Beiträge

Silber putzen leicht gemacht!

Die Weihnachtszeit ist auch die Zeit von Festtagsmenu und fein herausgeputzter Tafel. Aber gerade wer die eher selten eindeckt, steht mitunter vor einem ungeliebten Haufen Arbeit: Das Tafelsilber ist schon wieder angelaufen – und auch der Silberschmuck zum Festtagsoutfit glänzt nicht mehr. Also ist Putzen und Polieren angesagt…es sei denn, man versteht ein wenig von Chemie.

Dieser Beitrag ist Teil des Adventskränzchens 2019!
Weitere Beiträge zum Thema des Tages “Fein herausgeputzt” findet ihr auf
www.marie-theres-schindler.de
http://cosmic-blue.jimdofree.com
https://das-leben-ist-schoen.net

Warum läuft Silber an?

Landläufig kennt man Silber eigentlich als Edelmetall – also als eines jener Metalle, die als so reaktionsträge gelten, dass sie auch an der Luft mehr oder weniger blank bleiben. “Reaktionsträge” meint dabei “schwer bis gar nicht zu oxidieren”. Und für das Oxidieren an der Luft ist in der Regel der darin enthaltene Sauerstoff verantwortlich. Der kann dem Silber aber gar nichts, wenn er alleine ist. Anders sieht es aber aus, wenn der Sauerstoff Unterstützung durch seinen grossen Bruder hat: Den Schwefel.

Schwefel: Der anrüchige Bruder des Sauerstoffs

Der steht im Periodensystem der Elemente direkt unter dem Sauerstoff, was bedeutet, dass Schwefel und Sauerstoff chemisch miteinander eng verwandt sind. So gibt es Schwefel auch in Form von S2--Ionen, analog zu den Sauerstoff-Anionen O2-. Und diese S2- -Ionen kommen zum Beispiel im Schwefelwasserstoff, H2S, einem äusserst übelriechenden Gas, oder in organischen Verbindungen, den sogenannten Thiolen, vor. “Thio-” ist altgriechisch für Schwefel und die Endung “-ol” weist auf die chemische Verwandschaft hin: Thiole sind die schwefelhaltigen Geschwister der Alkohole.

Ebenso haben auch die Aldehyde und Ketone (Sauerstoffverbindungen, die entstehen, wenn man Alkohole oxidiert – darunter Acetaldehyd, das uns nach Alkoholgenuss den Kater beschert) schwefelhaltige Geschwister.

All diese organischen Schwefelverbindungen sind oft ziemlich üble Stinker, und das nicht von ungefähr: Wie Schwefelwasserstoff sind einige Thiole hochgiftig, sodass der Gestank uns Menschen aus gutem Grund dazu bewegt, vor ihnen wegzulaufen. Andere Verbindungen werden von Pflanzen verwendet, um ihre Fressfeinde abzuschrecken. Ein bekanntes Beispiel dafür sind Zwiebeln. Der Stoff, der uns beim Schneiden von Zwiebeln Tränen in die Augen treibt, um uns vom Zerstören der Knollen abzuhalten, gehört auch zur Grossfamilie der schwefelorganischen Verbindungen.

Wie Schwefel an das Silber kommt

Tatsächlich kann man Thiole und andere schwefelorganische Verbindungen – und damit auch Schwefelwasserstoff in kleinen Mengen – überall dort finden, wo Leben ist oder war. Zum Beispiel in Lebensmitteln, auf unserer Haut oder auch in Kosmetika. So ist es nur natürlich, dass unser Tafelsilber und Silberschmuck, wenn wir sie benutzen, nebst Sauerstoff auch mit S2--Ionen in Berührung kommt.

Und die bilden mit Silberionen, Ag+, ein schwarzes, wasserunlösliches Salz, das Silbersulfid Ag2S:

2Ag+ + S2- –> Ag2S

Dabei wird eine Menge Energie frei. Das bedeutet, dem fertigen Silbersulfid wohnt viel weniger Energie inne als dem Silber-Metall und den S2--Ionen. Und Zustände mit möglichst wenig Energie strebt die bequeme Natur stets an. Der Zustand als Silbersulfid ist sogar dermassen erstrebenswert, dass Luftsauerstoff aus Silber-Metall Silber-Ionen machen kann (das geht normalerweise nicht von selbst), wenn S2- zur Stelle ist, um mit letzteren Silbersulfid zu bilden. Und zwar direkt an der Oberfläche des Silber-Metalls, wo die Ag+-Ionen entstehen. So bleibt das wasserunlösliche Silbersulfid gleich dort und bildet die dunkle Patina, die Silber so häufig überzieht.

Wie wird man die Silbersulfid-Schicht wieder los?

Grundsätzlich gibt es zwei Wege, die schwarze Schicht von der Silberoberfläche zu bekommen:

  • Man schrubbt oder löst sie ab – dann ist das Silber darin aber verloren.
  • Man macht aus den Silberionen darin wieder metallisches Silber und setzt die Sulfid-Ionen frei.

Ich ziehe den zweiten Weg dem ersten vor, um möglichst viel Silber an meinen Gegenständen zu erhalten. Und dazu gibt es neben kommerziellen Reinigungsmitteln verschiedenste Hausmittel im Netz. Besonders interessant – weil so einfach und wirksam, finde ich dieses:

Silber mit Aluminiumfolie in Salzwasser reinigen

Ihr braucht dazu

  • euer angelaufenes Silber (Besteck, Tafelsilber oder Schmuck ohne Steine oder sonstiges Beiwerk!)
  • Aluminiumfolie
  • etwas Kochsalz
  • Leitungswasser
  • Kochtopf und Herd
  • einen gut belüfteten Raum bzw. eine Dunstabzugshaube zum Herd
  • eine Grillzange oder ein ähnliches Greifwerkzeug
Was ihr zum Silber putzen braucht: Silber, Kochsalz, Alufolie, Kochtopf
Ich habe für meinen Testlauf ein Schmuckstück aus 925er Silber verwendet (unten im Bild). Das bedeutet, 925 von 1000 Teilen oder 92,5% des Metalls sind Silber, der Rest besteht aus anderen Metallen – in der Regel Kupfer. In solch einer Legierung ist das Silber etwas härter als in ganz reiner Form. Silberbesteck besteht übrigens meistens aus 80% Silber und 20% Kupfer und ist damit noch härter. Doch so lange das Besteck nicht grün angelaufen ist, funktioniert dieser Trick auch damit.

So geht’s

  • Füllt Wasser in den Topf (es soll eure Silbergegenstände später ganz bedecken) und gebt einen Löffel Kochsalz hinzu (als wolltet ihr z.B. Spaghetti kochen)
  • Bringt das Wasser auf dem Herd zum Kochen
  • Zerteilt inzwischen die Aluminiumfolie in kleine Schnipsel und gebt sie in das kochende Wasser. Die Schnipsel sollten ganz ins Wasser eingetaucht sein – hierzu ist die Grillzange sehr nützlich!
  • Legt den Silbergegenstand in das kochende Wasser, lasst das Ganze kurz aufkochen und nehmt das Silber mit der Zange wieder heraus (Vorsicht, heiss!). Wenn ihr das ganze Tafelsilber säubern wollt, wiederholt diesen Schritt einfach mit den nächsten Teilen.
  • Lasst das Metall kurz abkühlen und trocknet es gründlich ab
Silber und Alufolie im Kochtopf
Kaum zu sehen: Das Silber liegt auf dem Grund des Salzwassers mit Aluminium-Schnipseln.

Was ihr beobachten könnt

Das Silber wird innerhalb einer Minute oder weniger wieder hell und glänzend. Der aufsteigende Wasserdampf riecht währenddessen ein wenig nach faulen Eiern – deshalb grössere Mengen nicht einatmen, gut lüften oder den Abzug verwenden!

Vorsicht, heiss: Gerade aus dem Topf gehoben glänzt das Silber blitzblank!
Vorsicht, heiss: Gerade aus dem Topf gehoben glänzt das Silber blitzblank!

Was passiert da?

Aluminium ist ein sehr unedles Metall. Es wird also leicht oxidiert. Oxidation bedeutet: Das Aluminium gibt Elektronen an einen Reaktionspartner ab:

Ein möglicher Reaktionspartner, der freiwillig Elektronen von Aluminium entgegennimmt (die Aufnahme von Elektronen eines Reaktionspartners heisst Reduktion), sind Silberionen, Ag+:

Links: Das Schmuckstück vor dem Kochen mit deutlich sichtbarer Silbersulfid-Schicht.
Rechts: Nach dem Kochen, Abkühlen und Trocknen glänzt das Silber wieder hell.

Euch kommt das irgendwie bekannt vor? Richtig: Aluminiumfolie als Rostfänger in der Spülmaschine funktioniert ganz ähnlich! Mit dem Unterschied, dass das Aluminium dort der Entstehung von Flugrost (d.h. Eisen-Ionen) zuvorkommt, weil es leichter als Eisen oxidiert wird.

Für die Reduktion von Silbersulfid müssen die Elektronen aber irgendwie vom Aluminium in der Folie zum Silbersulfid an der Oberfläche unseres Tafelsilbers gelangen. Und Elektronen, die auf Wanderschaft gehen, sind elektrischer Strom.

Elektronentransport dank Elektrolytlösung

Hier kommt das Kochsalz, NaCl, ins Spiel. Gibt man es ins Wasser, löst es sich nämlich in Na+– und Cl-Ionen auf. Und Ionen, die sich in einer Flüssigkeit bewegen können, leiten den elektrischen Strom! Anders als in einem Kabel, durch welches Elektronen einfach hindurchströmen, wandern positiv geladene Ionen (Kationen) hierzu durch die Flüssigkeit dorthin, wo es viele Elektronen gibt (zur “Kathode”), um dort Elektronen (hier vom Aluminium) “huckepack” zu nehmen, während die negativen Ionen (Anionen) dorthin wandern, wo wenig Elektronen sind (zur “Anode”), um dort Elektronen abzugeben (hier an die Silberionen). Eine solche leitfähige Flüssigkeit nennen die Chemiker “Elektrolyt”.

