Beiträge

Experiment: Frühling im Labor-Style – Superabsorber im gläsernen Blumentopf

, ,
Deko im Frühling mit Superabsorber

Es ist die Zeit der Hasen, Küken Blumen…. Wie wäre es mit einer Osterdeko im Forscher-Stil – die gleich noch ein Experiment beinhaltet? Und (nicht nur) im Frühling jedes Heim-Labor verschönert? Ich habe ein tolles Gadget gefunden, das nicht nur eine besondere Sicht auf das Leben von Pflanzen gewährt, sondern auch eine verblüffende Eigenschaft von bestimmten Riesenmolekülen offenbart: Superabsorber!

Ich habe das Material für das Experiment aus eigenem Antrieb beschafft. Für die Idee dazu danke ich Marion Rotter vom Luxury Lifestyle Magazine, in welchem diese spannende Frühlingsdekoration auch einen Platz finden wird.

 

Superabsorber statt Pflanzenerde für Zwiebelblumen

Hydroperlen aus Superabsorbern sind ganz besondere Kunststoffgebilde, die unglaubliche Mengen Wasser speichern und wieder abgeben können. Dabei sind sie durchsichtig und nach Wunsch bunt. So geben sie nicht nur einen praktischen Ersatz für Pflanzenerde ab (das kann z.B. Blähton für die Hydrokultur auch), sondern gewähren, wenn man sie in gläsernen Blumentöpfen verwendet, einen spannenden Blick auf das Wurzelwerk der Pflanzen.

Und da Zwiebelblumen sich besonders leicht ein- und umsetzen lassen, bietet der Frühling die ideale Gelegenheit zum Experimentieren mit Superabsorbern!

 

Ihr braucht dazu

  • Glasgefässe mit weiter Öffnung: Für den Labor-Stil können das zweckentfremdete Behälter sein, wie mein Honigglas, mein Einmachglas oder der Glaszylinder aus meinem Windlicht. Auch ein Labor-Becherglas eignet sich natürlich.
  • Zwiebelblumen, die idealerweise schon ein wenig ausgetrieben haben
  • Superabsorber: Die gibt es als “Hydrokristalle” oder “Hydroperlen” für kleines Geld in verschiedenen Shops für Krimskrams, Gadgets oder Geschenkartikel (meine Bezugsquelle hat mich letztlich nicht zu einer Erwähnung überzeugt, da sie stark verspätet und erst nach meiner Nachfrage geliefert und mich überdies trotz meiner Nicht-Zustimmung mit einer ganzen Flut von Newslettern zugeschüttet haben).
  • Leitungswasser, ein Lavabo bzw. Spülbecken zum Reinigen von Pflanzenwurzeln
  • Ein paar Stunden Zeit für viele Tage Freude

Material : Zwiebelpflanzen, Hydroperlen, leere Gläser

Wie ihr eure gläsernen Topfpflanzen setzt

Zunächst müsst ihr die Superabsorber in Wasser ziehen lassen, damit sie sich ordentlich voll saugen. Das dauert ein paar Stunden, sodass es sich anbietet, sie über Nacht ziehen zu lassen. Eine Anleitung dazu liegt normalerweise der Verpackung der Hydrokristalle oder Hydroperlen bei. So bin ich mit meinen vorgegangen:

  • Schätzt ab, wieviele (Milli)Liter Wasser in die Gefässe passen würden, die ihr bepflanzen wollt. Entnehmt der Verpackung so viele Perlen bzw. Kristalle, wie ihr laut Angaben auf der Packung für dieses Volumen braucht. Achtung! Das sieht nach verdammt wenig aus, aber das passt schon: Ihr habt die grosse Überraschung ja noch vor euch!

    Hydroperlen bzw. Hydrokristalle für etwa 600ml Wasser

    Das sind genug Hydroperlen für die zwei Gläser oder insgesamt 600 Milliliter Wasser!

  • Verteilt die Hydroperlen bzw. Hydrokristalle auf die leeren Gefässe entsprechend ihrer Grösse. Dann füllt die Gefässe mit Wasser auf.

    Hydroperlen bzw. Hydrokristalle in Wasser

    Die Hydroperlen in den Gläsern, gleich nach dem Auffüllen mit Wasser. Und wirklich: Das genügt!

  • Stellt die Gefässe dorthin, wo sie nicht stören und deckt sie ggfs. gegen Staub ab (z.B. Deckel lose auflegen). Schaut in den nächsten Minuten bzw. Stunden immer mal wieder nach den Gläsern: Schon in den ersten Minuten werden die Perlen/Kristalle merklich wachsen und dabei zunehmend durchsichtiger erscheinen.

    Superabsorber in Aktion: Hydroperlen trocken und nach einer Nacht im Wasser

    Nach einer Nacht: So gross sind die Perlen geworden!

  • Nach einer Nacht sind meine Perlen von ursprünglich rund 2 mm im Durchmesser auf sage und schreibe 12 mm angewachsen und füllen die Gläser fast vollständig! Wenn es bei euch so weit ist, giesst das übrige Wasser ab.

    Superabsorber: Hydroperlen bzw. Hydrokristalle nach einer Nacht in Wasser

    Am nächsten Morgen: Die Hydroperlen sind über Nacht gewachsen und haben fast alles Wasser aufgesogen!

Jetzt könnt ihr mit dem Bepflanzen beginnen.

  • Wenn ihr bereits ausgetriebene Blumenzwiebeln umsetzt: Nehmt die Zwiebeln aus dem Topf und befreit die Wurzeln vorsichtig von der Erde (die könnt ihr zum Gärtnern aufheben). Spült die Wurzeln dann gründlich unter fliessendem Wasser, bis sie blitzsauber sind.
  • Nehmt einen Teil der Hydroperlen bzw. Hydrokristalle aus eurem Pflanzgefäss, legt sie in einem anderen Behälter beiseite (die Perlen sind jetzt elastisch wie Gummibälle – passt auf, dass sie euch nicht davonspringen!).
  • Platziert die Zwiebel mit den Wurzeln nach unten im Gefäss und füllt die Zwischenräume zwischen den Wurzeln behutsam mit den beiseite gelegten Perlen bzw. Kristallen auf (die Superabsorber gehen nicht so leicht kaputt, die Pflanzenwurzeln können dagegen recht empfindlich sein).

    Zwiebelblumen in Hydroperlen: Frühlings-Deko im Labor-Style

    Fertig! Jetzt heisst es geduldig warten!

  • Wenn die Zwiebel stabil untergebracht ist, platziert das Gefäss an einem hellen, nicht zu warmen Ort (wenn es nicht mehr friert auch draussen). Zwiebelblumen wie Krokusse, Narzissen und andere Frühlingsblüher sind für kühles Frühlingswetter geschaffen und welken bei zu hoher Raumtemperatur schnell.
  • Freut euch die nächsten Wochen an eurer Forscher-Frühlingsdeko und beobachtet die Pflanze und ihre Wurzeln beim Wachsen! Die Hydroperlen oder -kristalle werden mit der Zeit wieder schrumpfen, wenn das Wasser verdunstet oder die Pflanze davon trinkt. Insgesamt sollten die Pflanzen aber bis zu zwei Wochen ohne Giessen auskommen! Danach giesst einfach etwas Wasser nach, und die Superabsorber sollten wieder aufgehen.

 

Was passiert da?

[yellow_box]

Was genau sind eigentlich Superabsorber?

Superabsorber sind riesige Moleküle, sogenannte Polymere. Das sind lange Ketten aus sich immer wiederholenden kleinen Atomgruppen, die bei der Herstellung der Polymere miteinander verbunden werden. Was wir als “Plastik” oder “Kunststoff” bezeichnen, besteht aus solchen Riesen-Kettenmolekülen. Doch auch die Natur hält verschiedenste Polymere bereit, wie Proteine, Stärke, Zellulose oder unsere DNA.

Die Superabsorber unter den Polymeren haben zwei besondere Eigenschaften:

  1. Die langen Kettenmoleküle sind über Querstreben aus weiteren Atomgruppen miteinander vernetzt. Das Ergebnis ist ein regelrechter Molekül-Schwamm, dessen Poren in der Grössenordnung von einigen Atomdurchmessern liegen. Das bedeutet, eine Hydroperle bzw. ein Hydrokristall ist im Grunde genommen ein einziges gigantisches Molekül – so gross, dass wir es sehen und anfassen können!
  2. Die Atomgruppen, aus welchen die Superabsorber-Polymere bestehen, sind so gestaltet, dass sie und Wassermoleküle einander anziehen: Chemiker sagen, die Atomgruppen sind “hydrophil” – sie mögen Wasser. Wie Atomgruppen aussehen müssen, die Wasser mögen, und wie die gegenseitige Anziehung funktioniert, habe ich im Artikel über Tenside genauer beschrieben.

Kurz gesagt: Zu den wasserfreundlichsten Kohlenstoffverbindungen (zu diesen zählen die meisten Kunststoffe) gehören solche, die elektrische Ladungen tragen, also Ionen sind. Deshalb tragen die riesigen Superabsorber-Moleküle eine Unzahl an negativen Ladungen auf ihrem Netz aus Atomketten. Die wiederum ziehen nicht nur Wasser an, sondern auch positiv geladene Metall-Ionen. Mit solchen gehen die negativ geladenen Atomgruppen des Molekül-Schwamms Ionen-Bindungen ein – wie die Natrium- und Chlorid-Ionen in einem Kochsalzkristall!

Woraus meine (und höchstwahrscheinlich auch eure) Hydroperlen bestehen

Superabsorber sind also riesige Molekül-Netze, die aus zahllosen kleinen Carbonsäure-Gruppen (sehr häufige Monomere sind Acrylsäure bzw. ihre stickstoffhaltige Variante Acrylamid*, aus denen auch meine Hydroperlen bestehen) zusammengesetzt sind. In trockenem Zustand werden die Ladungen durch in den Maschen gebundene Natrium (Na+)-Ionen ausgeglichen, sodass das Netz sich auf sehr engem Raum dicht zusammenpacken lässt. So fühlen sich die trockenen, winzigen Hydroperlen hart und massiv an. Tatsächlich kann man sagen: Ein (trockener) Superabsorber ist sowohl ein Polymer als auch ein Salz!

*Wenn der Begriff “Acrylamid” bei euch die Alarmglocken klingeln lässt: In verketteter Form, also als Polyacrylamid bzw. “Polyamid” ist diese Verbindung absolut nicht giftig!

Wie funktionieren Superabsorber?

Wenn ihr trockene Hydroperlen oder Hydrokristalle in Wasser legt, passiert mit ihnen das selbe, was auch mit meinem nackten Ei (ein weiteres spannendes Oster-Experiment!) passiert ist: Die Ionen im Inneren des Molekül-Schwamms streben danach, sich mit Wassermolekülen zu mischen und mit ihnen zu wechselwirken. Dabei sind zunächst im Schwamm viele Ionen zwischen wenigen bis gar keinen Wassermolekülen, während das Wasser draussen nur wenige Ionen enthält – und die Natur verlang danach, diesen Unterschied auszugleichen: Physiker nennen dieses Verlangen “osmotischer Druck”.

Mit Osmose zum Gel

Dem osmotischen Druck folgend dringen die Wassermoleküle rasch in den Molekül-Schwamm ein. Dort umlagern sie die Natrium-Ionen, welche sich daraufhin vom Molekül-Netz lösen, und die Anionengruppen. Letztere bleiben allerdings fest mit den Kohlenstoff-Maschen des Polymers verbunden, sodass der Schwamm selbst sich nicht auflöst. Dabei stossen sich die negativen Ladungen, die nicht länger von Natriumionen aufgehoben werden, gegenseitig ab und treiben das anfangs eng gepackte Netz immer weiter auseinander.

Das Ergebnis ist ein riesiges Schwamm-Molekül, in dessen wachsenden Poren Wassermoleküle regelrecht kleben, während es immer mehr Raum einnimmt. Solch ein Gebilde, das weder wirklich ein Feststoff noch wirklich in Wasser gelöst ist, nennen die Physiker ein Hydrogel. Damit die Hydroperlen für eure Topfpflanzen bei all dem aber nicht völlig aus dem Leim gehen, ist ihre Oberfläche von einem zusätzlichen Polymer-Netz umgeben, das sich nur begrenzt ausdehnt und so dafür sorgt, dass die Perlen ihre Form behalten und so lustig herumspringen können.

Wo finden Superabsorber sonst noch Verwendung?

Ihrer Supersaugkraft wegen werden Superabsorber auch in Babywindeln eingebaut, damit Babys Popo auch die ganze Nacht trocken bleibt (ebenso saugen sie wirksam die Folgen einer Blasenschwäche auf). Dabei wird auf die formgebende Aussenhülle verzichtet, denn die Windel selbst hält ja alles an Ort und Stelle. Was passiert, wenn man Superabsorber ohne begrenzende Hülle mit Wasser tränkt, zeigen die Simple Chemics hier sehr eindrücklich:


Da kann man bestimmt auch Pflanzen hinein setzen, aber man sieht dabei auch nicht mehr als in richtiger Erde. Ausserdem haben die springenden Gelbällchen es mir wirklich angetan. Man kann damit wunderbar herumspielen!

Indem man kleine Superabsorber-Körner mit Erde mischt, wird zudem Blumenerde hergestellt, die auch ohne den “Labor-Look” besonders viel Wasser speichern kann.

[/yellow_box]

Entsorgung

Polyacrylsäure und Polyamid sind nicht giftig. Polyacrylsäure wird sogar als Grundstoff für Medikamente und Kosmetik wie Gels zum Auftragen oder Augentropfen als Tränenersatz verwendet. Deshalb machen sie auch bei der Entsorgung keine Umstände.

Die Hydroperlen oder Hydrokristalle können immer wiederverwendet werden – es ist nicht nötig, sie nach einmaliger Benutzung wegzuwerfen! Falls ihr sie doch irgendwann nicht mehr braucht, können sie in den Restmüll gegeben werden. Blumenzwiebeln könnt ihr bis im Herbst in den Garten oder auf den Balkon auspflanzen. Welke Pflanzenteile können ganz normal auf den Kompost oder in den Bioabfall.

Und wir sieht eure – vielleicht auch ungewöhnliche – Frühlings- oder Osterdekoration aus?

Experiment im Frühling: Blumen färben

,
Experiment im Frühling: Blumen färben

Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

Blogparade: Kinder sind Forscher!

Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

Papa daraufhin: “Aber wir haben doch schon Hortensien im Garten…”

Klein-Kathi: “Aber die sind rosa!” (Und meine Lieblingsfarbe war -und ist- eben blau.)

Papa: “Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.”

Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

Experiment: Wir färben Blumen um

Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

Ihr braucht dazu

  • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
  • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
  • Ggfs. Gummi- bzw. Einmalhandschuhe
  • Eine kleine Vase oder anderes Glasgefäss
  • Ein paar Stunden, ggfs. einen Tag Zeit
Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

Wie ihr das Experiment durchführt

  • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
  • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

  • Füllt das farbige Wasser in die Vase mit den Blumen.

Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

  • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

Was passiert da?

Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen “Rohrleitungen” durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

Die Adern in den Blütenblättern sind deutlich blau gefärbt

Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

Und was ist der “Antrieb” dieser Wasserversorgung?

Pflanzen sind in der Lage zu “schwitzen”: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

Warum funktioniert das nicht mit Topfpflanzen?

Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der “Topf” geradezu unendlich gross ist.

Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel “Wasserblau”.

Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach “Chemie”. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

Entsorgung

Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

Ausflugstipp : Chemie und Co im Zoo

, , ,

Was macht man, wenn man das nass-kalte Winterwetter satt hat und sich nach dem Frühling sehnt, der aber noch weit weg ist? Man geht dahin, wo es warm ist! Viele Zoos haben auch im Winter einladende Behausungen für Tiere und Pflanzen aus aller Herren Länder – auch solchen, in welchen es stets warm und häufig sonnig ist.

Der “ZOOh” in Zürich wartet diesbezüglich mit einem besonderen Leckerbissen auf: Der riesigen Masoala-Regenwaldhalle, in welcher man sich kurzerhand in den Dschungel auf Madagaskar versetzen lassen kann – auch mitten im Winter!

Nicht nur dort, sondern auf dem ganzen Zoo-Gelände habe ich bei unserem jüngsten Besuch viele faszinierende Tiere entdeckt, die sich Physik oder Chemie auf teils spektakuläre Weise zu Nutze machen. So kommen selbst Forscher, die sich mehr für diese beiden als für die Biologie der Tiere interessieren, im ZOOh voll auf ihre Kosten.

Hinter diesem Beitrag steht KEINE Kooperation mit dem ZOOh in Zürich, d.h. es gibt keine Vereinbarung über eine Gegenleistung – ich gehe liebend gern in den Zoo und bin nicht zuletzt der räumlichen Nähe wegen in Zürich Stammgast. Dieser Beitrag ist damit eine ausschliesslich persönliche Empfehlung aus Eigeninitiative!

Der zoologische Garten – zum Lernen und für den Artenschutz

Wenn ihr einmal nach Zürich kommt (oder sogar in der Nähe lebt), ist der Zoo für Naturfreunde immer einen Besuch wert. Wunderschöne und leider oft vom Aussterben bedrohte Tiere können hier in meist hochmodernen Anlagen bewundert werden. Diese Tiere werden hier oder in anderen Zoos ausserdem nachgezüchtet, womit sich die zoologischen Gärten aktiv an der Erhaltung der Arten beteiligen. Damit die genetische Vielfalt dabei erhalten bleibt, tauscht man den Nachwuchs gerne untereinander, d.h. von Zoo nach Zoo aus.

