Beiträge

Nierenstein ganz nah

Was sind Nierensteine? Fördert kalkhaltiges Wasser ihre Entstehung?

Diese Leser-Frage kam auf, als ich vor ein paar Wochen über Kalkfänger geschrieben habe – Ringe aus Stahlwolle, die eine Art Köder für Kalk darstellen, der sich aus hartem Wasser absetzen kann. Diese Kalkablagerungen liessen eine Leserin an Nierensteine denken, jene unerwünschten Ablagerungen, die in unseren Nieren entstehen und auf schmerzhafte Weise den Harnleiter verstopfen können.
 

Was sind Nierensteine und wie entstehen sie?

Die Nieren sind die Kläranlagen unseres Körpers. In ihnen werden verschiedene Stoffwechselabfälle, Ionen und Wasser aus dem Blut “gewaschen” und zu dem gesammelt, was als Urin in die Harnblase und von dort nach draussen abfliesst. Normalerweise lösen sich alle Abfälle in Wasser, sodass der Urin als klare Flüssigkeit seinen Weg durch die Harnleiter von der Niere zur Blase antreten kann.

Die Wasserlöslichkeit einiger Abfälle bzw. von Kombinationen verschiedener Bestandteile ist jedoch sehr begrenzt. Wenn unter unglücklichen Umständen die Konzentration solcher Stoffe oder Kombinationen im entstehenden Urin zu hoch wird, wird es solchen Stoffen in der Lösung “zu eng”: Sie verlassen die Lösung und werden fest (Chemiker sagen “sie fallen aus”).

Dabei suchen sich die ausfallenden Teilchen meist irgendeinen Feststoff-Krümel als Anreiz und lagern sich von allen (zugänglichen) Seiten daran an. So entsteht Schicht für Schicht ein Sandkorn, das sich mit der Zeit zu einem kleinen Kieselsteinchen auswachsen kann – einem Nierenstein.

Nierensteine - wo sie zu finden sind

Ablagerungen schwer löslicher Salze können den Harnleiter (nach links unten aus der Niere abgehend) verstopfen und so zu Nierenkolik, Harnrückstau und gefährlichen Entzündungen führen. ( By BruceBlaus. Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. (Own work) [CC BY 3.0], via Wikimedia Commons

Wenn solche Nierensteine in den Harnleiter geraten, können sie je nach Grösse darin stecken bleiben (dann spricht man korrekterweise von Harnleitersteinen) und somit den Abfluss für den Urin verstopfen. Die Folge sind starke, krampfartige Schmerzen (die berüchtigte Nierenkolik) und ein Rückstau des Urins, der Entzündungen mit sich bringen und die Niere schädigen kann. Wenn es einmal zu so einer Verstopfung kommt, hilft nur noch der Weg in Spital, um die Steine zerkleinern und entfernen zu lassen (heutzutage geht das meist mit Hilfe von Schallwellen von aussen).

Wer solch eine unangenehme Erfahrung aber von vorneherein vermeiden möchte, tut gut daran, über Nierensteine bescheid zu wissen. Die “unglücklichen Umstände” lassen sich nämlich in den allermeisten Fällen recht einfach vermeiden.
 

Woraus bestehen Nierensteine?

Die allermeisten Nierensteine bestehen aus Salzen, also aus Verbindungen verschieden geladener Ionen, die sich in ungünstiger Paarung schlecht in Wasser lösen. In den meisten dieser Steine (d.h. in rund 80 bis 85% aller Nierensteine), sind Calcium-Ionen, , massgeblich an diesen Paarungen beteiligt. Richtig – das sind genau die Kationen, aus denen auch Kalk entsteht. Die Frage unserer Leserin liegt also nahe.

Anstelle von Carbonat-Anionen () enthalten Nierensteine jedoch andere negativ geladene Ionen, allen voran das Anion der Oxalsäure (Oxalat,, 60% aller Nierensteine). Dazu kommen Phosphat-Anionen (), 9% aller Steine) und das Anion der Harnsäure (Urat) und weitere, die allesamt mit Calcium in Wasser schwer- bis unlösliche Salze bilden.

Harnsäure kann sowohl ganz allein als ungeladenes Molekül oder als Urat-Anion mit Metall-Ionen ausfallen und Harnsäuresteine bilden (15% aller Nierensteine).

Als Folge von Harnwegs-Infektionen können überdies Magnesium () und Ammoniumionen () mit Phosphat-Anionen zu “Struvit”-Steinen zusammenfinden (11% aller Nierensteine), die nach dem Mineral der selben Zusammensetzung benannt sind.

Selten sind Steine aus anderen organischen Stoffen, wie Cystin oder Xanthin, die aufgrund von genetisch bedingten Stoffwechselstörungen in zu grossen Mengen im Urin landen (je 1% aller Nierensteine).

Da es in so einer Niere höchst lebendig und bewegt zu und her geht, finden all diese Ionen und Moleküle beim Ausfallen keine Ruhe, um sich zu ordentlichen, sichtbar symmetrischen Kristallen zusammen zu lagern. So entstehen oft gerundete oder blasige, unstrukturierte Kiesel, deren Zusammensetzung aus Ionenkristallen sich erst vor dem Makro-Objektiv (wie auf dem Artikelbild) oder unter dem Elektronenmikroskop offenbart.

Nierenstein unter dem Rasterelektronenmikroskop

Oberfläche eines Calciumoxalat-Steins unter dem Rasterelektronenmikroskop. Die Breite des Bildes entspricht einer Länge von 0,45mm ! (By Kempf EK (Own work) [CC BY 3.0], via Wikimedia Commons)

Ebenso führt das lebendige Treiben rund um die Urin-Entstehung zwangsläufig dazu, dass verschiedene Ionensorten miteinander ausfallen und Mischkristalle bilden. Für einen Nierenstein eine Salzformel wie für einen Reinstoff anzugeben ist deshalb höchst schwierig bis unmöglich.
 

Was erhöht die Konzentration der schwerlöslichen Salze?

So unterschiedlich wie die verschiedenen Nierensteine sind auch die Umstände, unter welchen sie entstehen. Eine Gegebenheit führt allerdings in jedem Fall zur Erhöhung der Konzentration gelöster Teilchen: Ein Mangel am Lösungsmittel.

Zu einem Überschuss an Nierenstein-Bestandteilen im Urin kommt es also für

Alle Steine

Bei Flüssigkeitsmangel – wenn zu wenig getrunken oder/und zu viel Flüssigkeit ausgeschieden wird (Schwitzen, Durchfall,…alles was zu Dehydrierung führen kann).

Calciumoxalat-Steine

Bei vermehrter Ausscheidung von Oxalat aus dem Blut in den entstehenden Urin.

An sich sind Oxalat-Anionen ganz normale Stoffwechsel-Abfallprodukte, die in jedem Körper vorkommen und transportiert werden. Dementsprechend einfach kann es zu einer “Flutung” mit Oxalat kommen, wenn sich irgendwo eine reichhaltige Quelle auftut. Die naheliegendste solche Quelle ist die Nahrung:

Schwarztee (manchmal auch Grüntee), Spinat, Rhabarber, Rande (in Deutschland: Rote Bete), Krautstiel (in Deutschland: Mangold), Kakao und Nüsse sind Lebensmittel, die relativ viel Oxalsäure enthalten.

Auch Stoffwechselstörungen, sowohl erbliche (selten) als auch erworbene, können zur vermehrten Ausscheidung von Oxalat-Anionen führen. Ursachen für viel Oxalat im Urin können Funktionsstörungen der Nebenschilddrüsen, die Überdosierung von Vitamin D, eine zurückliegende Magen-Bypass-Operation, Morbus Cushing, die Folgen von Knochenkrebs und weitere sein.

Harnsäure-Steine

Bei vermehrter Ausscheidung von Harnsäure-Salzen (Urat) aus dem Blut.

Harnsäure bzw. Harnsäure-Anionen sind ein Stoffwechselprodukt, das beim Abbau von Purinen entsteht. Purine wiederum sind Bestandteile der Nukleinsäuren, also DNA und RNA – kurz: des Erbguts in allen Zellen. Kurzum: Wo (zerstörte) Zellen sind, sind auch Purine nicht weit. Dabei können diese Zellen sowohl aus der Nahrung als auch aus unserem eigenen Körper stammen.

Dummerweise besteht die allermeiste für uns geniessbare Nahrung aus Zellen – sowohl pflanzliche als auch tierische. Dennoch gelten Innereien, Fleisch, Fisch und vor allem die Haut von Fisch und Geflügel als besonders zell- und damit als purinreich.

Körpereigene Zellen werden z.B. durch Hungerkuren oder Krebserkrankungen und deren Bekämpfung verstärkt zum Abbau ihrer selbst und damit zur Lieferung von Purinen zur Verstoffwechselung bewegt.

Die häufigste Ursache für einen Harnsäure-Überschuss im Körper ist jedoch eine Ausscheidungsstörung in den Nieren: Wenn die (auch in normalem Umfang) im Stoffwechsel entstehende Harnsäure nicht raus kann, sammelt sie sich an. In den Nieren können so Steine entstehen, bei Ablagerung in den Gelenken kommt es zur Gicht.

Ein “saurer”, also niedriger pH-Wert im Urin führt zudem dazu, dass Natriumurat, das Salz aus Natrium () und Urat-Ionen, besonders leicht ausfällt. Übergewicht gilt das wichtige Ursache für sauren Urin. Überdies hemmt Alkohol (Ethanol) die Ausscheidung von Harnsäure über die Nieren.

Struvit-Steine

Bei basischem Urin in Folge von Infektionen.

Struvit () fällt nur in basischer Umgebung aus. Da menschlicher Urin gewöhnlich schwach sauer ist, kommen solche Steine unter normalen Umständen nicht vor (anders z.B. bei Hauskatzen: die haben gewöhnlich basischen Urin und können daher auch bei gesunder Ausgangslage Struvit-Steine entwickeln).

Anders wird das, wenn sich der Mensch einen Harnwegsinfekt mit Bakterien einfängt, die Harnstoff zu Ammoniak ()abbauen können. Letzterer ist nämlich basisch, d.h. er nimmt -Ionen auf (so entstehen daraus Ammonium-Ionen ), was zu einer Erhöhung des pH-Werts in der Umgebung – hier im Urin – führt. So können in der Gegenwart von ammoniakproduzierenden Bakterien Struvit-Steine entstehen.

Und Calciumcarbonat?

Während Calcium in vielen Nierensteinen eine Rolle spielt, ist vom Carbonat-Anion bis hierhin keine Spur. Tatsächlich ist Calciumcarbonat, wenn überhaupt, nur selten Bestandteil von Nierensteinen. Das wird daran liegen, dass unter den Bedingungen im menschlichen Körper nicht das stark basische Carbonat (), sondern das weniger basische und leichter lösliche Hydrogencarbonat () vorkommt.
 

Welche Bestandteile können über die Ernährung beeinflusst werden?

Mit der Nahrung nehmen wir vor allem drei wichtige Bestandteile von Nierensteinen auf:

  • Calcium : findet man als -Ionen unter anderem in Milch und Milchprodukten, sowie Mineral- und Leitungswasser.  ist nicht nur Bestandteil von Nierensteinen, sondern auch ein für den Körper unverzichtbarer Mineralstoff. Besonders für den Knochenbau und -erhalt benötigen wir unbedingt Calcium. Deshalb wird ein Verzicht auf Calcium zur Vorbeugung von Nierensteinen gar nicht mehr empfohlen (es sei denn, es findet sich tatsächlich zu viel davon im Urin). Die für gesunde Erwachsene empfohlene Calcium-Zufuhr von 1000 – 1200 mg pro Tag führt birgt gemäss der Schweizerischen Gesellschaft für Ernährung auch das geringste Risiko für die Entstehung von Calciumsteinen. Wie das kommt? Calcium allein macht noch keinen Nierenstein. Dazu braucht es schliesslich auch Anionen:
  • Oxalat : Viele Pflanzen – auch und gerade solche, die als gesund gelten – enthalten relativ viel Oxalsäure bzw. Oxalat-Anionen. So kann die Aufnahme von oxalsäurereicher Nahrung direkt zu einer Flutung der Nieren mit Oxalat führen. Wenn dann auch Calcium vorhanden ist, entstehen leicht Oxalat-Steine.
  • Harnsäure : Purine aus Proteinen in Fleisch und Fisch werden zu Harnsäure verstoffwechselt, sodass auch hier eine Aufnahme mit der Nahrung schnell zu einer Flutung führen kann. Ausserdem führt die fleischhaltige Nahrung zu einem niedrigen, d.h. sauren pH-Wert im Urin, was die Entstehung von Harnsäuresteinen weiter begünstigt.

