleich, in welche Richtung der Ball auf der Nordhalbkugel gespielt wird: In Flugrichtung gesehen lenkt die Corioliskraft den Ball stets “nach rechts” (d.h. in Nord-Süd-Richtung nach Westen und in Süd-Nord-Richtung nach Osten).

Würde man ein ebenso unwahrscheinliches Fussballspiel auf der Südhalbkugel austragen, müsstet ihr die Zeichnung oben in einem Spiegel betrachten: An die Stelle des Nordpols tritt der Südpol (der ist auch auf jeder europäischen Landkarte unten, sodass ihr euren Atlas nun richtig herum halten könnt) und Osten ist nun rechts, sodass die Erde sich nun rechts herum dreht. Demnach “wirkt” auch die Corioliskraft nun in spiegelverkehrter Richtung:

Ganz gleich, in welche Richtung der Ball auf der Südhalbkugel gespielt wird: In Flugrichtung gesehen lenkt die Corioliskraft den Ball stets “nach links” (d.h. in Nord-Süd-Richtung nach Osten und in Süd-Nord-Richtung nach Westen).
Warum das unwahrscheinliche Fussballspiel?

Vielleicht habt ihr euch schon gefragt, weshalb ich so eine hahnebüchene Begebenheit wie ein Fussballspiel von Oslo nach Tunis ersinne, um die Ablenkung durch die Corioliskraft zu beschreiben. Würden realistischere Umstände nicht den gleichen Zweck erfüllen?

Mit dieser klugen Frage kommen wir zu den Wasserwirbeln in Kenia und Tansania zurück. Der gekrümmte Pfeil in der Grafik deutet es schon an: Da die Ablenkung durch die Corioliskraft auf unterschiedlichen Geschwindigkeiten von Start- und Zielort einer Bewegung beruht, fällt eben diese Ablenkung um so grösser aus, je grösser der betreffende Geschwindigkeitsunterschied ist. Und der Geschwindigkeitsunterschied ist um so grösser, je weiter die Abstände von Start und Ziel von der Drehachse sich unterscheiden – d.h. je weiter Start und Ziel in Nord-Süd-Richtung voneinander entfernt liegen!

 

Warum die Corioliskraft für das Abfluss-Experiment keine Bedeutung hat

Beim Abfliessen aus einem vielleicht 40cm durchmessenden Trichter kommen die strömenden Wasserteilchen auf eine Bewegung von höchstens 20 Zentimeter in Nord-Süd-Richtung und wieder zurück. Dementsprechend winzig ist der Einfluss der Corioliskraft auf die Bewegungsrichtung der Teilchen – und dementsprechend einfach lässt sich die Bewegung durch andere Kräfte sehr gezielt beeinflussen.

Solche Kräfte lassen sich zum Beispiel durch eine angepasste Trichterform ausüben, welche die daran vorbei strömenden Wasserteilchen ganz unscheinbar in die gewünschte Richtung lenkt. Die Bemalung mit den auffälligen Spiralmustern lenkt recht erfolgreich von diesen kleinen Unterschieden ab.

Wenn ihr genau hinschaut, könnt ihr im Video erkennen, dass der Trichter, der “auf dem Äquator” zum Einsatz kommt (welcher übrigens den Wirbel mittig halbiert, sodass die entgegengesetzte Wirkung der Coriolis-Ablenkung in der Nord- und Südhälfte sich aufheben soll), eine andere Form zu haben scheint als die Trichter für den Norden und den Süden.

 

Wo ihr die Auswirkung der Corioliskraft wirklich beobachten könnt

Wenn bei der Wettervorhersage im Fernsehen eine bewegte Wetterkarte zum Einsatz kommt, sind darauf meist riesige Wolkenwirbel zu sehen, die sich in die eine oder andere Richtung drehen. Es handelt sich dabei um Gebiete mit besonders hohem oder besonders tiefem Luftdruck. Ein hoher Luftdruck führt dazu, dass Luft in alle Richtungen von dem Gebiet wegströmt, während tiefer Luftdruck dazu führt, dass aus allen Richtungen zum betreffenden Gebiet hinströmt.

