Free Printable: So experimentiert ihr auch mit gefährlichen Chemikalien sicher!

Chemikalien können gefährlich sein. Das weiss jeder, und viele Stoffe werden dahingehend sogar überschätzt. Eigentlich sollte es heissen: Chemikalien können gefährlich sein – wenn man nicht richtig mit ihnen umgeht.

Die Experimente in Keinsteins Kiste könnt ihr mit Zutaten durchführen, die ihr im Haushalt findet oder im Bau- oder Supermarkt kaufen könnt. Nur manchmal ist eine Spezialzutat nötig, die ihr in der Regel in einer Apotheke oder Drogerie bestellen könnt. Krebserzeugende oder anderweitig “besonders besorgniserregende Stoffe” gibt es in den Versuchen in Keinsteins Kiste nicht.

Doch auch von Haushaltschemikalien und -zutaten können Gefahren für Umwelt und Gesundheit ausgehen. Deshalb gebe ich euch ein paar einfache Regeln zum Umgang damit auf den Weg. Wenn ihr euch daran haltet, sind die Experimente in Keinsteins Kiste praktisch ungefährlich!

Checkliste zum Sicheren Umgang mit Chemikalien

Druckt euch diese Liste am besten aus und habt sie griffbereit, wenn ihr euch ans Experimentieren macht. Hier geht es zum Download! So könnt ihr jederzeit nachschauen, was zu tun ist, wenn ihr unsicher seid. Denn Sicherheit geht immer vor!

1. Bevor ihr Chemikalien verwendet, lest euch die Warnhinweise auf der Verpackung durch!

Möglicherweise gefährliche Stoffe, die verkauft oder in Betrieben bzw. öffentlichen Einrichtungen verwendet werden, müssen dem “global harmonisierten System” (GHS) folgend deutlich gekennzeichnet werden. Folgende Symbole auf Chemikalienflaschen und -Verpackungen weisen euch auf die wichtigsten Gefahren hin:

GHS-Symbol Achtung gefährlich!

Vorsicht gefährlich: Geht achtsam mit diesem Stoff um. Neben dem Symbol wird schriftlich erläutert, wovor genau ihr euch in Acht nehmen müsst. Findet man zum Beispiel auf Stoffen, die Haut und Schleimhäute reizen oder Allergien auslösen können.

leicht_entzündlich

Leicht entzündlich: Dieser Stoff brennt sehr leicht und schnell. Haltet ihn unbedingt von offenem Feuer und Funken fern! Brennsprit (Spiritus) und andere organische Lösungsmittel tragen dieses Zeichen.

brandfoerdernd

Brandfördernd: Haltet auch diesen Stoff von offenem Feuer fern. Die meisten Stoffe mit diesem Symbol können Sauerstoff freisetzen oder sind auf andere Weise reaktionsfreudig, sodass sie einen Brand unkontrolliert anheizen können!

Ätzend: Schlimmer als reizend. Dieser Stoff kann Haut und Schleimhäute ernsthaft verletzen und empfindliche Materialien beschädigen. Findet man auf Säuren, Basen und starken Oxidationsmitteln.

umweltgefaehrdend

Umweltgefährdend: Dieser Stoff ist giftig für Wasserlebewesen wie Fische, Wirbellose und Kleinstorganismen. Gebt davon der Umwelt zuliebe nichts in den Abluss oder den Hausmüll, sondern bringt Reste zu einer Schadstoff-Sammelstelle!

Gas_unter_Druck

Gas unter Druck: In diesem Behälter befindet sich ein Gas, das sich stark ausdehnen kann. Lasst ihn nicht in der Sonne stehen oder auf andere Weise heiss werden, damit er keinen Grund zum Platzen hat! Auf Nachfüllkartuschen für Kohlensäure-Spender zu finden!

Gesundheitsgefährdend: Krebserzeugend, Erbgutschädigend oder auf andere Weise gefährlich für bestimmte Organe – möglicherweise auch langfristig. Nehmt diesen Stoff niemals ein und vermeidet, ihn einzuatmen. Verwendet ihn nur, wenn unbedingt nötig und haltet den Behälter fest geschlossen! Diese Kennzeichnung findet ihr auf Fleckbenzin und hochkonzentrierten ätherischen Ölen.

Die folgenden Symbole werden euch im Alltag und in Keinsteins Kiste selten bis gar nicht begegnen:

Giftig: Das Symbol kennt jeder. Schon kleine Mengen dieses Stoffs können eine gefährliche Wirkung entfalten. Daher niemals einnehmen oder einatmen und mit grosser Vorsicht behandeln! Rattengift trägt dieses Symbol.

explosiv

Explosiv: Dieser Stoff kann explosionsartig reagieren, zum Beispiel bei Kontakt mit Feuer, Funken, nach einem Schlag, Reibung, Hitzeeinwirkung oder falscher Lagerung, und beträchtlichen Schaden anrichten. Solche Stoffe gehören ausschliesslich in die Hände von Experten. Sprengstoffe tragen dieses Symbol.

Neben den Gefahrensymbolen findet ihr auf der Verpackung genauere Einzelheiten über die Gefahren und Anweisungen, wie ihr mit dem jeweiligen Stoff umgehen und euch bei einem Unfall damit verhalten solltet. Lest diese Hinweise gut durch und befolgt sie!

2. Findet für eure Experimente einen geeigneten, sicheren Arbeitsplatz!

An einem guten Experimentierplatz ist die Umgebung – mindestens aber die Unterlage – feuerfest, leicht zu reinigen und möglichst beständig gegenüber Säuren, Basen (Laugen), Lösungs- und Oxidationsmitteln. Und dort wird nicht mit Lebens- oder Körperpflegemitteln umgegangen.

Die Küche ist also kein geeigneter Ort zum Experimentieren! (Es sei denn, ihr verwendet ausschliesslich Lebensmittel.)

Ausserdem sollte sich euer Experimentierplatz leicht lüften lassen. Bei schönem Wetter kann er deshalb durchaus draussen sein.

Eine alte Küchenarbeitsplatte gibt eine ideale Unterlage zum Experimentieren ab – ein glatter, versiegelter bzw. lackierter Holztisch oder nicht poröser Stein bzw. Fliesen oder Edelstahl tun es aber ebenso. Marmor und Kalkstein sowie Aluminium sind allerdings ungeeignet – sie werden von Säuren angegriffen!

Wenn euch das makellose Aussehen des Möbels eurer Wahl wichtig ist, testet aus, ob die Oberfläche Lösungsmitteln oder aggressiven Stoffen, die ihr verwendet, standhält. Oder benutzt einfach einen alten Tisch, dem Flecken und Macken nicht mehr schaden.

3. Bewahrt gefährliche Chemikalien für Kinder unzugänglich auf!

Jeder Putzmittelschrank und jede Hausapotheke sollten dieser Anforderung entsprechen: Abschliessbar oder so hoch gelegen, dass unbedarfte kleine Forscher nicht allein herankommen und sich mit gefährlichen Stoffen verletzen oder vergiften können!

4. Tragt beim Experimentieren passende, sichere Kleidung!

Die perfekte Forscher-Bekleidung bedeckt den Körper möglichst weitgehend, ist schwer entflammbar und möglichst widerstandsfähig gegenüber ätzenden Stoffen. Laborkittel bestehen deshalb meist aus Baumwolle, die diese Eigenschaften erfüllt. Wer sich keinen Laborkittel leisten möchte, ist mit einem langärmeligen Baumwollhemd ebenso gut bedient.

Baumwoll-Herrenoberhemden geben übrigens tolle Labor- und Malkittel für Kinder ab: Einfach die Ärmel auf die richtige Länge umschlagen oder kürzen und umnähen und mit der Knopfleiste nach hinten über die Kleidung streifen!

Tragt zudem beim Umgang mit ätzenden Stoffen möglichst lange Hosen und geschlossene Schuhe, sowie Putz- oder Einmalhandschuhe und eine Schutzbrille (als Brillenträgerin begnüge ich mich beim Umgang mit “milden” Haushalts-Säuren wie Essig mit meiner “normalen” Brille – eine Schutzbrille mit Seitenflügeln ist letztendlich aber sicherer.

5. Beim Experimentieren wird nicht gegessen oder getrunken!

Wer Chemikalien an den Händen hat, läuft Gefahr, beim Essen oder Trinken etwas davon mit aufzunehmen. Haltet Essen und Getränke daher räumlich vom Experimentierplatz getrennt. Wenn ihr zwischendurch etwas essen oder trinken möchtet, zieht allfällige Handschuhe aus und wascht euch vorher (und nachher) die Hände. Das gleiche gilt für den Gang aufs stille Örtchen!