 

Wie senke ich mein Nierensteinrisiko durch Ernährung?

Alle Steine

Viel trinken ist grundsätzlich Empfehlung Nummer 1, wenn es um Nierensteine geht. Schliesslich müssen sich in einem grossen Urin-Volumen wesentlich mehr Nierenstein-Bestandteile ansammeln, bevor etwas fest wird, als in einem kleineren Volumen. Patienten, die bereits mit Nierensteinen zu tun hatten oder haben, wird daher empfohlen, am Tag mindestens 2,5 bis 3 Liter zu trinken.

Calcium-Steine

In der Gegenwart von Natrium(Na+-)Ionen werden Calcium-Ionen besonders leicht vom Blut in den Urin befördert. Deshalb lässt sich die Calciumausscheidung allein durch Masshalten bei der Verwendung und damit der Aufnahme von Koch- oder Speisesalz (Natriumchlorid) verringern, ohne dass der Körper auf wertvolles Calcium verzichten müsste. Zu wenig Salz ist allerdings auch nicht angebracht, da mit dem Salz auch das Wasser seinen Weg in den Urin findet – und wenig Wasser führt zu einem niedrigen Urin-Volumen…und damit zu Nierensteinen. Empfohlen wird die Aufnahme von 4 bis 6 Gramm Kochsalz pro Tag (Achtung bei Fertigprodukten! Die enthalten oft mehr Kochsalz, als man meinen möchte!).
Zudem lässt sich Calcium hinsichtlich der Entstehung von Nierensteinen auch mit Hilfe von Zitronensäure “unschädlich” machen: Citrat-Anionen bilden nämlich mit  eine sogenannte Komplexverbindung, die gut wasserlöslich ist, aber das Calcium-Ion für die Reaktion zu Calciumoxalat und anderen schwer löslichen Salzen unzugänglich macht. Zitrusfrüchte und -säfte sind daher eine gute und schmackhafte Wahl (nicht nur) für die Flüssigkeitszufuhr.

Oxalat-Steine

Wer zu Oxalat-Steinen neigt, sollte eine Oxalsäure-Überflutung möglichst vermeiden. Das heisst Zurückhaltung bei oxalsäurereichen Nahrungsmitteln, zu welchen verschiedene Gemüse, Nüsse, aber auch Schokolade (Kakao!) zählen. Da Nierensteine zudem oft Gemische aus verschiedenen Stein-Typen sind, ist deshalb eine rein vegetarische Ernährung zur Vermeidung von Harnsäuresteinen nicht zu empfehlen: Zu schnell gerät man dabei an Oxalsäure, die dann vom Regen in die Traufe führen kann.
Es gibt jedoch einen Trick für all jene, die auf ihr oxalatreiches Lieblings-Gemüse nicht verzichten wollen: Verspeist die Oxalsäure gemeinsam mit Calcium, zum Beispiel aus Milchprodukten oder Mineralwasser! Dann bildet sich das schwerlösliche Calciumoxalat nämlich schon im Verdauungstrakt – und wird mit dem Stuhlgang gleich wieder ausgeschieden. Damit ist das Calcium allerdings auch verloren und trägt nicht nur Deckung des Tagesbedarfs bei!

Harnsäuresteine

Wer mit Harnsäure-Steinen zu tun hat, sollte Fleisch und Fisch in Massen essen (maximal 1 Portion von 120g pro Tag an höchstens 5 Tagen in der Woche) und besonders purinhaltige Bestandteile meiden. Eine rein vegetarische oder gar vegane Ernährung ist jedoch der Oxalsäure wegen sehr schwierig und wird daher nicht empfohlen. Wer Übergewicht abbauen möchte, sollte das Abnehmen langsam angehen, um eine Flutung mit körpereigenen Purinen zu vermeiden! Hydrogencarbonat-Ionen – zum Beispiel aus Mineral- oder auch Leitungswasser – können dabei helfen, den sauren Urin-pH zu erhöhen (d.h. “basischer zu machen”).

Struvit-Steine

Harnwegsinfekte sollten frühzeitig behandelt werden, um Struvit-Steine und eine Nierenbeckenentzündung zu vermeiden! Meine persönliche Waffe für den “Präventiv-Schlag” bei einer Harnwegs-Reizung sind Preiselbeer- bzw. Cranberry-Getränke (zum Beispiel aus Trink-Granulat). Damit kann ich vieles schon im Keim ersticken. Bei anhaltenden Schmerzen oder/und Fieber aber unbedingt zum Arzt gehen und eine Urin-Probe untersuchen lassen! Das dauert nur ein paar Minuten und zeigt, ob ihr einen Infekt mit Bakterien habt, der mit Antibiotika behandelt werden sollte!
 

Fazit

Die Entstehung von Nierensteinen kann verschiedene Ursachen haben. Dabei können die Rahmenbedingungen für die Stein-Entstehung teilweise durch die Ernährung beeinflusst werden.

Calcium, genauer das -Ion, welches massgeblicher Bestandteil an Kalkablagerungen in Bad und Küche ist, ist auch in den meisten Nierensteinen enthalten. Für die Vermeidung von Nierensteinen sind jedoch die Anionen, die mit dem Calcium schwer lösliche Verbindungen bilden, viel bedeutsamer. Die Aufnahme solcher Anionen, wie Oxalat und Urat, und damit ihre Konzentration im entstehenden Urin in den Nieren lässt sich über die Ernährung recht gut steuern. Dabei sind Calcium und das in “hartem” Wasser gelöste Hydrogencarbonat-Anion mitunter sogar nützliche Hilfsmittel!

Viel trinken und eine massvolle, aber vielseitige Ernährung helfen grundsätzlich dabei, einen ausgeglichenen Stoff-Haushalt (nicht nur) in den Nieren zu bewahren und der Entstehung von Nierensteinen vorzubeugen.

Mehr Infos rund um Nierensteine und Ernährung

Die folgenden Quellen sind in diesen Artikel eingeflossen:

Merkblatt “Ernährung und Nierensteine” von der Schweizerischen Gesellschaft für Ernährung

Infoseite rund um Harn- und Nierensteine, mit Tabellen zu Stein- und Nahrungsmittel-Zusammensetzung

 

Enthalten rote Nahrungsmittel Eisen?

Eisen als Nährstoff ist heute das Thema in der Alltagskiste: Warum sagt man, dass rotes Essen gesund und gut fürs Blut ist? – fragt eine Leserin.

Auch meine Eisenwerte sind nie die besten gewesen. So riet auch mir einst eine Hausärztin, rotes Fleisch und – weil gerade Frühling war – Erdbeeren zu essen. Rote Nahrungsmittel sollen das Metall liefern, welches für seine roten Oxide – kurzum: Rost – bekannt ist? Das schien mir schon damals ein Zufall zu sein. Mein jetziger Hausarzt sagt zudem, es sei ganz schwierig, Eisen über den Verdauungstrakt in den Körper hinein zu bekommen. Eine einzelne Infusion direkt ins Blut fülle dagegen die Eisenspeicher effektiv wieder auf.

Aber wozu die ganze Mühe? Und was hat es mit dem roten Essen auf sich?

 

Wozu brauchen wir Eisen?

Eisen-Ionen sind unverzichtbare Bestandteile von Enzymen, die im Stoffwechsel verschiedene Aufgaben übernehmen. Die bekannteste Aufgabe des Eisens ist jedoch der Sauerstofftransport in den roten Blutkörperchen. In meinem Artikel über die spannendste Chemikalie der Welt könnt ihr nachlesen, wie der eisenhaltige rote Blutfarbstoff, das “Häm” im Protein Hämoglobin, als “Lieferwagen” für Sauerstoffmoleküle funktioniert.

Wir brauchen also Eisen-Ionen, damit unser Stoffwechsel sie in rote Blutzellen einbauen und zum Lieferdienst durch unseren Blutkreislauf schicken kann. Das heisst allerdings auch: Wenn irgendwo Blutzellen verloren gehen, kann der Körper das Eisen darin abschreiben. Und da bekanntlich überall Schwund ist, verliert ein erwachsener Mensch am Tag unweigerlich 1 bis 2 Milligramm Eisen.

Das ist allerdings kein grosses Problem, zumal unsere westliche Nahrung reichlich Eisen enthält, das wir über die Verdauung aufnehmen können. Und für den Fall, dass der Mensch sich mal verletzt oder anderweitig über Gebühr Blut verliert, ist der Körper mit Eisenspeicherproteinen wie Ferritin und Hämosiderin ausgerüstet, welche schnell verfügbare Eisen-Reserven bereithalten.

Doch auch solche Speicher können leer werden, wenn sie stark oder/und dauerhaft beansprucht werden. Schon die monatliche Menstruationsblutung kann eine erhebliche Zusatzbelastung darstellen. Davon kann auch ich ein Lied singen: Pro 2 ml Blut gehen laut Wikipedia etwa 1 mg Eisen verloren – bei 30 bis 60 ml Blut während eines Menstruationszyklus macht das 15 bis 30 Milligramm, also mindestens einen halben zusätzlichen Monatsverlust innerhalb einer Woche! Und ich blute gefühlt eher 60 als 30 Milliliter je Zyklus. Da ist es kein Wunder, dass meine Eisenspeicher selten gut gefüllt sind.

Und wenn die Speicher leer sind, dann droht Eisenmangel, der im schlimmsten Fall zu einer Blutarmut (Eisenmangel-Anämie) führen kann. Deshalb sind Ratschläge zu einer ausreichenden Eisenzufuhr auch in aller Munde.

 

Wo ist Eisen drin?

Viele denken nun sicher an Nägel und andere Metallteile. Die könnten als Eisen-Lieferanten theoretisch sogar funktionieren, da unsere Magensäure die Atome des unedlen Metalls zu verwertbaren Eisen-Ionen () oxidieren können sollte. Allerdings sind Nägel im Magen wenig bekömmlich und Eisen in solch rauhen Mengen überdies giftig. So sind wir gut beraten, unser Eisen direkt in Form von Eisen-Ionen aufzunehmen.

Und Eisen-Ionen findet man reichlich in Muskelfleisch: Dieses enthält das Protein Myoglobin, welches wie das Hämoglobin im Blut eisenhaltiges Häm enthält, um Sauerstoff von den Blutgefässen in die einzelnen Muskelzellen transportieren zu können.

Auch viele Pflanzen enthalten Eisen – allerdings oft in Form von -Ionen, die ausserdem teilweise noch an Kohlenhydrate gebunden sind. Da der menschliche Körper nur mit -Ionen etwas anfangen kann, muss er das pflanzliche  erst von den Kohlenhydraten los bekommen und zu  reduzieren. Eisen über diese Umwege aufzunehmen ist so “mühsam”, dass ein guter Teil davon den Verdauungstrakt ungenutzt wieder verlässt. Physiologen und Ernährungsexperten sagen, es ist “schlecht bioverfügbar”.

Allerdings können auch Pflanzen Ferritin und darin gespeichertes Eisen enthalten – dieses ist deutlich besser bioverfügbar als freies .

 

Wie kommt das Eisen in unseren Körper?