Diese Luftströmungen sind Hunderte bis Tausende Kilometer lang – und da die Lufthülle des Planeten sich im Grossen und Ganzen mit der Erde mitdreht, wirkt auf die strömenden Teilchen eine Corioliskraft. Die führt dazu, dass die Luftströme nicht geradlinig auf ein “Tief” zu oder von einem “Hoch” weg strömen, sondern in krummen, einen abflussähnlichen Wirbel bildenden Bahnen.

Der Coriolis-Ablenkung wegen drehen sich die Wirbel um Hochdruckgebiete auf der Nordhalbkugel stets “nach rechts”, also im Uhrzeigersinn, während die Wirbel um Tiefdruckgebiete – hier strömt die Luft in umgekehrter Weise – sich stets “nach links”, also gegen den Uhrzeigersinn drehen. Auf der Südhalbkugel, wo die Corioliskraft in seitenverkehrter Weise wirkt, ist das genau umgekehrt.

Um dagegen die Wirkung der Corioliskraft auf Wasserwirbel sichtbar zu machen, müssen diese mindestens ein paar Meter durchmessen und in aufwändig vor äusseren Einflüssen geschützter Umgebung im Labor kreisen können – auf der Strasse in Kenia funktioniert das jedenfalls nicht!

Seid ihr dem Mythos um die Drehrichtung von abfliessendem Wasser auch schon begegnet?

Und wenn ihr anlässlich der kommenden Weltmeisterschaft nur noch Fussball im Kopf habt, habe ich auch eine passende Anekdote aus der Chemie: Die Natur hat nämlich ein originalgetreues Fussball-Molekül erfunden!

Oster-Experiment: Wie geht das Ei in die Flasche?

Lang ist es nicht mehr hin: Nächste Woche ist schon Ostern – da ist noch gerade eben Zeit für ein schnelles Freihand-Experiment, bis der Osterhase kommt. Besser gesagt, für ein kleines Rätsel, das ihr eurer Familie oder euren Freunden zum Osterfest aufgeben könnt:

Wie bekommt ihr ein Ei in eine scheinbar zu enge Flasche – ohne es mit der Hand zu quetschen?

Ihr braucht dazu

  • Ein hartgekochtes Ei, ohne Schale
  • Eine Glasflasche, deren Öffnung nur wenig kleiner als das Ei ist
  • Streichhölzer – oder ein Feuerzeug und einen Streifen Papier

Was ihr braucht: Glasflasche mit weiter Öffnung, hartes Ei und Streichhölzer

Wie ihr das Experiment durchführt

Präsentiert euren Zuschauern das gepellte Ei, die Flasche und die Streichhölzer bzw. das Feuerzeug samt Papier. Stellt ihnen die Aufgabe: Bringt das Ei in die Flasche, ohne dass es kaputt geht – also nicht mit der Hand quetschen! Wenn sie die Antwort nicht selbst herausfinden, macht wie folgt weiter:

  1. Entzündet 3 Streichhölzer gleichzeitig und lasst sie sogleich brennend in die Flasche fallen. Alternativ: Steckt das Papier mit dem Feuerzeug in Brand und lasst es ebenfalls brennend in die Flasche fallen.
  2. Sobald das Feuer erlischt, setzt das gepellte Ei mit dem schmalen Ende nach unten auf die Öffnung, sodass es diese dicht schliesst.
    Streichhölzer sind aus - das Ei ist auf der Öffnung.

    Bis hier hin und nicht weiter: Da brauchte ich dann schwerere Geschütze.

  3. Wartet einige Minuten: Das Ei wird wie von selbst in die Flasche gleiten!
    Das Ei wandert in die Flaschenöffnung.

    Jetzt geht es besser: Das Ei schiebt sich in den Flaschenhals.

  4. Sollte das Ei nicht ganz durch den Flaschenhals gleiten, könnt ihr die Flasche auch ein paar Minuten in den Kühlschrank – oder an diesem voraussichtlich kalten Osterfest nach draussen – stellen.
    Das Ei steckt fast ganz im Flaschenhals!