Bewahrt ausserdem niemals Chemikalien in Lebensmittelverpackungen auf! Wenn ihr PET-Flaschen, Honiggläser oder ähnliches beim Experimentieren wiederverwenden möchtet, entfernt zuvor alle Lebensmitteletiketten und beschriftet die Gefässe deutlich mit dem neuen Inhalt!

6. Kein offenes Feuer beim Experimentieren!

Beim Experimentieren wird also nicht geraucht! Haltet ausserdem Kerzen und andere Feuerquellen von eurem Experimentierplatz fern – ganz besonders, wenn ihr mit brennbaren Lösungsmitteln arbeitet! Wenn ihr bei einem Experiment etwas anzünden müsst, legt die Zündquelle – Streichhölzer, Feuerzeug oder ähnliches – gleich danach in sicherer Entfernung auf die Seite. Lasst Feuer ausserdem niemals unbeaufsichtigt.

7. Haltet Chemikalienbehälter immer sicher verschlossen!

Öffnet Chemikalienbehälter immer erst, wenn ihr etwas daraus entnehmen wollt, und macht sie danach sofort wieder zu! So wird nichts verschüttet, wenn ihr versehentlich mal etwas umstosst.

Wenn ihr Chemikalienbehälter durch die Wohnung tragen oder über längere Strecken transportieren müsst, stellt sie in eine Kunststoffwanne oder einen Eimer und tragt diese/n. Sollte beim Transport etwas auslaufen oder kaputtgehen, bleibt die potentiell gefährliche Sauerei so auf die Wanne / den Eimer beschränkt.

8. Lagert und verwendet Chemikalien in Gefässen aus Glas, reaktionsträgem Kunststoff oder Edelstahl!

Ihr wollt ja nicht, dass eure Zutaten mit dem Gefäss statt miteinander reagieren. Obwohl zerbrechlich ist Glas das ideale Material für Versuchsgefässe: Es hält allen Stoffen, die in den Versuchen in Keinsteins Kiste Verwendung finden, stand, kann schadlos erhitzt werden – und man kann durchschauen. Kunststoff-Behälter aus Polyethylen (PE) oder Polypropylen (PP) reagieren ebenfalls nicht mit ihrem Inhalt, halten allerdings nicht jeder Hitze stand. Ein grösseres Volumen, zum Beispiel ein Wasserbad, findet auch gut in einem ausrangierten Edelstahl-Kochtopf Platz.

9. Entsorgt Chemikalen gemäss den Hinweisen in der Versuchsbeschreibung oder auf der Verpackung!

DIE UMWELT WIRD ES EUCH DANKEN!

Wenn es nach den Experimenten in Keinsteins Kiste etwas zu entsorgen gibt, findet ihr entsprechende Hinweise am Ende des jeweiligen Artikels. Lest daher vor dem Experimentieren die Anleitung vollständig durch! Gehört ein Stoff über eine Schadstoff-Sammelstelle entsorgt oder seid ihr euch dessen unsicher, lagert die Reste sicher verschlossen, bis ihr sie dort hinbringen könnt.

Achtet darauf, besonders bei “Schadstoffen”, nicht mehr als unbedingt nötig von einem Stoff zu verwenden! Je weniger ihr einsetzt, desto weniger Reste müsst ihr nachher umständlich entsorgen!

Und wenn doch etwas passieren sollte:

Wenn ihr mit Chemikalien in Kontakt kommt

  • Wascht Chemikalienspritzer gründlich ab und zieht getränkte Kleidung sofort aus.
  • Wenn ihr etwas in die Augen bekommt: Spült die Augen gründlich, das heisst bis zu 10 Minuten, mit fliessendem Wasser aus und konsultiert bei Beschwerden oder wenn es sich um einen ätzenden Stoff handelt, einen Augenarzt.
  • Wenn ihr etwas eingeatmet habt, hindert die Dämpfe an der Ausbreitung (Gefäss schliessen!) und geht an die frische Luft.
  • Wendet euch mit Beschwerden nach dem Kontakt mit Chemikalien an euren Arzt oder den Giftnotruf:

In der Schweiz (und in Liechtenstein) erreicht ihr ToxInfo Suisse unter der Nummer 145 .

In Deutschland haben die Bundesländer unterschiedliche Giftnotruf-Nummern.

In Österreich erreicht ihr die Vergiftungsinformationszentrale unter +43 1 406 43 43 .

Wenn ein Feuer ausbricht

  • Wenn der Inhalt eines Gefässes brennt, deckt dieses schnell mit einem festen Gegenstand ab. Ein Buch oder ein glattes Holzbrett ersticken die Flammen im Gefäss, bevor sie Feuer fangen können! In einem feuerfesten Gefäss könnt ihr den Inhalt auch einfach ausbrennen lassen.
  • Löscht brennende Flüssigkeiten nicht mit Wasser! Wenn ihr einen CO2-Feuerlöscher habt, ist der die bessere Wahl.
  • Bringt Lösungsmittel und andere brennbare Stoffe auf Abstand!
  • Sollte eine Person oder deren Kleidung brennen, stellt sie zum Löschen sofort mit Kleidung und allem unter die laufende Dusche! Verbrennungen können ebenfalls unter fliessendem kalten Wasser effektiv gekühlt werden. Haltet Verbrennungen sofort – leichtere einige Minuten, schwerere bis zur ärztlichen Versorgung – unter den Wasserhahn oder die kalte Dusche!
  • Wenn ein Brand ausser Kontrolle zu geraten droht, alarmiert die Feuerwehr, schliesst, wenn möglich, Fenster und Türen (nicht verriegeln!) und verlasst das Haus!

Aber keine Sorge: Wenn ihr euch an die Vorsichtsmassnahmen aus dem ersten Teil des Artikels haltet, ist es höchst unwahrscheinlich, dass es so weit kommt.

Somit wünsche ich euch viel Spass beim entspannten und sicheren Experimentieren!

Experiment und Haushaltstipp: Kupfer mit Hausmitteln reinigen

Ein verregneter Frühling ist – wohl oder übel – Zeit für Schlechtwetterprogramm. Aber was tun? Experimentieren oder Haushalt? Warum nicht beides miteinander? Ich habe einen genialen Hack für euer Kupfer-Geschirr – mit Experiment für eure Kinder dazu!

Habt ihr einen Kupfertopf? Armaturen oder andere Gegenstände aus Messing? Und die sind mal wieder ziemlich angelaufen und sollten dringend geputzt werden? Dann legt los – und zwar ganz ohne kommerzielle Reinigungspaste. Denn was ihr braucht, findet ihr mit Sicherheit in der Küche.

Kupfer und Messing reinigen: Ihr braucht dazu

  • Angelaufenen Kupfertopf o.Ä.
  • Papiertücher (könnt ihr einfach entsorgen, da ihr sie nicht auswaschen müsst!)
  • Ggfs. Putzhandschuhe
  • Haushaltsessig
  • Kochsalz (Speisesalz, NaCl)

Und für ein simples, aber atemberaubendes Experiment für die Nachwuchs-Forscher das Ganze im Kleinformat…

Experiment: Kupfermünzen reinigen: Ihr braucht dazu

  • Kupfermünzen (nachweislich funktionieren Euro-Cents, britische Pennys und US-Cents, Münzen mit messinggoldener Oberfläche wie das Schweizer Füüferli oder tschechische 20 Kronen bringen kein gutes Ergebnis)
  • Haushaltsessig
  • Kochsalz
  • leeres Glas (z.B. Gewürzglas, praktisch mit gewölbtem Boden)
  • ggfs. Schutzbrille und Kittel für die Nachwuchs-Forscher

Haushaltsessig und andere Säuren wirken ätzend! Essigsäure ist jedoch eine schwache Säure, die unserer Haut dank deren Säureschutz nicht gleich Schaden zufügt. Deshalb trage ich beim Umgang mit solch kleinen Mengen keine Handschuhe.

Wenn ihr Essig auf die Haut bekommt, spült ihn einfach gründlich mit Wasser ab. Sollte euch ein Spritzer in die Augen geraten (die Schutzbrille sollte das verhindern!), spült die Augen sehr gründlich mit fliessendem Wasser aus (10 Minuten lang heisst es im Labor!) und geht bei bleibenden Beschwerden zur Sicherheit zum Augenarzt.

Wenn Spritzer auf die Kleidung kommen, zieht sie aus und wascht sie ebenfalls sofort sehr gründlich aus. Wenn die Säure die Textilien angreift, können sonst später beim Waschen in der Maschine noch Löcher entstehen!

So geht’s

Experiment

Gebt ca. 1 cm hoch Haushaltsessig ins Glas, dann eine angelaufene Kupfermünze hinein. Schliesslich gebt ihr reichlich – etwa einen Teelöffel – Kochsalz hinzu.

Münze im Essig-Kochsalz-Bad: Ein paar Sekunden reichen – ihr könnt zuschauen, wie sie blank wird! Das Kochsalz muss sich übrigens nicht vollständig im Essig lösen. Direkt auf die Münze gegeben wirkt es am besten.