Eisen wird vornehmlich im Zwölffingerdarm – also dem ersten Dünndarmabschnitt gleich nach dem Magen – aufgenommen. Dort trifft der stark saure Mageninhalt mit basischen Sekreten zusammen, die die Magensäure neutralisieren. So lange ihre Umgebung sauer ist, lösen sich – und -Ionen gut in Wasser. Bei neutralem oder basischem pH-Wert tun sich jedoch besonders – und -Ionen zu unlöslischen Eisen-Hydroxiden zusammen, die nicht vom Körper aufgenommen werden können.

Deshalb müssen -Ionen vor der vollständigen Neutralisation aus (pflanzlicher) Nahrung herausgelöst (das geschieht schon im Magen), reduziert und von den Darmzellen aufgenommen werden. Für den letzten Schritt ist ein spezielles Protein zuständig, das zweifach positiv geladene Metall-Ionen (neben  auch Zink-, Mangan-, Cobalt- und viele andere nützliche und weniger nützliche Ionen) aus dem Darminhalt in die Zellen pumpen kann. Im Menschen-Darm dient dieses Protein allerdings vornehmlich dem Transport von Eisen.

Wenn dieses Tansport-Protein aus irgendeinem Grund nicht funktioniert (zum Beispiel weil das Gen dafür defekt ist), bleibt nur noch ein effektiver Weg für die Eisen-Aufnahme: Die Aufnahme von kompletten Häm-Molekülen samt darin gebundener -Ionen durch dafür geschaffene Transport-Proteine. Und die Häm-Moleküle finden sich wie bereits erwähnt in Muskelfleisch.

Der grosse Vorteil dieses Weges besteht darin, dass das Häm das Eisen vor unerwünschten Reaktionen schützt. Der pH-Wert seiner Umgebung ist dem Häm-Eisen und seinem Transporter damit ziemlich egal. Auch von anderen Stoffen, die die Aufnahme von freiem Eisen behindern können, zeigt das Häm-Eisen sich unbeeindruckt.

 

Was stört bei der Eisenaufnahme? Was hilft?

Eisen-Ionen können mit vielen organischen Stoffen sogenannte Komplex-Verbindungen bilden, in welchen die elektronenreichen organischen Moleküle den positiv geladenen Eisen-Ionen ganze Elektronenpaare “ausborgen” (mehr zur Komplexbildung könnt ihr bei meiner Grillparty erfahren). Das Ergebnis einer solchen Leihgabe kann so “bequem” (also energietechnisch günstig) ausfallen, dass diese Komplexe sich nicht ohne weiteres wieder zerlegen lassen. In solch stabilen Komplexen gefangene Eisen-Ionen können damit nicht mehr aufgenommen werden.

Stoffe, die Eisen in schwer löslichen Komplexen “fangen”, sind zum Beispiel

  • Pflanzliche Polyphenole (Hülsenfrüchte, Tannine in schwarzem Tee)
  • Phytate, die Salze der Phytinsäure (Getreide, Nüsse, Hülsenfrüchte)
  • Polysaccharide (also verkettete oder vernetzte Zucker-Moleküle) ausser Stärke (Getreide)
  • Oxalate, die Salze der Oxalsäure
  • Phosphat-Anionen

Wer also seinen Eisenbedarf mit pflanzlicher Nahrung decken möchte, ist gut beraten, Zutaten mit diesen Inhaltsstoffen in eisenhaltigen Mahlzeiten zu meiden (laut der Eisen-Infoseite der Uniklinik Hamburg-Eppendorf kann eine einzige Tasse schwarzen Tees zum Essen fast eine ganze Eisen-Mahlzeit “unbrauchbar” machen!).

Die Eisenaufnahme fördern kann dagegen Vitamin C (Ascorbinsäure) in der Nahrung. Dieses Vitamin wirkt nämlich reduzierend (weshalb es auch als “Antioxidans” bekannt ist) – auch auf -Ionen, die durch die zeitige Reduktion zu -Ionen vor dem “Gefangenwerden” geschützt werden.

Der sicherste Weg zur effektiven Eisen-Aufnahme führt letztlich über das Häm-Eisen aus dem Myoglobin im Fleisch, das nicht von Komplexbildnern abgefangen und so ohne Verlust mit allem gegessen werden kann.

 

Was tun bzw. essen bei Eisenmangel?

Die genannten Hindernisse machen es schwer, wenn nicht gar unmöglich, entleerte Eisenspeicher durch blosses Essen wieder aufzufüllen. Deshalb können Ärzte Eisenpräparate zum Einnehmen als Nahrungsergänzung verschreiben. Solche Mittel enthalten in der Regel “freie” oder in leicht zerlegbaren Komplexen gebundene -Ionen und oft ein Antioxidans, das die Rolle des Vitamin Cs übernimmt. Damit soll das Eisen bestmöglich bioverfügbar gemacht werden. Gegen die oben genannten “Eisenfänger” sind jedoch auch solche Nahrungsergänzungsmittel nicht gefeit, sodass sie wirkungslos werden, wenn man sie mit der falschen Begleit-Nahrung einnimmt.

Deswegen wird meist die Einnahme auf nüchternen Magen empfohlen – denn keine Begleitung ist zumindest keine falsche Begleitung. Zudem muss Eisen als Nahrungsergänzung oft über Monate eingenommen werden, bis die Eisenspeicher wirklich wieder aufgefüllt sind. Vegetarier und Veganer sind überdies gut beraten, ihre Eisenreserven im Blick zu behalten und ggfs. dauerhaft Eisenpräparate einzunehmen, da ihnen das Häm-Eisen als wichtige Quelle fehlt.

So kann ich nachvollziehen, dass mein Hausarzt mir und sich die Mühe mit allenfalls mässigen Erfolgsaussichten nicht machen wollte und mir das Eisen direkt ins Blut befördert hat.

 

Rotes Essen zum Erhalt vorhandener Eisen-Reserven?

So lange die Eisenspeicher noch nicht entleert sind und es nur gilt, einen möglicherweise erhöhten Eisenverlust bzw. -bedarf auszugleichen, ist fleischhaltige Nahrung die sicherste Quelle dafür. Denn Fleisch enthält Myoglobin und damit Häm-Eisen – und sieht deshalb in rohem Zustand rot aus. In sofern gibt es beim Fleisch tatsächlich einen Zusammenhang zwischen roter Farbe und Eisengehalt.

Bei rotem Obst und Gemüse dürfte das Zusammentreffen von roter Farbe (die vornehmlich ein Zeichen von Reife ist) und Eisengehalt eher zufällig sein – zumal vorhandenes Eisen noch lange nicht bioverfügbar sein muss!

 

Fazit

Die Aufnahme von Eisen über die Verdauung ist nicht einfach. Am einfachsten wird Häm-Eisen aufgenommen, eine Eisenverbindung, die tatsächlich rot und ein Bestandteil von Fleisch ist.

Die Aufnahme von pflanzlichem Eisen ist komplizierter und wird durch viele andere Pflanzen-Inhaltsstoffe erheblich beeinträchtigt. So enthalten viele als eisenreich geltende Pflanzen (Hülsenfrüchte, Nüsse, Spinat,…) auch Komplexbildner, die das Eisen unbrauchbar machen können – und sind zudem nicht rot.

Dass Erdbeeren, laut meiner einstigen Hausärztin eine gute Eisenquelle, rot sind, ist demnach ein Zufall. Der Mythos, dass rote Pflanzenteile viel Eisen enthalten, könnte darauf zurückgehen, dass Eisen für seine roten Oxide wie Rost oder Hämatit weithin bekannt ist und so mit dieser Farbe in Verbindung gebracht wird.

Und wie steht es um euren Eisenhaushalt? Wie stellt ihr eure Versorgung mit diesem Mineralstoff sicher?

Salz : Würzmittel in vielerlei Gestalt

Warum sagt man, dass Salz nicht gesund ist, wenn man es im Nachhinein zum Nachsalzen am Tisch verwendet? Also man sollte es beim Kochen verwenden? So lautet die Leserfrage, die es heute in die Alltagskiste geschafft hat.

 

Was ist Salz?

Für das Salz in unserer Suppe kennen wir viele Namen: Kochsalz, Speisesalz, Tafelsalz, Steinsalz, Meersalz, Natursalz,… Hinter allen verbirgt sich am Ende ein Stoff – Natriumchlorid – ein wasserlöslicher Kristall aus Natrium- () und Chlorid- () Ionen.

Diese Ionen finden sich in grosser Anzahl in den Meeren oder als Mineral “Halit” bzw. “Steinsalz” in der Erdkruste. Wenn man Meerwasser verdunsten lässt oder eindampft, formen die Ionen feste Salzkristalle. Dabei werden jedoch auch “fremde” Ionen in den Kristall eingebaut, wie sie gerade daher kommen, sodass unbehandeltes Meersalz neben Natrium und Chlorid auch Ionen von Kalium, Magnesium und vielen anderen – theoretisch auch weniger erwünschten – Stoffen enthält. Das Gleiche gilt für Steinsalz-Kristalle aus den Tiefen der Erde: Solche sind nicht selten farbig, was auf Fremd-Ionen hindeutet. Denn reines Natriumchlorid ist farblos bzw. weiss.

Salz - Kristall : Zu weiss für "echtes" Steinsalz

Ein Salzkristall – in etwa so gross wie ein Tischtennisball – aus Natriumchlorid ohne farbgebende Verunreinigungen

Bei der Herstellung von Speise- oder Tafelsalz, wie wir es im Supermarkt finden, werden diese Fremdionen grösstenteils entfernt – solches Speisesalz ist folglich weiss. Dafür werden diesem Salz oft jodhaltige (Iodat, ) und manchmal auch Fluorid ()-Ionen zugegeben. So soll die Versorgung der Bevölkerung mit dem seltenen Spurenelement Jod sichergestellt und ausserdem ein Beitrag zur Karies-Vorbeugung geleistet werden (wie Fluorid das schafft, weiss mein Zahn 16).

 

Wozu braucht der menschliche Körper Salz?

Natrium- und Chloridionen haben in unserem Körper viele Aufgaben: Nervensignal-Weiterleitung, Knochenaufbau, die Bildung von Magensäure (die enthält Salzsäure, “HCl” bzw.  !), … am augenscheinlichsten ist aber die Rolle der Ionen im Flüssigkeitshaushalt:

Salz löst sich in Wasser. Wenn man eine konzentrierte und eine dünne Salzlösung so verbindet, dass nur Wasser ausgetauscht werden kann, aber keine Ionen, wandern die Wasserteilchen aus der dünnen in die konzentrierte Lösung, bis sich die Konzentrationen angeglichen haben. Dieses Phänomen wird Osmose genannt – und du kannst es mit Hilfe eines Hühnereis ganz einfach beobachten! Zell-und-Blutgefässwände sind in dieser Weise (fast) nur wasserdurchlässig. So kann die Verteilung des Wassers im Körper über die Zufuhr oder Wegnahme von Natrium- und Chlorid-Ionen in den verschiedenen Bereichen gesteuert werden.

 

Was passiert, wenn zu viel Salz im Körper ist?

Wenn viel Salz in der Blutbahn ist, strömt das Wasser aus den Zellen in die Blutbahn: Das Volumen der Zellen nimmt ab, während das Blutvolumen zunimmt. Das alarmiert die Nieren, die daraufhin eifrig Salz und Wasser ausscheiden, um den Überschuss loszuwerden. Wir müssen aufs WC – und der Wasserverlust beschert uns Durst. So zumindest die althergebrachte Theorie. Neue Untersuchungen haben jedoch ein bislang nicht beachtetes Detail zu Tage gefördert: Die Entsorgung des vielen Salzes über die Nieren kostet eine Menge Energie – und Energieverbrauch beschert dem Körper vor allem Hunger.