Viele Anlagen in Zürich sind zudem nach Naturreservaten rund um den Globus benannt, mit welchen der Zoo in enger Verbindung steht. So ist er auch am Schutz der Tiere in ihrer jeweiligen Heimat beteiligt. Und der fängt damit an, unsereinem ohne grossen Aufwand eine Weltreise zu ermöglichen und die Tiere und ihre Heimat kennen zu lernen. Denn inzwischen sind alle sieben (Teil-)Kontinente im ZOOh vertreten:

  • Asien mit Trampeltieren, indischen Löwen und Elefanten
  • Afrika mit den Dschelada-Pavianen und den Bewohnern der Masoala-Regenwaldhalle
  • Europa in Form der Storchenkolonie auf dem Zoogelände und mehreren Eulen-Arten
  • Südamerika mit zwei Lama-Arten und dem Flachlandtapir
  • Nordamerika mit Reptilien wie der Sidewinder-Klapperschlange
  • Australien mit einer neuen Anlage, die im März 2018 ihre Tore öffnet!
  • Die Antarktis – mit gutem Willen – mit den Königspinguinen (die leben tatsächlich auf Inseln etwas nördlich der Antarktis, doch ich lasse sie als kleine Brüder des Kaiserpinguins gerne durchgehen)

Das sind natürlich nur Beispiele für die vielen verschiedenen Arten, die es hier zu entdecken gibt.

Damit ihr bei eurem Zoobesuch inmitten der Artenvielfalt einen roten Faden habt, habe ich euch ein Quiz rund um die Physiker und Chemiker unter den Tieren im ZOOh zusammengestellt.

Wie das Quiz funktioniert

Nehmt die folgenden Fragen als Printable oder auf eurem Mobilgerät mit in den Zoo und haltet dort die Augen offen: Welche Tierarten werden in den einzelnen Abschnitten beschrieben? Die Tiere sind in keiner bestimmten Reihenfolge aufgelistet. Ihr könnt euch im ganzen Zoo frei bewegen und so die Anlagen in beliebiger Reihenfolge besuchen.

Tragt jeweils den deutschen Arten-Namen des gesuchten Tiers (wie auf der jeweiligen Beschreibungs-Tafel angegeben, Einzahl, ä = ae, ö = oe, ü =ue) in die Liste ein. Die markierten Buchstaben ergeben ein Lösungswort, das ihr als Password eingeben könnt, um hier eure Experten-Urkunde herunter zu laden!

Wie ihr zum ZOOh kommt

In Zürich ist das Parkieren teuer. Deshalb reist ihr am einfachsten mit dem Zug nach Zürich an. Vom Hauptbahnhof (“HB”) lauft ihr etwa 300 Meter zur Tram-Station “Central” und fahrt von dort mit dem Tram Nummer 6 in Richtung Zoo bis ganz nach oben zur Endstation. Von dort aus folgt ihr einfach den Tierspuren bis zum Haupteingang. Genaueres, auch zu Öffnungszeiten und Eintrittspreisen, erfahrt ihr auf der Homepage des Zoos!

Während der Anreise könnt ihr euch die Vorfreude übrigens wunderbar versüssen, indem ihr schon einmal die spannenden Infos zu den Tieren in den Quizfragen lest.

Wenn Zürich zu weit weg ist

Natürlich könnt ihr das Quiz auch in einem oder mehreren anderen Zoos (ein einziger anderer Zoo, der alle gesuchten Tiere hält, ist vermutlich schwer zu finden), mit Hilfe des Internets oder schlauer Bücher lösen.

Die gesuchten Tiere

Die lebende Batterie

Was ihr Menschen erst mit Hilfe von Sonne, Wind und Wasser mühsam erzeugen und in Batterien abfüllen müsst, trage ich in meinen eigenen Zellen bei mir!

Jede zweckentfremdete Zelle meiner elektrischen Organe ist eine winzigkleine Batterie, die ich mit der Energie aus meiner Körperchemie aufladen kann. Das funktioniert wie bei Muskelzellen – nur dass meine elektrischen Zellen sich nicht zusammenziehen, sondern ihre Ladung speichern.

Da all meine aufladbaren Zellen in Reihe geschaltet sind – wie die Batterien einer grossen Taschenlampe – können sie, wenn sie sich alle miteinander entladen, bei einer Gesamtspannung von bis zu 600 Volt für einige Sekunden einen Strom von bis zu 0,83 Ampere erzeugen. Das ergibt eine Leistung von 415 Watt – für einen Augenblick genug für den Betrieb eines Haarföhns.

Also ärgere mich lieber nicht, sonst bekommst du noch einen Schlag ab!

__ __ __ __ __ __ __ __ __

Doppelklebeband frei Haus

Meine kleineren Verwandten sind dafür bekannt, dass sie senkrecht oder gar kopfunter an Wänden, Zimmerdecken oder dem Glas ihres Terrariums hängen. Das kann ich auch, obwohl ich als Grösster meiner Familie bis zu 35cm lang und entsprechend schwer werde!

Möglich ist mir das dank unzähliger mikroskopisch winziger Härchen an meinen Fusssohlen, die zusammen eine wahnsinnig grosse Oberfläche haben. Und die vielen, vielen Moleküle auf dieser Oberfläche ziehen die Moleküle von Glas und Mauern an, bzw. werden von diesen angezogen.

So ergeben auch hier viele winzigkleine Effekte in der Summe einen Grossen: Meine Füsse kleben förmlich an der Oberfläche, ohne dass sie untrennbar damit verbunden wären. Übrigens nur, wenn es nicht zu nass ist: Auf einem Wasserfilm komme sogar ich ins Rutschen!

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Auch Tiere schätzen Lebensmittelfarben

Ich bin für meine auffällige, zuweilen als kitschig empfundene Farbe bekannt. Die ist aber nicht in meinen Genen festgeschrieben. Stattdessen nehme ich die Farbstoffe – es handelt sich um Carotinoide, die ihr z.B. von Herbstblättern, Eidotter bzw. als Vitamin A kennt – mit der Nahrung auf.

Hier im Zoo bekomme ich deshalb zum üblichen Futter extra orange Krevetten-Schwänze serviert, damit ich auch so ausschaue, wie ihr mich kennt!

__ __ __ __ __ – __ __ __ __ __ __ __ __

Hier stimmt die Chemie

Ich lebe eng mit einem giftigen Tier zusammen, das eigentlich mehr wie eine Pflanze erscheint. Diesen Partner zu berühren hat denn auch für die meisten Lebewesen einiges mit der Begegnung mit einer Brennnessel gemein: Es tut weh, und wer nicht aufpasst, wird gelähmt und gefressen.

Mir passiert das nicht, denn ich schmiere mich mit dem Schleim von der Oberfläche meines WG-Partners sein, sodass dieser glaubt, ich sei ein Teil von ihm selbst! Dafür gewinnt mein Partner aus meinen Hinterlassenschaften wertvolle Nährstoffe. So eine Symbiose ist schon praktisch.

Seit Anfang dieses Jahrtausends bin ich übrigens ein weltbekannter Disney-Star. Wer findet mich?

__ __ __ __ __ __ __ __ __ __ – __ __ __ __ __ __ __ __ __ __ __ __ __

Giftnudel

Ich bin eines der giftigsten Tiere der Erde! Mein Gift heisst Batrachotoxin und stört die Nervenreizleitung zu den Muskeln anderer Tiere. Die Folge sind Lähmungen, auch der Atemmuskeln, die meine Fressfeinde bis hin zu einem Menschen töten können!

Deshalb nutzten die Choco-Indianer in Kolumbien mein Gift für ihre Pfeile für die Jagd. Nichts desto trotz bin ich eine gute Mutter und kümmere mich um meinen Nachwuchs. Das ist in unserer Familie nicht selbstverständlich.

Achtung! Eine ganze Reihe meiner Verwandten leben ebenfalls im ZOOh! Deshalb ein Tipp: Mein deutscher Name, der meine Farbe beschreibt, enthält ein edles chemisches Element!

__ __ __ __ __ __ __ __   __ __ __ __ __ __ __ __ __ __ __ __ __ __ __

Lichtgestalt

Mein physikalisch-chemischer Trick gereicht für einem nicht meinem sondern eurem Vorteil. Ihr könnt mich dank ihr nämlich leichter entdecken, bevor ihr ungewollt über mich stolpert (ich bin nämlich klein und meistens giftig). Meine Oberfläche strahlt nämlich hell, wenn man sie mit UV-Licht, dem sogenannten Schwarzlicht, beleuchtet: Ich fluoresziere!

Hier im Zoo bin ich übrigens Untermieter in der Anlage einer sehr viel grösseren Tierart – und natürlich ist meine Behausung mit einer Schwarzlicht-Lampe ausgestattet, mit der ihr mich zum Leuchten bringen könnt (Kathi hat vergessen, mein Schild abzulichten, weshalb hier meine allgemeine Bezeichnung genügt)!

__ __ __ __ __ __ __ __

Lebendes Stimmungsbarometer

Bestimmt kennt ihr mich für meine Fähigkeit, innerhalb kürzester Zeit die Farbe zu wechseln. Das mache ich aber nicht, wie ihr oft erzählt, um mich zu tarnen, sondern um meine Laune kundzutun und mich den wechselnden Widrigkeiten meines Lebensraums anzupassen.

So bin ich bei Wärme hell, sodass ich einfallende Sonnenstrahlung und bei Kühle dunkel, um möglichst viel Strahlungswärme aufzunehmen. Als wechselwarmes Tier fällt es mir nämlich nicht leicht, meine Körpertemperatur stabil zu halten. Bei zu viel Sonne werde ich allerdings fast schwarz, damit ich keinen Sonnenbrand bekomme, und zur Paarungszeit ist bei uns Fasnacht: Um die Weibchen zu beeindrucken, werde ich dann so bunt wie möglich. Wie bunt, hängt davon ab, wo genau ich zu Hause bin.

Wie ich das hinbekomme? Meine Hautzellen enthalten Farbstofftröpfchen, die nach Bedarf umsortiert und neu geordnet werden können. Zusammen ergeben die Tröpfchen, die gerade oben liegen, ein farbiges Muster – wie Pixel ein Computerbild ergeben.

Wenn ihr mich in Zürich findet (das ist nicht einfach, weil ich hier unglaublich viele Möglichkeiten habe, mich zu verstecken), ist meine Grundfarbe in der Regel grün. Wenn Reto und Kathi mich besuchen, machen sie stets eine Wette: Wer mich zuerst findet, bekommt im Restaurant ein Dessert. Macht ihr mit?

__ __ __ __ __ __ __ – __ __ __ __ __ __ __ __ __ __

Geisterstunde

Ich bin ein Jäger und in der Regel nachts auf Beutezug. Deshalb muss ich besonders leise sein, damit die Mäuse und anderes kleines Getier mich nicht kommen hören.

An meinem samtig weichen Gefieder gleiten die Luftteilchen vorbei ohne zu verwirbeln. So ist, wenn ich fliege, kein Rascheln oder Flattern zu hören. Um so besser kann ich meine Beute hören – wenn ich sie nicht schon längst mit meinen grossen Augen gesehen habe – während ich lautlos auf sie herabstürze.

Ich bin übrigens nach einem tagsüber jagenden Verwandten benannt.

__ __ __ __ __ __ __ __ __ __ __ __

Wasserfreund – Wasserfeind

Obwohl ich ein Vogel bin, könnte man meinen, ich hätte Fell. Meine Federn sehen wirklich nach Haaren aus. Davon habe ich auch gleich besonders viele: Innen flauschige Daunen, die halten mich warm. Die haarfeinen Federn aussen fügen sich dagegen zu einer glatten Oberfläche zusammen, an der Wasser einfach abperlt.

Damit das funktioniert, muss ich mein Gefieder regelmässig putzen und mit einem öligen Stoff aus meiner Bürzeldrüse einschmieren. Man unterscheidet nämlich Stoffe in “wasserliebend” und “fettliebend”. Wasserliebende Stoffe mischen sich prima mit Wasser, aber nicht mit Fetten. Fettliebende Stoffe mischen sich dagegen prima mit Fetten, aber nicht mit Wasser. Und zu letzteren zählt mein Öl für die Federn.

Das ist auch gut so, denn meine Beute sind Fische, denen ich erst einmal hinterher “fliegen” muss.

__ __ __ __ __ __ __ __ __ __ __ __ __ __

Wärmetauscher gesucht

Wenn ihr Menschen warm habt, schwitzt ihr, und die Flüssigkeit auf eurer Haut nutzt eure Körperwärme, um zu verdampfen. So kühlt ihr euch ab. Da ich wie die meisten anderen Tiere keine Schweissdrüsen habe (die wären in meiner warmen und feuchten Heimat auch nicht besonders nützlich), muss ich mich anders kühlen.

Zum Glück ist mir ein Schnabel mit grosser Oberfläche gewachsen, über welchen ich überschüssige Körperwärme direkt aus dem Blut darin an die Luft abgeben kann!

__ __ __ __ __ __ __ __ __ __ __

Lösungswort:

__ __ __ __ __ __ __ __ __ __

Viel Spass bei eurem nächsten Zoo-Besuch

wünscht euch eure Kathi Keinstein!

Und erzählt doch in den Kommentaren, was ihr Spannendes im Zoo erlebt habt!

Kalk im Wasser – Nierensteine im Körper?

, ,
Nierenstein ganz nah

Was sind Nierensteine? Fördert kalkhaltiges Wasser ihre Entstehung?

Diese Leser-Frage kam auf, als ich vor ein paar Wochen über Kalkfänger geschrieben habe – Ringe aus Stahlwolle, die eine Art Köder für Kalk darstellen, der sich aus hartem Wasser absetzen kann. Diese Kalkablagerungen liessen eine Leserin an Nierensteine denken, jene unerwünschten Ablagerungen, die in unseren Nieren entstehen und auf schmerzhafte Weise den Harnleiter verstopfen können.
 

Was sind Nierensteine und wie entstehen sie?

Die Nieren sind die Kläranlagen unseres Körpers. In ihnen werden verschiedene Stoffwechselabfälle, Ionen und Wasser aus dem Blut “gewaschen” und zu dem gesammelt, was als Urin in die Harnblase und von dort nach draussen abfliesst. Normalerweise lösen sich alle Abfälle in Wasser, sodass der Urin als klare Flüssigkeit seinen Weg durch die Harnleiter von der Niere zur Blase antreten kann.

Die Wasserlöslichkeit einiger Abfälle bzw. von Kombinationen verschiedener Bestandteile ist jedoch sehr begrenzt. Wenn unter unglücklichen Umständen die Konzentration solcher Stoffe oder Kombinationen im entstehenden Urin zu hoch wird, wird es solchen Stoffen in der Lösung “zu eng”: Sie verlassen die Lösung und werden fest (Chemiker sagen “sie fallen aus”).

Dabei suchen sich die ausfallenden Teilchen meist irgendeinen Feststoff-Krümel als Anreiz und lagern sich von allen (zugänglichen) Seiten daran an. So entsteht Schicht für Schicht ein Sandkorn, das sich mit der Zeit zu einem kleinen Kieselsteinchen auswachsen kann – einem Nierenstein.

Nierensteine - wo sie zu finden sind

Ablagerungen schwer löslicher Salze können den Harnleiter (nach links unten aus der Niere abgehend) verstopfen und so zu Nierenkolik, Harnrückstau und gefährlichen Entzündungen führen. ( By BruceBlaus. Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. (Own work) [CC BY 3.0], via Wikimedia Commons

Wenn solche Nierensteine in den Harnleiter geraten, können sie je nach Grösse darin stecken bleiben (dann spricht man korrekterweise von Harnleitersteinen) und somit den Abfluss für den Urin verstopfen. Die Folge sind starke, krampfartige Schmerzen (die berüchtigte Nierenkolik) und ein Rückstau des Urins, der Entzündungen mit sich bringen und die Niere schädigen kann. Wenn es einmal zu so einer Verstopfung kommt, hilft nur noch der Weg in Spital, um die Steine zerkleinern und entfernen zu lassen (heutzutage geht das meist mit Hilfe von Schallwellen von aussen).

Wer solch eine unangenehme Erfahrung aber von vorneherein vermeiden möchte, tut gut daran, über Nierensteine bescheid zu wissen. Die “unglücklichen Umstände” lassen sich nämlich in den allermeisten Fällen recht einfach vermeiden.
 

Woraus bestehen Nierensteine?

Die allermeisten Nierensteine bestehen aus Salzen, also aus Verbindungen verschieden geladener Ionen, die sich in ungünstiger Paarung schlecht in Wasser lösen. In den meisten dieser Steine (d.h. in rund 80 bis 85% aller Nierensteine), sind Calcium-Ionen, , massgeblich an diesen Paarungen beteiligt. Richtig – das sind genau die Kationen, aus denen auch Kalk entsteht. Die Frage unserer Leserin liegt also nahe.

Anstelle von Carbonat-Anionen () enthalten Nierensteine jedoch andere negativ geladene Ionen, allen voran das Anion der Oxalsäure (Oxalat,, 60% aller Nierensteine). Dazu kommen Phosphat-Anionen (), 9% aller Steine) und das Anion der Harnsäure (Urat) und weitere, die allesamt mit Calcium in Wasser schwer- bis unlösliche Salze bilden.

Harnsäure kann sowohl ganz allein als ungeladenes Molekül oder als Urat-Anion mit Metall-Ionen ausfallen und Harnsäuresteine bilden (15% aller Nierensteine).

Als Folge von Harnwegs-Infektionen können überdies Magnesium () und Ammoniumionen () mit Phosphat-Anionen zu “Struvit”-Steinen zusammenfinden (11% aller Nierensteine), die nach dem Mineral der selben Zusammensetzung benannt sind.

Selten sind Steine aus anderen organischen Stoffen, wie Cystin oder Xanthin, die aufgrund von genetisch bedingten Stoffwechselstörungen in zu grossen Mengen im Urin landen (je 1% aller Nierensteine).