    Noch ein Bisschen, dann…

Wenn die Flaschenöffnung zu schmal (oder das Ei zu gross für die Öffnung ist) – da können Millimeter entscheidend sein – kann dabei passieren, was mir passiert ist:

Die Flasche war zu eng fürs Ei : Jetzt ist nur die Hälfte drin!

Dumm gelaufen: Die Kräfte der Natur haben das Ei entzwei gerissen.

Das Ei wird förmlich halbiert! Wenn ihr bei eurer Vorführung Wert auf ein heiles Ei legt, probiert das Ganze vorher aus, bis ihr die passende Flasche zu euren Eiern bzw. die passenden Eier zur Flasche habt.[yellow_box]

Was passiert da?

Teilchen-Bewegung ist Wärme

Luft ist ein Gas (genau: ein Gemisch aus mehreren Gasen), das aus unzähligen winzig kleinen Teilchen besteht. Diese Teilchen sausen kreuz und quer durch den Raum und stossen ständig gegeneinander und gegen feste (und flüssige) Stoffe, die ihnen im Weg sind. Mit anderen Worten: Die wuseligen Luft-Teilchen brauchen eine Menge Platz – so wie die Kinder einer Schule, die auf dem Pausenplatz spielen.

Wie sehr die Luft-Teilchen wuseln, können wir direkt spüren – wir nehmen ihre Bewegung nämlich als Wärme wahr. Das heisst: Je mehr die Teilchen sich bewegen, desto wärmer ist die Luft. Und das heisst wiederum: Je wärmer die Luft ist, desto mehr Platz braucht sie!

Teilchen-Bewegung ist Druck

Indem ihr brennende Streichhölzer oder Papier in die Flasche werft, sorgt ihr dafür, dass das Feuer die Luft ordentlich aufwärmt, sodass die Luft-Teilchen in der Flasche sich schneller bewegen und häufiger gegeneinander und gegen die Flaschenwände rempeln. So brauchen die Teilchen mehr Platz – und diejenigen, die nun nicht mehr in die Flasche passen, werden durch die Öffnung nach draussen gedrängt. Da der Raum draussen – die Erdatmosphäre – praktisch unbegrenzt ist, wird so gewährleistet, dass in der Flasche und draussen letztendlich der gleiche Druck herrscht.

Sobald ihr das Ei auf die Öffnung setzt, verschliesst es diese vollständig. Wenn danach die Luft in der Flasche langsam wieder abkühlt, bewegen die Teilchen sich weniger und brauchen weniger Platz: Die Luft-Teilchen rempeln weniger gegeneinander, gegen die Flaschenwände und gegen das Ei. Da die Flasche nun verschlossen ist, können die zuvor hinausgedrängten Teilchen jedoch nicht wieder hinein. So entsteht im Inneren der Flasche ein Unterdruck.

Wie die Luft-Teilchen das Ei bewegen

Draussen bleibt der Druck dagegen stets gleich – und damit höher als drinnen. So drückt die Luft draussen die Umhüllung der Luft drinnen zusammen. Der Glasflasche macht das jedoch nichts – die ist hart und steif. Das Ei hingegen ist bis zu einem gewissen Grad formbar und überdies nicht fest mit der Flasche verbunden. Im Gegenteil: Es ist ziemlich glatt, sodass es an der Glaswand entlanggleiten kann.

So können die Luft-Teilchen, die von aussen gegen das Ei rempeln – also Druck machen – das Ei damit in den Flaschenhals hinein schieben, sobald die Luft-Teilchen innen mangels Wärme nicht mehr dagegen halten können! Wenn durch das Abkühlen der Temperatur- und damit der Druckunterschied zwischen drinnen und draussen gross genug wird, kann das Ei vollständig in die Flasche hinein geschoben – oder, wenn die Öffnung zu eng ist, im schlimmsten Fall entzwei gequetscht werden.