Das eigentliche Problem sind allerdings die prall gefüllten Blutgefässe. Ein dauerhaft erhöhtes Blutvolumen kann nämlich Bluthochdruck nach sich ziehen. Um die schwellenden Gefässe im Zaum zu halten, werden die Gefässwände straff, sodass sich durch Salz im Blut angezogene Wasserteilchen in gleichbleibend engen Gefässen drängen: Der Druck steigt an. Und Bluthochdruck kann wiederum das Risiko für Herz-Kreislauf-Erkrankungen wie Herzinfarkt und Schlaganfall erhöhen.

Neue Untersuchungen weisen allerdings darauf hin, dass viel Salz im Körper die straffen Gefässe nicht direkt verursacht, sondern vor allem dann zum Problem wird, wenn die Straffung aus anderen Gründen schon vorhanden ist. Ausserdem fällt der Effekt von viel Salz in der Nahrung auf den Blutdruck laut jüngerer Studien, vor allem im Vergleich zu anderen “ungesunden” Einflüssen, ziemlich gering aus.

 

Was bewirkt zu wenig Salz?

Wenn sehr wenig Salz in der Blutbahn ist, wandert Wasser aus den Gefässen in die “salzigeren” Zellen. In der Annahme, dass die Gefässe zu viel Wasser (anstatt zu wenig Salz) enthalten, scheiden die Nieren überdies (fast) nur Wasser aus. Das Signal “zu viel Wasser” hat ausserdem zur Folge, dass der Mensch keinen Durst empfindet, obwohl er Wassermangel erleidet.

Um so erstaunlicher sind die jüngsten Ergebnisse, die darauf hinweisen, dass auch ein Salzmangel Herz-Kreislauf-Krankheiten begünstigen könnte. Eine Bestätigung dieser Ergebnisse und die Durchleuchtung der Hintergründe stehen allerdings noch aus. In der Salzforschung bleibt somit noch jede Menge zu tun.

 

Wieviel Salz braucht der menschliche Körper nun?

Ein erwachsener Mensch enthält etwa 150-300 Gramm Salz. Davon gehen täglich 3 bis 5 Gramm (in Extremfällen, wie starkem Schwitzen, Fieber, Stillen,… bis 20 Gramm) verloren, die ersetzt werden wollen.

Die WHO empfiehlt deshalb: bis 5 Gramm täglich – um eine Unterversorgung zu vermeiden, sollten es aber mindestens 2 Gramm täglich sein.

5 Gramm Kochsalz

5 Gramm Salz: So viel sollte ein erwachsener Mensch täglich zu sich nehmen. Die 1-Franken-Münze hat in etwa den gleichen Durchmesser wie eine 1-Euro-Münze.

Letztlich ist aber jeder Mensch anders, sodass die einen je nach äusseren und inneren Umständen mehr, die anderen weniger Salz vertragen. Wirklich einheitliche Vorgaben kann es daher gar nicht geben – jeder muss seine passende Salzmenge finden.

Eines gilt jedoch für jeden Menschen: In extrem grossen Mengen ist Salz wegen seiner Wirkung auf den Wasserhaushalt akut giftig!

 

Wie nehmen wir Salz auf?

Indem wir es essen (und trinken). Einige Grund- (z.B. Käse, Brot) und viele Fertignahrungsmittel enthalten beträchtliche Mengen Salz. Dazu kommt die Würze beim Kochen und das Nachwürzen bei Tisch (nicht vergessen: Auch Fertig-Würzmischungen enthalten Salz!). In Deutschland nehmen Menschen im Schnitt bis 10 Gramm Salz am Tag zu sich. Das ist das Doppelte dessen, was das Bild auf der Waage zeigt!

 

Salzen beim Kochen oder bei Tisch?

Das abgewogene Salz auf dem Bild zeigt es deutlich: Im Vergleich zum “versteckten” Salz in Fertig-Produkten fällt das Würzen in der Regel kaum ins Gewicht, sodass die Frage, ob besser beim Kochen oder am Tisch gesalzen wird, eigentlich obsolet ist.

Warum trotzdem gesagt wird, Salzen am Tisch sei ungesünder? Beim Kochen lässt sich das Salz effektiver einsetzen: Es wird mit dem jeweiligen Gericht vermengt und löst sich in der Regel darin auf. Wenn der Koch dabei gut abschmeckt, bringt er dabei eben so viel Salz zum Einsatz, wie nötig ist, um dem Essen Geschmack zu verleihen. Besonders deutlich wird das, wenn statt dem Essen das Kochwasser gesalzen wird: Pasta oder Eier nehmen beim Kochen einen Teil des Salzes im Wasser auf (auch das ist eine Folge von Osmose) und erhalten so einen dezent herzhaften Geschmack.

Wer ein Ei mit ungesalzenem Wasser kocht und am Tisch nachsalzt, streut das Salz obenauf, isst dann die gesamte Menge mit – und bestreut anschliessend die zweite, immernoch ungewürzte Hälfte des Eis noch einmal mit Salz. Dabei kommt sehr wahrscheinlich mehr zusammen als beim Kochen in gesalzenem Wasser.

Ich selbst salze beim Kochen eher zurückhaltend, denn mein Mann und ich bevorzugen unterschiedlich viel Salz. So kann er am Tisch notfalls nachsalzen – während ich das Salz, was mir zu viel ist, schlecht entfernen kann.

 

Wie kann man Salz sparen?

Wer wirklich Salz sparen will, bereitet sein Essen folglich am besten aus Grundnahrungsmitteln selbst zu, anstatt auf Fertig-Produkte zurückzugreifen, und salzt dabei dezent (unterschiedlich salzempfindliche Familienmitglieder werden es danken!) – ohne darauf ganz zu verzichten. Und bei Klagen wegen fadem Geschmack: Es gibt viele andere Aromen, die das Essen interessant machen – und die mit weniger Salz mehr Würdigung erfahren können.

Im Übrigen sind Natur- und Spezialsalze nicht “gesünder” als raffinierte Salze – Salz ist Salz und Osmose ist Osmose. Natursalze enthalten allenfalls ein breiteres Spektrum bzw. eine grössere Menge an Spurenelementen, die dabei helfen können, den Bedarf des Körpers an solchen zu decken. An der Wirkung des Salzes selbst – ob die nun gesund oder ungesund ist – ändert seine Herkunft jedoch nichts.

Und wie handhabt ihr das Salzen eures Essens?

Vor etwa einem Monat fand ich einen skurril anmutende Post in meinem Facebook-Feed: Die Tierschutzorganisation PETA wurde für die Auszeichnung eines veganen Hundefutters auf Soja-Basis als “tierfreundlichste Hundenahrung” heftig kritisiert. Veganes Hundefutter? Ist denn das die (bzw. eine) Möglichkeit?

Wie bei vielen Themen aus den Bereichen Ernährung, Gesundheit und Tierschutz üblich ging es auch in den Kommentaren zu jenem Beitrag heftig zu und her – wobei die Kommentierenden zu grossen Teilen in die Kritik an PETA mit einstimmten und die Ansicht teilen, dass vegane Ernährung für den Hund vollkommen widernatürlich sei.

Als bekennende Alles-Esserin beschlich mich indessen beim Lesen der Kommentare Ratlosigkeit: Was wäre denn die natürliche Nahrung für einen Haushund? Und was braucht so ein Hund eigentlich für ein gesundes Leben? Kann vegane Hundenahrung das alles liefern? Und wie sieht das bei Katzen aus?

Was ist Veganismus?

Veganismus ist eine aus dem Vegetarismus hervorgegangene Einstellung sowie Lebens- und Ernährungsweise. Vegan lebende Menschen meiden entweder zumindest alle Nahrungsmittel tierischen Ursprungs oder aber die Nutzung von Tieren und tierischen Produkten insgesamt.

(Definition aus https://de.wikipedia.org/wiki/Veganismus)

Demnach gibt es mindestens zwei “Grade” der veganen Lebensweise: Die vegane – also tierproduktfreie – Ernährung, und das Meiden der Nutzung von Tieren und tierischen Produkten in vielen bzw. allen Lebensbereichen. Dabei lässt allein der Bedarf nach veganen Futtermitteln vermuten, dass es bei der veganen Einstellung über die Ernährung hinaus verschiedene Abstufungen gibt. Denn es ist gewiss nicht von der Hand zu weisen, dass die Haltung von Haustieren letztlich auch unter die “Nutzung von Tieren” fällt.

Hier möchte ich jedoch bei der veganen Ernährung bleiben. Ob und wie diese funktioniert, unterscheidet sich bei Mensch und Hund weniger, als manche denken mögen. Deshalb machen hier die menschlichen Nahrungsbedürfnisse und Ernährungsmöglichkeiten, welche einem verantwortungsvollen Veganer bestens vertraut sein sollten, den Anfang – und können sodann mit den Bedürfnissen unserer vierbeinigen Hausgenossen verglichen werden.

Was ist die natürliche Nahrung des Menschen?

Der Mensch unterscheidet sich von anderen Tieren in seinem aussergewöhnlich grossen Gehirn, das zu atemberaubenden Denkleistungen fähig ist, dabei aber Unmengen von Energie frisst, welche fortlaufend vom Rest des Körpers bereitgestellt werden muss. So ist der Mensch auf eine regelmässige Zufuhr energiereicher Nahrung angewiesen, und zwar überall, wo ihn seine Wanderlust und sein Streben nach Verbreitung hinverschlägt.

Ein Wesen mit hohem Energiebedarf und Verbreitungswillen tut also gut daran, in möglichst jeder Umgebung etwas – besser etwas mehr – zu futtern zu finden, wobei ihm sein ausgeprägtes Denkvermögen eine wertvolle Hilfe sein kann. Damit lässt sich allemal erklären, dass der Mensch zum Einen praktisch die ganze Erde besiedeln konnte, und dass zum Anderen die heute verbliebenen Volksstämme mit einer “urtümlichen” Lebensweise massiv unterschiedliche, aber ihrem Lebensraum bestens angepasste Speisepläne haben. Das Spektrum reicht von teilweise vegetarisch lebenden afrikanischen Stämmen bis zu den praktisch ausschliesslich Fleisch und Fisch essenden Inuit der Arktis.

Kurzum: Der Mensch ist einer der am wenigsten spezialisierten und damit anpassungsfähigsten Allesfresser unseres Planeten. Und das versetzt ihn auch in die Lage, die verschiedensten Ernährungsphilosophien zu ersinnen und zu leben – die in den heutigen Industrienationen nicht länger an seinen Lebensraum gebunden sind.

Welche Stoffe in tierischen Produkten braucht der Mensch zum Leben?

Dass sich auch auf dem Speiseplan von Völkern mit Zugang zu pflanzlicher und tierischer Nahrung letztere stets mit einem erheblichen Anteil findet, deutet darauf hin, dass tierische Nahrung dem Menschen auch dann Nutzen bringt, wenn er nicht “aus Mangel an Alternativen” darauf zurückgreifen muss. Aber welche Nährstoffe machen Fleisch und andere tierische Produkte zu für uns wertvollen Nahrungsmitteln?

Calcium: Milch und Milchprodukte enthalten reichlich Calcium-Ionen (). Bezogen auf den menschlichen Körper ist Calcium ein sogenanntes Mengenelement, d.h. ein beträchtlicher Anteil – ca. 1 bis 1,1 kg eines erwachsenen Menschen – des Körpergewichts entfallen auf Calcium. Calciumsalze wie Hydroxylapatit sind massgebliche, harte Bestandteile von Knochen und Zähnen, wie auch mein Zahn 16 zu berichten weiss. Für die Aufnahme von Calcium und dessen Einbau in Knochen benötigt der Körper das Vitamin D3, welches bei veganer Ernährung ebenfalls besonderer Aufmerksamkeit bedarf. Calcium kommt auch in vielen Pflanzen vor. Diese enthalten jedoch oftmals Säuren wie Oxal-(Rhabarber!) und Phytinsäure(Getreide, Hülsenfrüchte, Erdnüsse!) enthalten, die mit Calciumionen sehr stabile Salze bilden. Diese Salze lassen sich weder bei der Verdauung noch im weiteren Stoffwechsel in nennenswerter Menge zerlegen. Deshalb kann der Körper pflanzliches Calcium oft nur zu kleinen Teilen nutzen – die “Bioverfügbarkeit” des pflanzlichen Calciums ist vermindert.