Da es in so einer Niere höchst lebendig und bewegt zu und her geht, finden all diese Ionen und Moleküle beim Ausfallen keine Ruhe, um sich zu ordentlichen, sichtbar symmetrischen Kristallen zusammen zu lagern. So entstehen oft gerundete oder blasige, unstrukturierte Kiesel, deren Zusammensetzung aus Ionenkristallen sich erst vor dem Makro-Objektiv (wie auf dem Artikelbild) oder unter dem Elektronenmikroskop offenbart.

Nierenstein unter dem Rasterelektronenmikroskop

Oberfläche eines Calciumoxalat-Steins unter dem Rasterelektronenmikroskop. Die Breite des Bildes entspricht einer Länge von 0,45mm ! (By Kempf EK (Own work) [CC BY 3.0], via Wikimedia Commons)

Ebenso führt das lebendige Treiben rund um die Urin-Entstehung zwangsläufig dazu, dass verschiedene Ionensorten miteinander ausfallen und Mischkristalle bilden. Für einen Nierenstein eine Salzformel wie für einen Reinstoff anzugeben ist deshalb höchst schwierig bis unmöglich.
 

Was erhöht die Konzentration der schwerlöslichen Salze?

So unterschiedlich wie die verschiedenen Nierensteine sind auch die Umstände, unter welchen sie entstehen. Eine Gegebenheit führt allerdings in jedem Fall zur Erhöhung der Konzentration gelöster Teilchen: Ein Mangel am Lösungsmittel.

Zu einem Überschuss an Nierenstein-Bestandteilen im Urin kommt es also für

Alle Steine

Bei Flüssigkeitsmangel – wenn zu wenig getrunken oder/und zu viel Flüssigkeit ausgeschieden wird (Schwitzen, Durchfall,…alles was zu Dehydrierung führen kann).

Calciumoxalat-Steine

Bei vermehrter Ausscheidung von Oxalat aus dem Blut in den entstehenden Urin.

An sich sind Oxalat-Anionen ganz normale Stoffwechsel-Abfallprodukte, die in jedem Körper vorkommen und transportiert werden. Dementsprechend einfach kann es zu einer “Flutung” mit Oxalat kommen, wenn sich irgendwo eine reichhaltige Quelle auftut. Die naheliegendste solche Quelle ist die Nahrung:

Schwarztee (manchmal auch Grüntee), Spinat, Rhabarber, Rande (in Deutschland: Rote Bete), Krautstiel (in Deutschland: Mangold), Kakao und Nüsse sind Lebensmittel, die relativ viel Oxalsäure enthalten.

Auch Stoffwechselstörungen, sowohl erbliche (selten) als auch erworbene, können zur vermehrten Ausscheidung von Oxalat-Anionen führen. Ursachen für viel Oxalat im Urin können Funktionsstörungen der Nebenschilddrüsen, die Überdosierung von Vitamin D, eine zurückliegende Magen-Bypass-Operation, Morbus Cushing, die Folgen von Knochenkrebs und weitere sein.

Harnsäure-Steine

Bei vermehrter Ausscheidung von Harnsäure-Salzen (Urat) aus dem Blut.

Harnsäure bzw. Harnsäure-Anionen sind ein Stoffwechselprodukt, das beim Abbau von Purinen entsteht. Purine wiederum sind Bestandteile der Nukleinsäuren, also DNA und RNA – kurz: des Erbguts in allen Zellen. Kurzum: Wo (zerstörte) Zellen sind, sind auch Purine nicht weit. Dabei können diese Zellen sowohl aus der Nahrung als auch aus unserem eigenen Körper stammen.

Dummerweise besteht die allermeiste für uns geniessbare Nahrung aus Zellen – sowohl pflanzliche als auch tierische. Dennoch gelten Innereien, Fleisch, Fisch und vor allem die Haut von Fisch und Geflügel als besonders zell- und damit als purinreich.

Körpereigene Zellen werden z.B. durch Hungerkuren oder Krebserkrankungen und deren Bekämpfung verstärkt zum Abbau ihrer selbst und damit zur Lieferung von Purinen zur Verstoffwechselung bewegt.

Die häufigste Ursache für einen Harnsäure-Überschuss im Körper ist jedoch eine Ausscheidungsstörung in den Nieren: Wenn die (auch in normalem Umfang) im Stoffwechsel entstehende Harnsäure nicht raus kann, sammelt sie sich an. In den Nieren können so Steine entstehen, bei Ablagerung in den Gelenken kommt es zur Gicht.

Ein “saurer”, also niedriger pH-Wert im Urin führt zudem dazu, dass Natriumurat, das Salz aus Natrium () und Urat-Ionen, besonders leicht ausfällt. Übergewicht gilt das wichtige Ursache für sauren Urin. Überdies hemmt Alkohol (Ethanol) die Ausscheidung von Harnsäure über die Nieren.

Struvit-Steine

Bei basischem Urin in Folge von Infektionen.

Struvit () fällt nur in basischer Umgebung aus. Da menschlicher Urin gewöhnlich schwach sauer ist, kommen solche Steine unter normalen Umständen nicht vor (anders z.B. bei Hauskatzen: die haben gewöhnlich basischen Urin und können daher auch bei gesunder Ausgangslage Struvit-Steine entwickeln).

Anders wird das, wenn sich der Mensch einen Harnwegsinfekt mit Bakterien einfängt, die Harnstoff zu Ammoniak ()abbauen können. Letzterer ist nämlich basisch, d.h. er nimmt -Ionen auf (so entstehen daraus Ammonium-Ionen ), was zu einer Erhöhung des pH-Werts in der Umgebung – hier im Urin – führt. So können in der Gegenwart von ammoniakproduzierenden Bakterien Struvit-Steine entstehen.

Und Calciumcarbonat?

Während Calcium in vielen Nierensteinen eine Rolle spielt, ist vom Carbonat-Anion bis hierhin keine Spur. Tatsächlich ist Calciumcarbonat, wenn überhaupt, nur selten Bestandteil von Nierensteinen. Das wird daran liegen, dass unter den Bedingungen im menschlichen Körper nicht das stark basische Carbonat (), sondern das weniger basische und leichter lösliche Hydrogencarbonat () vorkommt.
 

Welche Bestandteile können über die Ernährung beeinflusst werden?

Mit der Nahrung nehmen wir vor allem drei wichtige Bestandteile von Nierensteinen auf:

  • Calcium : findet man als -Ionen unter anderem in Milch und Milchprodukten, sowie Mineral- und Leitungswasser.  ist nicht nur Bestandteil von Nierensteinen, sondern auch ein für den Körper unverzichtbarer Mineralstoff. Besonders für den Knochenbau und -erhalt benötigen wir unbedingt Calcium. Deshalb wird ein Verzicht auf Calcium zur Vorbeugung von Nierensteinen gar nicht mehr empfohlen (es sei denn, es findet sich tatsächlich zu viel davon im Urin). Die für gesunde Erwachsene empfohlene Calcium-Zufuhr von 1000 – 1200 mg pro Tag führt birgt gemäss der Schweizerischen Gesellschaft für Ernährung auch das geringste Risiko für die Entstehung von Calciumsteinen. Wie das kommt? Calcium allein macht noch keinen Nierenstein. Dazu braucht es schliesslich auch Anionen:
  • Oxalat : Viele Pflanzen – auch und gerade solche, die als gesund gelten – enthalten relativ viel Oxalsäure bzw. Oxalat-Anionen. So kann die Aufnahme von oxalsäurereicher Nahrung direkt zu einer Flutung der Nieren mit Oxalat führen. Wenn dann auch Calcium vorhanden ist, entstehen leicht Oxalat-Steine.
  • Harnsäure : Purine aus Proteinen in Fleisch und Fisch werden zu Harnsäure verstoffwechselt, sodass auch hier eine Aufnahme mit der Nahrung schnell zu einer Flutung führen kann. Ausserdem führt die fleischhaltige Nahrung zu einem niedrigen, d.h. sauren pH-Wert im Urin, was die Entstehung von Harnsäuresteinen weiter begünstigt.

 

Wie senke ich mein Nierensteinrisiko durch Ernährung?

Alle Steine

Viel trinken ist grundsätzlich Empfehlung Nummer 1, wenn es um Nierensteine geht. Schliesslich müssen sich in einem grossen Urin-Volumen wesentlich mehr Nierenstein-Bestandteile ansammeln, bevor etwas fest wird, als in einem kleineren Volumen. Patienten, die bereits mit Nierensteinen zu tun hatten oder haben, wird daher empfohlen, am Tag mindestens 2,5 bis 3 Liter zu trinken.

Calcium-Steine

In der Gegenwart von Natrium(Na+-)Ionen werden Calcium-Ionen besonders leicht vom Blut in den Urin befördert. Deshalb lässt sich die Calciumausscheidung allein durch Masshalten bei der Verwendung und damit der Aufnahme von Koch- oder Speisesalz (Natriumchlorid) verringern, ohne dass der Körper auf wertvolles Calcium verzichten müsste. Zu wenig Salz ist allerdings auch nicht angebracht, da mit dem Salz auch das Wasser seinen Weg in den Urin findet – und wenig Wasser führt zu einem niedrigen Urin-Volumen…und damit zu Nierensteinen. Empfohlen wird die Aufnahme von 4 bis 6 Gramm Kochsalz pro Tag (Achtung bei Fertigprodukten! Die enthalten oft mehr Kochsalz, als man meinen möchte!).
Zudem lässt sich Calcium hinsichtlich der Entstehung von Nierensteinen auch mit Hilfe von Zitronensäure “unschädlich” machen: Citrat-Anionen bilden nämlich mit  eine sogenannte Komplexverbindung, die gut wasserlöslich ist, aber das Calcium-Ion für die Reaktion zu Calciumoxalat und anderen schwer löslichen Salzen unzugänglich macht. Zitrusfrüchte und -säfte sind daher eine gute und schmackhafte Wahl (nicht nur) für die Flüssigkeitszufuhr.

Oxalat-Steine

Wer zu Oxalat-Steinen neigt, sollte eine Oxalsäure-Überflutung möglichst vermeiden. Das heisst Zurückhaltung bei oxalsäurereichen Nahrungsmitteln, zu welchen verschiedene Gemüse, Nüsse, aber auch Schokolade (Kakao!) zählen. Da Nierensteine zudem oft Gemische aus verschiedenen Stein-Typen sind, ist deshalb eine rein vegetarische Ernährung zur Vermeidung von Harnsäuresteinen nicht zu empfehlen: Zu schnell gerät man dabei an Oxalsäure, die dann vom Regen in die Traufe führen kann.
Es gibt jedoch einen Trick für all jene, die auf ihr oxalatreiches Lieblings-Gemüse nicht verzichten wollen: Verspeist die Oxalsäure gemeinsam mit Calcium, zum Beispiel aus Milchprodukten oder Mineralwasser! Dann bildet sich das schwerlösliche Calciumoxalat nämlich schon im Verdauungstrakt – und wird mit dem Stuhlgang gleich wieder ausgeschieden. Damit ist das Calcium allerdings auch verloren und trägt nicht nur Deckung des Tagesbedarfs bei!

Harnsäuresteine

Wer mit Harnsäure-Steinen zu tun hat, sollte Fleisch und Fisch in Massen essen (maximal 1 Portion von 120g pro Tag an höchstens 5 Tagen in der Woche) und besonders purinhaltige Bestandteile meiden. Eine rein vegetarische oder gar vegane Ernährung ist jedoch der Oxalsäure wegen sehr schwierig und wird daher nicht empfohlen. Wer Übergewicht abbauen möchte, sollte das Abnehmen langsam angehen, um eine Flutung mit körpereigenen Purinen zu vermeiden! Hydrogencarbonat-Ionen – zum Beispiel aus Mineral- oder auch Leitungswasser – können dabei helfen, den sauren Urin-pH zu erhöhen (d.h. “basischer zu machen”).

Struvit-Steine

Harnwegsinfekte sollten frühzeitig behandelt werden, um Struvit-Steine und eine Nierenbeckenentzündung zu vermeiden! Meine persönliche Waffe für den “Präventiv-Schlag” bei einer Harnwegs-Reizung sind Preiselbeer- bzw. Cranberry-Getränke (zum Beispiel aus Trink-Granulat). Damit kann ich vieles schon im Keim ersticken. Bei anhaltenden Schmerzen oder/und Fieber aber unbedingt zum Arzt gehen und eine Urin-Probe untersuchen lassen! Das dauert nur ein paar Minuten und zeigt, ob ihr einen Infekt mit Bakterien habt, der mit Antibiotika behandelt werden sollte!
 

Fazit

Die Entstehung von Nierensteinen kann verschiedene Ursachen haben. Dabei können die Rahmenbedingungen für die Stein-Entstehung teilweise durch die Ernährung beeinflusst werden.

Calcium, genauer das -Ion, welches massgeblicher Bestandteil an Kalkablagerungen in Bad und Küche ist, ist auch in den meisten Nierensteinen enthalten. Für die Vermeidung von Nierensteinen sind jedoch die Anionen, die mit dem Calcium schwer lösliche Verbindungen bilden, viel bedeutsamer. Die Aufnahme solcher Anionen, wie Oxalat und Urat, und damit ihre Konzentration im entstehenden Urin in den Nieren lässt sich über die Ernährung recht gut steuern. Dabei sind Calcium und das in “hartem” Wasser gelöste Hydrogencarbonat-Anion mitunter sogar nützliche Hilfsmittel!

Viel trinken und eine massvolle, aber vielseitige Ernährung helfen grundsätzlich dabei, einen ausgeglichenen Stoff-Haushalt (nicht nur) in den Nieren zu bewahren und der Entstehung von Nierensteinen vorzubeugen.

Mehr Infos rund um Nierensteine und Ernährung

Die folgenden Quellen sind in diesen Artikel eingeflossen:

Merkblatt “Ernährung und Nierensteine” von der Schweizerischen Gesellschaft für Ernährung

Infoseite rund um Harn- und Nierensteine, mit Tabellen zu Stein- und Nahrungsmittel-Zusammensetzung

 

Wie lasse ich Tomaten nachreifen? Bio-Tricks mit Apfel und Ethylen

,
lecker und hübsch anzusehen: reifende Tomaten

Die Schweiz wird bislang mit einem ausnehmend goldenen Oktober verwöhnt – und nicht nur ich geniesse Sonne und Wärme, sondern auch die letzten Tomaten auf meinem Balkon. Doch was tun, wenn das Wetter umschlägt, bevor die Früchte reif sind? Genau diese Frage hat eine Leserin kürzlich gestellt – man kann Tomaten nämlich in der Wohnung nachreifen lassen.

 

Warum sollte ich grüne Tomaten nachreifen lassen?

Zum Einen liegt das nahe: Grüne Tomaten sind hart und schmecken nicht besonders. Zum Anderen sind unreife Tomaten überdies leicht giftig: Sie enthalten, wie alle Nachtschattengewächse,  Solanin. Diese Substanz kann uns einen verdorbenen Magen bescheren, oder in sehr grossen Mengen noch schlimmeres. Es gibt also genügend Gründe, Tomaten nicht unreif zu essen.

 

Was ist zum Reifen nötig?

Für den Ablauf der Reifungs-Prozesse ist eine milde Umgebungs-Temperatur unerlässlich – mindestens 18 bis 20°C sollte sie betragen. (Sonnen-)Licht ist entgegen verbreiteter Vorstellungen aber nicht notwendig.

 

Was passiert beim Reifen?

Pflanzen bilden Früchte, um andere Lebewesen zu verleiten, davon zu fressen und damit ihre Samen zu verbreiten. Das bedingt natürlich, dass die wachsenden Früchte erst dann gefressen werden, wenn die Samen in ihrem Innern reif sind. Deshalb werden während der Reifung von Früchten verschiedene Frassschutz-Massnahmen zurückgebildet und durch Lockmittel ersetzt.

  • Die grüne Farbe unreifer Tomaten rührt vom Blatt-Farbstoff Chlorophyll her, welcher auch in den Tomaten-Zellen enthalten ist. Im Zuge der Reifung wird dieses Chlorophyll jedoch abgebaut und zunehmend von gelben und roten Carotinoiden ersetzt. (All diesen Farbstoffen kannst du auch im Experiment nachspüren – indem du Blattfarbstoffe voneinander trennst oder die Photosynthese beobachtest! Damit bedient die Tomate (nicht nur) die uns Menschen eigene Programmierung, die uns “rote Früchte” mit “lecker” bzw. “nahrhaft” verbinden lässt.
  • Zuvor in der Frucht eingelagerte Speicherstoffe wie Stärke werden in Zucker umgebaut: Nicht nur wir Menschen mögen süsse Sachen – und begehrte, weil leicht nutzbare Energieträger sind Zucker auch.
  • Pektine – das sind grosse Moleküle, die Pflanzen und Früchten Steifigkeit und Festigkeit verleihen, werden abgebaut. In Folge dessen werden die Früchte weich und für Mensch und Tier leicht zu beissen und zu kauen. Ausserdem beruht die Verbindung zwischen Frucht und Mutterpflanze auf Pektinen, sodass sich die Früchte nach deren Abbau leichter von “ihrer” Pflanze lösen lassen – oder sogar abfallen.
  • Solanin, das Hungrige davon abhalten, soll, unreife Tomaten vorzeitig zu fressen und so ihre Verbreitung zu vereiteln, wird abgebaut. Die reifen Früchte sollen ja verzehrt werden – da wäre das Gift nur hinderlich.
  • Weitere Aromastoffe werden aufgebaut: “Süss” allein macht eine begehrenswerte Frucht nicht aus – eine Vielzahl von Aromastoffen verleiht ihr einen einzigartigen Geschmack, der uns immer wieder davon naschen lässt. Unglücklicherweise ist dies auch der komplizierteste Teil des Reifeprozesses, für welchen dann doch etwas mehr als Wärme nötig ist (deswegen empfinden wir nachgereifte Tomaten aus dem Supermarkt häufig als fade).
Sehen nicht nur lecker aus - schmecken auch: In Wärme und Licht am Strauch reifende Tomaten

Sehen nicht nur lecker aus – schmecken auch: In Wärme und Licht am Strauch reifende Tomaten

 

Wie kann man Tomaten nachreifen lassen?