Kupfertopf reinigen

Gebt einen Schuss Essig auf euren Lappen und streut Kochsalz auf den nassen Fleck. Nicht damit sparen! Dann poliert euren Kupfertopf oder Messinggegenstand mit dem Gemisch. Sobald der Topf blank ist, könnt ihr ihn mit einer kleinen Menge Speiseöl einreiben, damit er nicht sogleich wieder anläuft.

Was ihr beobachten könnt

Beim Experimentieren

Die dunkel angelaufene Kupfermünze wird innerhalb von Sekunden hell! Fischt die Münze aus dem Glas, sobald sie hell genug ist (eine Gabel ist dabei sehr hilfreich) und spült sie kurz mit Wasser ab.

Kupfermünze mit Essig und Kochsalz gereinigt: Die linke Münze ist nach wenigen Sekunden im Essig-Salz-Bad blank, die rechte, angelaufene dient als Vergleich
Rechts: Angelaufene 2-Eurocent-Münze; Links: eine vergleichbar angelaufene 2-Eurocent-Münze nach wenigen Sekunden im Essig-Kochsalz-Bad

Beim Reinigen des Kupfertopfes oder Messinggegenstandes

Das Kupfer oder Messing wird sofort blank, wie beim Putzen mit einer kommerziellen Reinigungspaste!

Entsorgung

Kupferionen sind giftig für Wasserorganismen und andere Kleinstlebewesen. Deshalb gehören sie grundsätzlich als Sondermüll entsorgt. Die winzigen Mengen, welche beim Experimentieren mit Münzen entstehen, könnt ihr aber mit dem Essig-und-Salz-Gemisch in den Abfluss entsorgen.

Die Papiertücher, mit welchen ihr Kupfertöpfe und Messing putzt, könnt ihr in den Hausmüll geben oder – wenn ihr die Kupfergeschirr-Komplettausstattung eurer Profi-Küche poliert und so grössere Mengen erzeugt habt 😉 – trocknen lassen und zur Sonderabfall-Sammelstelle bringen.

Was passiert da?

Die dunkle Farbe angelaufenen Kupfers ist ein Belag aus Kupferoxiden, hauptsächlich aus schwarzem Kupfer(II)oxid (CuO). Dieses Salz besteht aus Cu2+– und O2- -Ionen. Cu2+-Ionen können sich in Wasser lösen, wobei sie von Wassermolekülen umgeben werden.

Dabei nehmen sechs Wassermoleküle der innersten Wasserschicht um ein Cu2+-Ion ganz bestimmte, geometrische Positionen ein: Die Ecken eines lang gezogenen Oktaeders.

Hexaaquakupfer(II) - Komplex: Die beiden H2O auf der Längsachse sind etwas weiter vom Kupfer entfernt als die vier übrigen
Der Hexaaquakupfer(II)-Komplex: Die Pfeile deuten die Bindungen durch “geliehene” Elektronenpaare an. Die Wassermoleküle markieren die Ecken eines Oktaeders (eine viereckige Doppelpyramide), wobei die beiden Moleküle oben und unten etwas weiter weg vom Kupfer sind als die übrigen vier. Die Folge: Der Oktaeder erscheint etwas in die Länge gezogen.

Wie sie dazu kommen? Ein Cu2+-Ion hat relativ wenig Elektronen (immerhin zwei weniger, als zum Ausgleich seiner Kernladung nötig wären). Wassermoleküle hingegen haben – zumindest am Sauerstoff-Ende – ziemlich viele davon, und zwar ganze zwei äussere Elektronenpaare, die für keine chemische Bindung innerhalb des Moleküls gebraucht werden. So können Wassermoleküle eines dieser nichtbindenden Elektronenpaare einem Cu2+-Ion “ausleihen”.

Damit entsteht eine chemische Bindung zwischen Wasser und Kupfer-Ion, die von den Chemikern “koordinative Bindung” oder “Komplexbindung” genannt wird. “Komplex” ist daran allerdings nur, dass ein Bindungspartner dem anderen ein Elekronenpaar ausleiht, anstatt dass wie bei der kovalenten oder Atombindung jeder Partner ein Elektron dazu beisteuert.

Komplexbildungsreaktionen sind Gleichgewichtsreaktionen

Cu2+-Ionen sind nun damit zufrieden, von sechs geliehenen Elektronenpaaren jeweils ein Bisschen zu haben. Allerdings lange nicht so zufrieden wie damit, einen Platz in einem CuO-Kristallgitter zu haben.

Stets kehren Cu2+-Ionen aus der Lösung in das Kristallgitter zurück: Die [Cu(H2O)6]2+ – Komplexe befinden sich stets mit dem Kupfer-Ionen im Kristallgitter in einem chemischem Gleichgewicht (Le Chatelier erklärt euch das Gleichgewicht hier auf dem Flughafen genauer).

Dieses Gleichgewicht liegt in Wasser allerdings ganz weit auf der Seite des Salzkristalls, es sind nur ganz wenige [Cu(H2O)6]2+ -Komplexe in Lösung.

Kochsalz übt einen Zwang aus

Gibt man nun reichlich Kochsalz (NaCl) in das Wasser, löst sich dessen Gitter auf: Na+– und Cl-Ionen gehen einzeln ins Wasser über . Die Cl-Ionen können ebenfalls Komplexe mit Kupfer bilden: Sie können Wassermoleküle im [Cu(H2O)6]2+ ersetzen, sodass Komplexe wie [Cu(H2O)5Cl]+ entstehen:

Die Art Reaktion nennen die Chemiker “Ligandenaustauschreaktion”: Die Teilchen, welche dem Kupfer-Ion (dem “Kern”) im Zentrum des Komplexes die Elektronenpaare leihen, heissen nämlich “Liganden” (von lateinisch ligare = binden).

Durch solche Reaktionen können bis zu vier Wassermoleküle ausgetauscht werden. Die zwei verbleibenden Wassermoleküle bilden nun die Spitzen des langgezogenen Oktaeders.

Tetrachlorocuprat(II) in wässriger Lösung: Der quadratisch-planare Kupfer-Komplex wird von zwei Wassermolekülen zum langgezogenen Oktaeder ergänzt.
Tetrachlorocuprat(II): So heisst der Komplex, welcher entsteht, wenn die maximal mögliche Anzahl Wassermoleküle gegen Chlorid-Ionen ausgetauscht wird.

All diese Komplexe stehen miteinander im Gleichgewicht. Das schiere Überangebot an Cl-Ionen allein sorgt dafür, dass diese Gleichgewichte jeweils auf die Seite mit mehr Chlorid im Komplex gedrängt werden. So einem Zwang wie dem Cl-Überschuss will das ganze System nämlich ausweichen.

Der Knackpunkt dabei: Durch die Entstehung der Komplexe mit Chlorid wird dem Gleichgewicht zwischen CuO und gelösten Kupferionen das  [Cu(H2O)6]2+ entzogen! Laut dem Prinzip von Le Chatelier strebt das Gleichgewicht danach, auh diesen Verlust auszugleichen: Der Verlust der Kupferionen mit reiner Wasserhülle zieht das Gleichgewicht förmlich auf die Seite des gelösten [Cu(H2O)6]2+. So geht in der Anwesenheit von reichlich Cl mehr Cu2+ aus dem CuO in Lösung.

Und was tut der Essig dabei?

Mit Kochsalz und blossem Wasser funktionieren diese Ligandenaustauschreaktionen kaum: Das Kupferoxid bleibt an der Oberfläche haften – der Kupfertopf bleibt dunkel.

So lautete meine erste Vermutung Die Säure (Haushaltsessig ist nichts anderes als Essigsäure gelöst in Wasser) fördert irgendwie die Entstehung der chloridhaltigen Komplexe. Befriedigend war diese Erklärung aber lange nicht.

Deshalb habe ich meine Chemiker-Gedanken weiter gesponnen und bin zu folgender Erklärung gelangt:

Wenn Cu2+-Ionen aus dem CuO in Lösung gehen, müssen die O2--Ionen aus dem Gitter auch irgendwo hin. Allerdings können die nicht einfach von Wassermolekülen umgeben existieren. Stattdessen reagieren sie mit dem Wasser zu OH-Ionen:

Auch zwischen diesen Reaktionspartnern besteht ein Gleichgewicht, das nicht all zu weit auf der Seite der OH-Ionen liegen mag. Ist im Wasser allerdings eine Säure (ein Stoff, der mit Wasser H3O+-Ionen erzeugen kann) vorhanden, reagieren die OH-Ionen allerdings gleich wieder zu Wasser:

Diese Gleichgewichtsreaktion nennen die Chemiker “Neutralisation”! Es liegt nämlich recht weit auf der Wasser-Seite, sodass eine Säure wie H3O+ und eine Base wie OH ganz von selbst miteinander reagieren. Durch den “Verbrauch” von OH-Ionen durch die Neutralisation wird wiederum das Gleichgewicht zwischen O2- im CuO-Gitter und den OH-Ionen in Lösung auf die OH-Seite gezogen.