Eisen: Eisen zählt zu den lebensnotwendigen Spurenelementen. Es kommt im menschlichen Körper in Form von – und -Ionen, die Bestandteile verschiedener Proteine sind, vor. Am bekanntesten sind wohl die -Ionen, die im Zentrum der Häm-Gruppe des roten Blutfarbstoffs Sauerstoff transportieren. Darüber hinaus sind die beiden Eisen-Ionensorten, die sich relativ leicht ineinander umwandeln lassen, in Enzymen für die Übertragung von Elektronen von einem Teilchen zum anderen, also für Redox-Prozesse, zuständig. Blutwurst und Leber enthalten viel Eisen als  und , ebenso rotes Fleisch. Pflanzen enthalten ausschliesslich , welches mehr noch als  mit verschiedenen Pflanzenbestandteilen, insbesondere mit Phytinsäure, sehr stabile Salze bildet und damit weniger bioverfügbar ist als tierisches Eisen.

Jod: Ist vor allem ein unverzichtbarer Bestandteil von Schilddrüsenhormonen. Dabei kommt dieses Element in unserer Nahrung vergleichsweise selten vor. Jodid-Ionen () sind ein Bestandteil von Meerwasser und daher in Meeresfrüchten und Fisch zu finden. Dennoch lässt die Jodversorgung durch unsere Nahrung generell zu wünschen übrig (auch bei Mischköstlern, bei Veganern aber noch mehr), sodass Speisesalz und auch Tierfuttermittel häufig mit Jod angereichert werden.

Kreatin:Kreatin und Kreatinphosphat: bei veganer Ernährung nur als Lebensmittel- oder Futterzusatz zu haben

Kreatin st eine stickstoffhaltige organische Verbindung, die als Kreatinphosphat für die Regeneration des “entladenen” Energieträgermoleküls ADP zu ATP, der “geladenen” Form zuständig ist. ( Die “Ladung” besteht dabei in der Phosphoryl-() gruppe, die vom Kreatinphosphat ab- und an ein ADP-Molekül angehängt wird. Kreatin dient also der Energieaufbereitung zur Muskelarbeit und für Hirn- und Nervenfunktionen. Kreatin kann vom Körper selbst synthetisiert werden, wenn passende Aminosäuren als Bausteine, Vitamin B12 und Folsäure verfügbar sind. Fertiges Kreatin (und Aminosäuren) finden sich reichlich in (frischem) Fleisch und Fisch, also in Muskelmasse. Milch enthält weniger Kreatin, in Pflanzen findet es sich allenfalls in Spuren.

Langkettige Omega-3- bzw. n-3-Fettsäuren: Sind Fettsäuren, die mehrere C=C-Doppelbindungen enthalten (und damit “ungesättigt” sind), wobei die erste dieser Doppelbindungen 3 Kohlenstoff-Atome vom “Schwanzende” entfernt(den allgemeinen Aufbau von Fettsäuren habe ich in der Geschichte über Tenside beschrieben), die übrigen näher am “Kopf” zu finden sind. Omega-3-Fettsäuren werden zahlreiche erhaltende Wirkungen auf das Herz-Kreislaufsystem (Blutdruck, Blutfettwerde, Entzündungsmediation, Gefässzustand…) zugeschrieben. Sie finden sich vornehmlich in Fischfetten – Pflanzen, ausser Algen, enthalten jedoch nur alpha-Linolensäure (eine Fettsäure mit 18 Kohlenstoff-Atomen und 3 Doppelbindungen). Der Körper kann daraus auch Eicosanpentaensäure (EPA, 20 C-atome und 5 Doppelbindungen) und Docosahexaensäure (DHA, 22 C-Atome und 6 Doppelbindungen) herstellen, braucht dazu aber Enzyme, die auch mit dem Omega-6-Fettsäurestoffwechsel beschäftigt sind, sowie die Vitamine B und C und die Spurenelemente Magnesium und Zink. Mit anderen Worten: Die Verlängerung der alpha-Linolensäure zu EPA und DHA ist für den Körper grosser Aufwand und hängt von der Verfügbarkeit einer ganzen Reihe von Hilfsmitteln ab.

Vitamin B12 (Cobalamin): Cobalamin oder Vitamin B12 : muss zuführen oder -füttern, wer sich vegan ernährt bzw. Veganes füttertIst als Coenzym B12 an der Herstellung der Purinbasen Adenin und Guanin beteiligt, die als Bausteine “A” und “G” für den Aufbau von DNA- und RNA-Strängen benötigt werden. Da besonders Zellen mit hoher Teilungsrate beim ständigen Kopieren ihres Erbguts laufend neue DNA aufbauen müssen, bekommen solche, wie die regelmässig nachgebildeten Blutzellen, einen B12-Mangel am ehesten zu spüren: Es kommt zu Anämien (Blutarmut bzw. -veränderungen) und darüber hinaus zu Nervenschäden. Vitamin B12 gibt es praktisch ausschliesslich in tierischen Nahrungsmitteln. Eine gute Folsäureversorgung, die mit veganer Nahrung einfach zu bewerkstelligen ist, kann einer Anämie vorbeugen und so einen B12-Mangel kaschieren, verhindert aber die Nervenschäden nicht!

Vitamin D (Calciferol): Kann der Körper selbst herstellen – wenn er genug Sonnenlicht bekommt. Zusätzliche Quellen sind tierische Produkte, allen voran Lebertran und Salzwasserfisch. Vitamin D3 (Cholecalciferol) ist für die Calciumaufnahme (s. dort) und damit für den Knochenbau notwendig.

Zink: Ist ein essenzielles Spurenelement, das im Körper in Form von -Ionen vorliegt. Dort hat es als Bestandteil von Enzymen vielfältige Aufgaben, zum Beispiel bei der Übersetzung der Erbinformation in Protein-Baupläne und bei der Unterstützung des Immunsystems (durch Bremsen von überschiessenden Immun-Reaktionen, was Zink für Wundsalben so interessant macht). Zink ist in pflanzlicher Nahrung vorhanden, ist aber wie die Eisen- und Calciumionen oft in sehr stabilen Salzen gebunden und damit weniger bioverfügbar.

Vitamin B2 (Riboflavin): Ist eine Vorstufe von Coenzymen, also “Assistenten”-Molekülen, die von bestimmten Enzymen für die Erfüllung ihrer Aufgabe benötigt werden. Mit Riboflavin-Abkömmlingen arbeiten viele Enzyme, die für Redoxprozesse, also Elektronenübertragungen zuständig sind, welche vielerorts im Stoffwechsel stattfinden. Riboflavin findet sich unter anderem in Milch, Fisch, Fleisch, und Eiern.

Wie kann man diese wichtigen Nährstoffe aus Tierprodukten ersetzen?

Calcium: Kann zum Beispiel in calciumreichem Mineralwasser, Grünkohl, Brokkoli, Sesam, Haselnüssen, Sojabohnen oder Tofu gezielt zugeführt werden. Ein erhöhter Calciumbedarf kann zudem mit Nahrungsergänzungsmitteln gedeckt werden.

Eisen: -Ionen kommen zum Beispiel in Hülsenfrüchten (schlechte Bioverfügbarkeit wegen enthaltener Phytinsäure!) oder Vollkornbrot vor. Eine Hausärztin empfahl mir zudem einmal, meines tendenziell niedrigen Eisenspiegels auch rote Früchte, im Speziellen Erdbeeren (es war gerade Frühling). Verschiedene Lebensmittel, zum Beispiel Kaffee oder schwarzer Tee, wirken zudem einer effektiven Eisenaufnahme entgegen. Für eine zusätzliche Eisenzufuhr gibt es zudem Nahrungsergänzungsmittel. Da jedoch auch deren Bioverfügbarkeit begrenzt ist, empfiehlt mein Hausarzt bei Eisenmangel eine (einzelne!) Infusion zum Wiederauffüllen der körpereigenen Eisenspeicher.

Jod: Kann mit angereicherten Lebensmitteln wie jodiertem Speisesalz oder Nahrungsergänzungsmitteln zugeführt werden.

Kreatin: Wird in zahlreichen Nahrungsergänzungsmitteln vermarktet, die sich auch in der Fitnessbranche grosser Beliebtheit erfreuen.

Langkettige Omega-3-Fettsäuren: Alpha-Linolensäure kommt in zahlreichen Pflanzenölen, zum Beispiel dem namensgebenden Leinöl, vor, welche auch in Kapselform als Nahrungsergänzungsmittel erhältlich sind. Die Weiterverarbeitung zu EPA und DHA kann durch gute Versorgung mit den dazu nötigen Hilfsmitteln unterstützt werden.

Vitamin B12 (Cobalamin): Verschiedene B12-Varianten sind als Nahrungsergänzungsmittel erhältlich. Die recht komplexen Moleküle werden von kultivierten Bakterien produziert, welche – wie ich festgestellt habe – als vegan gelten, so lange sie vegan (d.h. auf tierproduktfreien Nährböden) kultiviert werden. Jedoch kann der Mensch nicht alle B12-Varianten nutzen! Spirulina und andere Produkte mit Cyanobakterien (“blaugrüne Algen”) eigenen sich zum Beispiel nicht zur Nahrungsergänzung, obwohl sie zuweilen dafür beworben werden!

Vitamin D: Der einfachste Weg zu Vitamin D ist genügend Sonne auf der Haut. Darüber hinaus enthalten Avocado und einige Speisepilze Vitamin D. Manche Pilzsorten können sogar gezielt damit angereichert werden. Mit Nahrungsergänzungsmitteln kann zusätzlich Vitamin D zugeführt werden, auch in Kombination mit Calcium. Allerdings sind die Dosierungsvorschriften auf der Packung, oder besser vom Arzt, unbedingt einzuhalten – Vitamin D gehört zu jenen Vitaminen, die bei Überdosierung zu Vergiftungserscheinungen führen können!

Zink: Kann zum Beispiel in Soja, Haferflocken oder Hülsenfrüchten (bei verminderter Bioverfügbarkeit durch Phytinsäure!) aufgenommen werden. Zusätzlich gibt es zinkhaltige Nahrungsergänzungsmittel.

Vitamin B2 (Riboflavin): Ist zum Beispiel in Vollkornprodukten, Broccoli, Spargel oder Spinat enthalten. In verschiedenen Nahrungsergänzungsmitteln sind die B-Vitamine zudem kombiniert enthalten.
Funktioniert vegane Ernährung bei Kindern und während Schwangerschaft und Stillzeit?

Kinder und Jugendliche im Wachstum, ob vor oder nach der Geburt, haben einen erhöhten Bedarf an vielen der genannten Nährstoffe, zum Beispiel Calcium und Vitamin D für den Knochenaufbau, Vitamin B12 für die Entwicklung des Nervensystems und viele andere mehr. Deshalb ist die gute Versorgung von vegan ernährten Schwangeren, Kindern und Jugendlichen eine noch grössere Herausforderung als die vegane Ernährung für nicht-schwangere Erwachsene. Das gilt übrigens auch für ältere Menschen, die einige Nährstoffe aus verschiedenen Gründen weniger effektiv aufnehmen als Jüngere.

Deshalb raten sowohl das Schweizerische Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV) als auch die Deutsche Gesellschaft für Ernährung (DGE) ausdrücklich von einer veganen Ernährung von Schwangeren, Kindern und Alten ab. In Italien diskutiert das Parlament gar einen Gesetzesentwurf, der Gefängnisstrafen für die Fehlernährung von Kleinkindern vorsieht.