[/yellow_box]

Wie ihr das Ei wieder aus der Flasche bekommt

Es ist dazu nicht nötig, die Flasche zu zerschlagen! Geht stattdessen einfach wie folgt vor:

  1. Dreht die Flasche um, sodass das Ei von innen auf die Öffnung fällt und den Flaschenhals vollständig verschliesst.
  2. Lasst heisses fliessendes Wasser über den Flaschenbauch laufen (passt dabei auf eure Finger auf!) oder erwärmt die Flasche mit einem Haarföhn. So wie sich die Luft in der Flasche wieder ausdehnt, gleitet das Ei genauso wieder nach draussen, wie es in die Flasche hinein gekommen ist. Das hat sogar mit meinem halben Ei funktioniert!

Ihr könnt das Ei natürlich auch mit Hilfe des Haarföhns oder heissen Wassers in die Flasche hinein bekommen, wenn ihr kein offenes Feuer verwenden möchtet. Dann benutzt allerdings besser einen Kochhandschuh um die Flasche festzuhalten, während ihr sie gründlich erwärmt.

Entsorgung

Gibt es keine! Das hartgekochte Ei (oder seine beiden Hälften) könnt ihr nach dem Experiment einfach aufessen. Sollte Russ daran gekommen sein, könnt ihr ihn vorher leicht abwaschen. Die Flasche könnt ihr sauber machen und für das nächste Osterfest und weitere Experimente aufheben!

Mehr Experimente mit Eiern findet ihr übrigens hier – und hier könnt ihr mehr über die Farbstoffe erfahren, mit denen wir unsere Ostereier färben.

Damit wünsche ich euch viel Spass beim Experimentieren und schöne Ostern!

Und wie sehen eure Naturforscher-Ostern aus?

Deko im Frühling mit Superabsorber

Es ist die Zeit der Hasen, Küken Blumen…. Wie wäre es mit einer Osterdeko im Forscher-Stil – die gleich noch ein Experiment beinhaltet? Und (nicht nur) im Frühling jedes Heim-Labor verschönert? Ich habe ein tolles Gadget gefunden, das nicht nur eine besondere Sicht auf das Leben von Pflanzen gewährt, sondern auch eine verblüffende Eigenschaft von bestimmten Riesenmolekülen offenbart: Superabsorber!

Ich habe das Material für das Experiment aus eigenem Antrieb beschafft. Für die Idee dazu danke ich Marion Rotter vom Luxury Lifestyle Magazine, in welchem diese spannende Frühlingsdekoration auch einen Platz finden wird.

 

Superabsorber statt Pflanzenerde für Zwiebelblumen

Hydroperlen aus Superabsorbern sind ganz besondere Kunststoffgebilde, die unglaubliche Mengen Wasser speichern und wieder abgeben können. Dabei sind sie durchsichtig und nach Wunsch bunt. So geben sie nicht nur einen praktischen Ersatz für Pflanzenerde ab (das kann z.B. Blähton für die Hydrokultur auch), sondern gewähren, wenn man sie in gläsernen Blumentöpfen verwendet, einen spannenden Blick auf das Wurzelwerk der Pflanzen.

Und da Zwiebelblumen sich besonders leicht ein- und umsetzen lassen, bietet der Frühling die ideale Gelegenheit zum Experimentieren mit Superabsorbern!

 

Ihr braucht dazu

  • Glasgefässe mit weiter Öffnung: Für den Labor-Stil können das zweckentfremdete Behälter sein, wie mein Honigglas, mein Einmachglas oder der Glaszylinder aus meinem Windlicht. Auch ein Labor-Becherglas eignet sich natürlich.
  • Zwiebelblumen, die idealerweise schon ein wenig ausgetrieben haben
  • Superabsorber: Die gibt es als “Hydrokristalle” oder “Hydroperlen” für kleines Geld in verschiedenen Shops für Krimskrams, Gadgets oder Geschenkartikel (meine Bezugsquelle hat mich letztlich nicht zu einer Erwähnung überzeugt, da sie stark verspätet und erst nach meiner Nachfrage geliefert und mich überdies trotz meiner Nicht-Zustimmung mit einer ganzen Flut von Newslettern zugeschüttet haben).
  • Leitungswasser, ein Lavabo bzw. Spülbecken zum Reinigen von Pflanzenwurzeln
  • Ein paar Stunden Zeit für viele Tage Freude