Einzelne Tomaten kannst du einfach in Zeitungspapier oder einen Papier-Beutel einwickeln und ein paar Tage in einem warmen Raum (20°C aufwärts) lagern. Wenn du einen Apfel dazu legst, kann die Reifung noch zügiger bzw. erfolgreicher verlaufen.

Wenn noch ganze Rispen grüner Tomaten an deiner Tomatenpflanze hängen, kannst du auch die Pflanze direkt über der Wurzel abschneiden und kopfunter an einem warmen Ort aufhängen.

 

Was bewirkt der Apfel?

Nicht nur menschliche Körper, sondern auch Pflanzen steuern ihre Funktionen mit Hormonen – also mit Botenstoffen, die von einem Gewebe in ein anderes transportiert werden können. Die Anweisung zum Reifen von Früchten wird dabei von einem Stoff aus einfachen, kleinen Molekülen vermittelt: Dem Gas Ethen (auch als Ethylen bekannt).

Das Besondere an einem gasförmigen Hormon ist: Es kann auch ausserhalb des Pflanzenkörpers weitergegeben werden – somit auch von einer Pflanze zur anderen! Äpfel sind dafür bekannt, dass sie reichlich Ethen absondern, sodass andere Früchte in ihrer Umgebung rasch reifen oder sogar überreif werden können.

Obst- und Gemüse – Fernhändler nutzen diesen Umstand sogar, indem sie ihre Ware – zum Beispiel Bananen – vor der Reife ernten und nach einem zeitaufwändigen Transport an ferne Orte geradewegs zum Verkauf nachreifen lassen. Dazu legen sie allerdings keine Äpfel daneben, sondern holen sich ihr Ethen aus der Gasdruckflasche (das Gas ist übrigens hochentzündlich, weshalb es nur in die Hände von Fachleuten und entsprechend gesicherte Anlagen gehört!).

Wie wirkt Ethen-Gas auf Pflanzen und Früchte?

Ethen sorgt dafür, dass die Zellwände von Früchten und Pflanzen durchlässig werden. So können die Zellen mehr bzw. einfacher Sauerstoff atmen, welcher verschiedene Oxidations-Prozesse “befeuert”. Solche Prozesse machen die oben beschriebenen Vorgänge zur Reifung aus – und im Übrigen auch das Welken von Pflanzen, das ebenfalls durch Ethen eingeleitet werden kann. Schnittblumen sollten also besser nicht neben der Obstschale mit Äpfeln stehen.

Einzig die Synthese von Aromastoffen lässt sich nicht auf diese einfache Weise bestreiten. Deshalb “schmeckt” man Früchten und Gemüse die industrielle Ethen-Begasung häufig an, indem man eben nichts schmeckt.

Das dürfte auch für die Tomaten aus dem Garten gelten, die mit dem “Apfel-Trick” nachgereift sind – je unreifer sie beim Abnehmen waren, desto mehr. Deshalb lasse ich meine letzten Tomaten so lange wie möglich am Strauch – und bislang das Hochdruckgebiet “Tanja” ihnen wohlgesonnen und beschert ihnen noch viele warme Stunden an der Sonne.

Und wie steht es um eure letzten Tomaten?

Experimente: Das geheimnisvolle Leben der Pflanzen – Teil 2 : Photosynthese

, ,
Blogbild Photosynthese

Habt ihr euch auch schon einmal gefragt, wovon Pflanzen eigentlich leben? Mit dieser Frage habe ich den ersten Teil der Experimente um das geheimnisvolle Leben der Pflanzen begonnen. Darin habt ihr erfahren, dass Pflanzen fast ausschliesslich von Luft und Wasser leben, und wie sie diese “Zutaten” zum Leben aufnehmen und Abfälle wieder ausscheiden können.

Kein Leben ohne Energie

Doch was ist das eigentlich, das Leben? Nach Ansicht der Biologen sind Lebewesen Ansammlungen von Stoffen, die – mit Hilfe von chemischen Reaktionen – sich selbst vermehren können. Lebewesen nehmen also einfache Moleküle aus ihrer Umgebung auf und bauen sie zu grossen, komplexen Molekülen, Zellen und Geweben um. Für Pflanzen heisst das: Sie nehmen Wasser und Kohlendioxid aus ihrer Umgebung und bauen aus den Atomen dieser Moleküle Zucker, Proteine und vieles mehr, die sie zu Blättern, Stängeln und Blüten zusammenfügen. Mit anderen Worten: Pflanzen bringen Ordnung in das vormals fein verteilte Durcheinander der Kleinmoleküle.

Leben ist Ordnung

Leben ist Ordnung: Ein ungeordneter Haufen Atome (in kleinen Molekülen) – entsprechend dem Haufen Bausteine links – kann zu einem Lebewesen geordnet werden – wie die Bausteine zum Gesicht rechts.

Die Gesetze der Thermodynamik schreiben der Natur jedoch vor: Ordnung machen erfordert Arbeit – bzw. Energie. Das gilt für das Zimmeraufräumen ebenso wie für das Wachstum von Pflanzen und anderen Lebewesen.

Was leben will, braucht also (mindestens) eine verlässliche Energiequelle, um all seine chemischen Prozesse am Laufen zu halten.

Wir Menschen erledigen das beim Essen: In unserer Nahrung sind Moleküle – vornehmlich Zuckermoleküle – enthalten, in welchen Energie gespeichert ist. Diese “chemische” Energie kann freigesetzt werden, wenn solche Moleküle mit passenden Partnern reagieren und dabei weniger energiereiche Produkte entstehen.

Grüne Pflanzen halten es anders: Sie bauen ihre Zuckermoleküle selbst! Und die Energie, welche sie in diese Moleküle einbauen, liefert ihnen das Sonnenlicht. Ganz verlässlich jeden Tag aufs Neue. Den Prozess, in welchem aus Kohlendioxid und Wasser mit Hilfe von Sonnenenergie Zuckermoleküle entstehen, nennen Biologen und Biochemiker “Photosynthese”.

Photosynthese: Wie aus Luft und Wasser Zucker wird

‘Die Photosynthese’ fasst eine ganze Reihe von Reaktionen und Prozessen zusammen, für die wiederum eine ganze Reihe von Proteinen gebraucht wird – und natürlich Licht. Das Ganze lässt sich in einer einfachen Reaktionsgleichung zusammenfassen, welche die Ausgangsstoffe und das (vorläufige) Endprodukt der Photosynthese enthält:

Wer nachzählt, wird feststellen, dass links und rechts des Pfeils von jeder Sorte gleich viele Atome stehen, wie es sich für eine ordentliche Reaktionsgleichung gehört. 6 Moleküle Kohlendioxid () und 6 Wasser-Moleküle () werden also zu einem Traubenzucker- (bzw. Glucose-) Molekül () und 6 Sauerstoff-Molekülen () umgebaut.

Um Traubenzucker-Moleküle zu machen ist Energie erforderlich, die in diesen Molekülen gespeichert wird und später wieder freigesetzt werden kann. Lebewesen, d.h. Tiere, Menschen und auch Pflanzen können Glucose zu diesem Zweck im Zuge der Zellatmung kontrolliert “verbrennen” (dazu benötigen wir den Sauerstoff, den wir atmen). Dass Zucker sich mit einem kleinen Trick auch ganz einfach anzünden und zur Energiefreisetzung abbrennen lässt, könnt ihr mit der “mysteriösen Pharao-Schlange” selbst ausprobieren.

Licht wird zu chemischer Energie

Bevor es an die Zellatmung geht, muss der Energieträger Glucose jedoch erst einmal hergestellt werden – mit Lichtenergie. Und Licht lässt sich mit farbigen Molekülen sammeln: Im Artikel zu Farben, Licht und Glanz erkläre ich ausführlich, wie passende Lichtportionen (man nennt sie Photonen oder Lichtquanten) Elektronen auf eine höhere Etage innerhalb der Elektronenhülle eines Moleküls “anregen” können. Je nachdem wie ein solches Molekül gebaut ist, können derart “angeregte” Elektronen von der höheren Etage aus sehr einfach “ihr” Molekül verlassen, um in die Elektronenhülle eines anderen Moleküls in der Nähe “einzuziehen”.

Ein Molekül mit dieser Fähigkeit zur Abgabe von Elektronen ist Chlorophyll, das vornehmlich blaues und rotes Licht zur Elektronenbeförderung verwendet (grünes und gelbes Licht lässt es unbehelligt, weshalb es uns grün erscheint). In den grünen Teilen von Pflanzen sitzen Chlorophyll-Moleküle dicht an dicht in Proteine eingebettet, wie Rosinen in einem sehr rosinenreichen Kuchen. Das Ganze hat die Form eines molekularen Hohlspiegels: So können angeregte Chlorophyll-Moleküle ihre Nachbarn anregen und ihre gesammelte Lichtenergie an das “Chef”-Chlorophyll im Brennpunkt des “Spiegels” weiterleiten. Einmal angeregt kann dieses Molekül sehr einfach ein Elektron an ein benachbartes Protein abgeben, welches es wiederum an seinen Nachbarn weiterreicht und so fort, bis das Elektron schliesslich auf ein kleineres, bewegliches Elektronen-Transportmolekül (NADPH) verladen und zur Zucker-Herstellung “verschifft” wird.

Dem ursprünglichen “Chef”-Chlorophyll – jetzt ein elektrisch positiv geladenes “Radikal” – missfällt das nun fehlende Elektron jedoch so sehr, dass es sich schleunigst ein neues sucht. Behilflich ist ihm dabei ein weiteres Nachbar-Protein – ein Enzym, das Wassermoleküle auseinanderbauen kann:

Die vier Elektronen, die bei dieser Reaktion entstehen, werden zum Wiederauffüllen der Elektronenhülle von Chlorophyll verwendet. Die Wasserstoff-Ionen () dienen als “Treibstoff” für molekulare Dynamos (Proteine names ATP-Synthase), die das Energieträger-Molekül ATP “generieren”. Einzig die Sauerstoff-Atome haben keinen direkten Nutzen. So werden je zwei davon zu einem Sauerstoff-Molekül () verbunden und kurzerhand durch die Spaltöffnungen in den Pflanzenblättern entsorgt.

In dieser “Lichtreaktion” werden also Lichtquanten gesammelt, um mit ihrer Energie Wassermoleküle zu zerlegen und den Elektronentransporter NADPH sowie den Energietransporter ATP zu beladen. Dabei bleiben Sauerstoff-Moleküle als Abfall übrig, der entsorgt werden muss.

Und dass letzteres wirklich funktioniert, könnt ihr selbst nachweisen:

[green_box]

Versuch 1 : Sauerstoff durch Photosynthese

Sauerstoff ist Ausgangsstoff für jede Art von Verbrennung, zum Beispiel der von Kerzenwachs. Ohne Sauerstoff kann keine Verbrennung stattfinden. In einem abgeschlossenen Raum verbraucht eine brennende Kerze daher sämtlichen Sauerstoff und verlischt dann. Eine brennende Kerzenflamme zeigt also an, dass Sauerstoff in ihrer Umgebung vorhanden ist. Und das könnt ihr euch zu Nutze machen. Dazu braucht ihr:

  • Ein dicht verschliessbares Einmachglas, am besten mit Scharnier-Deckel
  • Eine Kerze, ggfs. mit Untersatz
  • Streichhölzer
  • Frische grüne Pflanzenteile bzw. -blätter
  • Sonnen- oder elektrisches Licht
  • Eine Zange, Wäscheklammer oder ähnliches
Durchführung Teil 1:
  • Zündet die Kerze an und platziert sie wie auf dem Bild im liegenden Einmachglas (Bei der Verbrennung entsteht Kohlenstoffdioxid (), das schwerer als Luft ist und daher nach unten sinkt. Daher sollte die Flamme oben im Glas brennen, damit sie nicht vorzeitig erstickt).

    Kerze im Glas zum Nachweis von Sauerstoff aus Photosynthese

    Position der Kerze im Glas – Hier nach dem Verlöschen mit Blättern. So kann der Aufbau einige Stunden von der Sonne beschienen werden.

  • Verschliesst das Glas dicht und wartet, bis die Flamme erloschen ist. Nun ist im Glas kein Sauerstoff mehr vorhanden, sondern ein Gemisch aus Stickstoff (der Hauptbestandteil von Luft) und Kohlenstoffdioxid.
  • Sobald das Kerzenwachs erstarrt ist, stellt das Einmachglas aufrecht und öffnet es vorsichtig (da Kohlenstoffdioxid schwerer als Luft ist, dringt es nicht hinaus, und so lange es keine Verwirbelungen gibt, kommt so kein Sauerstoff hinein).
  • Entzündet ein Streichholz und lasst es mit der Zange/Klammer vorsichtig in das Glas hinab.

Das Streichholz wird verlöschen: Es ist wirklich kein Sauerstoff im Glas!

Durchführung Teil 2:
  • Platziert nun die Pflanzenteile hinten bzw. unten im Glas und platziert die brennende Kerze davor. Ich lasse dabei ein paar Tropfen Wasser im Glas (z.B. an nassen Pflanzenteilen), damit die Blätter nicht übermässig Wasser ausschwitzen.
  • Schliesst das Glas und wartet, bis der Sauerstoff darin verbraucht ist und die Flamme verlischt.
  • Stellt das Glas ungeöffnet für einige Stunden an die Sonne bzw. unter eine helle Lampe.
    Anschliessend stellt das Einmachglas aufrecht und senkt wie oben beschrieben ein brennendes Streichholz hinein.

    Nachweis Sauerstoff

    Das Streichholz brennt im Einmachglas: Hier ist Sauerstoff vorhanden!

Das Streichholz wird vollständig abbrennen: Da von aussen kein Sauerstoff ins Glas kommt, muss im Glas Sauerstoff entstanden bzw. freigesetzt worden sein!

[/green_box]

Auch im Dunkeln wird gearbeitet: Von der Photosynthese zur Kartoffel

Die “Last” der im Zuge der Lichtreaktion beladenen Elektronen- bzw. Energietransporter wird an ihrem Bestimmungsort innerhalb der Blätter verwendet, um die Kohlenstoff-Atome aus -Molekülen zu Zucker-Molekülen zu verknüpfen. Wie in der Summengleichung für die Fotosynthese angegeben bilden 6 Kohlenstoffatome (samt Sauerstoff und Wasserstoff) dabei ein Molekül Glucose (). Damit diese noch recht kleinen Moleküle in “ihrer” Zelle keine Unordnung schaffen, werden sie dort miteinander zu langen Ketten verknüpft: Zu Stärke-Molekülen.

Strukturformel Stärke bzw. Amylose

Einfaches Stärkemolekül (“Amylose”) – eine Kette aus Glucose-Molekülen, hier als Sechsringe dargestellt.

Aus diesem Zwischenlager kann die Glucose jederzeit – also auch im Dunkeln – wieder freigesetzt werden, zum Beispiel für die Zellatmung oder zum Umbau in andere Verbindungen. Dazu zählt zum Beispiel der “Fruchtzucker” Fructose. Und ein Molekül Fructose lässt sich mit einem Molekül Glucose zu einem Paar verbinden – besser gesagt zu einem Molekül Saccharose, die wir alle als Haushaltszucker kennen. Die Saccharose kann nun durch das Leitungssystem einer Pflanze aus den Blättern zu anderen Orten transportiert, dort wieder in Stärke umgewandelt und eingelagert werden.

So können Pflanzen auch ihre Teile versorgen, die ständig im Dunkeln liegen, wie ihre Wurzeln. Manche Pflanzen können auf diese Weise enormen Mengen an Stärke in entsprechend voluminösen Wurzeln einlagern. Und da auch der menschliche Körper Stärke abbauen und verwerten kann, landen diese Wurzeln – zum Beispiel Kartoffeln – häufig auf unserem Teller.

Da der Abtransport der Zucker aus den Blättern auch im Dunkeln möglich ist, wird tagsüber ein Teil der mittels Photosynthese hergestellten Zucker in die Stärke-Zwischenspeicher in den Pflanzen-Blättern gefüllt, während ein anderer Teil in die Wurzeln abtransportiert wird. Nachts – ohne Licht – kommt die Photosynthese zum Erliegen, sodass nur noch Zucker abtransportiert werden und die Zwischenspeicher sich leeren.