Entsprechende Organisationen im englischsprachigen Raum teilen diese Bedenken, trauen “ihrer” Bevölkerung aber die Bewältung der Herausforderungen einer veganen Ernährung anscheinend eher zu. So heissen sie eine mit dem nötigen Wissen und Aufwand betriebene vegane Ernährung ihrer gesundheitlichen Vorteile wegen in allen Lebensphasen gut. Nichts desto trotz machen Einzefälle von schwerwiegender Fehlernährung hüben wie drüben Schlagzeilen.

Was fressen unsere Haustiere?

Was braucht der Haushund?

Der Hund gilt als bester Freund des Menschen – und zwar schon praktisch ebenso lange, wie es den modernen Menschen gibt. So hatten unsere Haushunde ebenso lange Zeit, ihre Verdauung an die extrem vielfältige Lebensweise “ihrer” Menschen anzupassen. Das heisst, Haushunde, die schon rund 20.000 Jahre an der Seite des Menschen leben, sind heute Allesfresser wie wir auch.

Damit steht Hunden im Prinzip die gleiche Vielfalt von Ernährungsphilosophien offen wie dem Menschen. Als höhere Säugetiere haben Hunde jedoch auch einen ähnlichen Bedarf an Nährstoffen wie wir. Dabei weicht allerdings die Fähigkeit zur Verwertung dieser Nährstoffe mitunter stark von der unseren ab.

So nehmen Hunde zum Beispiel Calcium – das auch sie für den Knochenbau benötigen – wesentlich schlechter auf als der Mensch. Kommt dazu die schlechtere Bioverfügbarkeit von pflanzlichem Calcium, wird deutlich, dass die Calciumversorgung eines Hundes bei veganer Fütterung Schwierigkeiten machen wird und den Einsatz von hochdosierten Nahrungsergänzungsmitteln erfordert.

Zwei zusätzliche “tierische” Nährstoffe für den Hund sind überdies erwähnenswert:

L-Carnitin: Carnitin : Muss veganer Ernährung für den Hund unbedingt zugesetzt werden!Eine sticktstofforganische Verbindung, die als Rezeptormolekül – also als Andockstelle für Signalmoleküle – und als Transporthilfe für langkettige Fettsäuren in die Mitochondrien fungiert. Sie kommt vornehmlich in rotem Fleisch, Fisch, Leber und Herz vor. Menschen wie Hunde können L-Carnitin bei ausreichender Versorgung mit den nötigen Aminosäuren und verschiedenen Nährstoffen selbst herstellen. Hunde scheiden L-Carnitin jedoch vermehrt über die Niere aus, weshalb sie auf regelmässige Zufuhr angewiesen sind. Folgen eines Carnitin-Mangels sind schwere Herzerkrankungen.

Taurin: Taurin: Muss veganer Ernährung für Katzen und Hunde zwingend zugesetzt werden!Ein kleines organisches Molekül, das menschliche und Hundekörper aus schwefelhaltigen Aminosäuren herstellen können. Es unterstützt die Arbeit reizleitender Zellen (Nerven, Muskeln) – nicht zuletzt derer des Herzens. So fördert Taurin die Herzgesundheit und ist überdies ein starkes Antioxidans – es kann also Gewebe vor Stress bewahren, indem es reaktive (Abfall-)Verbindungen abfängt und unschädlich macht, ehe sie mit ihrer Umgebung ungewollte und nicht selten schädliche Reaktionen eingehen. Entsprechend seiner Aufgabe kommt Taurin vornehmlich in Muskelfleisch einschliesslich des Herzens vor, sodass eine vegane Ernährung ohne Nahrungsergänzungsmittel bei Hunden trotz eigener Herstellung zu einer Unterversorgung und damit zu Herzerkrankungen führen kann.

Zudem haben trächtige und säugende Hündinnen sowie heranwachsende Welpen ebenso erhöhte Nährstoffbedürfnisse wie menschliche Schwangere und Kinder, sodass ihre vegane Ernährung auch in gleicher Weise Schwierigkeiten macht.

Eine verantwortungsvolle vegane Ernährung für Hunde ist damit mit zusätzlichem Aufwand gegenüber der entsprechenden Ernährung von Menschen verbunden, geht ebenso wie letztere mit dem Einsatz von Nahrungsergänzungsmitteln und vermehrten (Tier-)arztbesuchen zur Überwachung der Nährstoffversorgung einher und erfordert auch vom menschlichen Veganer zusätzliches Wissen. Ob sich bei all dem Aufwand tatsächlich die vegane Ernährung oder vielmehr die vermehrte Zuwendung als solche förderlich auf die Gesundheit der Hunde auswirkt, ist dabei zweifelhaft.

Wesentlich einfacher ist für den allesfressenden Hund hingegen eine ovo-lacto-vegetarische Ernährung, bei welcher zwar auf Fleisch-, nicht aber auf Milch- und Eiprodukte verzichtet wird.

Was braucht die Hauskatze?

Katzen begleiten den Menschen auch schon, seit er sesshaft geworden ist. Allerdings waren sie bis vor Kurzem weniger beste Freunde als Nutztiere, deren Aufgabe es war, im Umfeld menschlicher Ansiedlungen Mäuse und andere ungeliebte Gäste zu jagen (und zu fressen) und somit fern zu halten. So hatten Hauskatzen bis in die jüngste Zeit keinen Anlass, ihre Verdauung einer Fütterung durch Menschen anzupassen. Sie sind daher echte Fleischfresser geblieben.

Somit entspricht eine vegane wie auch eine ovo-lacto-vegetarische Ernährung nicht der Natur der Katze. Dazu kommt, dass Katzen sich nicht wie Hunde durch Aushungern zu einer Nahrungsumstellung zwingen lassen – sie sterben lieber als ihre Futterprägung aufzugeben.

Nicht nur in meinen Augen entbehrt eine solche Katzen-Ernährung daher jeden Rest eines Sinns, sondern auch Fachtierärzte und andere Experten für Tierernährung stehen ihr ablehnend gegenüber.

 

Fazit

Vegane Ernährung ist für den Menschen möglich, aber kompliziert. Sie erfordert viel Wissen und noch mehr Aufwand, insbesondere wenn Heranwachsende damit versorgt werden sollen. Ein gedankenloses Weglassen “alles Tierischen” kann sogar gefährlich werden. Überdies lässt mich allein schon die Häufigkeit, mit welcher in der Liste der veganen Ersatznahrung “Nahrungsergänzungsmittel” – zuweilen gar als einzige Alternative – auftauchen, daran zweifeln, dass die vegane Ernährung des Menschen irgendwie “natürlich” sein kann.

Eine ganzheitlich vegane Lebensweise kann noch komplizierter werden – nicht zuletzt, wenn es um die Haltung von Haustieren geht:

Ein Haushund kann vegan ernährt werden, ohne dass dies “unnatürlicher” als beim Menschen wäre (es ist aber ebenso wenig “natürlicher”!) – das ist aber mindestens genauso kompliziert und aufwändig und erfordert Wissen über die menschliche Ernährung hinaus.

Eine Katze frisst hingegen von Natur aus Fleisch und braucht es auch. Eine vegane oder auch nur vegetarische Ernährung von Katzen kann daher (nicht nur) in meinen Augen nicht im Sinne der Tiere sein.

Aber ist es überhaupt “vegan”, Haustiere zu halten? Was meint ihr?

Vitamine - Schlagwort Nummer 1 in Sachen gesunde Ernährung

Was sind Vitamine? Warum sind Vitamine fett- oder wasserlöslich? Wozu brauchen wir die Vitamine? Warum muss der Mensch Vitamine aufnehmen und wo findet er sie? Kann man zu viele Vitamine haben?

Wer kennt sie nicht, die Aufforderungen wohlmeinender Mütter, wir mögen unser Gemüse und den Salat essen, mit allen Vitaminen, die darin seien? Die zahllosen Fernseh-Werbespots von Herstellern, die ihren Produkten mit dem Unterstreichen eines fantastischen Vitamingehalts einen gesunden Anstrich zu geben suchen?

Wer hat sich hingegen schon gefragt, was das für Stoffe sind, die da so eifrig beworben werden und warum und wozu wir sie eigentlich brauchen? Dieser Artikel soll eine Übersicht über die Vitamine geben, die der Mensch zum Leben benötigt (auch Tiere brauchen Vitamine, aber nicht unbedingt die gleichen wie der Mensch). Dabei liegt der Schwerpunkt jedoch nicht wie auf vielen anderen Seiten bei Tagesbedarf und Mangelsymptomen, sondern auf den Aufgaben der einzelnen Vitamine im Organismus und den Eigenschaften, nach welchen man diese vielfältigen Moleküle ordnet.

Was sind Vitamine?

Vitamine und andere Nahrungsergänzungsmittel liegen hoch im Trend. Die Regale in Supermärkten und Drogerien sind voll davon, und mein Hausarzt hat eine besondere Vorliebe für Vitamin C zur begleitenden Therapie von fast allem. In der Kosmetik-Branche wird Vitamin A als Jungbrunnen für die Haut gehandelt. Aber welche Wunderstoffe verbergen sich hinter diesen kaum aussagekräftigen Buchstabenkürzeln?

Vitamine sind kleine organische Moleküle, die für höhere Tiere (dazu gehört auch der Mensch!) lebenswichtig sind, und die diese Organismen nicht selbst herstellen können.

Der Name rührt übrigens daher, dass man früher irrtümlicherweise alle Vitamine für Amine (eine Stoffklasse, deren Mitglieder mit dem Ammoniak verwandte Stickstoff-Atomgruppen enthalten) hielt und entsprechend aus lat.: vita (Leben) und Amin ein Kunstwort als Bezeichnung schuf.

Und das war es dann auch mit den Gemeinsamkeiten der Vitamine. Tatsächlich verbirgt sich hinter diesem Namen eine Vielzahl verschiedener Stoffe mit ebenso verschiedenen Funktionen.

Welche Vitamine gibt es?

Der menschliche Organismus braucht im Wesentlichen 13 verschiedene Stoffe, die er nicht selbst herstellen kann. Sie alle sind unter verschiedenen Namen und Kürzeln auf Verpackungen von Lebensmitteln oder Vitamin-Präparaten anzutreffen – und natürlich auch in deren Inhalt. Diese 13 Stoffe werden in wasserlösliche und fettlösliche Vitamine eingeteilt.

 

Vitamin A Retinol E 160a (beta-Carotin) fettlöslich
Vitamin B1 Thiamin wasserlöslich
Vitamin B2 Riboflavin E 101 wasserlöslich
Vitamin B3 Niacin wasserlöslich
Vitamin B5 Pantothensäure wasserlöslich
Vitamin B6 Pyridoxin wasserlöslich
Vitamin B7, H Biotin wasserlöslich
Vitamin B9 Folsäure wasserlöslich
Vitamin B12 Cobalamin wasserlöslich
Vitamin C Ascorbinsäure E 300, 301, 302 wasserlöslich
Vitamin D Calciferol fettlöslich
Vitamin E Tocopherol E 306 – 309 fettlöslich
Vitamin K Phyllochinon fettlöslich

Tabelle 1: Die 13 Vitamine für den Menschen (nach [1] und nutri-facts.org)

Warum sind Vitamine fett- oder wasserlöslich?

Eine Lösung im Sinne der Chemie ist ein homogenes Gemisch zweier Stoffe. “Löslichkeit in” kann bei der Einteilung der Vitamine also auch durch “Mischbarkeit mit” ersetzt werden. Wie gut sich zwei Stoffe miteinander mischen lassen, hängt von den anziehenden Wechselwirkungen zwischen ihren Molekülen ab.

Polare Bindungen ziehen sich an

Die Natur dieser Wechselwirkungen hängt damit zusammen, wie die Elektronen der Atome in den jeweiligen Molekülen im Molekül verteilt sind. Eine Elektronenpaar-Bindung zwischen zwei Atomen ist nämlich weder so starr noch so symmetrisch, wie der Strich, mit welchem man sie in einer Strukturformel darstellt, es vermuten lässt.