Ebenso wie Kochsalz funktionieren natürlich auch andere wasserlösliche Salze als Bestandteil der Elektrolytlösung zum Silberputzen. Natron, Soda oder Backpulver werden gerne als Alternativen genannt. Diese reagieren allerdings basisch und bilden mit vielen Metallen – auch Aluminium – schwer lösliche Hydroxide. Und die könnten die Oberfläche der Aluminiumfolie für die Redox-Reaktion mit dem Silber blockieren (“passivieren”). Deshalb – und weil Basen die Haut eher reizen als neutrale Stoffe oder Säuren – finde ich Kochsalz als Elektrolyt einfach bequemer.

Da auf diese Weise sehr bequemes Silbersulfid zerstört werden soll, braucht es zusätzlich noch Energie, damit das Ganze funktioniert. Und die fügen wir durch das Erhitzen zu.

Und woher kommt der Geruch nach faulen Eiern?

Wenn die Ag+-Ionen zu metallischem Silber reagieren, bleiben die S2--Ionen übrig:

Die bleiben aber ungern nackt und einsam, sodass sie sich sofort von den nächstbesten Wassermolekülen H+-Ionen schnappen:

Also insgesamt:

Das Gas H2S, also Schwefelwasserstoff, ist giftig, wasserlöslich, verdampft aber leicht – ganz besonders, wenn die Lösung gerade kocht. Deshalb können wir es im Wasserdampf, der aus unserem Topf mit dem Silber aufsteigt, riechen. Aber keine Sorge: Gerade weil dieses Gas so giftig ist, ist die menschliche Nase darauf äusserst empfindlich. Bevor wir gesundheitsschädliche Mengen davon einatmen können, sind wir in aller Regel längst vor dem Gestank davongelaufen.

Trotzdem solltet ihr euren Raum, in dem ihr Silber auf diese Weise putzt, gut lüften oder die Dunstabzugshaube einschalten, damit sich das Gas nicht sammelt – und damit nicht eure ganze Wohnung danach stinkt 😉 .

Was passiert, wenn man viel Silber reinigt?

Wenn ihr viel Silber reinigt, könnte es auch mit Kochsalz als Elektrolyt passieren, dass eure Alufolienschnipsel stumpf werden. Denn dank der frei werdenden S2--Ionen kommt ihr letztlich um die Entstehung von Hydroxiden (Verbindungen mit OH-Ionen) nicht herum. So lassen sich alle Gleichungen oben zu einer einzigen Reaktionsgleichung zusammenfassen:

Sollte sich das Aluminiumhydroxid Al(OH)3 an der Oberfläche der Alufolie sammeln, bis das Reinigen des Silbers nicht mehr funktioniert, tauscht die Folienschnipsel einfach gegen frische Schnipsel aus. Zudem könnt ihr die Haltbarkeit der Folienschnipsel etwas verlängern, indem ihr ein wenig Säure, zum Beispiel Zitronensäure, zur Salzlösung gebt.

Wenn ihr euch gut mit Chemie auskennt, könntet ihr natürlich eine Pufferlösung einzusetzen, um die Alufolie noch deutlich länger “frisch” zu halten. Aber das ist eine andere Geschichte.


Entsorgung

Da bei diesem Verfahren Silberionen an der Silberoberfläche zu metallischem Silber reduziert werden, sollte eure Salzlösung nach dem Kochen praktisch kein Silber enthalten. Das Aluminium reagiert ebenfalls zu schwer löslichen Salzen (spätestens dann, wenn ihr die gebrauchte Lösung mit etwas Natron basisch macht).

Wenn die, nachdem ihr viel Silber gereinigt habt, als sichtbare Schlieren oder Trübung aus der Lösung ausfallen, könnt ihr die Flüssigkeit filtrieren, das Filterpapier (z.B. einen Kaffeefilter) trocknen lassen und in den Hausmüll geben.

So könnt ihr die verbleibende Salzlösung nach dem Abkühlen – und nachdem ihr die Folienschnipsel herausgenommen habt, in den Ausguss entsorgen.

Die Folienschnipsel könnt ihr wie anderes Haushalts-Aluminium auch in den Recycling-Abfall geben (in der Schweiz in den Container an der Abfall-Sammelstelle, in Deutschland und Österreich über die gelbe Tonne).

Wenn ihr ausserdem Kupfer oder Messing putzen möchtet: Auch dafür gibt es einen einfachen Chemie-Trick – den findet ihr hier!

Und wie putzt ihr euer Silber für gewöhnlich?

Mit Aluminium gegen Flugrost?

Als ich die Spülmaschine ausräumte, fiel mir ein, dass wir früher mal ein Stück Alufolie mit hineingetan haben, um den Flugrost zu minimieren bzw. “zu fangen”. Kennst du das bzw. macht das Sinn?

Diese Frage hat nicht nur ein Keinsteins-Kiste-Leser. Sie tauchte zudem vor knapp 2 Wochen zur Prime-Time im Fernsehen auf, als ein Erfinder den Investoren in der “Höhle der Löwen” einen Flugrost-Fänger für die Spülmaschine vorstellte, der nach dem gleichen Prinzip funktionieren soll.

Deshalb gewähre ich euch hier einen Einblick in die Chemie dahinter (denn Chemie ist überall und alles ist Chemie – das gilt auch für dieses Gadget, wie Ole von Bananabond bereits festgestellt hat). Und ich verrate euch ein “Hausmittel”, das den gleichen Zweck erfüllt – und eine Möglichkeit zur Vorbeugung von Flugrost, die das eine wie das andere unnötig machen kann!

 

Was ist Flugrost?

Rost mit einer chemischen Formel zu beschreiben ist längst nicht so einfach wie bei vielen anderen Stoffen. Das liegt daran, dass Rost nicht einfach „ein Stoff“ ist, sondern sich gleich aus mehreren zusammensetzt.

Rost als Stoffgemisch

Eine chemische Formel für Rost, die dieses Stoffgemisch zu beschreiben sucht, lautet:

In Worten: Rost ist ein wasserhaltiges Gemisch aus verschiedenen Eisenoxiden.

Diese Eisenoxide sind Salze. Das heisst, sie bestehen aus Eisen- (Fe2+ bzw. Fe3+ )Ionen und Oxid-(O2-)-Ionen, also elektrisch geladenen Atomen der Elemente Eisen und Sauerstoff. Solche Ionen entstehen, wenn ungeladene Atome der jeweiligen Elemente Elektronen abgeben bzw. aufnehmen – also eine chemische Reaktion eingehen.

Chemische Reaktionen, bei welchen in dieser Weise Elektronen weitergegeben werden, nennt man Redox-Reaktionen. Das Abgeben von Elektronen wird dabei Oxidation genannt, das Aufnehmen von Elektronen heisst Reduktion.

Bei der Entstehung von Rost geben Eisen-Atome Elektronen ab, die letztlich von Sauerstoff-Atomen aufgenommen werden. Wie das genau vor sich geht, könnt ihr in meinem Artikel über Rost nachlesen.

Damit Rost entsteht, braucht es also Eisen-Atome, die Elektronen abgeben können, und Sauerstoff-Atome, die die Elektronen aufnehmen. Ausserdem werden für die erfolgreiche Elektronen-Übergabe in diesem Fall Wasser-Moleküle benötigt.

Wie der Rost das Fliegen lernt

Die Eisen-Atome können dabei Teile eines massiven Stücks Metall sein oder winzige, frei bewegliche Staubpartikel bilden. Staubpartikel haben im Vergleich mit einem Metallstück sehr viel mehr Oberfläche, die mit Sauerstoff und Wasser in Kontakt kommen kann. So werden sie besonders leicht oxidiert – und die entstehenden Eisenoxid-Partikel setzen sich gern auf anderen Metalloberflächen – selbst “rostfreiem” Stahl – ab: Es scheint, als komme der Rost “angeflogen”.

Da der Flugrost sich von aussen absetzt, lassen sich diese Flecken leicht abwischen. Lästig ist das aber allemal, und wirklich schön sieht das Ganze meist nicht aus.

 

Wie kann man die Flugrost-Entstehung verhindern?

Für eine Redox-Reaktion braucht es immer zwei Partner: Einen, der Elektronen abgibt, und einen, der sie aufnimmt. Dabei ist jedem Stoff ein ganz “persönliches” Bestreben, Elektronen abzugeben oder aufzunehmen – das sogenannte Redox-Potential – zu eigen. Und nur, wenn diese beiden Partner zueinander passen – der eine also lieber Elektronen aufnimmt als der andere (der lieber welche abgibt) – kann eine Redox-Reaktion stattfinden.

Bei der Rost-Entstehung ist es der Sauerstoff, der sehr danach strebt, Elektronen aufzunehmen, und nur auf einen Reaktionspartner wartet, welcher ihm Elektronen überlässt. Was also, wenn sich ein Reaktionspartner findet, der leichter Elektronen abgibt als Eisen? Genau: Dann holt sich der Sauerstoff seine Elektronen dort! Denn die Natur ist einmal mehr sehr bequem.

Ersatz für Eisen als Elektronen-Spender

Ein solcher Stoff, der in unserem Alltag verbreitet ist, ist das Metall Aluminium (andere Kandidaten sind zum Beispiel Magnesium oder Zink). Aluminium gibt so leicht Elektronen ab, dass es an feuchter Luft eigentlich kaum beständig ist, sondern rasch zu Aluminiumoxid bzw. Aluminiumhydroxid reagiert.