Und den Füllstand dieser Zwischenspeicher könnt ihr sichtbar machen:

[green_box]

Versuch 2 : Sichtbare Stärke in Pflanzen-Blättern

Stärke wird deutlich sichtbar, wenn man sie mit (elementarem) Iod in Berührung bringt: In Wasser verdrillen sich die langen Stärkeketten zu Spiralen, ähnlich einem gekräuselten Geschenkband. In diese Kräusel passen Iod-Atome wunderbar hinein, sodass aus (in Lösung braunem) Iod und farbloser Stärke mit Iod gefüllte Spiralen entstehen, die sehr dunkelviolett oder sogar schwarz aussehen. Wenn sich Pflanzenteile in Iodlösung dunkel färben, enthalten sie also Stärke, was ihr als Nachweis nutzen könnt. Dazu braucht ihr:

  • Eine lebende Blattpflanze
  • einen schwarzen ( = lichtundurchlässigen ) Plastiksack (z.B. ein Abfallsack)
  • Schnur zum Zubinden des Sacks
  • Iod-Lösung:
    • entweder Iod-Kaliumiodid-Lösung (““): 3g Iod und 10g Kaliumiodid auf 1l Wasser, oder auch fertig zu kaufen, z.B. als Testlösung für den Erntezeitpunkt von Obst oder in der Apotheke/Drogerie (da die dunkle Färbung mit dieser Variante deutlicher ausfällt als mit der zweiten, lohnt sich der Einkauf für das “Testen” von Blättern)
    • oder Betaisodona-Lösung bzw. -salbe (Polyvidon-Iod, eine andere, wasserlösliche Einschluss-Verbindung mit Iod) aus der Apotheke): Aus der Salbe könnt ihr eine Lösung herstellen, indem ihr 2 bis 3 cm davon aus der Tube in ein Glasgefäss drückt und wenige Milliliter Wasser dazu gebt. Die Salbe löst sich in wenigen Minuten vollständig darin auf (ggfs. könnt ihr ein wenig umrühren), sodass eine kräftig braune Flüssigkeit übrig bleibt.
  • Sonnen- oder elektrisches Licht
  • eine Herdplatte oder vergleichbare Wärmequelle
  • evtl. Brennsprit/Spiritus, ein zusätzliches Glasgefäss und eine Grillzange oder ähnliches
  • eine Pinzette
  • Eine kleine Schale aus Glas (kein Kunststoff – der könnte vom Iod ebenfalls dunkel verfärbt werden!)
Durchführung:
  • Stülpt den Plastiksack über einen Zweig eurer Pflanze mit Blättern (nicht über die ganze Pflanze – einige Blätter sollen am Licht bleiben!).

    Plastiksack über Ahorn - Zweig

    Plastiksack über einem Zweig unseres chinesischen Ahorns (der mehr als genug Blätter zum Experimentieren hat).

  • Lasst die Pflanze mindestens 3 Tage lang am Licht (ggfs. giessen nicht vergessen!).
  • Pflückt ein Blatt von eurer Pflanze. Dann entfernt den Plastiksack und pflückt ein weiteres Blatt, welches zuvor im Sack gewesen ist.
  • Wenn ihr mit Kaliumtriiodid-Lösung arbeitet: Legt jedes Blatt einzeln in einen Kochtopf mit Wasser und lasst es auf dem Herd mindestens 15 Minuten kochen. Dabei werden die Blatt-Zellen so weit zerstört, dass Iod-Lösung einfach hineindringen kann.
  • Wenn ihr mit Betaisodona arbeitet: Legt jedes Blatt einzeln für wenige Minuten in kochendes Wasser (bis das Wasser sich grünlich zu färben beginnt). Dann fischt das jeweilige Blatt mit einer Pinzettte aus dem Wasser und legt es in ein Gefäss mit etwas Ethanol (“Alkohol”: Brennsprit bzw. Spiritus). Erhitzt den Alkohol vorsichtig, indem ihr das Gefäss in das leicht kochende Wasser in eurem Kochtopf taucht.

    Extraktion von Chlorophyll

    Extraktion von Chlorophyll im Wasserbad: Im Becherglas sind Alkohol und das Blatt, im Topf ist Wasser. Die lange Grillzange erlaubt es mir, auf Abstand zu den Dämpfen zu bleiben.

Der Alkohol löst das verbliebene grüne Chlorophyll aus den beschädigten Blattzellen, sodass das Blatt ausgebleicht zurückbleibt. So ist die dunkle Farbe der Iodstärke später besser zu sehen.

[red_box]

Brennsprit bzw. Spiritus ist leicht entzündlich! Verwendet kein offenes Feuer zum Erhitzen, sondern einen Elektroherd! Alkohol-Dampf kann überdies benommen machen! Nicht einatmen! Haltet Abstand zum Topf und schaltet – wenn vorhanden – die Dunstabzugshaube ein! Verwendet überdies so wenig Alkohol wie möglich.

[/red_box]

  • Legt die Blätter auf eine flache Glas- oder Porzellanschale. Verteilt Iodlösung auf den Blättern und lasst sie wenige Minuten einziehen.

Das Blatt, welches der Sonne ausgesetzt war, wird sich dunkel färben: Hier ist durch Fotosynthese Stärke entstanden und eingelagert worden. In den Blättern unter dem Plastiksack konnte keine Stärke entstehen. Aus diesen Blättern wurde die Stärke also nur abtransportiert, sodass keine/kaum Stärke übrig ist, die sich dunkel färben könnte!

Reaktion von Iod mit Stärke im Blatt

Links: Ein belichtetes Blatt vom chinesischen Ahorn nach dem Erhitzen in Ethanol: Der Bereich um die grosse mittlere Blattader ist weitgehend gleichmässig hell. Rechts: Nach dem Beträufeln mit Polyvidon-Iod zeigen sich dunkle Strukturen – hier hat sich das Iod in Stärkemoleküle eingelagert!

[/green_box]

[red_box]

Entsorgung von Iod-Lösungen

Iod ist sehr giftig für Wasserorganismen, weshalb es als Sonderabfall entsorgt werden muss!

Verwendet also möglichst wenig davon. Unbenutze Iod-Lösung könnt ihr in einer braunen Flasche im Dunkeln (Schrank) gut aufbewahren und für weitere Nachweise verwenden (z.B.: Welche Gemüse/welches Obst enthält Stärke?).

Ich habe übrigens meine abgelaufene Betaisodona-Salbe zur Herstellung von Polyvidon-Iod-Lösung verwendet und ihr so ein zweites Leben verschafft, anstatt sie zu entsorgen.

Wenn trotzdem Iod-Reste anfallen, bringt diese zur Entsorgung in die Apotheke (zurück) oder zu einer Sonderabfall-Entsorgungsstelle (Schweiz: An der Hauptsammelstelle der Gemeinde; Deutschland: Schadstoffmobil).

Entsorgung von Ethanol (Brennsprit bzw. Spiritus)

Brennsprit ist unbegrenzt mit Wasser mischbar: Sehr kleine Mengen (einige Milliliter) können mit viel Wasser in den Ausguss entsorgt werden. Grössere Mengen müssen wie andere Lösungsmittel in den Sonderabfall gegeben werden. Wer einen sicheren Spiritusbrenner hat, kann den Alkohol auch abbrennen (in brandsicherer Umgebung, Feuer nicht unbeaufsichtig lassen!).

[/red_box]

Und wenn ihr nun Lust auf weitere Experimente zu Hause mit Pflanzen habt, findet ihr sie gleich hier in Keinsteins Kiste:

Extrahiert das grüne Chlorophyll und weitere Blattfarbstoffe (die es auch in grünen Blättern gibt!) aus Blättern und trennt sie mittels Papierchromatographie!

Legt eine Hermetosphäre an und beobachtet, wie Pflanzen Monate und Jahre lang in einem abgeschlossenen Glas überleben!

Viel Spass beim Lesen und Experimentieren wünscht

Eure Kathi Keinstein

Experimente: Das geheimnisvolle Leben der Pflanzen – Teil 1

,

Habt ihr euch auch schon einmal gefragt, wovon Pflanzen eigentliche leben? Wie sie an Energie und Nährstoffe kommen, um zu wachsen, Blätter und Blüten zu bilden?

Im Biologiebuch ist nachzulesen, dass Pflanzen tatsächlich fast nur von Luft, Licht und Wasser leben können! Das erkannten die Naturforscher Johan Baptista van Helmont und Joseph Priestley schon zu Beginn des 17. bzw. im 18. Jahrhundert.

Wie genau die Pflanzen es anstellen, aus ein paar winzigen Molekülen feste Stängel, Blätter und Blüten zu formen, könnt ihr mit spannenden Experimenten zu Hause und aufmerksamen Sinnen draussen selbst ergründen!

Um dieses faszinierende Thema zu würdigen und euch möglichst viele Naturforscher-Anregungen zu geben, widme ich dem Leben der Pflanzen zwei Beiträge, die diese und nächste Woche erscheinen sollen. So zeige ich euch heute wie Pflanzen ihre Nahrung aufnehmen und “Abfall”-Stoffe abgeben können. Der nächste Beitrag ist dann ganz der Energie- und Materialgewinnung durch Photosynthese gewidmet.

Aber fangen wir am Anfang an.

Pflanzen im Detail: Wie sind diese Lebewesen aufgebaut?

Eine typische Grünpflanze besteht aus Wurzeln, ggfs. einem Stängel oder Stamm und grünen Blättern. Wasser dringt in durch die Wurzeln ein und bringt die wenigen Nährstoffe, die aus dem Boden stammen, mit, wenn es in die verschiedenen Teile der Pflanze gelangt. Die grünen Blätter (und Stängel) sammeln Licht, mit dessen Energie die Pflanze aus Luft-Bestandteilen ihre Hauptnahrung herstellen kann: Glucose bzw. Traubenzucker. So viel mag den allermeisten unter euch bekannt sein.

Aber wie finden all diese Stoffe in der Pflanze ihren Bestimmungsort?

 

Versuch 1: Blätter ganz, ganz aus der Nähe betrachtet

Seht euch doch einmal ein Blatt genauer an. Bei grossen Blättern – zum Beispiel denen eines Ahorn-Baumes – könnt ihr schon mit blossem Auge ein Netzwerk wie aus Adern sehen. Tatsächlich sind diese Adern das Gegenstück zu unserem Blutgefässsystem: Sie sind Leitungen, durch welche Wasser und Nährstoffe transportiert werden! Und wie in unserem Gefässsystem gibt es neben den grossen Blatt-Adern auch kleinere und winzig kleine Gefässe, die in jeden Winkel reichen.

Habt ihr eine starke Lupe oder sogar ein Mikroskop? Schon mit einfachen Hilfsmittel könnt ihr die feinen Äderchen in Blättern sichtbar machen. Mein einfaches USB-Mikroskop mit angeblich 100-facher Vergrösserung reicht dazu schon aus.

[green_box]

Anleitung zum Mikroskopieren:

  • Klemmt zum Mikroskopieren ein frisches, möglichst dünnes Blatt zwischen zwei Objektträger und schiebt es mit der Unterseite nach oben in die Halterung unter der Linse (oder fixiert die Träger mit Klebestreifen, wenn euer Mikroskop keine Halterung hat).
  • Beleuchtet das Blatt von unten (mein Gerät ist mit Beleuchtung von unten und von oben ausgestattet – es gibt jedoch kleine, günstige LED-Leuchten, die für Freihand-USB-Mikroskope ohne Unterbau den gleichen Zweck erfüllen). Die fast farblosen Blatt-Adern werden zwischen dem undurchsichtig grünen Blattgewebe hell aufleuchten.
Blatt Anatomie vergrössert

Oberseite eines Blattes des Ranunkelstrauchs bei Licht von unten: Die durchscheinenden Blattadern leuchten hell zwischen den Bereichen, die grosse Mengen des grünen Blattfarbstoffs Chlorophyll enthalten.

  • Noch eindrücklicher ist die Beleuchtung der Blattunterseite von oben: Die kleineren Blatt-Adern erscheinen dunkel, grössere Adern und Haare stehen hell hervor. Mit geübtem Auge und scharfem Bild lassen sich bei 100-facher Vergrösserung sogar einzelne Strukturen innerhalb der grünen Zell-Inseln ausmachen!
Blatt Anatomie Ranunkelstrauch

Die Unterseite eines Blattes des Ranunkelstrauchs bei Licht von oben: Blattoberfläche und grössere Blattadern sind von feinen weissen Härchen besetzt.

Ich habe ein junges Blatt von meinem Ranunkelstrauch (Kerria japonica), einem beliebten Zierstrauch, der auf meinem Balkon wächst, gepflückt. Die Blätter dieser Pflanze fühlen sich samtig an, was ein weiteres Detail erahnen lässt. Und die Mikroskopaufnahme zeigt es deutlich: Diese Blätter sind behaart – die feinen Härchen auf der Unterseite erscheinen im Bild als weisse Würmchen. Dazwischen schimmern die feinen Blattadern, die sich zwischen dunkelgrünen Inseln verzweigen.

  • Um mehr zu sehen ist es nötig, einzelne Schichten eines Blattes unter das Mikroskop zu bringen. Klebt dazu einen durchsichtigen Klebestreifen auf ein frisches Blatt und drückt ihn sorgfältig an (aber ohne das Blatt gänzlich zu zerquetschen!). Zieht den Streifen dann mit einem Ruck wieder ab. Wenn nun grüne Teile des Blattes am Streifen heften und das Blatt an betreffenden Stellen nur noch aus farbloser, dünner Haut besteht: Perfekt! Ihr habt alles bis auf eine Aussenhaut des Blattes entfernt. Platziert diese farblosen Stellen nun zwischen zwei Objektträgern unter dem Mikroskop:
untere Epidermis Tomatenblatt 100x

Dies ist die untere Aussenhaut eines frischen Blattes meiner Tomatenpflanze bei 100-facher Vergrösserung. Die winzigen Spaltöffnungen (sie sind ca. 0,05 – 0,1 mm klein!) sind als dunkelgrüne Punkte gut erkennen (die Ränder der Spalten enthalten den grünen Blattfarbstoff Chlorophyll, die übrigen Aussenhautzellen nicht). Diagonal durch das Bild verläuft ein Leitungsbündel, in dessen Umgebung ebenfalls chlorophyllhaltige Zellen haften geblieben sind.

  • Solltet ihr kein Mikroskop zur Hand haben, dafür aber eine Kamera mit Nahaufnahmen-(Makro-)Funktion, könnt ihr gegen das Licht durch grössere Blätter gleich an der Pflanze hindurch fotografieren und die Blattäderchen anschliessend auf einem grossen Bildschirm genauer betrachten (verwendet für solche Aufnahmen die bestmögliche Auflösung, dann könnt ihr am Bildschirm am weitesten hineinzoomen!).
Feigenblatt Makroaufnahme Gegenlicht

Ausschnitt aus einem Feigenblatt, gegen die Sonne aufgenommen (Samsung Galaxy NX, 16-50mm (kein Makro-Objektiv!), F/11, Belichtungszeit 1/200, ISO 100, Auflösung der Original-Aufnahme: 5472×3648 px)

[/green_box]

Wer ein besseres Mikroskop hat, kann darüber hinaus sehen, woraus diese Inseln und alle anderen Teile des Blattes bestehen: Richtig, aus Zellen! Wie unsere Körperteile auch ist ein Blatt nämlich ein Organ, das sich aus vielen Zellen zusammensetzt. Und wer bei stärkerer Vergrösserung genau hinschaut, kann vielleicht eine aus Zellen zusammengesetzte Spaltöffnung in der Blattunterseite erkennen.

Am gründlichsten beobachtet Mensch übrigens beim Zeichnen! Wenn ihr möchtet, dass euch wirklich nichts entgeht, greift also zu Holzstiften und zeichnet ab, was ihr unter dem Mikroskop seht. Ich habe für euch eine Skizze des Längsschnittes durch ein Blatt, welche dessen Aufbau aus  Zellen zeigt.

 

[yellow_box]

Ein Blatt-Querschnitt aus der Nähe: Wie Blätter aufgebaut sind

Blatt-Anatomie: Querschnitt durch ein Pflanzen-Blatt

Skizze des Schnitts (von oben nach unten) durch ein Pflanzenblatt, wie er unter einem leistungsfähigen Lichtmikroskop erscheint: Blätter bestehen aus Zellen, die in unterschiedlichen Schichten angeordnet sind. Die Blattoberseite ist oben, die Unterseite ist unten. (By A.Spielhoff (Own work) [CC BY-SA 3.0], via Wikimedia Commons)

(a) und (g) Die meisten Blätter sind von einer schützenden Wachsschicht (“Cuticula”) überzogen.

(b) und (f) Epidermis-Zellen: Diese Zellen bilden die “Haut” des Blattes: Sie enthalten keinen grünen Blattfarbstoff und sind lichtdurchlässig.

(c) Palisadengewebe: Die Zellen sind hier dicht an dicht aneinander gereiht. Sie enthalten reichlich grünen Blattfarbstoff (Chlorophyll) und “verarbeiten” viel Sonnenlicht bei der Fotosynthese.

(d) Schwammgewebe: Die Zellen sind hier weniger dicht beieinander und weniger regelmässig angeordnet. In den freien Räumen dazwischen (j) befindet sich Flüssigkeit.

(e) Leitungsbündel: Eine Blattader ist in zwei Sorten Leitungen, die gebündelt eine “Ader” bilden, unterteilt: eine Sorte für Wasser und eine für die Fotosynthese-Erzeugnisse.

(h) Eine Spaltöffnung, gebildet von zwei benachbarten Zellen. Diese besonderen Zellen können sich je nach Wassergehalt berühren oder den Spalt offen lassen.

(i) Der Hohlraum hinter der Spaltöffnung ist mit Luft gefüllt und dient der Kohlendioxid-Aufnahme und der Sauerstoff- und Wasser(dampf)abgabe.

[/yellow_box]

 

Verschiedene Blätter für verschiedene Standorte

Dabei ist Blatt keineswegs gleich Blatt. Vielmehr sind Blätter an den Standort ihrer Pflanze und damit an den gewünschten Einsatz im Photosynthese-Business angepasst: Blätter, die in der Sonne wachsen, sind voll mit Photosyntheseanlagen und erzeugen viel Material, das abstransportiert werden möchte. So sind solche Blätter kräftig und tiefgrün. Die Blätter von Schattenpflanzen sind hingegen zarter und von blassgrüner Farbe: Sie enthalten weniger Chlorophyll und sind somit nicht darauf ausgelegt, grosse Mengen Sonnenenergie zu verwerten. Stattdessen würden sie in der prallen Sonne Schaden nehmen.

[green_box]

Expedition 1: Finde Sonnen- und Schattenpflanzen!