Vielmehr ziehen die verschiedenen Atomsorten “ihre” Elektronen ungleich stark zu sich hin (diese Eigenschaft wird Elektronegativität genannt: Je höher die Elektronegativität eines Atoms ist, desto stärker zieht es Elektronen an). Das resultiert innerhalb eines Moleküls in einem regelrechten Tauziehen zwischen den Atomen: Das stärkere, an einer Bindung beteiligte Atom zieht “seine” Bindung zu sich hin, während dem schwächeren Atom am anderen Ende relativ wenig von den Elektronen ebendieser Bindung bleibt.

polare Bindung


Ladungsverteilung entlang einer polaren Bindung: Je dunkler blau eine Fläche, desto wahrscheinlicher ist ein Elektron darin anzutreffen. Die Wahrscheinlichkeit dafür ist rund um das stärkere (elektronegativere) Sauerstoffatom wesentlich grösser als um das schwächere Wasserstoffatom. Delta + und Delta – markieren einen Ladungsüber- oder unterschuss, welcher kleiner ist als die Ladung eines Elektrons.

So “entzogene” Elektronen können die Kernladung des schwächeren Atoms natürlich nicht mehr ganz ausgleichen, während sie am stärkeren Atom sogar zu einem negativen Ladungsüberschuss führen. Die so entstehenden elektrischen Ladungen betragen nur einen Bruchteil der Ladung eines ganzen Elektrons, haben jedoch gravierende Auswirkungen auf die Eigenschaften eines Moleküls. Denn entgegengesetzte elektrische Ladungen ziehen einander an, was dazu führt, dass Moleküle, die solche verschobenen “polaren” Bindungen enthalten, einander anziehen: Die Sieger beim atomaren Tauziehen ziehen die Verlierer des nächsten Moleküls an und umgekehrt. Das Resultat ist eine anziehende Wechselwirkung zwischen den Molekülen.

Auch unpolare Bindungen ziehen sich an – auf ganz andere Weise

Doch auch zwischen Molekülen, in welchen die Atome an den Enden ihrer Bindungen gleich “stark” sind, gibt es eine anziehende Wechselwirkung. Entlang solcher “unpolaren” Bindungen entstehen äusserst kurzzeitig, jedoch stetig aufs Neue Ladungsunterschiede, wenn die beteiligten Elektronen zwischen den Atomen hin und her schwingen. Und das tun sie andauernd. Die so entstehenden Ladungen für den Augenblick ziehen sich auf ihre ganz eigene Weise gegenseitig an.

Diese beiden Wechselwirkungen sind in einer Weise verschieden, welche dazu führt, dass sie nicht miteinander kompatibel sind. Moleküle verschiedener Sorten lassen sich also nur zueinander bringen, wenn sie vornehmlich zur gleichen Art von Wechselwirkungen befähigt sind.

Wie du die Löslichkeit eines Stoffs an seiner Strukturformel abschätzt

Und diese Befähigung lässt sich an der Strukturformel eines organischen Moleküls abschätzen, wenn man ganz wenige Dinge weiss:

1. Kohlenstoff- und Wasserstoffatome sind in etwa gleich stark.

2. Sauerstoffatome sind sehr stark und gewinnen gegen Kohlenstoff und Wasserstoff immer.

3. Stickstoffatome sind ebenfalls stark und gewinnen gegen Kohlenstoff und Wasserstoff, jedoch nicht gegen Sauerstoff.

4. Moleküle mit polaren und unpolaren Bindungen sind zu Wechselwirkungen beider Art fähig. In kleinen Molekülen überwiegt bei ausgewogener Verteilung unterschiedlicher Bindungen jedoch die polare Wechselwirkung.

Wasser enthält demnach zwei stark polare Bindungen. Es wird sich also gut mit anderen polaren Molekülen mischen lassen. So verwundert es nicht, dass auch die Moleküle der wasserlöslichen Vitamine reichlich polare Bindungen haben, während die fettlöslichen Vitamine über weiter Strecken aus unpolaren Kohlenstoff-Wasserstoff-Ketten bestehen (wie Fette auch).

 

Vitamine_Löslichkeit


Löslichkeit ausgewählter Vitamine:
Ascorbinsäure besitzt über das ganze Molekül verteilt polare Bindungen und ist somit gut mit Wasser mischbar.
Retinol besitzt nur eine polare Bindung, während der grösste Teil des Moleküls aus unpolaren Bindungen aufgebaut ist. Damit lässt sich Retinol nicht mit Wasser, dafür jedoch mit fettartigen Stoffen, die ebenfalls hauptsächlich unpolare Bindungen enthalten, gut mischen.

Wozu brauchen wir die 13 Vitamine?

Die wasserlöslichen Vitamine werden vielerorts gebraucht. Wasser ist im menschlichen Organismus allgegenwärtig, sodass die Mischbarkeit der Vitamine mit Wasser ihre Beweglichkeit und damit ihre Verteilung erheblich fördert.

Die B-Vitamine

Die B-Vitamine sind direkte Vorstufen zur Herstellung von Coenzymen: Enzyme sind hochkomplexe, leistungsstarke Katalysatoren, die hauptsächlich aus Peptidketten – miteinander verbundenen Aminosäuren – bestehen. Diese Ketten lassen sich zu vielfältigen Formen falten und reagieren auf verschiedenste Weise miteinander oder mit ihrer Umgebung.

Peptide können aber nicht alles. Deshalb haben die meisten Enzyme zusätzliche Bestandteile, die keine Peptidketten sind und nach der Herstellung des Proteins angefügt werden müssen. Sind diese Bestandteile kleine organische Moleküle, nennt man sie Coenzyme. Ohne Coenzyme oder andere Zusatz-Bestandteile können viele Enzyme ihre Aufgabe im Stoffwechsel – das Katalysieren von ganz bestimmten Reaktionen – nicht erfüllen. Da oftmals viele verschiedene Enzyme auf das gleiche Coenzym zurückgreifen, ist es von Vorteil, wenn die B-Vitamine im ganzen Organismus verfügbar sind.

Ascorbinsäure (Vitamin C)

Ascorbinsäure ist ein Antioxidans, das zum Beispiel zur Kollagen-Herstellung nötig ist: Kollagen ist ein faserartiges Protein, das wie ein Seil aus drei verdrillten Ketten “geflochten” ist. Es ist überall dort gefragt, wo Zusammenhalt von Nöten ist: In der Haut, Sehnen, Bändern, Blutgefässwänden, Knochen, aber auch in Zahnfleisch und Zähnen. Damit ein Kollagen-“Seil” wirklich hält, müssen die Ketten “klebrig” sein – mit anderen Worten: die einzelnen Ketten – jede ein riesiges Molekül – müssen miteinander wechselwirken. Dazu wird die Aminosäure Prolin an bestimmen Positionen in der Peptidkette des Kollagens mit einer zusätzlichen OH-Gruppe versehen.

OH-Gruppen enthalten eine polare Bindung, die zu einem Extrem der polaren Wechselwirkung fähig ist: Das Sauerstoff-Atom gewinnt das Tauziehen um die O-H-Bindung haushoch, während das Wasserstoff-Atom gleich in doppelter Hinsicht als Verlierer dasteht. Die beiden Elektronen, welche die O-H-Bindung bilden, sind nämlich seine einzigen. So wird der Kern des Wasserstoff-Atoms geradezu entblösst, wenn ein stark elektronegatives Atom wie Sauerstoff diese Bindung zu sich hinzieht. Zum Ausgleich zieht es so entblösste Wasserstoffkerne zu anderen, elektronenreichen Atomen besonders hin. Wenn ein solches Atom ein “ungenutztes” (nichtbindendes) Elektronenpaar hat, findet der entblösste Wasserstoffkern darin etwas “Deckung”. Das Resultat ist eine vergleichsweise stark anziehende Wechselwirkung, die Wasserstoff-Brücke genannt wird.


Wasserstoff-Brücken zwischen Wassermolekülen: Ein Sauerstoff-Atom ist stark genug um den Kern eines benachbarten Wasserstoff-Atoms zu “entblössen” – und es hat zwei nichtbindende Elektronenpaare (dargestellt am rechten Molekül), die jeweils einem Wasserstoff-Kern Deckung bieten können. Neben Sauerstoff sind ausserdem nur die Atome der Elemente Stickstoff und Fluor in der Lage Wasserstoffbrücken zu bilden!

Das Kollagen-Seil klebt also über Wasserstoffbrücken zwischen den einzelnen Ketten zusammen. Das Enzym, welches das Anfügen der OH-Gruppen an Prolin katalysiert, die Prolin-Hydroxylase, oxidiert dazu das Prolin und reduziert im Gegenzug das Molekül α-Ketoglutarat (Eine Redox-Reaktion ist eine Elektronenübertragung: Oxidation und Reduktion sind untrennbar miteinander verbunden). Wenn aber einmal kein Prolin zur Hand ist, reduziert das Enzym α-Ketoglutarat und oxidiert dafür sich selbst – und wird damit unbrauchbar. Dann kann Vitamin C (bzw. das Anion der Ascorbinsäure) das Enzym reduzieren (und wird dabei selbst oxidiert) und damit reaktivieren [1].

Ohne Vitamin C würde der Organismus sein Kollagen mangels aktiver Prolin-Hydroxylase zunehmend ohne OH-Gruppen und Wasserstoffbrücken herstellen. Solches Kollagen kann Gewebe nicht gut zusammenhalten, was zu brüchigen Blutgefässen, instabilem Zahnfleisch und anderen Problemen führt, mit anderen Worten zu Skorbut.

 

Die fettlöslichen Vitamine interagieren bei ihren Aufgaben häufig mit anderen fettlöslichen Molekülen, sodass ihnen ihre Mischbarkeit mit solchen zum Vorteil gereicht.

Retinol (Vitamin A)

Retinol ist am Sehvorgang, an Wachstum bzw. Regeneration von Gewebe und an der Fortpflanzung beteiligt. Es ist als Mittel für gute Nachtsicht und Anti-Aging-Wirkstoff für die Haut sehr populär.

Auf der Netzhaut (Retina) im Auge sind lichtempfindliche Zellen, ihrer Form nach “Stäbchen” genannt, für die Hell-Dunkelsicht verantwortlich. Die Stäbchen enthalten ein Protein namens Rhodopsin, welches ein direkt aus Vitamin A hergestelltes Molekül enthält. Dieses “11-cis-Retinal” verändert seine Struktur, wenn Licht darauf fällt (es wird zu all-trans-Retinal) und löst damit eine Signalkaskade aus, die letztlich die Information “es ist hell” an das Gehirn weiterleitet. Wenn bei wenig Licht (nachts halt) die für das Farbensehen zuständigen “Zapfen”-Zellen nicht mehr funktionieren, ist der Mensch ganz auf die Stäbchen angewiesen. Ein Mangel an Vitamin A, also Retinol, zur “Ausrüstung” der Stäbchen führt deshalb zur zunehmenden Einschränkung unserer Nachtsicht-Fähigkeit. [1],[2].

Cholecalciferol (Vitamin D3)

Cholecalciferol ist die Vorstufe eines Hormons, das den Calcium- und Phosphatstoffwechsel reguliert und damit z.B. für den Einbau von Calcium in die Knochensubstanz unverzichtbar ist. Vitamin-D-Mangel führt somit vor allem zu Störungen des Knochenwachstums, aber auch der Knochenerhaltung. Die Folgen werden bei Kindern im Wachstum als Rachitis, bei Erwachsenen als Osteomalazie bezeichnet [1].

Tocopherol (Vitamin E)

Tocopherol ist ein Antioxidans, das ähnlich wie Vitamin C wirkt, aber im Gegensatz dazu fettlöslich ist. Seine Aufgaben sind das “Fangen” von Radikalen (hochreaktiven Molekülbruchstücken) und anderen oxidierend wirkenden Stoffen, indem es sie reduziert. Da Vitamin E fettlöslich ist, verrichtet es diese Aufgabe vornehmlich in der Umgebung anderer fettlöslicher Moleküle, wo Vitamin C nicht so leicht hinkommt. Das können Membranlipide (fettähnliche Verbindungen in Zell- und anderen Membranen, Lipidproteine oder unsere Fettdepots sein, die so allesamt vor Schäden durch Oxidation geschützt werden.