Dass wir trotzdem Aluminiumwerkstücke herstellen und an normaler Luft verwenden können, haben wir dem Umstand zu verdanken, dass eine oxidierte Aluminium-Oberfläche (anders als eine Eisen-Oberfläche) so dicht mit Ionen bedeckt ist, dass die ungeladenen Aluminium-Atome darunter unter normalen Umständen gar nicht mit weiterem Sauerstoff in Kontakt kommen. So können keine weiteren Elektronen übergeben werden – und das Metall-Stück bleibt intakt.

In einer laufenden Spülmaschine sind die Umstände allerdings alles andere als normal: Es ist nass, es ist warm, und Luft-Sauerstoff ist auch noch da. Ausserdem können die Inhaltsstoffe im Spülmittel die Umstände weiter beeinflussen. So ist Aluminium-Metall in der Spülmaschine in der Lage, Eisenstaub beim Liefern von Elektronen an Sauerstoff zuvor zu kommen. Anstelle von Eisen wird also Aluminium oxidiert. Die dabei entstehenden Salze sind farblos (also “weiss”) – nicht rostrot – und setzen sich weniger leicht auf Stahloberflächen ab. So entstehen keine rostroten Partikel, die unangenehm auffallen könnten.

Ohne Opfer geht es nicht

Der Haken daran: Die Aluminium-Atome, die durch die Abgabe von Elektronen zu Aluminium-Ionen werden, sind für die weitere Flugrost-Abwehr verloren. Überdies werden die Aluminium-Salze früher oder später mit dem Abwasser fortgespült.

Ein Aluminium-Metallstück in der Spülmaschine wird also immer weiter schrumpfen und irgendwann verbraucht sein. Deshalb wird solch ein Metallstück unter (Elektro-)Chemikern auch als Opfer-Anode bezeichnet: Es wird zum Schutze anderer Materialien vor der Sauerstoff-Korrosion geopfert.

 

Hausmittel zum Flugrost-fangen

Es ist nicht unbedingt nötig, eigens Aluminium-Rostfänger zu kaufen. Denn das Metall findet ihr auch anderswo im Haushalt. Ein locker zu einem Ball gerolltes Stück Aluminiumfolie (zum Abdecken von Lebensmitteln) erfüllt zum Beispiel den selben Zweck. Da seine Oberfläche viel grösser ist als die eines massiven Metallblocks, dürfte sie sogar noch effektiver sein – allerdings auch noch schneller verbraucht werden.

Eine weitere Möglichkeit haben mein Mann und ich zu Anfang unseres gemeinsamen Lebens eher ungewollt angewendet, indem wir unseren Sparschäler mit Aluminiumgriff mit in die Maschine getan haben. Der betätigt sich nämlich auch als Opfer-Anode – geht allerdings früher oder später dabei drauf.

Sparschäler passiviert und nach einigen Maschinen-Spülgängen korrodiert

Links: Sparschäler wie neu – wird von Hand abgewaschen: das Metall ist matt, aber inakt; Rechts: Sparschäler nach einigen Spülgängen in der Maschine: die Oberfläche ist sichtlich angegriffen

Aber ob Folie, Sparschäler oder kommerzieller Rostfänger: Die Herstellung von Aluminium-Metall kostet grosse Mengen an Energie und ist nicht gerade das, was viele als “umweltschonend” bezeichnen (Ole “Bananabond” geht genauer darauf ein). Und wer sich Gedanken über Aluminium-Salze in Deodorants macht, sollte sich ebenso Gedanken über Aluminium-Salze im Spül-Abwasser machen. Deshalb tut ihr gut daran, euch zu überlegen, ob ihr einen Flugrost-Fänger wirklich braucht.

 

Flugrost vorbeugen

Ich selbst hatte nämlich nur so lange mit Flugrost in der Spülmaschine zu tun, wie ich die scharfen Schneidemesser in der Maschine mitgewaschen habe.

Die heute in der Küche gängigen Stähle sind nämlich durch Mischung der Eisen-Atome mit Chrom und anderen Elementen so hart geschaffen und glatt verarbeitet, dass sie weder am Stück rosten noch abgeschliffen werden. So können erst gar keine Eisenstaub-Partikel, die rosten könnten, entstehen.

Einzig die scharfen Messer bilden offensichtlich eine Ausnahme: Eine geschliffene Messerklinge läuft an der Kante so dünn zusammen, dass das Atomgemisch, aus dem der Stahl besteht, Luft und Wasser ganz besonders ausgesetzt ist. So können sich dort offenbar doch Eisen-Atome herauslösen und Flugrost bilden.

Seit ich die scharfen Messer – ebenso wie die Alu-Sparschäler – mit der Hand abwasche, habe ich jedenfalls keinen Flugrost mehr an meinem Edelstahl-Besteck (ich verwende “All-in-One”-Spülmaschinentabs von wechselnden Herstellern).

Und habt ihr schon Flugrost in der Spülmaschine beobachten können?

Feuerwerk - Tradition oder Umweltsünde?

Der Legende nach gründeten Vertreter der drei Ur-Kantone Schwyz, Uri und Unterwalden am 1. August 1291 die Eidgenossenschaft, aus welcher sich die heutige Schweiz entwickelt hat. Deshalb wird der “Geburtstag der Schweiz” jedes Jahr mit einem Nationalfeiertag voller Bräuche und Traditionen begangen.

Eine dieser Traditionen scheidet jedoch selbst in der Schweiz, ebenso wie an Silvester in Deutschland, Österreich und anderen Ländern, die Geister: Das Feuerwerk. Ähnlich wie zum Jahreswechsel in den Nachbarländern (aber auch in der Schweiz selbst), brennen die Schweizer am Abend ihres Nationalfeiertags traditionell im privaten Rahmen Feuerwerk ab. Im Unterschied zu Silvester jedoch nicht vornehmlich innerhalb von 15 bis 30 Minuten nach Mitternacht, sondern über den ganzen Abend verteilt.

Umso mehr Zündstoff liefert dieses Geburtstagsfeuerwerk auch Tierbesitzern, Lärmempfindlichen oder Atemwegserkrankten, für welche Tage wie diese nicht selten zur Belastung werden. Um den Bedürfnissen sowohl der Anhänger der Tradition als auch der Belasteten gerecht zu werden, hat das Schweizer Bundesamt für Umwelt (BAFU) reichlich Zahlen und Studien rund um Feuerwerk und seine Auswirkungen auf die Umwelt gesammelt, die auch Grundlage für diese Geschichte um die Chemie in Feuerwerkskörpern und ihre Bedeutung für die Umwelt sind.

 

Eine Schweizer Tradition: Zahlen zum Feuerwerk – nicht nur am Nationalfeiertag

Das BAFU schätzt, dass in der Schweiz in jüngeren Jahren (2009 bis 2013) jährlich rund 2000 Tonnen Feuerwerkskörper zum Einsatz kommen – der Löwenanteil davon am 1. August und an Silvester. Dabei besteht solch ein Feuerwerkskörper jedoch zu rund 75% aus Hüllenmaterial, also Pappe, Papier, Ton oder Kunststoff, sodass tatsächlich “nur” 500 Tonnen eigentliches Feuerwerksmaterial (pyrotechnische Sätze) abgebrannt werden.

Die Hälfte davon, also rund 250 Tonnen, machen Treibladungen aus Schwarzpulver aus, die andere Hälfte sogenannte Effekt-Ladungen, welche unter anderem verschiedene Metalle zur Erzeugung farbenfroher Leuchterscheinungen enthalten.

 

Wie funktioniert ein Feuerwerkskörper/eine Rakete?

Feuerwerks-Rakete

Die klassische zylindrische Feuerwerks-Rakete ist “zweistufig” aufgebaut: Die untere Stufe enthält Schwarzpulver als Treibladung sowie die Anzündung (“Lunte”).

Schwarzpulver ist ein Gemisch, in der Regel aus 75% Kaliumnitrat (KNO3), 15% Holzkohlepulver (Kohlenstoff) und 10% Schwefel. Bei Zündung zersetzt sich das Kaliumnitrat und liefert in der von der Aussenluft abgeschlossenen Treiberhülse reichlich Sauerstoff für die Verbrennung der übrigen Komponenten. Dabei entstehen rasch grosse Mengen verschiedener Gase, die durch die Düse gebündelt nach unten austreten und die Rakete mittels Rückstoss in die Luft befördern. Der Leitstab sorgt dabei für eine ruhige Flugbahn der Rakete.

Schwarzpulver in “natürlicher” Umgebung enthält immer etwas Feuchtigkeit (Wasser, H2O). Beim Entzünden des Gemischs entstehen aus einer kleinen, kompakten Menge von Feststoffen eine grosse Menge von Gasteilchen (Stickstoff – N2, Kohlenstoffdioxid – CO2, Kohlenstoffmonoxid – CO – reagiert mit Sauerstoff weiter zu CO2, Methan – CH4, Schwefelwasserstoff – H2S, Wasserstoff – H2 – reagiert mit Sauerstoff weiter zu Wasserdampf, H2O), die von Natur aus Platz einnehmend und mit hoher Bewegungsenergie (entspricht Wärme!) auseinanderstreben.

Der wesentlich kleinere Anteil der Reaktionsprodukte sind feste Salze (Kaliumcarbonat – K2CO3, Kaliumsulfat – K2SO4, Kaliumsulfit – K2SO3, Kaliumsulfid – K2S, Kaliumthiocyanat oder -rhodanid – KSCN (im Übrigen wie alle anderen genannten Feststoffe ungefährlich), Ammoniumcarbonat – (NH4)2CO3, und Reste von Kohle – 〈C〉 und Schwefel – 〈S〉, die zur Entstehung von Rauch beitragen.