Zum besseren Überblick habe ich die wichtigsten Gleichgewichte und ihre Abhängigkeiten voneinander noch einmal zusammengefasst:

Überblick über die Gleichgewichtsreaktionen: So löst sich Kupfer in Essig mit Kochsalz
Die roten Pfeile deuten die Verlagerung der Gleichgewichte an: Die Reaktionen ganz rechts “ziehen” die Gleichgewichte weiter links auf die Seite der Lösung: Das Kupferoxid an der Kupferoberfläche wird aufgelöst!

Wenn meine Erklärung zutrifft, müsste das Ganze auch mit Kochsalz in anderen Säuren funktionieren. Ich habe es ausprobiert: Kochsalz in Zitronensäure zeigt beim Polieren die gleiche Wirkung.

Aber Kupfer(II)-Komplexe sind doch farbig?

Die Chemie-Erfahreneren unter euch wissen vielleicht, dass die Komplexe mit Cu2+-Ionen eigentlich sehr farbig sind: [Cu(H2O)6]2+ ist zum Beispiel cyanblau, während die chloridhaltigen Komplexe zunehmend grün sind. Warum sieht man dann beim Reinigen der Münzen die Farben nicht?

Ich gehe davon aus, dass diese Komplexe insgesamt in so kleiner Menge entstehen, dass uns die äusserst blasse blau-grüne Färbung schlichtweg nicht auffällt.


Wie verträglich ist die Reinigung mit Essig und Kochsalz für die Kupfer-oberfläche?

Durch die Ligandenaustauschreaktionen wird das Kupfer-Metall nicht wieder hergestellt. Stattdessen wird bereits oxidiertes Kupfer in Wasser gelöst, sodass es abgewaschen werden kann. Wie bei allen anderen mir bekannten Mitteln zur Entfernung von Korrosionsspuren würde auch dieses bei wiederholtem Putzen irgendwann das Metall “aufbrauchen”.

Im praktischen Gebrauch bei der Reinigung von Kupfertöpfen und ähnlichen Gegenständen fällt diese Verlust jedoch nicht ins Gewicht. Zudem gehe ich davon aus, dass kommerzielle Reinigungspasten nach dem gleichen Prinzip funktionieren. Ihr könnt also getrost eure Kupfertöpfe mit Essig und Kochsalz polieren.

Und Messingoberflächen?

Messing ist eine Legierung – also ein Gemisch – aus den Metallen Kupfer und Zink. Auch in Messing sind also Kupferatome enthalten, die, wenn sie zu CuO oxidiert werden, dem Metall ein dunkles, stumpfes Aussehen geben. Damit sollte sich dieses Problem mit Hilfe der selben Reaktionen beheben lassen.

Tatsächlich habe ich auch den Messinggriff meines Kupfertopfes problemlos mit Essig und Kochsalz polieren können. Lasst dabei jedoch die Mischung nicht unnötig lange einwirken, sondern spült sie gleich nach dem Putzen ab!

Beim Experimentieren mit Messingmünzen habe ich nämlich festgestellt, dass die Mischung Zink oder/und andere Bestandteile der Legierung aus der Oberfläche herauslösen kann. Die Folge: Die ehemals messinggoldene Oberfläche wird zwar blank, aber rot wie Kupfer!

Zink ist nämlich ein ziemlich unedles Metall, sodass es von der Säure angegriffen werden könnte. Die Säurekorrosion habe ich hier zur Rostparade oder zum Anhören in der neuen Folge des Proton-Podcasts (erscheint in Kürze) erklärt.

Bild: Tschechische 20-Kronen-Münze rot verfärbt

Was euch die Verwendung dieses Hausmittels bringt

Wie bereits erwähnt vermute ich, dass im Handel erhältliche Reinigungspaste für Kupfer und Messing auf die gleiche Weise funktioniert wie das Gemisch aus Säure und Kochsalz – nämlich mit Chemie. Welchen Vorteil habt ihr dann aber von diesem Hausmittel?

Wie ihr seht: Ohne Chemie geht nichts im Haushalt. Anders als bei einer Reinigungspaste aus dem Handel wisst ihr beim Einsatz eines solchen Hausmittels oder Chemie-Hacks ganz genau, welche Chemie bzw. Chemikalien darin enthalten sind. Nämlich garantiert nichts, was euch gefährlich werden könnte (so lange ihr das Kochsalz nicht löffelweise esst oder euch die Säure in die Augen spritzt – aber das versteht sich ja von selbst). Das ist doch ein beruhigender Gedanke, oder?

Und wie reinigt ihr Kupfer und Messing in eurem Haushalt?

Ausstellung: Die Entdeckung der Welt - Wie aus Kindern Forscher werden

Das ist ein Ball…

Das ist ein Ball : Blaue Holzkugel

und das eine Reise in die Vergangenheit – in meine Vergangenheit:

Bunte Kunststoff-Windräder, wie sie vor 30 bis 40 Jahren jedes Strandgeschäft im Angebot hatte

Denn diese bunten Windräder und das einzigartige Geräusch ihres Flatterns im Seewind gehören zu meinen frühesten Kindheitserinnerungen. An die frühen Seeferien an der Ostsee, wo die bunten Räder zu Dutzenden vor jedem Strandgeschäft zum Verkauf angeboten wurden.

Damals war ich schon mittendrin im Welt entdecken – damit fangen kleine Kinder nämlich gleich nach der Geburt schon an. Oder sogar schon davor. Und sie tun es mit allen Sinnen, die von Geburt an einsatzbereit, wenn auch noch nicht vollständig entwickelt sind. Aber die Entwicklung kommt dann mit dem Forschen und Lernen.

Wie das vor sich geht, könnt ihr noch bis zum 16. Juni in der St. Leonhardskirche in St. Gallen entdecken. Dort findet nämlich die Wanderausstellung “Die Entdeckung der Welt” des Vereins Stimme Q statt. Und danach ist sie in Winterthur – und schliesslich in Bern.

Ich habe von der Stiftung Q für den Besuch der Ausstellung zwei Freikarten für Erwachsene erhalten. Eine davon darf ich am Ende dieses Beitrags für euch verlosen. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Mit dem Ball zurück in Kindertage

Die bunte Holzkugel, die so sehr an das beliebteste Kinderspielzeug erinnert, begleitet mich durch die ganze Ausstellung. Zum Auftakt setzt sie Dioramen in Betrieb, mit welchen verschiedene (heute erwachsene) Menschen mich in ihre Kindheit mitnehmen. Da leuchtet, glitzert, dreht und bewegt es sich symbolisch, während die Protagonisten via Lauschmuschel von ihren Kindheitserlebnissen und -eindrücken erzählen.

Wie bei einem Spint mit Pfandmünze kommt der Ball am Ende immer wieder zurück in meine Hand. Fast immer jedenfalls, denn genau bei den Windrädern bleibt die Kugel plötzlich verschwunden. Und nun?

Wenn es irgendwo klemmt, ist der Kassier am Eingang überaus hilfsbereit. Mit ein paar Handgriffen zaubert er das verlorene “Spielzeug” im Handumdrehen wieder hervor.

Auch weiterhin spricht die ganze Ausstellung (fast) all unsere Sinne an: Augen, Ohren, aber auch der Tastsinn ist gefordert.

Wie aus Neugeborenen Forscher werden: Ein Parcours durch die frühkindliche Entwicklung

An grossräumig verteilten Stationen kann ich die Schritte der Entwicklung von Kindern von der Geburt bis zum vollendeten 4. Lebensjahr mitverfolgen. Gemeinsam entwickeln sich die Sinne, Bewegungs- und Sprachfertigkeiten und aus all dem soziale Kompetenzen – die Fähigkeiten zum Miteinander.

Neben reichlich Lesestoff zur Entwicklung Schritt für Schritt kommen Fachexperten zu einzelnen Tehmen via Lauschmuschel zu Wort. Dazwischen finde ich zur Auflockerung Beispiele, was und wie Kinder wann lernen können. Auf Bildschirmen laufen nämlich Kurzfilme der Bildungsdirektion Zürich (die ihr auch hier finden könnt), die Szenen direkt aus dem Alltag von Kindern und Eltern bzw. Tageseltern zeigen.

Rundblick über die Ausstellung "Die Welt entdecken" in der neugotischen St. Leonhardskirche
Die farbenfrohen Fenster der St. Leonhardskirche harmonieren selbst an einem trüben Tag wunderbar mit den Elementen der Ausstellung.