Phyllochinon (Vitamin K)

Phyllochinon bzw. Vitamin K (K wie Koagulation = Blutgerinnung) ist als Coenzym an der Biosynthese von Gerinnungsfaktoren, zum Beispiel des Proteins Prothrombin, beteiligt. Unter Einwirkung von Phyllochinon werden bestimmte Aminosäuren am Ende der Peptidkette des Prothrombins so verändert, dass sie fest an Calcium-Ionen binden können. So findet das Prothrombin an der Oberfläche von Blutplättchen an einer Verletzung Halt und kann von dort vorhandenen Enzymen aktiviert werden. Dazu wird ein Teil der Peptidkette (Thrombin) abgespalten und kann seinerseits weitere Gerinnungsfaktoren (z.B. durch Spaltung von Fibrinogen) aktivieren. Ohne Vitamin K würde der Organismus unverändertes Prothrombin herstellen, welches nicht am Ort seiner Bestimmung haften und somit nicht zur Blutgerinnung führen könnte [1].

Warum kann der Körper die Vitamine nicht selbst herstellen?

Dass wir Vitamine zu uns nehmen müssen, ist eine Folge von “Erbkrankheiten”, die sich bei den Vorfahren des Menschen und verschiedener heutiger Tiere vor Jahrmillionen entwickelt haben.

Vitamin C zum Beispiel können die meisten Tiere heutzutage selbst herstellen. Auch beim Menschen und anderen Trockennasenprimaten (also allen Affen sowie Koboldmakis) ist ein Stoffwechselweg dafür entwickelt. Allerdings ist bei gemeinsamen Urahnen dieser Arten (den Menschen eingeschlossen) vor 61-74 Millionen Jahren eine Mutation des Gens für das Enzym L-Gulonolactonoxidase aufgetreten. Dieses Enzym katalysiert den letzten Schritt zur Herstellung von Vitamin C in unserem Organismus. Die Mutation (ein Fehler in der Gensequenz, dem Bauplan für das Enzym) führte dazu, dass die Nachfahren jener Urahnen-Spezies keine funktionsfähige L-Gulonolactonoxidase mehr herstellen können.

Die Ur-Spezies, die diesen Gendefekt entwickelte, hat davon vermutlich nichts mitbekommen, da sie reichlich Vitamin C-haltiges Obst zum fressen hatte. Auch die heutigen Affen leiden gewöhnlich nicht an Vitamin C-Mangel, da sie reichlich ascorbinsäure-reiche Nahrung auf ihrem Speiseplan stehen haben und damit ihre “Erbkrankheit” ganz unbewusst und sehr erfolgreich selbst “behandeln”. Einzig der Mensch ist zwischenzeitlich auf die abwegige Idee gekommen, er käme ohne Früchte aus und könne z.B. nur mit Schiffszwieback verpflegt über die Weltmeere segeln (bis zahlreiche Todesfälle aufgrund von Skorbut im 18. Jahrhundert zur näheren Beschäftigung mit Nahrungsmittel-Inhaltsstoffen führten). Meerschweinchen, echte Knochenfische, einige Sperlingsvögel und Fledertiere haben übrigens einen ähnlichen Gendefekt und sind daher ebenso auf Vitamin C in der Nahrung angewiesen. [3]

Wie kommen wir zu unseren Vitaminen?

Die meisten Vitamine sind Bestandteile unserer Nahrung. Als Vitamin-Präparate werden sie häufig bei Mangelerscheinungen oder vorsorglich bei unausgewogener Ernährung, erhöhtem Bedarf (Krankheit, Schwangerschaft, Medikamenten-Nebenwirkungen, Stress,…) oder Stoffwechselstörungen zugeführt. Dabei ist zu beachten, dass nur die fettlöslichen Vitamine (und Vitamin B12) in begrenztem Umfang im Organismus gespeichert werden können. Alle anderen müssen sehr regelmässig aufgenommen werden.

Während die meisten B-Vitamine fast ausschliesslich in tierischen Produkten zu finden sind, sind die übrigen zumeist in pflanzlicher Nahrung enthalten. Der Mensch ist also nicht umsonst ein “Allesfresser” – er braucht all diese Nahrungsmittel gleichermassen.

 

Vitamin A (Retinol) Leber, Eigelb, Milch und Milchprodukte, als Beta-Carotin in Karotten, gelbem und dunkelgrünem Blattgemüse, Palmöl
Vitamin B1 (Thiamin) Brauhefe, Schweinefleisch, Vollkorngetreide, Nüsse, Hülsenfrüchte
Vitamin B2 (Riboflavin) Hefe, Leber, Milch und Milchprodukte, Eier, grünblättrige Gemüse, Fleisch
Vitamin B3 (Niacin) Hefe, Leber, Geflügel, mageres Fleisch, Nüsse, Hülsenfrüchte (Niacin-Verbindungen in Getreide sind für den Menschen nicht verwertbar!)
Vitamin B5 (Pantothensäure) Hefe, Innereien, Eier, Milch und Milchprodukte, Gemüse, Hülsenfrüchte, Vollkorngetreide
Vitamin B6 (Pyridoxin) Huhn, Leber, Fisch, Walnüsse, Erdnüsse, Vollkorngetreide, Mais
Vitamin B7 (Biotin) Hefe, Leber, Niere, Eigelb, Sojabohnen, Nüsse, Getreide
Vitamin B9 (Folsäure) Leber, dunkelgrünes Gemüse, Bohnen, Weizenkeime, Hefe; auch Eigelb, Milch und Milchprodukte, rote Beete, Orangen, Vollkorngetreide
Vitamin B12 (Cobalamin) Leber, Niere, Fisch, Eier, Milch und Milchprodukte
Vitamin C (Ascorbinsäure) Zitrusfrüchte, schwarze Johannisbeere, Paprika, grünes Gemüse, Erdbeere, Guave, Mango, Kiwi
Vitamin D (Calciferol) Sonnenlicht!!, ansonsten: Lebertran, Salzwasserfisch, wenig: Eier, Milch und Milchprodukte, Fleisch
Vitamin E (Tocopherol) Pflanzenöl, Nüsse, Vollkorngetreide, Weizenkeime, Samen, grüne Blattgemüse
Vitamin K (Phyllochinon) Grünblättrige Gemüse, einige Pflanzenöle, Haferflocken, Kartoffeln, Tomaten, Spargel, Milch und Milchprodukte

Tabelle 2: Vorkommen der Vitamine in Nahrungsmitteln nach nutri-facts.org

Die grosse Ausnahme bildet Vitamin D (Calciferol). Dies ist das einzige der beschriebenen 13 Moleküle, das der menschliche Organismus selbst herstellen kann (und damit eigentlich gar kein Vitamin ist). Dass es trotzdem zu den Vitaminen gezählt wird, hängt damit zusammen, dass zur Biosynthese von Calciferol UV-B-Strahlung nötig ist. Und die kommt in der Regel von der Sonne, also von “aussen”.

Vitamin D entsteht in der Haut aus Cholesterin, genauer gesagt aus 7-Dehydrocholesterin. Einfallende UV-B-Strahlung kann einen Ring im 7-Dehydrocholesterin-Molekül öffnen, wodurch Prävitamin D3 entsteht, welches zum eigentlichen Cholecalciferol (Vitamin D3) weiterreagiert. In Leber und Niere kann daraus dann das weiter oben genannte Hormon Calcitriol hergestellt werden [1].

Vitamin-D-Bildung


Biosynthese von Vitamin D und Calcitriol nach [1]

Im Lehrbuch für Biochemie [1] findet sich im Zusammenhang mit der Vitamin-D-Synthese eine Randnotiz, dass bei arabischen Beduinen-Frauen, die ihr Leben in Ganzkörperverhüllung verbringen, die Vitamin-D-Mangelerscheinung Osteomalazie auftritt – und dass, obwohl sie in der stets sonnenverwöhnten Wüste leben. Wer ständig eine Burka trägt ist also gut damit beraten auf eine ausreichende Vitamin-D-Zufuhr durch Nahrungsergänzung zu achten.

Ebenso stehen Vegetarier und vor allem Veganer vor der Herausforderung ihren Bedarf an B-Vitaminen zu decken und gegebenenfalls ihren Speiseplan mit Vitamin-Präparaten zu ergänzen.

Kann man zu viele Vitamine aufnehmen?

Im ersten Semester des Chemiestudiums fand ein Kommilitone im Praktikumslabor eine Kilopackung Ascorbinsäure (in Reinform ein weisses, kristallines Pulver) und fragte unseren Praktikumsassistenten, was denn wohl passieren würde, wenn er löffelweise davon ässe. Der Assistent antwortete: “Nichts”, und fügte hinzu, dass mein Kommilitone allenfalls vielleicht Sodbrennen oder/und Magenschmerzen bekäme, weil mehrere Gramm Ascorbinsäure auf einmal geschluckt vorübergehend zu Magenübersäuerung führen können.

Eine “Vergiftung” (Hypervitaminose) mit wasserlöslichen Vitaminen ist tatsächlich kaum möglich und tritt allenfalls in exotischen Fällen auf (z.B. Langzeit-Überdosierung von Vitaminpräparaten oder seltene Stoffwechselkrankheiten), da sie im Organismus gut beweglich sind und über die Niere ziemlich ungehindert wieder ausgeschieden werden können.

Bei fettlöslichen Vitaminen sieht das etwas anders aus, denn sie können nicht so einfach über die Niere ausgeschieden werden und sammeln sich im Organismus an. Insbesondere die Vitamine A und D können akute und/oder chronische Vergiftungserscheinungen (bis hin zum Tod) hervorrufen.

Da sich die Vitamin-D-Synthese bei Sonneneinstrahlung jedoch selbst reguliert, kann eine Hypervitaminose D – wie alle anderen Vitamin-“vergiftungen” – nur durch übermässige Zufuhr von Vitamin-Präparaten verursacht werden. Ebenso verhält es sich mit der Hypervitaminose A (es sei denn, man wäre auf einer Polarexpedition und würde den Fehler machen Eisbärenleber zu essen… Die ersten akuten Vitamin-A-Vergiftungen wurden bei Polarforschern dokumentiert, die eben dies getan hatten [4]).

Zusammenfassung

Der menschliche Organismus benötigt zur Aufrechterhaltung aller Funktionen 13 organische Stoffe, die er nicht eigenständig herstellen kann. Diese Stoffe werden als Vitamine zusammengefasst, obwohl ihre Struktur und Funktionen sehr vielfältig sind. Dabei lassen sich die Vitamine in wasser- und fettlösliche Stoffe ordnen. Die Anzahl und Verteilung von polaren Bindungen in ihren Molekülen lassen eine Einschätzung der Löslichkeit zu. Die Löslichkeit der Vitamine steht im Zusammenhang mit ihren Aufgaben und einer möglichen Giftwirkung bei Überdosierung.

Literatur

[1] Biochemie der Vitamine: J.M. Berg, John L.Tymoczko, L.Stryer: Biochemie. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin 2003

[2] Überblick über den Stoffwechsel einschliesslich Vitamin-Aufnahme und der Prozesse beim Sehen: S.Silbernagl, A.Despopoulos: Taschenatlas der Physiologie. Georg Thieme Verlag, Stuttgart 2003

[3] Genetik der Wirbeltiere bezüglich Ascorbinsäure (Vitamin C): G. Drouin, J. R. Godin, B. Pagé: The genetics of vitamin C loss in vertebrates. In: Current genomics. Band 12, Nummer 5, August 2011

[4] Giftigkeit der Vitamine: Dietrich Mebs: Gifttiere – Ein Handbuch für Biologen, Toxikologen, Ärzte und Apotheker. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1992