Material : Zwiebelpflanzen, Hydroperlen, leere Gläser

Wie ihr eure gläsernen Topfpflanzen setzt

Zunächst müsst ihr die Superabsorber in Wasser ziehen lassen, damit sie sich ordentlich voll saugen. Das dauert ein paar Stunden, sodass es sich anbietet, sie über Nacht ziehen zu lassen. Eine Anleitung dazu liegt normalerweise der Verpackung der Hydrokristalle oder Hydroperlen bei. So bin ich mit meinen vorgegangen:

  • Schätzt ab, wieviele (Milli)Liter Wasser in die Gefässe passen würden, die ihr bepflanzen wollt. Entnehmt der Verpackung so viele Perlen bzw. Kristalle, wie ihr laut Angaben auf der Packung für dieses Volumen braucht. Achtung! Das sieht nach verdammt wenig aus, aber das passt schon: Ihr habt die grosse Überraschung ja noch vor euch!
    Hydroperlen bzw. Hydrokristalle für etwa 600ml Wasser

    Das sind genug Hydroperlen für die zwei Gläser oder insgesamt 600 Milliliter Wasser!

  • Verteilt die Hydroperlen bzw. Hydrokristalle auf die leeren Gefässe entsprechend ihrer Grösse. Dann füllt die Gefässe mit Wasser auf.
    Hydroperlen bzw. Hydrokristalle in Wasser

    Die Hydroperlen in den Gläsern, gleich nach dem Auffüllen mit Wasser. Und wirklich: Das genügt!

  • Stellt die Gefässe dorthin, wo sie nicht stören und deckt sie ggfs. gegen Staub ab (z.B. Deckel lose auflegen). Schaut in den nächsten Minuten bzw. Stunden immer mal wieder nach den Gläsern: Schon in den ersten Minuten werden die Perlen/Kristalle merklich wachsen und dabei zunehmend durchsichtiger erscheinen.
    Superabsorber in Aktion: Hydroperlen trocken und nach einer Nacht im Wasser

    Nach einer Nacht: So gross sind die Perlen geworden!

  • Nach einer Nacht sind meine Perlen von ursprünglich rund 2 mm im Durchmesser auf sage und schreibe 12 mm angewachsen und füllen die Gläser fast vollständig! Wenn es bei euch so weit ist, giesst das übrige Wasser ab.
    Superabsorber: Hydroperlen bzw. Hydrokristalle nach einer Nacht in Wasser

    Am nächsten Morgen: Die Hydroperlen sind über Nacht gewachsen und haben fast alles Wasser aufgesogen!

Jetzt könnt ihr mit dem Bepflanzen beginnen.

  • Wenn ihr bereits ausgetriebene Blumenzwiebeln umsetzt: Nehmt die Zwiebeln aus dem Topf und befreit die Wurzeln vorsichtig von der Erde (die könnt ihr zum Gärtnern aufheben). Spült die Wurzeln dann gründlich unter fliessendem Wasser, bis sie blitzsauber sind.
  • Nehmt einen Teil der Hydroperlen bzw. Hydrokristalle aus eurem Pflanzgefäss, legt sie in einem anderen Behälter beiseite (die Perlen sind jetzt elastisch wie Gummibälle – passt auf, dass sie euch nicht davonspringen!).
  • Platziert die Zwiebel mit den Wurzeln nach unten im Gefäss und füllt die Zwischenräume zwischen den Wurzeln behutsam mit den beiseite gelegten Perlen bzw. Kristallen auf (die Superabsorber gehen nicht so leicht kaputt, die Pflanzenwurzeln können dagegen recht empfindlich sein).
    Zwiebelblumen in Hydroperlen: Frühlings-Deko im Labor-Style

    Fertig! Jetzt heisst es geduldig warten!