Forscher Kristóf und die Holzfrucht

Fasziniert beobachte ich gut 3 Minuten lang, wie ein 9 Monate altes Baby im Video zum Forscher wird – auf der Spieldecke und in Mamas Nähe sich selbst überlassen. Sein Forschungsobjekt: ein rotes, gerundetes Stück Holz!

“Kleinkinder können sich dann in etwas vertiefen, wenn sie sich sicher und geborgen fühlen, weder Hunger noch Durst haben, bequem gekleidet und ausgeschlafen sind.”

Fazit des Kurzfilms “Die Holzfrucht”

Dieser Schlussatz aus dem Film zieht sich wie ein roter Faden durch die weitere Entwicklungsgeschichte: Geborgenheit und gleichzeitige Gelegenheit zur Eigenständigkeit sind Grundvoraussetzungen für nachhaltiges Forschen und Lernen.

Naturkunde für die ganz Kleinen

Auch der erste Naturkundeunterricht, im Video um 2- bis 3-Jährige, beläuft sich aufs Schauen und Tasten (und je nach Gegenstand auf Riechen und allenfalls Schmecken): Wie fühlt sich das Schneckenhaus an? Was macht die Schnecke, wenn man sie antippt? Das Gespräch zwischen Kind und Erwachsenen über das Erleben fördert auch die Sprachentwicklung ungemein.

Dabei sein ist alles

Kinder lieben es, die Grossen nachzuahmen. Dabei finden sie wunderbare Lerngelegenheiten Werden sie in Alltagsarbeiten eingebunden, haben sie ausserdem noch das Gefühl, helfen zu können. Das gilt auch für gemeinsames Experimentieren: Wer mitmachen kann, hat daran gleich doppelt Spass!

Besondere Themenfelder: Generation Iphone

Wenn es um die Entwicklung und Förderung von (Klein-)Kindern geht, gibt es in bestimmten Feldern immer wieder heisse Diskussionen. Zwei solchen sind in der Ausstellung eigene Bereiche gewidmet: Den immer häufigeren “modernen” Familienformen von Patchwork bis zu homosexuellen Eltern und der Frage nach dem Einsatz digitaler Medien in der frühkindlichen Bildung und Erziehung. Und letztere macht mich als Bloggerin für Familien und eine der ältesten Digital Natives besonders neugierig.

Welchen Sinn macht es, die Jüngsten mit dem Smartphone spielen zu lassen oder bereits Kindergärten (dieser Begriff meint in der Schweiz die Vorschule!) oder gar Kitas mit Tablets auszustatten? Angebote für diese Altersklasse gibt es in den Appstores ja zuhauf.

Die Experten in der Ausstellung sagen: Keinen! Es gebe keinen Grund, 0 bis 4 Jährige mit Tablets&Co zu versorgen – im Gegenteil: In dieser Zeit lernen Kinder, die reale Welt zu be(greifen). Da bestehe das Risiko, dass in der virtuellen Welt fehlerhafte oder gar unbrauchbare Abläufe und Konzepte erlernt werden.

Meine Sicht auf Tablets & Co für die Kleinsten

Diese Aussage bestätigt mein Bauchgefühl. Ich selbst bin ja noch nicht in, sondern gemeinsam mit der digitalen Welt aufgewachsen. So kam der erste Computer zu uns ins Haus, als ich schon zur Schule ging, und unsere Eltern limitierten die Zeit, die wir Kinder daran verbrachten, streng. Verpasst habe ich dadurch aber nichts.

Im Gegenteil: Ich bin nun nicht nur eine der ersten Digital Natives, sondern auch Teil der letzten Generation, die noch komplett analog – auf die eigenen Sinne und Motorik angewiesen – ihre Welt entdeckt hat (vielleicht rührt daher ja meine ungebrochene Leidenschaft für das Selber-Experimentieren).

Vorerst zumindest: Meine Schwester erzieht ihre Töchter weitestgehend smartphone- und tabletfrei, und das seit mehr als zweieinhalb Jahren ziemlich konsequent. Meinem Bauchgefühl und vor allem nach dem Besuch der Ausstellung unterstütze ich diese Haltung gerne.

Für die Grossen: Frühkindliche Betreuung in der Schweiz

Die Reise durch die frühkindliche Entwicklung nimmt jedoch nur einen Teilbereich der Ausstellung ein. Darüber hinaus liefert die nämlich noch reichlich weiteres Futter für die Diskussion um frühkindliche Betreuung, Bildung und Erziehung, die die Stimme Q schliesslich in die breite Öffentlichkeit tragen will.

So findet sich in der Mitte des Kirchenschiffs ein fantasievolles Steuerpult für die Präsentation einer umfassenden Statistiksammlung. Wieder kommt der Holzball zum Einsatz und ruft selbstständig über das Pult hopsend ein Diagramm nach dem anderen auf der grossen Leinwand auf. Die Diagramme zeigen unter anderem: Es gibt in der Schweiz grosse Lücken betreffend familien- bzw. familiengründungsfördernder Gesetzgebung und Kleinkinderbetreuung.

Ich schwärme ja gerne davon, wie einfach es im Vergleich zu Deutschland hierzulande ist, eine selbstständige Arbeit aufzunehmen. Dagegen wäre eine Familie zu gründen und zu betreuen wohl eine weitaus härtere Nuss als daheim im “grossen Kanton”. Insbesondere in Sachen Elternzeit und Betreuungsangebot scheinen die Eidgenossen noch reichlich Verbesserungsbedarf zu haben.

Das Steuerpult für die Statistiksammlung: Der blaue Ball unterhalb der grünen Tafel zeigt: Obwohl oder gerade weil in der Schweiz sehr viele Frauen berufstätig sind, gibt es Verbesserungsbedarf in Sachen Elternzeit und Kleinkinderbetreuung.

Für die Kleinen: Spielspass im Ausstellungsraum

Während die Grossen sich mit Lesestoff, Filmen und Statistik vergnügen, kommen auch die kleinen Ausstellungsbesucher nicht zu kurz. Kriechtunnel und weiche Matten zwischen den Stationen laden zum Spielen und Toben ein – und hier beschwert sich niemand, wenn es dabei mal ein wenig laut wird.

Und wer lieber nah bei Mami und Papi bleibt, kann gleich noch das ein oder andere Exponat nach eigenen Vorstellungen gestalten. Einige der Schautafeln sind nämlich Magnetwände mit beweglichen Elementen, die nach Lust und Laune irgendwo angeheftet werden können.

Das Highlight ist aber die Spielstation im Herzen der Ausstellung. Die grosse Kugelibahn für den Holzball hat (nicht nur) meinen Spieltrieb gleich geweckt. Eine Rutsche, eine Höhle “nur für Kinder” (es sei denn, die Grossen schaffen es irgendwie durch den Kriechtunnel oder den niedrigen Seiteneingang hinein) und der grosse Konfetti-Touchscreen laden zu ganz eigenen Abenteuern ein.

Der mannshohe Konfetti-Screen, auf welchen ein Beamer bunte Formen projeziert, ist besonders bei den Primarschülern beliebt. Man kann mit den virtuellen Konfetti nämlich interagieren. Jede Konfettifarbe hat eine andere Eigenschaft, die bei Berührung mit den Händen zu Tage tritt: “Die Pinken sind die besten!”, heisst es bei den begeisterten Kids (die Pinken blähen sich nämlich riesig auf, ehe sie wie Seifenblasen platzen), die Blauen sind aber ebenso beliebt (sie fahren bei Berührung Zacken aus und können per Wisch quer über den Screen geschossen werden. Auf ihrem Weg bringen sie dann andere Konfetti zum Platzen).

Durch ein Bullauge in Elternhöhe kann ich den Screen und die Kinder, die direkt hinter der Wand in der Höhle stehen, im Spiegel beobachten. Dabei zeigt sich: So faszinierend die Möglichkeiten der digitalen Technik auch sind, die “klassischen” Spielgeräte wie Rutsche und Kugelibahn verlieren darüber nicht ihren Reiz: Alle Teile der Spielinsel werden von den jungen Gästen gleich eifrig bevölkert.

Ein kleines Mädchen ist fasziniert vom riesigen Konfetti-Bildschirm. Wenn er will, kann der Papi seine Tochter durch den Kriechtunnel jederzeit erreichen.
29.03.2017; “Die Entdeckung der Welt” mit dem Konfettiscreen in Bellinzona (Michela Locatelli/photolocatelli.ch)

Ihr wollt die Ausstellung besuchen? Das solltet ihr wissen

Habt ihr nun auch Lust zum Mitspielen und -lernen? Dann könnt ihr die Ausstellung “Entdeckung der Welt” noch bis zum 16. Juni 2019 jeden Dienstag bis Sonntag (ausser Karfreitag) von 10 bis 18 Uhr in der St.Leonhardskirche in St.Gallen besuchen. Die Kirche ist nur wenige Hundert Meter vom Hauptbahnhof entfernt und von dort aus nicht zu übersehen.