Haltet die Augen offen, wenn ihr draussen unterwegs seid. Findet angepasste Sonnen- und Schattenpflanzen. Als Hinweis gebe ich euch je ein Beispiel:

Links: Sauerklee (Gattung Oxalis) ist eine typische Schattenpflanze mit zarten, hellen, grossflächigen Blättern. Er ist daher nur in schattigen Wäldern zu finden. Rechts: Unser Pfirsichbaum ist mit seinen dicken, tiefgrünen Blättern ein echter Sonnenanbeter.

Viele Bäume bilden sowohl Sonnen- und Schattenblätter an ein und derselben Pflanze! Betrachtet und befühlt die Blätter an tief hängenden Buchenästen. Könnt ihr beide Sorten finden, bestenfalls sogar am gleichen Baum? Sonnenblätter werdet ihr aussen bzw. oben am Rand der Baumkrone finden, wo sie das meiste Licht abfangen, während Schattenblätter weiter innen bzw. unterhalb des Blätterdachs zu finden sind. Klettert aber nicht ungesichert auf hohe Bäume! Wenn es keine tief hängenden Äste gibt, sind Sträucher und Hecken oder ein frisch umgestürzter Baum einfacher zu erreichende Fundstellen für zweierlei Laub!

Sonnen- und Schatten- Blatt ein und derselben Buche

Zwei Blätter ein und derselben Buche: Links ein Sonnenblatt vom Rand der Krone – es fühlt sich steif und ledrig an und ist dunkelgrün. Rechts ein Schattenblatt tief aus dem Gehölz – es fühlt sich dünner, fast zart an und ist heller. Achtung: An den Spitzen von Zweigen können sehr helle junge Blätter sein. Sucht daher in der Nähe der Zweig-Ansätze nach “echten” Schattenblättern!

[/green_box]

Nahrung rein, Abfall raus: Wie Blätter funktionieren

Im Organ Blatt werden die Kohlenstoff-, Wasserstoff- und Sauerstoffatome von Kohlendioxid und Wasser mit Hilfe von Lichtenergie zu Traubenzucker (Glucose) umgebaut (mehr dazu im Beitrag zur Photosynthese). Die nötigen Baustoffe müssen dazu aus der Luft bzw. aus dem Boden in die Blattzellen, genauer in die Chloroplasten, gebracht und der fertige Traubenzucker sowie Sauerstoff-“Abfall” von dort fortgeschafft werden. Bloss haben Pflanzen kein schlagendes Herz, das die dazu nötigen Verkehrsströme antreiben könnte.

Dafür haben die Blätter ihre Spaltöffnungen mit den dahinter liegenden Hohlräumen. Durch die geöffneten Spalten kann Kohlendioxid in die Hohlräume eindringen (alle Gasteilchen sind ständig in Bewegung, sodass dazu kein gesonderter Antrieb nötig ist) und durch ihre grosse Oberfläche in das Innere des Blattes gelangen. Auf dem umgekehrten Weg gelangt Sauerstoff durch diese Öffnungen hinaus.

Wirklich genial ist der Trick, mit welchem Pflanzen ihr Wasser gegen die Schwerkraft aus dem Boden ziehen. Blätter können nämlich “schwitzen”, indem sie über ihre Spaltöffnungen Wasser abgeben. Dieses Wasser fehlt dann in den Blattzellen, die sich Nachschub aus den Blattadern holen. Der so entstehende “Unterdruck” im Blattgefässsystem, das sich bis in die Wurzeln der Pflanze erstreckt, reicht aus, um Wasser aus dem Boden bis in die obersten Bereiche anzusaugen (Biologen nennen diesen Effekt dementsprechend “Transpirationssog”)! Und das funktioniert vom winzigen Kraut bis zu Dutzende Meter hohen Bäumen!

Dass der “Antrieb” der Wasserversorgung in den Blättern, d.h. im oberen Teil von Pflanzen liegt, ist auch der Grund dafür, dass Schnittblumen in der Vase über viele Tage frisch bleiben können: Sie haben zwar keine Wurzeln mehr, aber durch das Schwitzen können sie auch durch das angeschnittene Leitungssystem in den Stängeln Wasser aus der Vase ansaugen.

Damit die Wasserversorgung der Pflanze nicht beim kleinsten Engpass aus dem Ruder läuft, hat jede Pflanzenzelle ein eigenes kleines Wasserreservoir, die Vakuole, in welcher sie Wasser zwischenlagern kann. Ausserdem verleiht eine prall gefüllte Vakuole ihrer Zelle eine pralle, steife Gestalt, die dazu beiträgt, das ganze Blatt bzw. die ganze Pflanze in Form zu halten.

Ihr möchtet den Beweis dafür erbringen? Hier ist er:

[green_box]

Versuch 2 : Die magische Pflanzen-Wiederbelebung

  • Giesst eine Topfpflanze so lange nicht oder stellt Schnittpflanzen in eine trockene Vase, bis ihre Blätter und Triebe schlaff (aber nicht spröde oder braun!) werden. Je nach Witterung kann das ein paar Stunden oder einen Tag dauern. Sehr gut funktioniert dieser Versuch zum Beispiel mit Sonnenblumen oder Blättern von Tomaten.

Wenn die Pflanze keinen Wassernachschub mehr hat, verbrauchen die Zellen ihre Vorräte aus den Vakuolen zum Schwitzen und für die Photosynthese. Die Entleerung ihrer Vakuole lässt die Pflanzenzelle erschlaffen, wie eine Ballonhülle ohne Luft darin.

  • Giesst nun die Topfpflanze reichlich oder gebt Wasser in die Blumenvase (und schneidet ggfs. den oder die Stängel noch einmal frisch an) und wartet wenige Stunden (z.B. bei Sonnenblumen) oder auch einen Tag (z.B. bei abgeschnittenen Tomatenblättern)..

Die zuvor schlaffe Pflanze wird sich in kurzer Zeit wieder aufrichten und straff und frisch aussehen, als wäre nichts gewesen!

Wiederbelebung Tomate Blatt

Ich habe meine Tomate ausgegeizt: Diese beiden Tomaten-Blätter in Bild 1 haben zwei warme Tage lang draussen unter der Tomatenpflanze gelegen: Sie hängen schlaff bis auf den Tisch. Nach der Aufnahme habe ich Wasser in das Glas gefüllt. Nach etwa 4 Stunden hat sich das rechte Blatt weitestgehend wieder aufgerichtet (Bild 2), nach 24 Stunden erscheinen beide Blätter frisch wie eben erst geschnitten (Bild 3).

Der Wassermangel in Zellen und Leitungssystem führt dazu, dass die Pflanze Wasser aus dem Boden bzw. der Vase ansaugt, sodass die Zellen ihre Vakuolen auffüllen können. So erhalten sie und die Pflanze ihre pralle, feste Gestalt zurück.

[/green_box]

Damit Pflanzen bei warmer Witterung nicht drauf los schwitzen, bis sie austrocknen, können sich ihre Spaltöffnungen, die “Schweissporen”, nach Bedarf öffnen und schliessen: Ein solcher Spalt besteht aus zwei nebeneinander liegenden Zellen, die nicht fest miteinander verbunden sind. Nur wenn diese Zellen prall mit Wasser gefüllt sind, wölben sie sich so nach aussen, dass ein offener Spalt zwischen ihnen klafft. Wenn die Pflanze nicht genügend Wasser hat und die Schliesszellen erschlaffen, schliesst sich der Spalt, sodass die Pflanze nicht unnötig Wasser ausschwitzt.

 

Standortspezialisten unter den Pflanzen

Pflanzen wachsen nicht nur im Garten, auf der Wiese oder im Wald in gemässigtem Klima, sondern an den verschiedensten, zuweilen scheinbar unmöglichen Orten. Wie gelingt ihnen das? Die Pflanzenarten haben sich an ihren jeweiligen Standort, insbesondere an die dort vorhandene Wassermenge, gut angepasst.

[green_box]

Expedition 2 : Finde Pflanzen, die sich an unterschiedliche Wasserverfügbarkeit angepasst haben!

Pflanzen können anhand ihrer Anpassung an die Verfügbarkeit von Wasser in fünf übergeordnete Gruppen eingeteilt werden. In der Schweiz mit ihren vielfältigen Klimazonen könnt ihr Vertreter aller fünf Gruppen wild oder in Gärten finden. Ebenso gut könnt ihr diese kleine Expedition auch in einem botanischen Garten, im Gartencenter oder auf Reisen unternehmen.

Und hier sind für euch die fünf Pflanzengruppen:

Seerose1. Wasserpflanzen: wachsen teilweise oder vollständig unter Wasser. Unterwasser-Pflanzen brauchen keine Spaltöffnungen, Pflanzen mit Schwimmblättern wie Seerosen nur an der Luftseite ihrer schwimmenden Blätter. Wasserpflanzen nehmen Wasser und darin gelöstes Kohlendioxid über ihre gesamte Oberfläche auf. Wurzeln haben sie daher kaum, denn die werden höchstens noch zum Festhalten benötigt. Ausschliesslich an der Luft bzw. in trockenem Boden können Wasserpflanzen daher nicht überleben. Beispiel: Seerosen

Sumpfdotterblume2. Pflanzen feuchter Standorte: findet man zum Beispiel in Regen- oder Nebelwäldern. Oder in Feuchtgebieten, die häufig mit Bodennebel aufwarten. Die extrem hohe Luftfeuchtigkeit an solchen Standorten hindert sie am “Ausschwitzen” von Wasserdampf. Ihre grossen, dünnen
Blätter können dank Rillen oder Haaren für eine noch grössere Oberfläche und vorgewölbten und damit “am Wind” gelegenen Spaltöffnungen leichter Wasser abgeben. Beispiel: Sumpfdotterblume (Caltha palustris – Achtung giftig, nicht anfassen!)

Übrigens: Manche Pflanzen, die auch bei “normaler” Luftfeuchtigkeit zurecht kommen, können sich binnen kürzester Zeit an einen feuchten Standort anpassen. Solche eignen sich gut für die Bepflanzung einer “Hermetosphäre”. Die Anleitung zur Erschaffung eines solchen Gartens im Glas findet ihr übrigens hier!

Baeume im Fruehling3. Pflanzen wechselfeuchter Standorte: Wachsen an Standorten, die nur gelegentlich feucht sind, d.h. flüssiges Wasser bieten. Dies können periodisch austrocknende Gebiete sein oder solche, in welchen es im Winter friert. “Wechselfeuchte” Pflanzen legen in der trockenen Zeit eine Ruhepause ein: Sie werfen im Herbst die Blätter ab, ziehen sich in ein Minimum an Ausdehnung zurück oder überdauern die Trockenheit als Samen. Beispiele: Alle Laubbäume, die im Herbst die Blätter verlieren, viele einjährige Pflanzen

Olivenbaum4. Pflanzen trockener Standorte: In trockener Luft müssen Pflanzen das Schwitzen einschränken, um nicht zu verdursten, und ihr Wasser aus einem grossen Bereich des Bodens zusammenklauben. Sie haben daher ausgeprägte, tief oder weit reichende Wurzeln und kleine derbe Blätter mit dicker Wachsschicht. Die zahlreichen Spaltöffnungen darin befinden sich in kleinen Senken in der Blattoberfläche, sodass Wasser nicht so leicht daraus entweichen kann. Beispiel: Olivenbaum (Olea europaea)

Hauswurz Rosetten5. Pflanzen extrem trockener Standorte, auch als Sukkulenten bekannt: haben die Möglichkeit, Wasser in ihrem Innern langfristig zu speichern. Ihr Wasserspeichergewebe ist von einer festen, oft wehrhaften (Dornen, Stacheln!)  Aussenhülle umgeben. Sukkulenten haben eine kleine Oberfläche, d.h. Blätter sind – wenn vorhanden – sehr dick und fleischig. Spaltöffnungen sind in geschützen Bereichen (z.B. Rillen eines Kaktus) abgesenkt. Beispiel: Hauswurz (Gattung Sempervivum)
[/green_box]

All diese Spezialisten haben jedoch eines gemeinsam: Sie betreiben Fotosynthese! Und was sich dahinter verbirgt – wie Pflanzen aus Lichtenergie Nahrung gewinnen können – erfahrt ihr nächste Woche im zweiten Beitrag zum geheimnisvollen Leben der Pflanzen. Bis dahin wünsche ich euch viel Spass beim Erkunden und Experimentieren. Berichtet doch gleich hier im Kommentar von euren Erlebnissen!

Eure Kathi Keinstein

Natur zu Hause entdecken : Wildtier-Bingo am Zürichsee

Reisen zu Hause – das scheint das Motto dieses Frühlings zu sein. Und da ich das Glück habe, dort zu wohnen, wo manch andere Ferien machen, stelle ich euch heute mein Zuhause mitten in der Schweiz vor: Ein wahres Paradies für Naturforscher, das ich spielerisch mit euch erkunden möchte! So ist dieser Beitrag zunächst Teil gleich zweier Blogparaden um das Erleben der eigenen Heimat, nämlich der Blogparade “Heimatliebe – Zeig uns deine Heimat” von SOS-Fernweh und der Blogparade “Reise vor der Haustür – ein Experiment” von 1 Thing To Do. Da das Thema dieses Jahr wahrhaft weite Kreise zieht, ist mein spielerischer Erkundungsgang zuhause nun auch Teil der Blogparade Urlaub in der eigenen Stadt – Geht das? im “Joy Valley” (und tatsächlich habe ich kürzlich gelernt, dass unser 10’000-Seelen-Dorf sich selbst stolz als “Kleinstadt” bezeichnet).

Der obere Zürichsee: Ein Paradies für Naturforscher und -beobachter

Für mich gibt es nichts spannenderes als die Welt zu erkunden, ob nun entfernte Winkel der Schweiz, der umliegenden Länder oder atemberaubende Ziele in Übersee… Wirklich? Eigentlich liegt die faszinierende Natur doch gleich vor meiner Haustür! Meine Wahlheimat liegt nämlich am oberen Zürichsee, mitten in den Schweizer Voralpen. Schon als ich vor 11 Jahren meinen ersten Sommerurlaub hier am Seeufer verbrachte, fiel mir auf, wie unglaublich klar hier das Wasser ist. Insbesondere im Vergleich mit den Baggerseen und dem grossen Strom, den ich bislang vom Niederrhein-Gebiet her kannte. Man kann hier auf einem Steg oder einer Ufermauer sitzen und ohne weitere Hilfsmittel beobachten, was unter Wasser vor sich geht – bei günstigem Lichteinfall bis in 2 bis 3 Meter Tiefe!

ausnehmend klares Wasser im Zürichsee

Anfang April: Schilf-Inseln am seichten Seeuferbereich

 

Doch nicht nur der See selbst lädt zum Beobachten, Staunen und Geniessen ein – im Sommer gerne mit dem ganzen Körper bei einem kühlen Bad – sondern auch um und über Wasser bietet er ein wahres Paradies für Naturbeobachter und -entdecker: Rund um unser Dorf sind weite Teile des Uferbereichs naturbelassen oder renaturiert. Feuchtwiesen, Schilfflächen und ufernaher Baumbestand fügen sich zu einer idyllischen Landschaft zusammen, die zahlreichen Vogelarten, Wassertieren und Pflanzen eine Heimat bietet.

Lebensraum für Vögel und Vogelfreunde

Enten, Schwäne und “Taucherli” (Blässhühner bzw. -rallen) mögen nicht nur hierzulande allgegenwärtige Wasserbewohner sein, doch habe ich am Zürichsee schon viele aussergewöhnliche Bewohner und Gäste beobachten können. Graugans, Kiebitz und die Flussseeschwalbe sind nur einige davon. Dazu kommen Vögel, die man eigentlich vom Meer her kennt, wie die Lachmöwe und den Kormoran.

Höckerschwan mit Gelege im Schilf

Höckerschwan mit Gelege im Schilf (CC BY-SA 4.0 by Reto Lippuner)

 

Ein Highlight im “Frauwinkel”, der geschützten Uferzone, welche sich direkt an unser Dorf anschliesst, ist der grosse Brachvogel. Diese seltenen Zugvögel können im Frühjahr vom Spazierweg entlang des Sees aus beobachtet werden, wenn sie hier zum Brüten Halt machen. Damit die Tiere dabei möglichst ungestört bleiben, ist der Wegabschnitt mit der besten Beobachtungsmöglichkeit mit hölzernen Sichtschutzwänden samt Sehschlitzen ausgestattet – ein Eldorado für Ornithologen!

Raum für Pflanzen, Tier und Mensch

Doch nicht nur Vogelfreunde kommen am Zürichsee auf ihre Kosten. Im Wasser und den feucht-grünen Uferbereichen leben viele weitere Tiere. Frösche, Schwanzlurche, Wasserschnecken, Ringelnattern, Kreuzspinnen und zahllose Insektenarten vom Schmetterling bis zum Wasserläufer sind nur einige davon. Und Wohnraum und Nahrung finden all diese Tiere dank einer Vielfalt von Pflanzen.