  • Wenn die Zwiebel stabil untergebracht ist, platziert das Gefäss an einem hellen, nicht zu warmen Ort (wenn es nicht mehr friert auch draussen). Zwiebelblumen wie Krokusse, Narzissen und andere Frühlingsblüher sind für kühles Frühlingswetter geschaffen und welken bei zu hoher Raumtemperatur schnell.
  • Freut euch die nächsten Wochen an eurer Forscher-Frühlingsdeko und beobachtet die Pflanze und ihre Wurzeln beim Wachsen! Die Hydroperlen oder -kristalle werden mit der Zeit wieder schrumpfen, wenn das Wasser verdunstet oder die Pflanze davon trinkt. Insgesamt sollten die Pflanzen aber bis zu zwei Wochen ohne Giessen auskommen! Danach giesst einfach etwas Wasser nach, und die Superabsorber sollten wieder aufgehen.

 

Was passiert da?

[yellow_box]

Was genau sind eigentlich Superabsorber?

Superabsorber sind riesige Moleküle, sogenannte Polymere. Das sind lange Ketten aus sich immer wiederholenden kleinen Atomgruppen, die bei der Herstellung der Polymere miteinander verbunden werden. Was wir als “Plastik” oder “Kunststoff” bezeichnen, besteht aus solchen Riesen-Kettenmolekülen. Doch auch die Natur hält verschiedenste Polymere bereit, wie Proteine, Stärke, Zellulose oder unsere DNA.

Die Superabsorber unter den Polymeren haben zwei besondere Eigenschaften:

  1. Die langen Kettenmoleküle sind über Querstreben aus weiteren Atomgruppen miteinander vernetzt. Das Ergebnis ist ein regelrechter Molekül-Schwamm, dessen Poren in der Grössenordnung von einigen Atomdurchmessern liegen. Das bedeutet, eine Hydroperle bzw. ein Hydrokristall ist im Grunde genommen ein einziges gigantisches Molekül – so gross, dass wir es sehen und anfassen können!
  2. Die Atomgruppen, aus welchen die Superabsorber-Polymere bestehen, sind so gestaltet, dass sie und Wassermoleküle einander anziehen: Chemiker sagen, die Atomgruppen sind “hydrophil” – sie mögen Wasser. Wie Atomgruppen aussehen müssen, die Wasser mögen, und wie die gegenseitige Anziehung funktioniert, habe ich im Artikel über Tenside genauer beschrieben.

Kurz gesagt: Zu den wasserfreundlichsten Kohlenstoffverbindungen (zu diesen zählen die meisten Kunststoffe) gehören solche, die elektrische Ladungen tragen, also Ionen sind. Deshalb tragen die riesigen Superabsorber-Moleküle eine Unzahl an negativen Ladungen auf ihrem Netz aus Atomketten. Die wiederum ziehen nicht nur Wasser an, sondern auch positiv geladene Metall-Ionen. Mit solchen gehen die negativ geladenen Atomgruppen des Molekül-Schwamms Ionen-Bindungen ein – wie die Natrium- und Chlorid-Ionen in einem Kochsalzkristall!

Woraus meine (und höchstwahrscheinlich auch eure) Hydroperlen bestehen

Superabsorber sind also riesige Molekül-Netze, die aus zahllosen kleinen Carbonsäure-Gruppen (sehr häufige Monomere sind Acrylsäure bzw. ihre stickstoffhaltige Variante Acrylamid*, aus denen auch meine Hydroperlen bestehen) zusammengesetzt sind. In trockenem Zustand werden die Ladungen durch in den Maschen gebundene Natrium (Na+)-Ionen ausgeglichen, sodass das Netz sich auf sehr engem Raum dicht zusammenpacken lässt. So fühlen sich die trockenen, winzigen Hydroperlen hart und massiv an. Tatsächlich kann man sagen: Ein (trockener) Superabsorber ist sowohl ein Polymer als auch ein Salz!

*Wenn der Begriff “Acrylamid” bei euch die Alarmglocken klingeln lässt: In verketteter Form, also als Polyacrylamid bzw. “Polyamid” ist diese Verbindung absolut nicht giftig!