Der Eintritt kostet für Erwachsene CHF 8, für Schüler und Auszubildende über 16, Studenten, AHV- und IV-Bezüger CHF 6. Für Kinder unter 16 ist der Eintritt inklusive Spielspass frei.

So lange es draussen noch frisch ist: Zieht euch in jedem Fall warm an! Wie jede ältere Kirche lässt sich auch diese nur schwerlich beheizen – und ich habe nach all der spannenden Lektüre im Stehen in der dünnen Sommerjacke ziemlich gefroren!

Alle Infos und Daten zu den zahlreichen Zusatzveranstaltungen rund um das Projekt findet ihr zudem auf der Website zur Ausstellung.

Gewinnspiel: Eine Freikarte (Erwachsene) für euch!

Wie nehmt ihr teil?

Kommentiert bis zum 18.04.2019 unter diesem Beitrag, mit wem oder warum ihr die Ausstellung in St. Gallen besuchen möchtet und noch eine Karte braucht. Gebt dazu eine gültige Email-Adresse an – der Gewinner erhält die Karte von mir als pdf-Datei zum Ausdrucken oder digitalen Transport mit der Eventfrog-App!

Anschliessend werde ich den Gewinner unter den gültigen Kommentaren auslosen.

Teilnahmebedingungen

  • Das Gewinnspiel wird von Keinsteins Kiste in Zusammenarbeit mit dem Verein Stimme Q veranstaltet. Vielen Dank für die Bereitstellung des Preises!
  • Das Gewinnspiel startet am 13. April 2019 und endet am 18. April 2019 um 24.00 Uhr.
  • Die Teilnahme am Gewinnspiel ist kostenlos.
  • Ihr müsst mindestens 18 Jahre alt sein (Liebe Kinder: Tut euch mit euren Eltern, Grosseltern oder anderen Erwachsenen zusammen!).
  • Gewinnpreis ist eine Freikarte für die Ausstellung “Die Entdeckung der Welt” in der St.Leonhardskirche in St.Gallen, gültig an einem beliebigen Datum bis zum 16. Juni 2019.
  • Es gibt 1 Los für einen Kommentar mit gewünschtem Inhalt (s.o.).
  • Eine Auszahlung des Gewinns in bar ist nicht möglich. Der Rechtsweg ist ausgeschlossen.
  • Der Gewinner wird ausgelost und per eMail benachrichtigt.
  • Sofern die Ausschüttung eines Gewinns an einen in der Ziehung ermittelten Gewinner nicht möglich ist, weil eine Gewinnbenachrichtigung und/oder Gewinnzustellung scheitern und nicht binnen einer Woche nach der Ziehung nachgeholt werden können, verfällt der Gewinnanspruch.
  • Der Veranstalter behält sich das Recht vor, das Gewinnspiel aus sachlichen Gründen jederzeit ohne Vorankündigung zu modifizieren, abzubrechen oder zu beenden.

Weitere Stationen der Wanderausstellung

St. Gallen ist euch zu weit weg oder es passt euch zeitlich nicht mehr? Auch dann könnt ihr die Ausstellung noch besuchen. Sie ist nämlich bis Ende des Jahres in der Schweiz unterwegs:

Vom 21.08. bis 20.10.2019 findet ihr sie im Eulachpark, Halle 710 in Winterthur und vom 15.11. bis 22.12.2019 im Kornhausforum in Bern.

Bis dahin habe ich aber noch eine Anregung zum Weltentdecken für eure Jüngsten zu Hause.

Und wie könnte ein altersgerechtes MINT-Experiment für Kleinkinder aussehen?

In der Ausstellung lernen wir: Voraussetzungen für nachhaltiges Erleben und Lernen – und das lässt sich auch auf Naturwissenschaften ummünzen – sind: Eine sichere, anregende Umgebung zum Selbsterkunden, und Gelegenheit zum Mitmachen bei gemeinsamen Experimenten. Ein spannender Versuchsgegenstand für Kleinkinder kann dabei aus Erwachsenensicht durchaus sehr simpel sein.

Naturwissenschaftliches zum Selbererkunden: Magnete!

Für Kinder megaspannende und ebenso sichere Gegenstände zum Selbsterkunden sind Dauermagnete! Ich habe schon in frühen Jahren die Magnetkupplungen meiner Holzeisenbahn-Wagen geliebt und fleissig damit experimentiert. Magnete gibt es aber auch in vielen Formen und Farben für den Kühlschrank oder die Magnettafel.

Welche Magnete sind für Kinder geeignet?

Wichtig ist, dass Magnete für Kinder ausreichend gross oder/und mit den sie umgebenden Materialien robust verarbeitet sind, sodass sie nicht verschluckt werden können. Dann nämlich könnt ihr die Kinder ganz beruhigt allein damit umgehen lassen (die Magnetfelder von einfachen Kühlschrank- oder Spielzeugeisenbahn-Magneten sind nicht gefährlich und vor allem nicht stark genug, um kleine Finger einzuklemmen.

Anders die sogenannten “Supermagnete” aus Legierungen mit dem Seltenerd-Metall Neodym: Wenn diese gross genug sind, um nicht verschluckt zu werden, sind ihre Magnetfelder so stark, dass sie für Kinder unlösbar an Eisen haften bleiben und (nicht nur) einen zarten Kinderfinger schmerzhaft quetschen können.

Was es über Magnete zu erforschen gibt

Mit einem oder mehreren Magneten können Kinder sich lange allein beschäftigen. Noch mehr Spass macht es jedoch, die wundersamen Magnetkräfte gemeinsam zu erkunden. Über folgende Fragen und Beobachtungen könnt ihr mit euren Kindern sprechen und dazu experimentieren:

  • Magnete ziehen Dinge an. Welche? Und welche nicht?
  • Magnete ziehen Dinge auch aus Entfernung an. Wie gross darf die sein?
  • Magnete ziehen Dinge auch durch andere hindurch an. Wie dick dürfen die sein?
  • Zwei Magnete ziehen sich nicht nur an, sie stossen sich auch ab. Sind die anziehenden und abstossenden Seiten eurer Magnete mit Farben markiert?

Dabei werden unweigerlich Fragen auftauchen. Woher rühren die “Zauberkräfte” der Magnete? Gibt es Magnete mit nur einer “Seite” (einem Pol)? Kann man solche erzeugen, indem man einen Magneten durchschneidet? Wenn ihr die richtigen Antworten auf solche Fragen parat haben wollt, findet ihr sie in meinem Artikel zu den Magnetkräften in Keinsteins Kiste.

Mehr Experimente für die ganz jungen Forscher

Da findet ihr auch viele weitere Experimente für kleine(re) Kinder. Hier sind einige Beispiele:

Und viele andere mehr.

Zu all diesen Experimenten findet ihr Erklärungen, die für die Kleinsten vielleicht zu weit gehen, aber euch Grossen dabei helfen sollen, den kleinen Forschern ihre Fragen zu ihren Beobachtungen zu beantworten.

Und wie habt ihr die Welt entdeckt? Wie entdeckt ihr sie mit euren Kindern?

Es ist Frühling – eine wunderbare Zeit für Experimente, für die man etwas Platz braucht. Deshalb habe ich heute für euch ein lustiges wie lehrreiches Spektakel für Balkon und Terrasse (oder auch für drinnen): Die Elefantenzahnpasta!

Das bekannte Experiment zeigt eine weitere wichtige Fähigkeit (die Gärung könnt ihr ja hier erforschen), die nicht nur Hefezellen, sondern auch unsere Zellen haben: Die Fähigkeit, sich vor Oxidationsmitteln zu schützen. Und da dabei eine Menge Gas entsteht, kann man diese Fähigkeit für dieses spassige Experiment nutzen.

Ihr braucht dazu

  • Hefe: am einfachsten geht das Experiment mit Trockenhefe
  • ein Gefäss mit schmaler Öffnung: z.B. eine 0,5l PET-Flasche oder ein Reagenzglas
  • etwas warmes Wasser (lauwarm, wie Hefe es gern hat)
  • etwas Geschirrspülmittel
  • ein Oxidationsmittel: Wasserstoffperoxid, als Lösung (3 – 6%) aus der Apotheke/Drogerie
  • Optional: Lebensmittelfarbe
  • Einen Trichter, der auf das schmale Gefäss passt
  • Schutzbrille, ggfs. Labormantel/Malschürze
  • Ein Backblech oder Tablett als Unterlage
Wasserstoffperoxid, Trockenhefe, Spülmittel, Lebensmittelfarbe, Reagenzglas, Schutzbrille, Trichter - das braucht ihr für die Elefantenzahnpasta!