Die schnelle Freisetzung von Gasen verleiht Sprengstoffen wie dem Schwarzpulver ihre Sprengkraft. Triebkraft des Ganzen ist jedoch das Streben der beteiligten Stoffe nach Redox-Reaktionen, also dem Austausch von Elektronen: Bestandteile des Schwarzpulvers wie Kohlenstoff und Schwefel werden oxidiert – sie geben Elektronen an Sauerstoff ab, welcher mit der Aufnahme dieser Elektronen reduziert wird. Vergleichbares geschieht beim Rosten von Eisen und ist in der Geschichte zur Rostparade genauer beschrieben – nur um vieles gemächlicher als bei einer Sprengstoff-Explosion.

 

Während des Flugs verhindert die Trennladung eine vorzeitige Zündung der zweiten Stufe durch das verbrennende Schwarzpulver. Erst die Überzündung im oberen Teil der Treiberhülse ermöglicht nach dem Ausbrennen der Treibladung die Zündung der Zerlegerladung, welche die zweite Stufe der Rakete – die Effekthülle samt Effektladung – auseinander sprengt. Die dabei gezündete Effektladung leuchtet, während sie auseinandergerissen wird, farbig auf und erscheint uns für wenige Sekunden als bunte Sternenkaskade am Himmel.

Damit das funktioniert, enthält die Effektladung ihrerseits sauerstoffliefernde Stoffe, also Nitrate (wie Kaliumnitrat – KNO3) oder/und Perchlorate (wie Kaliumperchlorat – KClO4), und Metalle, die sehr hell und sehr heiss verbrennen – also Magnesium oder Aluminium, oder beide als Legierung “Magnalium”.

Die Verbrennung dieser Metalle geht mit Temperaturen bis 2000°C (!) einher. In einem solchen Inferno können chlorhaltige organische Verbindungen, wie der bekannte Kunststoff Polyvinylchlorid (PVC), Chlor-Atome abgeben, die mit den farbgebenden Metallen neue Verbindungen bilden, welche angeregt von der in den explosionsartigen Reaktionen freigesetzten Energie farbig  am Himmel leuchten (wie das Leuchten vor sich geht, erzählt die Geschichte um Farben, Licht und Glanz).

Dabei gibt zum Beispiel Barium grünes Licht, Strontium rotes, Kupfer blaues und Natrium orangegelbes Licht. Und ebenso entstehen im Feuer der Raketen-Explosion zahlreiche Nebenprodukte.

 

Welche Gefahren gehen von Feuerwerkskörpern aus?

Für Menschen:

Unfall-/Verbrennungsgefahr

Feuerwerkskörper brennen sehr, sehr heiss (wie bereits erwähnt mit bis zu 2000°C – während selbst ein guter Pizzaofen gerade einmal etwa 400°C zustande bringt): Das ist notwendig, um die gewünschten Leuchteffekte zu erzeugen. Deshalb gibt es zu Feuerwerkskörpern, die den Vorgaben der EU entsprechen, stets eine Bedienungsanleitung, die ausweist, wie sie zu handhaben sind, damit man sich verbrennt oder schlimmere Verletzungen erleidet. Deshalb gehören Feuerwerkskörper, vor allem solche mit Leuchteffekt, ebenso wenig in die Hände von (unbeaufsichtigten) Kindern wie in vollbesetzte Fussballstadien – denn auch die als “Pyros” berüchtigten bengalischen Feuer erreichen derart hohe Temperaturen, bei denen nahezu alles zerstört wird, was man in einem Station finden kann: Menschen, Kleidung, Kunststoffe und vieles mehr. So stellen  Feuerwerkskörper gerade im dichten Gedränge eine erhebliche Verletzungsgefahr dar!

Gehörschädigungen

Feuerwerkskörper sollen laut sein – die Bedienungsanleitung gibt an, wie sie zu verwenden sind, damit sie nicht zu laut werden (Abstand einhalten!): Trotzdem können schnell Grenzwerte überschritten werden – wie Messungen zeigen auch bei Grossfeuerwerken von professionellen Feuerwerkern. Gehörschutz ist daher für Feuerwerker – professionelle wie private dringend, für ihre Zuschauer aber ebenfalls empfohlen. Ich selbst trage bei Grossfeuerwerken, die ich im Freien beobachte, auch wenn sie scheinbar weit entfernt auf Booten auf dem Zürichsee gezündet werden, stets Ohrstöpsel.

Belastung durch Chemikalien: Feinstaub!

Die aus der Sicht des BAFU einzig beachtenswerte Belastung mit Chemikalien aus Feuerwerkskörpern ist die kurzfristige Erzeugung von Feinstaub beim Abbrennen: Aus den 500 Tonnen jährlich verfeuerter pyrotechnischer Sätze werden schätzungsweise rund 360 Tonnen der Sorte Feinstaub, die in unsere Lungen gelangen kann (PM10 genannt) , freigesetzt (bis in unsere Lungenbläschen gelangt davon wiederum ein Bruchteil). Das klingt nach viel, erscheint aber weitaus nebensächlicher, wenn man die Menge dieses Feinstaubs dagegen stellt, die während eines Jahres insgesamt in der Schweiz durch Strassenverkehr und andere Quellen erzeugt wird: 19’000 Tonnen! Der eher kleine feuerwerksbedingte Anteil daran wird jedoch vornehmlich in zwei Nächten freigesetzt: Am Abend des 1. Augusts und in der Silvesternacht. So wird es nicht verwundern, dass in den 24 Stunden rund um ebendiese Nächte in besiedelten Gebieten die vorgeschriebenen Grenzwerte für den Feinstaubgehalt der Luft überschritten werden. Das wiederum kommt allerdings auch an anderen Tagen ziemlich häufig vor – in allen Gebieten der Schweiz bis auf das sehr dünn besiedelte Hochgebirge mindestens 5, in städtischen Gebieten bis zu 30 mal im Jahr.

So stellt der Feuerwerks-Feinstaub denn auch für gesunde Menschen keine nachweisbare Belastung der Atemwege dar. Anders sieht das bei Menschen mit bereits bestehenden Atemwegs- (zum Beispiel Asthma!) oder auch Herz-Kreislauf-Erkrankungen aus: Unter solchen wurden in und unmittelbar nach Feuerwerksnächten (zusätzliche) Beeinträchtigungen der Lungenfunktion nachgewiesen und Fälle von akuten Beschwerden nach Umgang mit Feuerwerkskörpern registriert. Das BAFU empfiehlt daher Menschen mit solchen Erkrankungen, die direkte Begegnung mit Feuerwerksrauch zu vermeiden.

 

Was die Vielzahl von chemischen Verbindungen betrifft, die bei einem Feuerwerk freigesetzt werden (dazu zählen neben den Salzen verschiedener Schwermetalle diverse Verbrennungsgase sowie organische Verbindungen – die bedenklichen unter diesen werden von Umweltchemikern gern als “VOC”, “volatile organic compounds” zusammengefasst):

Die allermeisten dieser Stoffe gelangen aus anderen Quellen in unserer technisierten Welt in wesentlich grösserem Umfang als durch Feuerwerk in unsere Umgebung, sodass eine Feuerwerksnacht in Sachen Belastung damit kaum ins Gewicht fällt. Überdies dürfen die hier verwendeten Feuerwerkskörper besonders giftige Schwermetalle – Blei, Arsen, Quecksilber, aber auch Cadmium – gar nicht enthalten (man findet sie darin auch nur in Spuren, wenn überhaupt, die als Verunreinigungen geduldet werden). Dementsprechend sind Quellen für die Belastung von Menschen mit Schwermetallen und anderen Stoffen wohl anderswo zu  suchen als im Feuerwerk.

 

Für Tiere:

Ein Feuerwerk hat jedoch nicht nur Auswirkungen auf Menschen – die Tiere in seiner Umgebung sind mindestens ebenso davon betroffen:

Gehörschädigungen

Die meisten Wirbeltiere haben einen Hörsinn, das heisst Ohren, wie wir Menschen, auch wenn man diese – wie bei Vögeln – nicht immer sieht. Und dieser Hörsinn kann ebenso Schaden nehmen wie der unsere. Zudem ist der Hörsinn vieler Tiere – auch unserer Haustiere – um Vieles empfindlicher als menschliche Ohren.

Folgen von Schreckreaktionen

So können unsere Tiere nicht nur ebenso wie wir Hörschäden in Form von Ohrgeräuschen oder Taubheit erleiden, sondern auch durch die knallenden Geräusche eines Feuerwerks erschrecken oder gar in Panik geraten und blindlinks flüchten – im schlimmsten Fall direkt vor ein fahrendes Auto oder in einen Abgrund. Haustierbesitzern wird daher empfohlen, ihre Tiere vor und während Feuerwerks-Nächten im Haus zu behalten und ihnen eine schallgeschützte Zuflucht zu bieten.

Wildtiere, zum Beispiel Wasservögel, die keine menschliche Behausung als Zuflucht haben, werden nicht selten von Feuerwerk vertrieben und lassen sich erst Wochen nach dem Ereignis wieder an ihren angestammten Plätzen blicken. Daher empfiehlt das BAFU, bei der Planung von Feuerwerk im Rahmen von Veranstaltungen stets auch einen Tierschutz-Experten mit einzubeziehen.

 

Welche Feuerwerkskörper sind in der Schweiz (bzw. in der EU) zugelassen?