Wie funktionieren Superabsorber?

Wenn ihr trockene Hydroperlen oder Hydrokristalle in Wasser legt, passiert mit ihnen das selbe, was auch mit meinem nackten Ei (ein weiteres spannendes Oster-Experiment!) passiert ist: Die Ionen im Inneren des Molekül-Schwamms streben danach, sich mit Wassermolekülen zu mischen und mit ihnen zu wechselwirken. Dabei sind zunächst im Schwamm viele Ionen zwischen wenigen bis gar keinen Wassermolekülen, während das Wasser draussen nur wenige Ionen enthält – und die Natur verlang danach, diesen Unterschied auszugleichen: Physiker nennen dieses Verlangen “osmotischer Druck”.

Mit Osmose zum Gel

Dem osmotischen Druck folgend dringen die Wassermoleküle rasch in den Molekül-Schwamm ein. Dort umlagern sie die Natrium-Ionen, welche sich daraufhin vom Molekül-Netz lösen, und die Anionengruppen. Letztere bleiben allerdings fest mit den Kohlenstoff-Maschen des Polymers verbunden, sodass der Schwamm selbst sich nicht auflöst. Dabei stossen sich die negativen Ladungen, die nicht länger von Natriumionen aufgehoben werden, gegenseitig ab und treiben das anfangs eng gepackte Netz immer weiter auseinander.

Das Ergebnis ist ein riesiges Schwamm-Molekül, in dessen wachsenden Poren Wassermoleküle regelrecht kleben, während es immer mehr Raum einnimmt. Solch ein Gebilde, das weder wirklich ein Feststoff noch wirklich in Wasser gelöst ist, nennen die Physiker ein Hydrogel. Damit die Hydroperlen für eure Topfpflanzen bei all dem aber nicht völlig aus dem Leim gehen, ist ihre Oberfläche von einem zusätzlichen Polymer-Netz umgeben, das sich nur begrenzt ausdehnt und so dafür sorgt, dass die Perlen ihre Form behalten und so lustig herumspringen können.

Wo finden Superabsorber sonst noch Verwendung?

Ihrer Supersaugkraft wegen werden Superabsorber auch in Babywindeln eingebaut, damit Babys Popo auch die ganze Nacht trocken bleibt (ebenso saugen sie wirksam die Folgen einer Blasenschwäche auf). Dabei wird auf die formgebende Aussenhülle verzichtet, denn die Windel selbst hält ja alles an Ort und Stelle. Was passiert, wenn man Superabsorber ohne begrenzende Hülle mit Wasser tränkt, zeigen die Simple Chemics hier sehr eindrücklich:


Da kann man bestimmt auch Pflanzen hinein setzen, aber man sieht dabei auch nicht mehr als in richtiger Erde. Ausserdem haben die springenden Gelbällchen es mir wirklich angetan. Man kann damit wunderbar herumspielen!

Indem man kleine Superabsorber-Körner mit Erde mischt, wird zudem Blumenerde hergestellt, die auch ohne den “Labor-Look” besonders viel Wasser speichern kann.

[/yellow_box]

Entsorgung

Polyacrylsäure und Polyamid sind nicht giftig. Polyacrylsäure wird sogar als Grundstoff für Medikamente und Kosmetik wie Gels zum Auftragen oder Augentropfen als Tränenersatz verwendet. Deshalb machen sie auch bei der Entsorgung keine Umstände.

Die Hydroperlen oder Hydrokristalle können immer wiederverwendet werden – es ist nicht nötig, sie nach einmaliger Benutzung wegzuwerfen! Falls ihr sie doch irgendwann nicht mehr braucht, können sie in den Restmüll gegeben werden. Blumenzwiebeln könnt ihr bis im Herbst in den Garten oder auf den Balkon auspflanzen. Welke Pflanzenteile können ganz normal auf den Kompost oder in den Bioabfall.

Und wir sieht eure – vielleicht auch ungewöhnliche – Frühlings- oder Osterdekoration aus?