So geht’s

  • Rührt die Trockenhefe in das warme Wasser ein, bis es keine Klumpen mehr gibt.
  • Füllt Wasserstoffperoxid in das schmale Gefäss (bis es zu ca. einem Fünftel (mit 6% H2O2) bzw. zwei Fünftel (mit 3% H2O2) gefüllt ist – verwendet dazu den Trichter!) und mischt Lebensmittelfarbe und einen Schuss Spülmittel hinein.
  • Stellt das Gefäss in das Backblech.
  • Giesst das Hefewasser schnell in das Gefäss und tretet zurück! Die Reaktion beginnt sofort!
Wasserstoffperoxid ist mit roter Farbe und Spülmittel gemischt, die Hefe in Wasser suspendiert
Alles parat: Rechts im Reagenzglas Wasserstoffperoxid-Lösung (Drogisten benutzen gerne lateinisierte Stoffnamen – hier “Hydrogenii peroxidum” , die schonmal zu Kommunikationsschwierigkeiten mit einkaufenden Chemikern führen) mit roter Lebensmittelfarbe und Spülmittel. Links ein Teelöffel Trockenhefe in Wasser. Nun das Linke in das Rechte giessen und los gehts!

Was ihr beobachten könnt

Die Mischung beginnt sofort zu sprudeln und heftig zu schäumen. Wie ein Zahnpastastrang quillt der Schaum aus der Gefässöffnung und ergiesst/schlängelt sich auf dem Backblech aussen herum.

Elefantenzahnpasta quillt aus dem Reagenzglas!
Zahnpasta für Zwergelefanten: Einem der Chemiker-Grundsätze – so viel wie nötig, so wenig wie möglich – zuliebe habe ich den kleinen Massstab im Reagenzglas gewählt. Zudem hatte “meine” Drogerie gerade nur 3% H2O2-Lösung vorrätig – mit 6% käme wohl noch mehr Schaum heraus. Im Übrigen: Ein guter Drogist oder Apotheker fragt nach, was ihr mit der Lösung vorhabt. Nicht irritieren lassen und ehrlich sein – sie geben sie dann schon heraus!

Sicherheitshinweise

Auch wenn sie gerne so genannt wird: Die “Elefantenzahnpasta” eignet sich nicht zum Zähneputzen! Nehmt sie also nicht in den Mund!

Wasserstoffperoxid wirkt ätzend auf Haut und Schleimhäute (die typischen weissen Verletzungen werden manchmal erst verzögert sichtbar und tun manchmal auch dann erst weh). Wenn euch etwas von der Lösung auf die Haut gerät, spült es gründlich mit fliessendem Wasser ab. Sollte euch trotz aller Vorsicht etwas ins Auge spritzen, spült das Auge sehr gründlich mit fliessendem Wasser aus (10 Minuten lang ist Labor-Standard!) und geht bei Beschwerden zum Augenarzt!

Ausserdem kann Wasserstoffperoxid farbige Textilien bleichen. Der Labormantel bzw. die Malschürze soll eure Kleider davor schützen.

Die “Zahnpasta” selbst enthält kaum bis kein Wasserstoffperoxid mehr und kann daher gefahrlos angefasst werden.

Entsorgung

Die “Zahnpasta” und Reste im Reaktionsbehälter können mit viel Wasser in den Abfluss entsorgt werden. Übrige Wasserstoffperoxidlösung könnt ihr im dicht schliessenden Originalbehälter in einem dunklen Schrank aufbewahren und später für weitere Experimente verwenden.


Was passiert da – Wie entsteht die Elefantenzahnpasta?

Wasserstoffperoxid – H2O2 – ist eine recht instabile Verbindung. Unter alltäglichen Bedingungen ohne Reaktionspartner zerfällt es sehr langsam in Wasser und Sauerstoff:

2H_{2}O_{2}\rightarrow 2H_{2}O+O_{2}

Kommt Wasserstoffperoxid allerdings mit anderen Stoffen in Berührung, oxidiert es die meisten davon. Das gilt insbesondere für die Bestandteile von Lebewesen. Deshalb solltet ihr bei diesem Experiment Schutzbrille und -kleidung tragen!

Schutz vor Oxidation durch Aufräum-Enzyme

Wenn die Zellen sauerstoffatmender Lebewesen (Menschen, Tiere, Hefepilze,…) Energie aus Sauerstoff gewinnen, kann in ihnen jedoch H2O2 als unerwünschtes Nebenprodukt entstehen (so ausgeklügelt die Reaktionswege sind, fehlerfrei laufen sie noch lange nicht). Damit dieses Wasserstoffperoxid nicht wild herumoxidiert, haben die Zellen ein Aufräumkommando, das durch Fehler entstehendes H2O2 schnellstmöglich aus der Welt schafft.

Dabei handelt es sich um Enzyme mit dem Namen Katalase. Das sind Proteine, die die natürliche Zersetzung von Wasserstoffperoxid in Wasser und Sauerstoff um ein Vielfaches beschleunigen – indem sie den Ablauf der Reaktion erheblich erleichtern.

Ein Biokatalysator erleichtert den Reaktionsablauf

Denn Reaktionen laufen dann leichter ab, wenn weniger Energie nötig ist, um sie zu starten. Ein Stoff, der eine Reaktion beschleunigen kann (ohne selbst abzureagieren), indem er die zum Start der Reaktion nötige Aktivierungsenergie verringern kann, wird Katalysator genannt.

Im Auto ist der Katalysator eine Metalloberfläche, an welcher giftige Abgase zu weniger giftigen Stoffen reagieren (mehr dazu findet ihr hier). In Lebewesen heissen die Katalysatoren Enzyme. Enzyme sind also Proteine, die Reaktionen erleichtern und damit beschleunigen. Die Katalasen gehören unter diesen zu den schnellsten Enzymen überhaupt: Ein einziges Katalase-Molekül schätzungsweise bis zu 10 Millionen H2O2-Moleküle in der Sekunde umsetzen! Das hat zur Folge, dass die Geschwindigkeit des Wasserstoffperoxid-Abbaus mit Katalase praktisch nur davon abhängt, wie viel H2O2 das Enzym in gegebener Zeit “zu fassen” bekommt.

Gasentwicklung dank Katalase

Damit ist die Katalase bestens geeignet, um durch Fehler in anderen Reaktionsabläufen entstehendes Wasserstoffperoxid sofort wieder verschwinden zu lassen – oder um aus Wasserstoffperoxid, das von aussen eindringt, in kürzester Zeit grosse Mengen Sauerstoff-Gas freizusetzen.

Wenn wir unsere Hefe durch Mischen mit Wasserstoffperoxid-Lösung (relativ) grossen Mengen H2O2 aussetzen, stürmen diese kleinen Moleküle die Hefezellen und werden dort postwendend zu Wasser und Sauerstoff-Gas umgesetzt. Sollten die Zellen dabei platzen oder ihre Aussenwände kaputt oxidiert werden, kommt die Katalase zudem direkt mit der Wasserstoffperoxid-Lösung in Berührung und das Gas entsteht noch schneller.

Nun brauchen gasförmige Stoffe ein Vielfaches mehr an Platz als flüssige Stoffe aus den gleichen Teilchen, sodass sich das Sauerstoff-Gas sehr schnell ausdehnt. Da unser Gemisch aber Seife enthält, werden die entstehenden Sauerstoffportionen in winzige Seifenbläschen eingeschlossen (über diese und andere Superkräfte von Seife könnt ihr hier nachlesen): Es entsteht Schaum.

Elefantenzahnpasta von Nahem gesehen: Die Schaumbläschen sind erkennbar.
Wenn ihr euch die “Elefantenzahnpasta” ganz aus der Nähe anschaut, könnt ihr die kleinen Schaumbläschen erkennen.

Und dieser Schaum, nass von Seifenwasser und Hefezellresten, quillt als “Elefantenzahnpasta”-Schlange aus dem Gefäss heraus.

Zusammenfassung

Die “Elefantenzahnpasta” besteht also aus Schaum aus Seife und Sauerstoff, der durch “Überfütterung” der Oxidationsschutz-Enzyme von Hefezellen mit Wasserstoffperoxid entsteht.

Auch Menschenzellen haben Katalasen, die den Abbau von Wasserstoffperoxid in der gleichen Weise beschleunigen: Wenn Wasserstoffperoxid in unsere Haut gelangt, entstehen im Gewebe kleine Sauerstoffbläschen, welche wir als die weissen Verletzungen sehen können.

Wichtig: Die Schutzenzyme des Körpers sind genau darauf ausgelegt, solche Oxidationsmittel zu entfernen, die bei Fehlern in zelleigenen Prozessen entstehen. Andere Oxidations- und Bleichmittel, insbesondere unter dem Kürzel “MMS” als “Wunderheilmittel” vertriebene gefährliche Chlorverbindungen gehören da nicht zu! Gegen solche Stoffe hat der menschliche Körper keine eigenen Schutzmassnahmen!