  • Das Schweizerische Sprengstoffgesetz und die Sprengstoffverordnung, welche Anweisungen zur Umsetzung dieses Gesetzes enthält, sind der EU-Richtlinie 2007/23/EG angepasst, sodass in den EU-Staaten, unter anderem Deutschland und Österreich, vergleichbare Regeln gelten werden: Feuerwerkskörper dürfen in Verkehr gebracht werden, wenn sie den Sicherheitsvorgaben der EU-Richtlinie entsprechen, einer der 4 Kategorien zugeordnet werden können und den Regeln entsprechend gekennzeichnet sind (Bedienungsanleitung!).
  • Die hochgiftigen Schwermetalle Blei, Arsen und Quecksilber und ihre Verbindungen sowie der organische Chlorlieferant Hexachlorbenzol (HCB) sind als Inhaltsstoffe verboten. Ausserdem dürfen Feuerwerkskörper keine Stoffe enthalten, die gemäss dem Chemikaliengesetz verboten sind.
  • Knallkörper am Boden sind verboten (ausgenommen ist Kleinfeuerwerk der Kategorie 1).
  • Die Kantone können weitere Bedingungen stellen und den Verkauf bzw. Gebrauch von Feuerwerk auf bestimmte Anlässe/Tage limitieren
  • Die 4 Kategorien sind:
    • 1: Feuerwerkskörper, die eine sehr geringe Gefahr darstellen und vernachlässigbar laut sind: z.B. Knallteufel, “Frauenfürze” (Ladycrackers), Tischfeuerwerk. Die Abgabe ist an Personen ab 12 Jahren erlaubt.
    • 2: Feuerwerkskörper, die eine geringe Gefahr darstellen, wenig laut sind und in eingegrenzten Bereichen draussen abzubrennen sind: Vulkane bis 250g Nettoexplosivmasse (NEM), Raketen bis 75g NEM, Römische Fackeln bis 50g NEM. Die Abgabe ist an Personen ab 16 Jahren erlaubt.
    • 3: Feuerwerkskörper, die eine mittlere Gefahr darstellen, draussen im Freien abgebrannt werden müssen, und deren Lärm bei sachgemässer Verwendung nicht gefährlich ist:  Raketen bis 500g NEM, Batterien bis 1000g NEM, Vulkane bis 750g NEM. Die Abgabe ist an Personen ab 18 Jahren erlaubt.
    • 4: Feuerwerkskörper, die eine grosse Gefahr darstellen und daher nur von Inhabern eines Verwendungsausweises ab 18 Jahren – also Profi-Feuerwerkern – verwendet werden dürfen. Solche Feuerwerkskörper sind nicht im freien Handel erhältlich und können nur von Inhabern eines Erwerbsscheins oder einer Abbrandbewilligung bezogen werden: Darunter fällt alles, was die Beschränkungen für Kategorie 3 übersteigt.

(Quelle: Kantonspolizei St.Gallen)

 

Fazit:

Feuerwerkskörper enthalten eine wahrhaft explosive Mischung der verschiedensten Stoffe, die gemeinsam zu wunderschönem – aber geräuschvollem Farbenspiel am Himmel und am Boden führen können. Wie bei vielen unserer technisierten Vergnügungen scheiden sich auch beim Feuerwerk die Geister: Tradition und bestaunenswerter Lichterzauber stehen gegenüber Belästigung oder gar Belastung durch Lärm, Rauch und Chemikalien.

Ich persönlich liebe das Spiel von Licht und Farben am Himmel, kann jedoch auf die Knallerei gut und gern verzichten. So kann ich die Argumente von Traditionsanhängern und Lärmemfindlichen oder Tierbesitzern gleichermassen nachvollziehen. Definierte Abbrandzeiten (bei Grossfeuerwerken und an Silvester weitgehend gegeben) und eine rechtzeitige Vorbereitung (Haustiere einsperren, Gehörschutz zur Hand haben) sollten in meinen Augen einen für beide Seiten vertretbaren Kompromiss ermöglichen.

Jene Kommentare von Tierbesitzern und -freunden auf sozialen Medien oder im Schnellzug, die ich unmittelbar nach dem eben erst begangenen 1.August 2016 zu lesen und zu hören bekam, lassen jedoch vermuten, dass die mir eigentlich sympathische und kompromissförderliche Gesetzgebung der Schweiz in Sachen Feuerwerk leider reichlich Beugung oder gar Umgehung erfährt.

Dabei gefährden jene, die Feuerwerkskörper unsachgemäss verwenden oder gar illegale, ungeprüfte “Polen-Böller” aus Osteuropa oder anderen Quellen abbrennen, nicht nur ihre Umgebung, sondern vor allem sich selbst. Denn die Energiemengen, die bei der Explosion von Feuerwerkskörpern in Form von Hitze und Schall freigesetzt werden, sind enorm. Und enorme Energiemengen können enormen, nicht wieder gut zu machenden Schaden anrichten.

Was die Chemikalien betrifft, die in Feuerwerk Verwendung finden oder beim Abbrennen entstehen, weckt nicht das Feuerwerk als solches meine Bedenken, sondern der Umstand, dass einige jener Inhaltsstoffe und Produkte des Feuerwerks, die wir nicht gern in unserer Umwelt wissen, so reichlich aus anderen menschlichen Quellen eben da hineingetragen werden, dass der Beitrag durch privates Feuerwerk dazu in den meisten Fällen nicht mehr sonderlich ins Gewicht fällt.

Alles in allem plädiere ich für Kompromissbereitschaft und gegenseitige Rücksichtnahme, ob am 1. August oder in der Silvesternacht – denn nur so können wir alle einen entspannten Feiertag verbringen.

Und wie steht ihr zum Feuerwerk? Brennt ihr selbst welches ab? Beobachtet ihr lieber, oder seid ihr mit euren Tieren beschäftigt? Habt ihr auch das Gefühl, dass das Feuerwerk sich hin zur Knallerei verändert? Ich freue mich über eure Kommentare!

Der Mai und Juni waren verregnet wie schon lange nicht mehr. Und das, nachdem viele von uns ihr liebstes Sommer-Fortbewegungsmittel längst aus dem Winterquartier geholt haben. Damit herrschen ideale Bedingungen für den grössten Feind von Autos, Fahrrädern, und was sonst noch so aus Eisen: Rost.

Bei anderen wiederum liegt Rost im Trend: Als schmucke Patina für Nützliches und Kunst in Haus- und Gartenbau. Und bei Frau Tonari und ihren Mitstreitern, die Ende jedes Monats eifrig Rostiges zur Rost-Parade zusammentragen. Und da bin ich dieses Mal auch dabei.

Rost im Garten

Rostig aber filigran: Dekoratives im Garten (Parque de Monserrate, Sintra, Portugal) CC-BY-SA 4.0 by Keinsteins Kiste

 

Aber wie es sich für eine Geschichte auf Keinsteins Kiste gehört, ist meine Geschichte vom Rost nicht nur ein Auszug unserer rostigen Entdeckungen der letzten Jahre, sondern auch ein Einblick in die Chemie dahinter: Was ist Rost eigentlich? Warum kann nur Eisen rosten? Warum gibt es so viel Rost an Schiffen? Wie kann man das eigene Eisen (in Form von Auto, Fahrrad, Gartentor und vielem mehr) vor Rost schützen? Und wie wird man ihn – wenn es dazu zu spät ist – wieder los?

OLYMPUS DIGITAL CAMERA

Bestimmt mit Absicht rostig: Wer kennt den “Ritter Rost”? Das hier ist vielleicht sein Ross “Feuerstuhl”! (entlaufen in den Norden des Bundesstaats Oregon, USA) CC-BY-SA 4.0 by Reto Lippuner

 

Was ist Rost?

Rost mit einer chemischen Formel zu beschreiben ist längst nicht so einfach wie bei vielen anderen Stoffen. Das liegt daran, dass Rost nicht einfach “ein Stoff” ist, sondern sich gleich aus mehreren zusammensetzt.

Eine chemische Formel für Rost, die dieses Stoffgemisch zu beschreiben sucht, lautet:

In Worten: Rost ist ein wasserhaltiges Gemisch aus verschiedenen Eisenoxiden. Bei den Eisenoxiden handelt es sich um Salze, also Stoffe, die aus Ionen bestehen. Diese verschieden geladenen Ionen werden von der elektrostatischen Anziehung in Kristallgittern zusammengehalten, die wir als atemberaubend regelmässige Kristalle sehen und in der Hand halten können. Beim Rost herrscht jedoch Uneinigkeit, was den Aufbau dieses Gitters angeht: Die Gitter von FeO und Fe2O3 sowie weiteren Sauerstoff-Verbindungen des Eisens sind sich so ähnlich, dass sie sich kreuz und quer durcheinander aufbauen und je nach äusseren Umständen ineinander übergehen. Und zu alledem sind auch noch Wassermoleküle in diesem Gitter eingeschlossen.

Diesen Umstand beschreiben die “*”-Zeichen in der Formel: Wenn die erste Formel einen Kristall beschreibt, beschreibt die Formel hinter dem “*” ein Teilchen – meist ein Molekül – das auch noch in das Kristallgitter eingebaut ist. Wenn es sich dabei um Wasser handelt, nennen die Chemiker diese eingebauten Wassermoleküle “Kristallwasser”.

Tatsächlich beschreibt aber auch diese Formel “nur” den Endpunkt verschiedener aufeinander folgender Entwicklungsstufen, die in echtem Rost alle nebeneinander vorliegen. Wie das vor sich geht?

Auf Lanzarote in einer sichtlich feuchten Höhle entdeckt: Eisenoxide einmal kosmisch CC-BY-SA 4.0 by Keinsteins Kiste

 

Wie entsteht Rost?