Blick über den Frauwinkel am Zürichsee

Blick vom Wanderweg über die Feuchtwiesen im Frauwinkel

 

Und auch der Mensch kommt nicht zu kurz. Um den Frauwinkel – wie der Name sagt ein Winkel zwischen dem Ufer vor unserem Dorf und dem Seedamm, über den der Auto- und Bahnverkehr zwischen den beiden Seeufern fliesst – führt ein Wander- und Radweg, von welchem aus man die weiten Uferwiesen überblicken kann. Teilweise werden diese bewirtschaftet – passend zur feucht-wilden Umgebung weiden auf wegnahem Bereich zottige Galloway-Rinder, wie man sie sonst aus dem schottischen Hochland kennt. Und es ist sogar schon vorgekommen, dass der Galloway-Stier (ein ganz friedlicher Bursche!) sich zu einem Spaziergang auf dem Wanderweg in Richtung Seedamm aufgemacht hat…

Wanderweg in Hurden in Richtung Seedamm

Spazierweg in Richtung Seedamm – heute ohne Stier

Der Zürichsee für Naturforscher

Für euch Naturforscher könnte ich nun einen langen Artenkatalog als Bestimmungshilfe für eure Entdeckungen zusammenstellen… oder das Entdecken zu einem Spiel für kleine und grosse Forscher machen, das garantiert jeden Spaziergang zu einem kurzweiligen Spass macht:

 

Entdecker-Bingo “Rund um den Zürichsee”

Wer kennt nicht das Bingo-Spiel? Jeder Mitspieler erhält eine Karte mit einem Raster, gefüllt mit verschiedenen Zahlen. Ein Spielleiter lost Zahlen aus und gibt sie bekannt, sodass die Mitspieler auf ihrer Karte “getroffene” Zahlen markieren können. Wer dabei zuerst ein vorgegebenes Muster aus Markierungen zusammen hat, tut durch den Ausruf “Bingo!” kund, dass er oder sie gewonnen hat.

Das klassische Zahlenbingo kann man überall spielen, wo man zusammen sitzt. Ein ausgiebiger Spaziergang am See ist hingegen die perfekte Gelegenheit für eine Runde Entdecker-Bingo!

Die passenden Bingo-Karten dafür kannst du hier gratis downloaden und ausdrucken: Anstelle von Zahlen findest du darauf verschiedene Tiere, die im Frauwinkel und weiteren Naturschutzgebieten rund um den Zürichsee leben. Die Rolle des Spielleiters übernimmt die Natur selbst:

Spielregeln für Entdecker-Bingo

  • Jeder Mitspieler oder jedes Team (2 bis beliebig viele Spieler oder Teams können mitmachen) erhält eine eigene Bingokarte (klebe den Ausdruck am besten auf eine feste Unterlage oder verwende ein Klemmbrett). Wenn du die Karten laminierst, können Markierungen mit wasserfesten “Edding”-Schreibern nach dem Spiel mit etwas Alkohol entfernt und die Karten wiederverwendet werden!
  • Ein Markierungs-Muster wird als Ziel-Vorgabe festgelegt. Das Feld in der Mitte des Rasters von 5×5 Feldern ist Teil davon. Es wird wie beim klassischen Bingo vor Spielbeginn von allen markiert. Einfache Muster sind senkrechte, waagerechte oder diagonale Reihen über die ganze Karte. Sei kreativ und erfinde weitere!
  • Macht euch, jeder mit Bingokarte und Schreiber bewaffnet, auf zum Spaziergang. Wer eine der auf seiner Karte abgebildeten Tiere oder Pflanzen entdeckt, macht die Mitspieler darauf aufmerksam. Bestimmt gemeinsam, ob die Art richtig erkannt worden ist!

Und nun gibt es zwei Spiel-Varianten:

  • Das schnelle Spiel (hierzu müssen sich alle verwendeten Bingokarten in der Anordnung ihrer Felder unterscheiden – ganz wie beim klassischen Bingo!): Ist eine Art richtig erkannt worden, dürfen alle Mitspieler sie auf ihrer Karte markieren.
  • Die Variante für lang anhaltende Spannung (kann mit mehreren identischen Bingokarten gespielt werden): Nur der Entdecker darf die gefundene Art auf seiner Karte markieren. Dafür dürfen die anderen Spieler weitere Exemplare der gleichen Art “noch einmal” für sich entdecken – Spieler, die die Art bereits markiert haben, halten sich bei solchen Funden zurück. Einigt euch bei dieser Variante vor Spielbeginn darauf, wie ihr Vogelscharen, Insektenschwärme und Pflanzengruppen zählen möchtet (bietet eine Gruppe ein Exemplar für jeden, oder muss jeder Spieler “seine” eigene Gruppe finden?).
  • Für beide Varianten gilt: Wer das vorgegebene Markierungsmuster zuerst vollendet hat, darf laut (nicht zu laut – erschreckt die Tiere nicht!) “Bingo!” rufen und hat die Runde gewonnen. Natürlich kann im Anschluss noch um den zweiten und folgende Plätze gespielt werden.

 

Eine Entdecker-Bingokarte für euch zum Ausdrucken

Ich habe eine Entdecker-Bingokarte für Spaziergänge am Seeufer für euch zusammengestellt. Sie enthält 24 Tierarten, die im Frühling hier beobachtet haben und von euch beobachtet werden können. Diese Karte kann jedoch nicht nur am oberen Zürichsee verwendet werden, sondern auch an anderen Seen in der Schweiz und naturbelassenen (Süsswasser-)Gewässern in Mitteleuropa verwendet werden. Das können Flussauen, Stauseen, renaturierte Baggerseen und ähnliche Landschaften sein!

Holt euch hier das pdf-Dokument zum Ausdrucken! Nutzt die erste Seite als Bingo-Karte zum Spielen. Die folgenden Seiten enthalten kurze Erläuterungen zu den Arten oder Gattungen sowie einige Tipps, wo genau ihr nach ihnen Ausschau halten solltet. Einige Tiere sind geradezu allgegenwärtig, andere schwieriger zu finden, sodass Spannung ohne Frust gegeben ist.

Wenn ihr mit verschiedenen Karten spielen möchtet, schneidet die ausgedruckte Karte einfach auseinander und setzt die Felder neu zusammen – das “Keinsteins Kiste”-Feld soll dabei stets in der Mitte bleiben, denn es gilt immer als markiert!

Fazit

Am Zürichsee mögen wir paradiesisch wohnen, doch gibt es in so vielen Gegenden, die wir unsere Heimat nennen, Spannendes zu entdecken. So kann das Zürichsee-Bingo auch in den Rhein-Auen meiner Geburtsheimat im Rheinkreis Neuss am Niederrhein gespielt werden. Haltet die Augen (und Ohren und Nasen) offen und lasst all die kleinen und grossen Wunder in eurer Nähe euren Alltag erhellen – Es lohnt sich!

Papiliorama Kerzers – Eine Tropenexpedition mitten in der Schweiz

,

Das Ausflugsziel für Naturforscher mit Frühlingssehnsucht: Tropische Welt der Schmetterlinge im Papiliorama Kerzers. Hier holen mein Partner und ich uns alle Jahre wieder in der dunklen Jahreszeit eine Dosis Wärme, Licht und Abenteuer mit faszinierenden Tieren. Daher ist dieser Beitrag allein aus meinem Antrieb entstanden, dieses Abenteuer mit euch zu teilen. Die Bilder stammen von meinem Lebensgefährten und Hausfotografen und erscheinen hier mit freundlicher Genehmigung der Stiftung Papiliorama.

Was ist das Papiliorama?

Mitten auf einem flachen Acker am Rand des Kantons Fribourg erhebt sich ein Komplex aus mehreren futuristischen Kuppeln, unter welchen sich eine warme, exotische Welt voller Farben und zauberhafter Bewohner verbirgt: Das Papiliorama Kerzers. Der Name verrät, was hier zu finden ist – denn Kerzers liegt am Rande der Westschweiz, wo man Französisch spricht. Und das französische “Papillon” bedeutet “Schmetterling”.

Mit Schmetterlingen hat hier auch alles angefangen. Das Papiliorama wird von einer gemeinnützigen Stiftung betrieben, die auf den niederländischen Biologen Maarten Bijleveld van Lexmond und seine Frau zurückgeht. Das Ehepaar gründete 1988 im Kanton Neuenburg ein erstes Schmetterlingshaus, welches später aus Platzmangel in das weitläufigere Dreiseenland um Kerzers umgesiedelt wurde. Seither sind zur Schmetterlingskuppel zwei weitere Tropen-Landschaften voller exotischer Tiere und Pflanzen hinzugekommen.

Für einmaligen Eintritt können die Kuppeln und Aussenanlagen den ganzen Besuchstag lang nach Belieben betreten werden, um den darin meist frei lebenden Tieren ganz nahe zu kommen. Das ist eine wunderbare Gelegenheit, um sich mit diesen faszinierenden Geschöpfen ganz genau zu beschäftigen!

Aktivitäten für Naturforscher im Papiliorama-Tropenhaus

Papiliorama

14 Meter hoch wölbt sich die 40 Meter hohe Kuppel des Papilioramas über einer phantastischen tropischen Landschaft. Mehrere Dutzend Pflanzenarten, darunter 16 Arten teils hoch aufragender Palmen, fügen sich zu einem üppigen Garten zusammen. Darunter sind Nektarspender und Futterpflanzen für Raupen – die ideale Heimat für rund 1500 Schmetterlinge aus allen tropischen Teilen der Welt, welche frei in der Kuppel fliegen!

1. Wieviele Schmetterlingsarten findest du?

Rund 60 verschiedene Schmetterlingsarten fliegen im Papiliorama. Die meisten davon werden von Züchtern eingekauft und treffen als Puppen ein, um im Papiliorama zu schlüpfen. So hängt von der Verfügbarkeit bei den Züchtern ab, welche Arten aktuell wirklich vorhanden sind (die meisten Schmetterlinge werden nach dem Schlüpfen aus der Puppe nur wenige Tage alt!). Zu entdecken gibt es aber immer reichlich.

Wenn du dich gleich am Eingang in die Kuppel links wendest und die Galerie erklimmst, findest du eine Tafel mit Abbildungen und Namen aller Arten (Deutsch – Französisch – Lateinisch), die dir beim Bestimmen hilft (Tipp: Ich habe die Tafel mit dem Smartphone abfotografiert, sodass ich sie überall im Papiliorama zur Hand hatte). Einige Arten vermehren sich übrigens frei im Tropengarten. Findest du ihre Raupen? (Tipp: Nicht alles, was nach Vogelkot aussieht, ist auch welcher!)

2. Schau genau hin: Wie ist der Körper eines Schmetterlings aufgebaut? Woraus bestehen die Flügel?

Die Schmetterlinge im Papiliorama zeigen kaum bis keine Scheu vor Besuchern. So lassen sie sich häufig auf den Pflanzen oder sogar auf dem Rücken deiner Begleiter ganz aus der Nähe betrachten. Wenn du eine Kamera mit Makroobjektiv oder -linse zum Aufschrauben hast, kannst du ausserdem faszinierende Nahaufnahmen machen.

[yellow_box]

Wie kommen Schmetterlingsflügel zu ihren schillernden Farben?

Ein besonderer Blickfang unter den farbenfrohen Faltern ist immer wieder der blaue Morpho (Morpho peleides). Dieser grosse Schmetterling (Flügelspannweite 10 – 15cm) ist im Flug kaum zu übersehen, denn seine Flügeloberseiten erstrahlen in irisierendem Himmelblau.

Diese in der Natur höchst unwahrscheinlich anmutende Farbgebung samt ihrem Metallic-Effekt entsteht nicht wie übliche Farben dadurch, dass die Flügeloberfläche einen Teil des weissen Lichts schluckt, das auf sie fällt. Stattdessen wird das einfallende Licht an der Oberfläche auf raffinierte Weise gestreut und zurückgeworfen (reflektiert). Die Oberfläche von Schmetterlingsflügeln ist nämlich nicht glatt, sondern besteht aus unzähligen winzigen Schuppen, die ihrerseits in noch winzigere Lamellen unterteilt sind.

Flügelschuppen eines Tagpfauenauges unter dem Rasterelektronenmikroskop (By SecretDisc 11:39, 16 January 2007 (UTC) (Own work) [GFDL or CC-BY-SA-3.0], via Wikimedia Commons)

Jede dieser Schuppen reflektiert für sich das auf sie fallende Licht, sodass sich die einzelnen Lichtwellen auf dem Weg in unser Auge begegnen und überlagern können (Lichtwellen haben die Eigenart, sich je nach Art und Weise der Überlagerung zu verstärken oder auszulöschen). Auf unserer Netzhaut trifft so schliesslich ein atemberaubendes Muster von Lichtwellen ein, das unser Gehirn zu einem schillernden Schmetterlingsflügel zusammensetzt. Die Flügel des blauen Morphos bestehen zum Beispiel aus zwei Lagen von Schuppen. Die untere Lage ist dabei besonders aufgerauht und sorgt für die Farbe, während die obere Lage durchsichtig ist. Dennoch reflektieren auch die durchsichtigen Schuppen gleich winzigen Brillianten Licht. Durch Überlagerung (Interferenz) der Lichtwellen von den farbigen Schuppen mit jenen von den durchsichtigen Schuppen entsteht schliesslich der schillernde Effekt. Mehr zur Entstehung dieser sogenannten Strukturfarben findest du übrigens hier.
[/yellow_box]

3. Schaue den Schmetterlingen beim Schlüpfen zu!

Gleich hinter dem Eingang zur Kuppel des Papilioramas ist die grosse Vitrine, die als Brutkasten für die Schmetterlinge dient, nicht zu übersehen. Hier werden die Puppen, welche von Züchtern eingekauft werden, sorgfältig an Stangen aufgereiht und beschriftet. So können die Besucher durch die Glasscheibe beobachten, wie die fertigen Falter sich langsam aus ihren Kokons schälen und anschliessend auf den leeren Hüllen oder den Haltestangen ihre Flügel zu voller Pracht entfalten.

Dreimal an jedem Besuchstag (die Zeiten sind an einer Tafel am Eingang zur Kuppel angegeben) erscheint ein Mitarbeiter des Papilioramas und entlässt die geschlüpften Falter in die Freiheit des Tropengartens. Dabei kannst du viel Spannendes rund um die Schmetterlinge und das Papiliorama erfahren und den Mitarbeiter bzw. die Mitarbeiterin mit deinen Fragen löchern.

[yellow_box]

Die Metamorphose der Schmetterlinge

Aus Schmetterlingseiern schlüpfen weiche, vielfältig gestaltete Raupen, die abgesehen von ihren Stummelfüsschen kaum unterscheidbare Gliedmassen haben und mühsam auf Blättern und Zweigen umher kriechen müssen. Die Raupen sind für ihren Appetit berüchtigt: Ihre einzige Lebensaufgabe scheint das Fressen von Grünzeug zu sein. Sobald sie dabei gross und dick geworden sind, geschieht jedoch etwas seltsames: Eine Raupe hüllt sich selbst in eine feste Schale, einen Kokon bzw. eine Puppe, ein – meist in einem geschützten Winkel an einem Zweig hängend. Und dann geschieht – scheinbar – einige Tage lang nichts mehr. Bis die Puppe schliesslich aufplatzt und sich ein noch reichlich zerknautscht aussehender Schmetterling mit Beinen, Antennen und Flügeln herauszwängt.

Und tatsächlich ist in der Puppe ein neues Tier entstanden. Wie praktisch alle ausgewachsenen Insekten haben Schmetterlinge einen steifen, unveränderlichen Chitinpanzer – auch die Flügel bestehen übrigens aus Chitin. Und dieser Panzer kann nicht wachsen. Deshalb ein Schmetterling (wie viele andere Insekten auch) sein Leben nach dem Schlüpfen aus dem Ei in einer anderen Gestalt: Der weichen Raupe, die sich häuten und wachsen kann. Und das ist dann auch die einzige Lebensaufgabe einer Raupe: Fressen und “Speck” ansetzen, der später einmal als Baumaterial für den Schmetterling dienen muss.

Sobald die Raupe ihr Endgewicht erreicht hat, verpuppt sie sich, um vor den Widrigkeiten der Welt draussen geschützt zu sein. Und dann verdaut sie sich regelrecht selbst. Durch Hormone vermittelte Botschaften setzen Verdauungssäfte frei, die nahezu den ganzen Raupenkörper in seine molekülgrossen Einzelteile auflösen. Man kann daher sagen, dass die Raupe in ihrem Kokon stirbt. Beinahe zumindest.

Denn einige wenige spezielle Zellen, “Histioblasten” genannt, in welchen der Bauplan für den Schmetterling hinterlegt ist, bleiben übrig. Diese Zellen machen nur wenige Prozent des gesamten Inhalts der Puppe aus und dienen als Ursprung für die Körperteile des Schmetterlings. Der wird nämlich aus dem Material der einstigen Raupe ganz neu zusammengesetzt. Und sobald der neue Falter fertig ist, schält er sich aus seiner Puppenhülle, die er nun dank seines eigenen Chitinpanzers nicht mehr braucht.

Danach heisst es für den frischgeschlüpften Schmetterling, sein Blut in Wallung zu bringen. Denn erhöhter Blutdruck treibt sein Blut in die winzigen Adern in seinen noch arg zerknautschten Flügeln, sodass die prall gefüllten Blutgefässe die Schwingen zur vollen Pracht spreizen können. Erst danach ist der Schmetterling in der Lage, sich in die Lüfte zu erheben, einen Partner zu suchen und neue Eier zu befruchten bzw. zu legen, aus welchen wiederum wachsende Raupen schlüpfen.
[/yellow_box]

4. Spüre weitere Bewohner der Kuppel auf

Neben den Schmetterlingen bevölkern weitere Tiere die Kuppel des Papilioramas. Dazu gehören Vögel wie die kleinen, farbenfrohen Nektarvögel, der eindrucksvolle Rothaubenturako, Zwergwachteln und verschiedene Enten. In den Teichen am Grund des Tropengartens schwimmen tropische Fische, und wer aufmerksam hinschaut, mag sogar die gut getarnten Stabschrecken oder einen schlafenden Flughund entdecken. Findest du diese oder noch andere Tiere?