Die Entstehung von Rost ist ein besonderer Fall eines Vorgangs, der Korrosion genannt wird. Korrosion – das sind Reaktionen von elementaren Metallen (also ungeladenen Metall-Atomen) mit Stoffen in ihrer Umgebung.

Säurekorrosion

Die vielleicht simpelste dieser Reaktionen mag vielen aus der Schule wohlbekannt sein: Kommt ein Metall wie Eisen mit Säure in Berührung, werden Atome aus der Metalloberfläche gelöst und gehen als Ionen in die Flüssigkeit über. Dabei entsteht Wasserstoff, der in kleinen Gasblasen aufsteigt und beim Entzünden geräuschvoll verpufft.

Übrig bleiben nach dieser “Säure-Korrosion” die Metallionen und die Anionen der ursprünglichen Säure (hier Chlorid-Ionen als Anionen der Salzsäure). Und wenn aus vormals ungeladenen Teilchen Ionen entstehen, sind zwangsweise Elektronen ausgetauscht worden (denn ein Austausch von Kernladung in Form von Protonen fiele – sofern möglich – in den Bereich der Kernphysik):

Die Metall-Atome geben Elektronen ab, die von der Säure stammenden H+-Ionen nehmen diese Elektronen auf. Chemiker nennen die Abgabe von Elektronen “Oxidation” und die Aufnahme von Elektronen “Reduktion”. Das Metall wird also oxidiert, die H+-Ionen reduziert. Und dabei entstehen ungeladene Wasserstoffatome, die zu je zweien ein Wasserstoffmolekül bilden.

Sauerstoffkorrosion

Bei der Entstehung von Rost ist allerdings keine Säure im Spiel (zumindest keine stärkere als Wasser selbst). Anstelle von H+-Ionen sind dabei nämlich Sauerstoff-Moleküle für die Aufnahme von Elektronen zuständig, die in Folge ihrer Reduktion Oxid-Anionen bilden. Und Sauerstoff gibt es reichlich in der Luft. Da allerdings sowohl die entstehenden Eisen-Ionen als auch die Oxid-Ionen irgendwo hin müssen (und Luft kommt dafür nicht in Frage), funktioniert dieser Elektronenaustausch nur in Wasser, in welchem die verschiedenen Ionen in Lösung gehen können:

Wenn ein Wassertropfen eine Eisenoberfläche benetzt, können Eisenatome im Innern des Tropfens zwei Elektronen abgeben und sich als Fe2+-Ionen im Wasser von der Oberfläche fort bewegen. Die beiden abgegebenen Elektronen bleiben dabei zunächst in der Metalloberfläche zurück – welche sich somit negativ auflädt.

Auch Sauerstoffmoleküle können sich in Wasser lösen und so in einen Wassertropfen eindringen (Chemiker sagen “hinein diffundieren”), und zwar direkt aus der Luft durch dessen Aussenhaut. Wenn sie so am Rand des Tropfens in die Nähe der Eisen-Oberfläche gelangen, können sie dort überschüssige Elektronen aus dem Eisen aufnehmen.

Da Oxid-Anionen (O2-) aber nicht einfach so in Wasser existieren können, läuft die tatsächliche Reaktion etwas anders:

Das Hydroxid-Anion (OH) ist im Prinzip nichts anderes als ein “unfertiges” Oxid-Anion, das entsteht, wenn ein Sauerstoff-Atom neben zwei Elektronen auch noch ein H+-Ion aufnimmt (dieses H+-Ion wird jeweils von einem Wassermolekül abgegeben, wobei ebenfalls OH entsteht. So bleibt für jedes Sauerstoff-Atom (anfangs je eins in beiden Wassermolekülen und zwei im Sauerstoffmolekül) am Ende ein Wasserstoff-Atom.

Und Hydroxid-Ionen können problemlos in Wasser existieren (tatsächlich sind sie sogar unverzichtbare Bestandteile von Wasser, aber das ist eine andere Geschichte).

Es entsteht also eine Lösung des Salzes Eisen(II)hydroxid. Die römische II, auch Oxidationszahl genannt, gibt dabei an, wie viele Elektronen das Eisen abgegeben hat.

Eisen(II)hydroxid ist weisslich und nicht sehr beständig, denn Fe2+-Ionen geben leicht ein weiteres Elektron an Sauerstoff ab:

Das so entstehende Eisen(III)hydroxid ist schliesslich rostbraun. Dabei sind beide Eisenhydroxide wasserlöslich, sodass sich alle Ionen voneinander getrennt im Wasser bewegen können. Erst wenn das Eisen(III)hydroxid Wasser abgibt

bildet sich schwerlösliches Eisen(III)oxid-hydroxid, das sich als fester Rost auf der Eisenoberfläche absetzt: Es entsteht ein Ionenkristall, in dessen Gitter die abgegebenen Wassermoleküle eingebaut werden, wie es die Formulierung mit dem “Mal” andeutet. Folglich bleibt das “abgegebene” Wasser dem Rost zunächst erhalten.

Aber auch das Eisen(II)hydroxid sowie das Eisen(III)oxid-hydroxid können Wasser abgeben:

Während die letzten drei Reaktionen untrennbar miteinander ablaufen, bilden sich  zunehmend feste, aber stets spröde, sich abschuppende Beläge auf der Eisenoberfläche – allerdings nicht unbedingt dort, wo sich die Fe2+-Ionen von der Eisenoberfläche lösen!  So ist der entstehende Rost dem Austausch von Ladungen, welcher für Redox-Reaktionen Voraussetzung ist, weder räumlich direkt im Weg, noch kann er eine luft-und wasserdichte Barriere bilden. Die Folge dessen: Ein Eisenstück, das ungeschützt Luft und Wasser ausgesetzt ist, rostet früher oder später durch.

OLYMPUS DIGITAL CAMERA

Rost ist nicht sehr beständig und rinnt ungeniert auch über weisse Buchstaben (Valley of Fire State Park, Nevada, USA CC-BY-SA 4.0 by Reto Lippuner

 

Können Steine rosten?

Wer sich in der Natur aufmerksam umsieht, findet häufig Steine oder ganze Gesteinsschichten mit rostroten Verfärbungen. Und in manchen Gegenden sind sogar ganze Gesteinsmassive strahlend rot – wie zum Beispiel auf dem Colorado-Plateau im “wilden Westen” Nordamerikas.

SAMSUNG CSC

Balanced Rock: Rostige Steine im Arches Nationalpark, Utah, USA CC-BY-SA 4.0 by Reto Lippuner

 

Und tatsächlich können auch Steine rosten – nämlich dann, wenn sie Eisen enthalten. Dieses Eisen kann nämlich – meist im Zuge der Entstehung des jeweiligen Gesteins – zu verschiedenen Eisenoxiden reagieren, die als Bestandteile des Gesteins für die rote Farbe sorgen. Unter diesen Eisenoxiden kommt das Mineral Lepidokrokit dem “echten” Rost am nächsten. Es wird mit der Formel γ-FeO(OH) beschrieben (das γ dient der Unterscheidung von anderen Kristall-Varianten mit der gleichen Verhältnisformel) und enthält im Unterschied zum “echten” Rost kein zusätzliches Kristallwasser, was das Mineral relativ beständig macht.

Anstatt in sichtbaren Kristallen können Mineralien wie dieses auch feinkörnig in Gesteinen enthalten sein und die verschiedensten Steine rot färben – wie den Sandstein auf dem Colorado-Plateau oder Lava (eigentlich grau oder schwarz) an den Hängen der Vulkankegel auf Lanzarote.

D:DCIM100MEDIAIMG_1017.JPG

Rostrote Lava-Schlacke im Timanfaya Nationalpark, Lanzarote CC-BY-SA 4.0 by Keinsteins Kiste

 

Was bewegt all diese Salze zum Umbau ihrer Kristalle?

Die gezeigten Reaktionen sind ausgewählte Vorgänge in einem System, in welchem sich ein chemisches Gleichgewicht einzustellen versucht. Das heisst, sie sind umkehrbar, und sobald sich das Gleichgewicht tatsächlich eingestellt hat, laufen die Reaktionen in entgegengesetzte Richtungen gleich schnell ab. Monsieur Le Châtelier erklärt auf dem Flughafen gern die Einzelheiten dazu.

Kurzum: Ein System im Gleichgewicht hat die Eigenheit, dass die Zugabe oder Entnahme eines daran beteiligten Stoffs zu einer Verschiebung des Stoffmengenverhältnisses im Gleichgewicht führt – und zwar derart, dass es dem Effekt durch die Zugabe oder Entnahme des Reaktionspartners ausweicht (das entspricht dem Prinzip von Le Châtelier, das auch Prinzip des kleinsten Zwanges genannt wird).

Mit anderen Worten: Wenn die rostige Eisenoberfläche langsam abtrocknet, das Wasser am Ort der Rostentstehung also verdunstet, werden Wassermoleküle, wie sie in den letzten drei Reaktionen entstehen, dem System entzogen. Dem Prinzip von Le Châtelier folgend sind diese drei Teilsysteme entsprechend geneigt, neue Wassermoleküle nach zu liefern (und so auch die ihnen vorangehenden Teilreaktionen, welche die dazu nötigen Ausgangsstoffe liefern, zu befeuern).

So entsteht eine ganze Kette von einander beeinflussenden Reaktionen, welche im Idealfall mit dem Gemenge kristallwasserhaltiger Eisenoxide endet, das die Formel x FeO • y Fe2O3 • z H2O vom Anfang zu beschreiben sucht.

SAMSUNG CSC

Dampfmaschinenzug im Death Valley Nationalpark – Der Rost zeigt: Auch hier gibt es Wasser. Manchmal. CC-BY-SA 4.0 by Reto Lippuner

 

“Rosten” auch andere Metalle?

Tatsächlich rosten kann natürlich nur Eisen – denn nur Eisen kann zu den rostroten Eisenoxiden reagieren. Korrodieren können hingegen auch viele andere Metalle. Einige haben dabei jedoch das Glück, dass ihre Hydroxide oder andere entstehende Salze nicht oder kaum wasserlöslich sind. So bilden sie sich direkt an der Metalloberfläche und bedecken diese bald lückenlos, sodass sie das darunter liegende Metall vor dem Einfluss von Wind und Wetter schützen. Zu den Metallen, die auf diese Weise gegenüber Wasser “passiv”, also unreaktiv werden, zählen Zink, Magnesium und Aluminium. Besonders Zink findet man häufig draussen, als Oberfläche von Leitplanken, Schildermasten und manchem mehr. Die hauchdünne Oxidschicht auf den Metalloberflächen lässt das ursprünglich glänzende Metall stumpf aussehen – aber dafür korrodiert es nicht!

In gewisser Weise rosten kann das Metall Mangan, das im Periodensystem gleich links vom Eisen zu finden ist. Mangan bildet eine ganze Reihe meist wasserhaltiger Oxide und Hydroxide, die in der Gruppe der “Braunsteine” zusammengefasst werden. Die Braunsteine kommen in der Natur als Mineralien vor – darunter Manganit MnO(OH) und der im Endzustand wasserfreie Pyrolusit (MnO2 – richtig, Mangan kann auch 4 Elektronen abgeben!).

Für farbenfrohe Korrosionserscheinungen ist jedoch das Metall Kupfer sehr viel bekannter: Die vielerorts sichtbare grüne Patina auf Kupferdächern und Bronzeskulpturen (Bronze ist eine Legierung aus Kupfer und anderen Metallen (ausser Zink)) besteht jedoch nicht aus Kupferoxiden (die wären schwarz bzw. rot), sondern aus einem Gemisch verschiedenster Kupfersalze. Darunter können Kupfercarbonate (aus Reaktionen mit Kohlenstoffdioxid, CO2), -sulfate (aus Reaktionen mit Schwefeldioxid, SO2), vornehmlich am Meer Kupferchlorid (die Chloridionen liefert das Kochsalz im Meer, NaCl), Hydroxide (aus Reaktionen mit Sauerstoff und Wasser) und verschiedene Salze organischer Säuren sein.

D:DCIM100MEDIAIMG_0012.JPG

Bronzener Kapitän auf rostigem Schiff: Kupfer bildet eine grüne Passiv-Schicht aus verschiedenen Salzen, Eisen rostet rötlich. (Cascais, Portugal)  CC-BY-SA 4.0 by Reto Lippuner

 

Die häufig gehörte Bezeichnung “Grünspan” für die grüne Schicht auf Kupfer und Bronze ist daher nicht ganz richtig. Denn Grünspan ist eigentlich der landläufige Name nur eines ganz bestimmten Salzes, nämlich des Kupfer(II)acetats, eines Salzes der Essigsäure.

 

Welche Metalle können an Luft und Wasser korrodieren? Gibt es da eine Regel?

SAMSUNG CSC

Eine wahrhaft amerikanische Idee: Diese Versuchsreaktoren wurden geschaffen um Flugzeugturbinen anzutreiben. Atomgetriebene Flugzeuge? Hat nicht funktioniert – und jetzt rosten sie (EBR-1, Idaho State, USA) CC-BY-SA 4.0 by Reto Lippuner

 

Theoretisch kann jede Atom- oder Ionensorte Elektronen aufnehmen, doch ihr Bestreben danach ist sehr unterschiedlich stark. Grundsätzlich gilt dabei jedoch: Wenn unterschiedliche Atom- bzw. Ionensorten zusammenkommen, können die Atome oder Ionen, welche lieber Elektronen aufnehmen als ihre Reaktionspartner, Elektronen der anderen Atomsorte übernehmen: Der Partner, der stärker bestrebt ist Elektronen aufzunehmen, wird reduziert, der andere Partner wird oxidiert.

Das “Bestreben Elektronen aufzunehmen” nennen Chemiker das Redox-Potential eines Teilchens – dargestellt als Paar von Teilchen vor und nach der Elektronen-Aufnahme. Das Redox-Potential kann wie eine elektrische Spannung gemessen werden und hat deshalb auch deren Einheit: Volt.

Je positiver das Redox-Potential ist eines solchen Teilchenpaares ist, desto lieber wandelt sich der elektronenärmere Partner durch Elektronen-Aufnahme zum elektronenreicheren Partner (d.h. je positiver das Redox-Potential ist, desto lieber wird der elektronenärmere Partner reduziert.

(Das Redox-Potential für die Paarung Fe/Fe2+ ist negativ: Fe2+ wird nur schwerlich reduziert – Fe dafür um so leichter oxidiert).

Das Redox-Potential eines Teilchenpaares lässt sich auch mit guten Kenntnissen des Aufbaus der Atome allenfalls abschätzen. Genaue Werte müssen hingegen gemessen werden. Unglücklicherweise kann man einzelne Redox-Potentiale, also das Streben einer einzelnen Teilchensorte nach Elektronenaufnahme, nicht messen, sondern nur das Bestreben, Elektronen von einem bestimmten Reaktionspartner zu übernehmen.

Aber Chemiker wären nicht Chemiker, wenn sie da nicht einen Ausweg gefunden hätten: Sie haben einfach ein Teilchenpaar bestimmt, dessen Redox-Potential gleich Null sei, nämlich die Paarung von H+-Ionen und Wasserstoffatomen (in Wasserstoffmolekülen, H2, die durch Aufnahme je eines Elektrons pro Atom aus den H+-Ionen entstehen) unter ganz bestimmten Rahmenbedingungen. Dieses Paar kann man in Wirklichkeit nebeneinander stellen, indem man eine reaktionsträge Platin-Elektrode in eine Lösung mit 1 mol/l H+-Ionen taucht und sie mit Wasserstoff-Gas (bei einem Druck von 1 bar) umspült. Eine solche Konstruktion wird Normal-Wasserstoffelektrode genannt.

Und wenn man die mit einer Wirklichkeit gewordenen Paarung anderer Teilchen (zum Beispiel einer Eisenelektrode in einer Lösung von Eisen-Ionen) verbindet und ein Voltmeter dazwischen schaltet, zeigt dieses die Differenz zwischen dem Redox-Potential des Eisen-Paares und jenem der Normal-Wasserstoffelektrode – also die Abweichung des Redox-Potentials des Eisen-Paares von Null.

So lange die Chemiker sich also einig sind, wie eine Normal-Wasserstoffelektrode auszusehen hat und welche Rahmenbedingungen einzuhalten sind (Temperatur, Druck, Konzentration der Ionenlösung..), gilt der gemessene Wert als Redox-Potential des Eisenpaares.

So unter stets gleichen Bedingungen gemessene Werte für verschiedene Teilchenpaare kann man in einer Liste ordnen, die als Spannungs- oder Redox-Reihe bekannt ist.

Spannungsreihe

Spannungsreihe: Einige Teilchen-Paare und ihre Redox- (hier: Standard-)potentiale

 

In dieser Liste kann man nun ablesen, dass Sauerstoff in Gegenwart von Wasser viel stärker danach strebt Elektronen aufzunehmen und zu OH zu reagieren, als Fe2+-Ionen zu Eisen-Atomen zu reagieren streben. Die Folge: Eisen rostet bei Wind und Wetter ohne viel Federlesen.

Gold-Ionen (Au3+) würden wiederum sehr viel lieber Elektronen aufnehmen und zu Gold-Atomen reagieren, als Sauerstoff in Gegenwart von Wasser. Die Folge: Gold “rostet” selbst in Jahrtausenden in feuchter Erde nicht. Das starke Streben nach Elektronenaufnahme überdies dazu, dass Gold-Atome ihre Elektronen auch in Gegenwart der meisten Säuren erst gar nicht an Wasserstoff abgeben. Damit ist Gold auch weitgehend sicher vor Säurekorrosion (so lange man nicht im Labor zu richtig “brutalen” Mitteln greift)

Ihre Beständigkeit gegenüber Säure- und Sauerstoffkorrosion hat Gold und anderen Metallen, die auch bei Wind und Wetter ihren Glanz auf wundersame Weise mehr oder weniger lange behalten, die Bezeichnung “Edelmetalle” eingetragen. Metalle, die leicht korrodieren, werden hingegen auch “unedel” genannt.

SAMSUNG CSC

Einst wurde hier begehrtes Edelmetall geschürft – jetzt rostet es vor sich hin: Verlassene Goldmine bei Cripple Creek, Colorado, USA  CC-BY-SA 4.0 by Reto Lippuner

 

Warum rostet Eisen am Meer besonders stark?

Auf der Kanaren-Insel Lanzarote hat uns eine Erkundungstour einmal in einen (zukünftigen) Ortsteil in Küstennähe geführt, in welchem die Strassen samt Strassenlaternen, Papierkörben und mehr vor dem Bau der Häuser (mit dem man noch nicht einmal begonnen hatte!) angelegt worden waren. Zu unserem Erstaunen fanden wir die Laternen auf den einsam da liegenden Strassen hochgradig verrostet vor (und haben leider keine Bilder gemacht). Konnte sich der Bau der Häuser tatsächlich schon so lange verzögert haben? Eigentlich wirkten die Strassen selbst doch ziemlich neu…da musste das Eisen irgendwie schneller als gewöhnlich gerostet sein – und zwar aus folgendem Grund:

SAMSUNG CSC

Nicht auf Lanzarote, dafür auf Teneriffa zeigt diese Sonnenuhr trotz Rost die Zeit CC-BY-SA 4.0 by Reto Lippuner

 

Die beiden Teilreaktionen zum Austausch von Elektronen zwischen Eisen und Sauerstoff finden während der Rost-Entstehung an verschiedenen Orten statt. Beide Reaktionen können daher nur dann dauerhaft ablaufen, wenn genügend Ladungen zwischen diesen Orten hin- und her geschafft werden können. Und für einen reibungslosen Ladungstransport wird ein möglichst guter elektrischer Leiter benötigt.