Und als ob das noch nicht genug wäre: Nocturama & Dschungel-Trek

5. Erkunde die nächtliche Tierwelt des Regenwaldes

Achtung! Wenn du die Kuppel des Nocturamas betrittst, wirst du erst einmal im Dunkeln stehen. Dabei ist es dort längst nicht so dunkel, wie es den Anschein hat. Die dunkle Verkleidung des Kuppeldachs ist nämlich so lichtdurchlässig, dass sie vom Tageslicht eben so viel hinein lässt, dass eine Vollmondnacht vorgetäuscht wird. Nimm dir deshalb Zeit, ehe du den Rundgang durch die Welt des nächtlichen Dschungels in Angriff nimmst und gehe bestenfalls eine zweite Runde. Denn deine Augen gewöhnen sich langsam an die Dunkelheit: Die Pupillen weiten sich und lassen mehr Licht auf die Netzhaut, sodass dein Sehvermögen sich zunehmend verbessert.
Dann halte die geweiteten Augen offen und entdecke die exotischen Greifstachler (diese Tiere kannte ich vor meinem ersten Besuch im Nocturama übrigens nicht), gar nicht träge Faultiere (die des Nachts vergleichsweise erstaunliche Geschwindigkeiten erreichen können), die quirligen Nachtaffen (welche von der Natur mit riesigen, immer weiten Augen perfekt für das Nachtleben ausgestattet sind), das emsige Gürteltier und viele weitere faszinierende Tiere.
Der Rundweg führt im Übrigen auch durch eine echte Fledermaus-Höhle und wird von den Tieren dementsprechend gerne als Einflugschneise benutzt. Dabei ist meineswissens noch kein Besucher angerempelt worden…Das Echolot lässt offenbar eine atemberaubend schnelle Ortung bewegter Hindernisse zu!

6. Erkunde das Shipstern-Reservat in Zentralamerika im Jungle-Trek

Die Stiftung Papiliorama ist eng verknüpft mit der Corozal Sustainable Future Initiative (CSFI), die im zentralamerikanischen Belize ein 235km^2 grosses Regenwald-Schutzgebiet unterhält. Damit du nun nicht über den grossen Teich reisen musst, um dir das anzusehen, beherbergt die Kuppel des “Jungle-Trek” die Nachstellung eines kleinen Ausschnitts dieses Paradieses auf Erden – komplett mit Original-Pflanzen und -Tieren. Auf verschlungenen Wegen kannst du so die Dschungel-Welt erkunden und ihren frei lebenden Bewohnern begegnen. Auf einer Wendeltreppe geht es zudem bis hinauf in die Baumwipfel!

Zu den Tieren, die hier leben, gehören der farbenfrohe Tukan, Leguane, der einem Truthahn ähnliche Turberkelhokko und viele andere. Welche Tiere findest du im Dschungel?

Für die wärmeren Jahreszeiten

7. Finde Tiere zum Streicheln und lerne die Insekten Mitteleuropas kennen

Auch die einheimische Natur kommt im Papiliorama nicht zu kurz. Ganz besonder im Sommer locken die Aussenanlagen mit Streichelzoo, Ententeich, spannenden Wasserspielplätzen und Platz zum Ausruhen und sich verpflegen. Im “Chlitierli-Zäut” (für nicht des Berndeutschen mächtige: “Kleintier-Zelt”) kannst du zudem die Welt der einheimischen Insekten und anderer kleiner Krabbeltiere entdecken.

Und sonst noch

Zum Papiliorama gehören ausserdem ein Imbiss (als wir dort vor Jahren zum letzten Mal gegessen haben, waren wir jedoch nur mässig begeistert vom Angebot) und ein grosser Shop, in welchem vom Plüschtier über Bücher bishin zu spannenden Gadgets für kleine und grosse Forscher und echten Dschungelpflanzen für das heimische Wohnzimmer alles erhältlich ist, was das Naturliebhaber-Herz begehrt. Achte bei den Pflanzen jedoch auf Schädlings-Befall: Wir haben bei unserem letzten Besuch Ende 2016 leider viele Pflanzen im Verkauf befallen vorgefunden!

Fazit

Das Papiliorama ist (nicht nur) an kalten Wintertagen eine warme Oase voller exotischer Lebewesen, die sich spielend einen halben bis ganzen Tag lang entdecken und beobachten lassen. Dabei gibt es nicht nur über die Tiere und Pflanzen selbst, sondern auch über ihre Gefährdung und das Shipstern-Reservat für Gross und Klein viel Spannendes zu lernen. So machen wir, zwei ‘grosse’ Naturfreunde inzwischen Mitte 30, uns regelmässig zwischen den Jahren nach Kerzers auf, um dem dunklen und kalten Winter für einen Tag zu entfliehen.

Möchtest du es uns gleich tun? Hier erfährst du, wie du zum Papiliorama kommst und was du sonst noch wissen musst.

Und wenn die kleinen Naturforscher nach dem winterlichen Besuch mit dem Erkunden der einheimischen Krabbeltier-Welt nicht bis zum Frühling warten möchten, gibt es übrigens auch hier viele spannende Geschichten zu den “Wiesenhelden” Mitteleuropas!

Und hast du schon einmal das Papiliorama besucht? Oder ein ähnliches Schmetterlings- oder Tropenhaus?

[Rezension] Gerd Ganteför: Heute Science Fiction, morgen Realität?

Dieser Artikel enthält Affiliate-Links aus dem Amazon-Partnerprogramm (gekennzeichnet mit (*) ) – euch kosten sie nichts, mir bringen sie vielleicht etwas für meine Arbeit ein. Ich habe für diese Rezension ein Rezensionsexemplar des Buches erhalten. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Die Geschichten in Keinsteins Kiste drehen sich in der Regel um den Alltag von heute – und der allein hat reichlich Spannendes zu bieten. Und manchmal scheint es gar so, als wäre die Wissenschaft fertig, könne alles erklären, was das Leben bietet, als könne die Technik alles leisten, was man zum Leben braucht. Und doch erwarten uns im Alltag von morgen unzählige neue Geschichten, die heute noch geradezu unglaublich klingen mögen – oder eben nach Science Fiction. Und genau diesen Geschichten widmet sich der Physiker Gerd Ganteför in seinem spannenden Buch “Heute Science Fiction, morgen Realität? – An den Grenzen des Wissens und darüber hinaus”.

[…]Doch Forschung ist nie am Ende und die Faszination der Wissenschaft ist ungebrochen, so Ganteför. Schliesslich gebe es Tausende von offenen und sehr spannenden Fragen.

Gibt es ein Ende der Welt? Sind wir dazu verurteilt, alt und schwach zu werden und zu sterben? Gibt es ausserirdisches Leben? Werden wir neue und unerschöpfliche Energiequellen entwickeln?

Diese und viele andere Fragen aus verschiedenen Diziplinen der Naturwissenschaft, die heute längst nicht nur Wissenschaftler bewegen, diskutiert Ganteför in seinem Buch – und die Häufigkeit, mit welcher er dabei zu der Antwort “möglich” oder gar “bald möglich” kommt, lässt mich staunen.

Zum Inhalt des Buches

Gibt es eigentlich noch etwas zu entdecken oder wissen wir schon alles? Werden wir immer einen Grossteil unseres Lebens arbeiten müssen, um unseren Lebensunterhalt zu verdienen? Wird es immer Krankheiten geben? […] Werden wir jemals die Sterne erreichen?

Diese Fragen, welche am Anfang des Buches stehen, lassen schon erahnen, dass die Forschung nicht nur in Ganteförs Augen noch lange nicht “fertig” ist. Es gibt noch zahlreiche spannende und überaus weltbewegende Fragen zu beantworten. Überdies sind Visionen und die Forschung daran notwendig für eine weitere Entwicklung und damit den Erhalt der menschlichen Zivilisation.

So soll Ganteförs Buch in einer Zeit, in welcher viele Menschen dem wissenschaftlichen Fortschritt skeptisch gegenüber stehen, Möglichkeiten bzw. Chancen für die Bewältigung der heutigen grossen Probleme der Gesellschaft, die die Wissenschaft von morgen eröffnet, aufzeigen. Dazu sollen in verschiedenen Bereichen der Wissenschaft die Grenzen des heutigen Wissens aufgezeigt werden, um dann einen Blick darüber hinaus auf das zu wagen, was uns hinter diesen Grenzen Aufregendes und Nützliches erwartet.

Ganteför beginnt seinen Rundgang ganz und gar nicht bescheiden mit dem Universum selbst. Zu Beginn miit den Eckdaten unseres Kosmos ausgerüstet geht es an die Fragen nach einer zweiten Erde irgendwo da draussen und möglichem Leben darauf. Mit Wasser scheint beides möglich, doch angesichts des unermesslichen Platzes im Universum und der Zeit, die die Evolution benötigt, ist laut Ganteför fraglich, ob zwei intelligente Zivilisationen in erreichbarer Nähe und zeitgleich erscheinen.

Daraus ergibt sich förmlich die Frage nach Reisen zu den Sternen. Da der Hyperraum uns, könnten wir ihn erreichen, uns der unverletzlichen Kausalität wegen die Rückkehr verweigern und das Beamen an den gleichen unfasssbaren Ressourcenmengen, wie sie schon Lawrence M. Krauss vor 19 Jahren in “Die Physik von Star Trek” beschrieb, scheitern würde, bleibt uns für Langstreckenreisen im Weltraum letztlich die Kombination von Fusionsenergie und einem Staubstrahltriebwerk, das seinen Treibstoff während seiner Reise aus dem Raum aufliest.

Bei der näheren Betrachtung möglicher Energiequellen der Zukunft beschreibt Ganteför neben schwarzen Löchern als recht unwahrscheinliche künftige Energiequelle die Fusionsreaktoren, an welchen heute schon geforscht wird. Die Kernfusion bekommt man darin sogar hin – allerdings sie die Geräte für irgendeine Anwendung noch bei Weitem zu sperrig.

So wendet sich Ganteför als nächstes den Visionen der Biologie zu. Können die Dinosaurier wiederz um Leben erweckt werden? Das ist seit Jurassic Park wohl eine der populärsten Fragen an die Biologie. Unglücklicherweise hält sich DNA, wie gut sie auch konserviert ist, nicht länger als etwa eine Million Jahre, was die Dinos unerreichbar macht. Der Wiederbelebung in jüngerer Zeit ausgestorbener Arten sind Wissenschaftler jedoch aufregend nahe gekommen – wie auch der Molekularbiologie Martin Moder in “Treffen sich zwei Moleküle im Labor” zu berichten weiss.

Eine weitere grosse Frage der Biologie ist jene nach dem Ursprung des Lebens – der heute im Umfeld heisser Quellen am Meeresgrund vermutet wird, wo die ersten Moleküle, die sich selbst reproduzieren können, entstanden sein mögen. Und da man über derartige Moleküle schon ziemlich viel weiss, ist laut Ganteför auch eine “synthetische” Biologie von Menschenhand designter Lebewesen denkbar.

Die grossen Visionen der Medizin sind bei Ganteför die Fragen nach der Heilbarkeit aller Krankheiten einschliesslich Nervenverletzungen durch Unfälle, nach einem ewigen Leben oder zumindest einem verlangsamten Altern und der Erschaffung von “Supermenschen”. In allen drei Bereichen führt Ganteför das Verstehen von Körperfunktionen im ganz Kleinen (also auf molekularer Ebene) als Voraussetzung für diese grundsätzlich möglichen Errungenschaften an und gewährt spannende Einblicke in Gegenstände heutiger Forschung unter anderem zu personalisierter Medizin, Regeneration von Nervengewebe und zu den möglichen Gründen dafür, dass wir altern.

Von der Regeneration von Nervengewebe geht es im Kapitel “Geist und Bewusstsein” zu den Möglichkeiten der Direktverbindung zwischen Computer und Gehirn: Kann man Daten von einem Computer ins Gehirn laden – oder umgekehrt den Inhalt eines Gehirns samt Bewusstsein auf einen Computer-Speicher schreiben? Können Computer Gedanken lesen? Oder gar selbst eine künstliche Intelligenz entwickeln? Was hier reichlich nach Fantasy klingt, ist tatsächlich Gegenstand heutiger Forschung, die Ganteför hier vorstellt.

Von den Visionen geht es schliesslich zu den Grenzen des Wissens in der Physik: Zunächst gibt Ganteför eine Übersicht über das heute etablierte, wenn auch nicht ganz problemfreie Standardmodell der Teilchenphysik, aus welchem sich die Fragen nach einer Weltformel, nach der Natur von Raum und Zeit und Teilchen als solchen bis hin zur Bedeutung des erst vor wenigen Jahren experimentell bestätigten Higgs-Feldes ergeben.

Neben den Teilchen gehören auch scheinbar unverrückbare Naturgesetze und -konstanten zu unserer heutigen physikalischen Welt. Warum die Naturgesetze so sind, wie sie sind, was die Werte der Naturgesetze bestimmt und warum in unserem Universum Leben möglich ist, sind heute noch weitgehend offene Fragen.

Auch das Universum selbst wirft noch unbeantwortete Fragen auf. Heute ist die Urknall-Theorie als Entstehungsgeschichte des Universums anerkannt, obwohl sie Fragen offen lässt: Warum gibt es im Universum keine Antimaterie? Expandierte das Universum am Anfang seines Daseins mit Überlichtgeschwindigkeit? Was war vor dem Urknall? Was ist dunkle Materie und woher kommt die dunkle Energie?

Das elfte und letzte Kapitel ist schliesslich eine Zusammenfassung des vorangehenden bunten Reigens von Visionen und offenen Fragen.

Mein Eindruck vom Buch

Gerd Ganteför bietet seinen Lesern einen spannenden und für Laien gut verständlichen Rundgang durch die Themen der Forschung von morgen: Da erwartet uns in Zukunft viel Aufregendes, das sich in Ganteförs überaus klarem und nüchternem Schreibstil sehr angenehm lesen lässt.

So vielfältig die diskutierten Fragen sind, so oberflächlich werden die einzelnen Forschungsgebiete im begrenzten Umfang des Buches auch dargestellt. Das wird besonders in den Kapiteln deutlich, welche Themen behandeln, die mir besonders vertraut sind: Dort sind mir wiederholt kleine inhaltliche Ungenauigkeiten ins Auge gefallen, wie das Aufzählen der Lichtgeschwindigkeit als Naturkonstante ohne zu erwähnen, dass Licht sich nur im Vakuum mit dieser Geschwindigkeit bewegt, oder die Behauptung, man sei heute noch nicht in der Lage, Energie aus Masse zu gewinnen (genau das ist die Grundlage der Energiegewinnung mittels Kernspaltung!).

Solche Ungenauigkeiten zu erwähnen mag als Korinthenkackerei angesehen werden, aber ich vermag nicht einzuschätzen, inwiefern sie auch in den Abschnitten auftauchen, die mir weniger vertraute Themen behandeln und dort womöglich zur Entstehung fehlerhafter Vorstellungen beitragen.

Wer sich für die beschriebenen Themengebiete näher interessiert, findet jedoch in den Literaturlisten am Ende jedes Kapitels reichlich vertiefendes Material zum Weiterlesen. Dabei kommen auch und vor allem die Netz-Nutzer unter den Lesern nicht zu kurz, denn erstaunlich viele Verweise führen zu Wikipedia und andere Wissens-Sammlungen (was in meinen Augen für die zunehmende Qualität der Inhalte solcher Portale spricht).

Darüber hinaus stellt Ganteför die behandelten Visionen und Möglichkeiten auffallend unkritisch dar. So findet man in seinem Buch keine tödlichen Designerviren, feindlichen Alien-Zivilisationen, ethischen Diskussionen über Tierversuche zur Wiederbelebung ausgestorbener Arten oder Nebenwirkungen von “Verbesserungen” von Menschen.

Das entspricht der Zielsetzung, die der Autor gemäss Einleitung mit seinem Buch verfolgt: Nämlich in einer Zeit, in welcher Wissenschafts- und Fortschritts-Skeptiker vielerorts den Ton angeben, einen positiven Einblick in die Möglichkeiten, die uns die Forschung in Zukunft eröffnen kann, zu gewähren. Und diese Möglichkeiten sind gemäss Ganteför dafür geeignet, die grossen Probleme der Menschheit zu lösen.

Für eine sachliche Diskussion der Möglichkeiten und Anforderungen künftigen wissenschaftlichen Fortschritts an die Gesellschaft liefert das Buch nur eine Seite der Medaille. Wenn man die andere Seite durch den verbreiteten Wissenschafts-Skeptizismus als gegeben annimmt, liefert “Heute Science Fiction, morgen Realität” ein wohltuendes, wenn nicht gar aufregendes Gegengewicht zu weit verbreitetem Pessimismus und vielfältiger Panikmache.

Eckdaten rund um das Buch

(*)

Textlink (Amazon): Gerd Ganteför: Heute Science Fiction, morgen Realität? – An den Grenzen des Wissens und darüber hinaus (*)
WILEY-VCH Verlag GmbH & Co. KGaA, 2016
Hardcover, 224 Seiten
ISBN: 978-3-527-33881-8

 

Fazit

Mit “Heute Science Fiction, morgen Realität?” bietet Gerd Ganteför auch und gerade absoluten Wissenschafts-Laien einen spannenden und leicht verständlichen Einblick in die Möglichkeiten der Wissenschaft von morgen, welche ebenso vielfältig bunt sind wie das Cover des Buches. Doch dank ebendieser Themenvielfalt bin auch ich als “Wissenschafts-Profi” bei der Lektüre hier und da ins Staunen gekommen.

Die dargestellten Visionen kritisch zu betrachten und ethische Gesichtspunkte abzuwägen bleibt dabei ganz dem Leser überlassen. Wer gerne unkritisch staunt und sich von spannenden Aussichten verzaubern lässt, wird in diesem Buch eine kurzweilige und letztlich auch ermutigende Lektüre finden.

Und was ist eure liebste Zukunfts-Vision?