Bei der Rost-Entstehung bildet der Wassertropfen diesen Leiter (ein flüssiger elektrischer Leiter wird auch Elektrolyt genannt): Reines Wasser enthält immer auch einige wenige H3O+– und OH-Ionen, die zwecks Ladungstransport bewegt werden können. Sind im Wasser aber zusätzliche Ionen enthalten – zum Beispiel weil Meersalz darin gelöst ist (), dann leitet es den Strom um ein Vielfaches besser, sodass der Elektronenaustausch bei der Rost-Entstehung viel schneller bewerkstelligt werden kann!

Deshalb ist nicht nur die Anlage von Geister-Strassen an der Küste und ohne besonderen Rostschutz unklug. Auch wer mit eisernen Schiffen zur See fährt, sollte sich regelmässig und gründlich um Rostschutz bemühen, möchte er nicht irgendwann mit Mann und Maus untergehen.

Bohrinseln

Ausgemustert oder zwecks (Rost-)Reparatur auf dem Trockendock? Bohrplattformen im Hafen von Santa Cruz de Tenerife CC-BY-SA 4.0 by Reto Lippuner

Aber wie kann man Eisen vor dem Rosten schützen?

Wie man ein Metall vor dem Angriff durch Sauerstoff und Wasser schützt? Indem man diesen beiden Übeltätern etwas in den Weg stellt! Das lässt sich beim Eisen auf mehreren Wegen erreichen:

SAMSUNG CSC

Stop Korrosion! Rost-Polizei an der Route 66, Arizona, USA CC-BY-SA 4.0 by Reto Lippuner

1. Man verarbeitet das Eisen zu “rostfreiem” Stahl – einer Legierung (ein Mischmetall aus verschiedenen Metallatomen) von Eisen mit mindestens 10,5% Chrom und weiteren Bestandteilen in kleinen Mengen. Das Chrom bildet eine luft- und wasserdichte “Passivschicht” aus Chromoxid an seiner Oberfläche und schützt damit auch die Eisenatome in seiner Nachbarschaft. Der Nachteil: Solche Stähle sind zäher als Eisen, was das Bohren darin erschwert und dazu führt, dass Gewinde von Schrauben sich schneller festfressen.

SAMSUNG CSC

Kein Chromstahl: Rostender Stahlträger aus dem alten World Trade Center vor dem Neubau – 9/11-Denkmal auf Staten Island, New York City, USA CC-BY-SA 4.0 by Reto Lippuner

2. Man streicht Eisenteile mit möglichst witterungsbeständigen Farben oder Lacken. Da kommen Wasser und Sauerstoff im Idealfall nicht durch. Allerdings gibt praktisch jede Farbschicht dem Trommelfeuer von Sonnenstrahlung, Wind und Nässe früher oder später nach und blättert ab. Und wenn man dann nicht sofort nachstreicht, rostet das Eisen eben doch.

Rostiges Schild

Dem Wilden Westen ist kein Lack gewachsen (gefunden auf Antelope Island im Great Salt Lake, Utah, USA) CC-BY-SA 4.0 by Reto Lippuner

Wesentlich beständiger als ein Anstrich mit Lack und Farbe ist eine Beschichtung des Eisens mit einem anderen Metall. Bewerkstelligen lässt sich das, indem man das Metall mittels Elektrolyse auf dem Eisen abscheidet, oder indem man das Eisen komplett in das geschmolzene Metall eintaucht. Die beiden Metallschichten “verzahnen” sich dabei an ihrem Übergang praktisch Atom für Atom, was sie nahezu untrennbar miteinander verbindet.

3. Auf den ersten Blick scheinen für eine solche Beschichtung “edlere”, also korrosionsbeständige Metalle Wunschkandidaten zu sein. Das dachten sich auch die Hersteller von Dosen aus Weissblech, also aus mit einer Zinn-Schicht versehenem Eisen.
Die Korrosionsbeständigkeit kann jedoch ebenso gut zum Problem werden, beruht sie doch darauf, dass “edlere” Metalle noch lieber Elektronen aufnehmen als Eisen. Sobald die Zinn-Schicht einer Weissblech-Dose nämlich beschädigt wird, sodass das Eisen Fe2+-Ionen an Wasser in seiner Umgebung abgeben kann, sorgt das verbleibende Zinn in der Nachbarschaft des Schadens dafür, dass die zurückbleibenden Elektronen sich gar nicht erst im Eisen ansammeln können, sondern umgehend zur Reduktion weitergeleitet werden. So rostet beschädigtes Weissblech letztlich noch schneller als ungeschütztes Eisen.

Desoto

Auch Chrom ist edler als Eisen: Wo die Chromschicht leckt, rostet es besonders schnell (an der Route 66, Arizona, USA) CC-BY-SA 4.0 by Reto Lippuner

4. Das Problem mit den edleren Metallen kann man sich jedoch ebenso gut zunutze machen – indem man nämlich das Eisen mit einem unedleren Metall beschichtet, zum Beispiel mit dem sehr beliebten Zink. Wind und Wetter ausgesetzt bildet Zink an seiner Oberfläche rasch eine passive Schicht, die es zunächst vor der weiteren Korrosion bewahrt. Kommt aber ein verzinktes Eisenwerkstück zu Schaden, übernimmt das freigelegte Eisen die Rolle des edleren Metalls: Es begünstigt die Korrosion des Zinks ohne selbst Schaden zu nehmen. Das verschafft Verantwortlichen Zeit um den Schaden zu beheben ehe Rost entstehen kann.

5. Eine noch extremere Variante von Methode Nummer 4 kommt zum Beispiel bei unterirdischen Eisen-Tanks zum Einsatz: Dort wird ein Block aus einem sehr unedlen Metall über eine Leitung mit dem Tank verbunden und…schlichtweg der Korrosion überlassen. Denn während eine solche “Opferanode”, beispielsweise aus Magnesium, langsam oxidiert wird, liefert sie Elektronen, die an der Eisenoberfläche zur Reduktion eingesetzt werden können – ohne dass Eisenionen ins Spiel kommen und somit Rost entsteht. Es empfiehlt sich daher, solche Opferanoden regelmässig zu ersetzen, ehe sie gänzlich oxidiert sind. Oder man schliesst den Eisentank an den (physikalischen) Minuspol einer Gleichstromquelle (Batterie) an, deren Pluspol mit einer Graphitelektrode verbunden ist. So lange die Batterie hält, liefert dann sie anstelle des Eisens die Elektronen für die Reduktion.

 

Und was tun, wenn schon Rost entstanden ist?

Dächer in Bodie

Rost liebevoll kultiviert: Dächer in der Geisterstadt Bodie (wird als Freilichtmuseum gefplegt) in der Sierra Nevada, Californien, USA  CC-BY-SA 4.0 by Reto Lippuner

 

Da Rost in der Regel durchlässig daher kommt und nicht wenig Wasser enthält, solltest du entstandenen Rost in jedem Fall entfernen, ehe du zu weiteren Rostschutzmassnahmen schreitest. Am einfachsten schleifst du ihn schlichtweg ab – mit einer passenden Schleifmaschine oder einem Sandstrahler.

Wenn das allerdings zu mühsam ist, oder eine bestehende Schutzschicht dadurch weiter beschädigt werden könnte, kannst du kleineren Roststellen stattdessen mit einem “Rostumwandler” zu Leibe rücken, zum Beispiel mit verdünnter Phosphorsäure (H3PO4). Die reagiert nämlich mit den Sauerstoff-Verbindungen von Fe3+-Ionen im Rost zu Eisen(III)phosphat, FePO4, welches anders als Rost fest und undurchlässig ist und überdies mit seiner stumpfgrauen Farbe nicht so auffällt.

Phosphorsäure ist übrigens auch nicht zu knapp in Cola anzutreffen, weshalb das Getränk unter Liebhabern älterer Fahrzeuge auch schonmal als Rostumwandler zweckentfremdet wird. Phosphorsäurelösung in etwas höherer Konzentration ist im Zweifelsfall jedoch merklich wirksamer.

Beiden Methoden gemeinsam ist allerdings der Haken: Das einmal zu Rost reagierte Eisen ist unrettbar verloren. Beim Abschleifen wird es einfach vom Werkstück entfernt, während es durch Rostumwandler in eine andere Verbindung eingebaut wird, die zwar beständiger als Rost, aber ebenfalls ein Salz ist, das gänzlich andere Eigenschaften hat als ein Metall.

SAMSUNG CSC

Definitiv zu spät für Rostschutzmassnahmen: Echte Rostlaube (das Auto, nicht ich!) in der Geisterstadt Bodie, Californien, USA CC-BY-SA 4.0 by Reto Lippuner

 

Ich empfehle in Sache Rost also Vorsorge statt Nachsorge : Gönne deinem Eisen einen guten Rostschutz, bevor sich Rost bilden kann – und wenn doch etwas rostet, sorge rasch dafür, dass dem Einhalt geboten wird. Es sei denn, du möchtest auch an der Rostparade teilnehmen, die am Ende jedes Monats von Frau Tonari ausgerufen wird, und benötigst dazu noch ein Fotomotiv!

Und was ist Rost für dich? Lästiger Übeltäter oder farbige Oberflächenverschönerung?