Und habt ihr das Elefanzenzahnpasta-Experiment schon einmal ausprobiert? Wozu sonst verwendet ihr Wasserstoffperoxid?

Farbkreis mit wandernden Farben

Seid ihr das winterliche Grau in Grau auch so leid wie ich? Dann ist es für uns alle an der Zeit, uns etwas Farbe zu gönnen. Die Blogparade #farbenfroh aus der Reihe #bloggenkunterbunt in Barbaras Paradies kommt da gerade recht. Barbara sammelt nämlich Blogbeiträge, die etwas mit Farben zu tun haben. Und das noch bis Ende Februar!

Farben, Licht und Glanz – Warum die Welt uns bunt erscheint

Farben sind natürlich auch ein grosses und spannendes Thema in den Naturwissenschaften. Wenn ihr euch schon einmal gefragt habt, was Farben sind und warum die Welt uns bunt erscheint, findet ihr hier in meinem ultimativen Artikel zur Physik der Farben die Antwort.

Für die Blogparade sind aber neue Artikel im Februar gewünscht. Deshalb gibt es heute Farbiges für euch zum Mitmachen: Ein faszinierend buntes Experiment. Und alles, was ihr dazu braucht, findet ihr in eurer Küche oder im Supermarkt.

Vom Lichtspektrum…

Die Farbe ist eine Eigenschaft des Lichtes: Je nach seiner Wellenlänge nehmen wir das Licht, das in unsere Augen fällt, in einer bestimmten Farbe wahr. Erst alle Farben miteinander ergeben den Eindruck “weiss”. Wenn man alle Wellenlängen in aufsteigender (oder absteigender) Reihenfolge nebeneinander stellt, erhält man einen wunderschönen Regenbogen: Eine Reihe aller Farben, die ineinander über zu gehen scheinen.

Diese Reihe nennen die Physiker das Spektrum des sichtbaren Lichtes. An seinen Enden geht es in Farben über, die für unsere Augen unsichtbar sind: Infrarot am langwelligen, ultraviolett am kurzwelligen Ende.

…zum Farbkreis

Nun wäre es aber reichlich aufwändig, für jede dieser Wellenlängen eine eigene Sinneszelle zu entwickeln, nur damit wir farbig sehen können. Ganz davon zu schweigen, dass die kaum alle auf unserer kleinen Netzhaut Platz hätten. Deswegen hat der Mensch nur drei Sorten Farb-Sinneszellen – und dahinter geschaltet eine leistungsfähige Rechenmaschine (das Gehirn), welche die Eindrücke der drei Farbspezialisten zu einem Gesamt-Farbeindruck verarbeitet.

Die drei Grundfarben, für welche wir Menschen eigene Sinneszellen haben, haben findige Künstler und Naturphilosophen schon erkannt, bevor sie wussten, was eine Zelle ist oder wie unsere Netzhaut samt Gehirn funktioniert: Rot, Gelb und Blau. Durch das Vermischen von Farbstoffen in diesen drei Tönen lassen sich nämlich alle anderen Farbeindrücke erzeugen. Reines Rot, Gelb und Blau bekommt man hingegen durch Mischen nicht hin.

Und noch etwas haben die Künstler festgestellt: Bestimmte Farbenpaare nebeneinander erzeugen einen besonders starken Kontrast. Diese Farbenpaare werden Komplementärfarben genannt.

(Technisch gesehen sind zwei Farben komplementär, die gemeinsam weiss (wenn farbige Lichtwellen zusammen kommen) bzw. schwarz (wenn die Farbeindrücke durch Auslöschung von Lichtwellen entstehen, sodass das Mischen zur vollständigen Auslöschung führt) ergeben. Die Gesamtheit aller Lichtwellen erscheint also deshalb weiss , weil zu jeder Farbe auch die Komplementärfarbe vorhanden ist.)

Wenn man nun die drei Grundfarben in einem Dreieck anordnet und die jeweiligen Mischungen zweier Grundfarben im Verhältnis 1:1 entlang der Kanten dieses Dreiecks, dann liegen komplementäre Farben einander gegenüber. Das gilt auch, wenn man die nun sechs Farben wieder je 1:1 miteinander mischt und die Ergebnisse zwischen die Ausgangsfarben setzt. So entsteht ein Farbkreis, auf welchem ähnliche Farben nebeneinander und komplementäre Farben einander gegenüber zu finden sind.

Die Herstellung eines solchen Farbkreises mit sechs Farben könnt ihr mit einer spannenden physikalischen Spielerei verbinden:

Experiment: Farbkreis mit wandernden Farben

Wasser und darin gelöste Farbstoffe können sich durch “saugfähiges” Papier bewegen, wobei die Beweglichkeit der Stoffe von der Beschaffenheit ihrer Moleküle abhängt. Dieser Umstand kann genutzt werden, um Farben zu trennen. Das könnt ihr zum Beispiel ganz einfach mit einem schwarzen Filzstift ausprobieren, oder etwas aufwändiger mit den Farbstoffen in Pflanzenblättern. Die Links führen euch zu meinen Anleitungen dazu.

Heute wollen wir die Lauffähigkeit von Wasser und Farbstoffen aber nutzen, um die Farben zu vermischen.

Ihr braucht dazu

  • Lebensmittelfarben rot, gelb, blau
  • 6 gleichhohe Gläser
  • weisse Papierservietten
  • Bastel- oder Küchenschere
  • Leitungswasser
  • einen Stab zum Umrühren
  • bis zu 24 Studen Zeit

So geht’s

  • Schneidet aus den Papierservietten mehrlagige Streifen, die vom Boden des einen zum Boden des nächsten Glases reichen. Ich habe dazu einfach eine zusammengefaltete Serviette in Streifen geschnitten. Der vorgegebene Falz kann dann auf den Glasrändern platziert werden, und die Enden hängen links und rechts herunter. Ich habe die Streifen dann so gekürzt, dass die Enden etwa 10 bis 15mm auf dem Glasboden aufliegen können.
  • Stellt die leeren Gläser in einem Sechseck auf, nehmt aber die Streifen nach dem Abmessen der Länge wieder heraus.
    Füllt das erste, dritte und fünfte Glas zu mindestens einem Drittel mit Wasser.
  • Löst in einem Wasserglas reichlich blaue, im nächsten gelbe und im dritten rote Lebensmittelfarbe auf. Rührt allenfalls gut um, bis sich die Farbe vollständig im Wasser verteilt hat.
  • Hängt nun die Papierstreifen über die Ränder der benachbarten Gläser: Jeder Streifen soll zu einer Seite in farbigem Wasser, zur anderen Seite in einem leeren Glas hängen. In jedem leeren Glas hängen somit nun zwei trockene Streifen
Der Aufbau zu Beginn des Experiments
  • Und jetzt zum grossen Unterschied zu vielen Varianten dieses Versuchs im Netz: Wartet nicht nur ein bis zwei Stunden, sondern allenfalls einen ganzen Tag ab und schaut euren Farbkreis zwischendurch immer wieder an!

Was ihr beobachten könnt

Das Wasser steigt zunächst zügig in den Serviettenstreifen nach oben. Die Farbstoffe folgen in der Regel deutlich langsamer. Schliesslich überwinden erst das Wasser, dann die Farben den Falz über dem Glasrand und laufen weiter bis zum Boden des nächsten Glases. Wenn ihr lang genug wartet, wird sich buntes Wasser in den leeren Gläsern sammeln, sodass die Farbstoffe sich vermischen!

Farbkreis mit gewanderten Farben nach 24 Stunden
Der Farbkreis nach 24 Stunden: Im Glas zwischen Blau und Rot sammelt sich Violett, im Glas zwischen Blau und Gelb ist das Wasser grünlich, und in der Mitte es Glases zwischen Gelb und Rot lässt sich Orange erkennen.

Wie funktioniert das?

Wie Wasser und Farbstoffe sich durch Papier bewegen, habe ich hier bei der Papierchromatographie mit Filzstiften erklärt. Im Unterschied dazu lassen wir dieses Experiment aber tatsächlich so lange laufen, dass Wasser und Farben durch den ganzen Papierstreifen wandern und schliesslich am anderen Ende wieder herauskommen. Das funktioniert theoretisch so lange, bis der Wasserspiegel in den anfangs leeren Gläsern ebenso hoch ist wie der in den Grundfarben-Gläsern. Dann erst nämlich verursachen die Wassermoleküle in den Misch-Gläsern so viel “Stau”, dass die ganze Bewegung zum Erliegen kommt.

Entsorgung

Lebensmittelfarben sind ungiftig, sodass die Lösungen in den Abluss und die farbigen Papierstreifen in den Restmüll entsorgt werden können. Anstatt sie wegzugiessen, könnt ihr die farbigen Lösungen aber ebenso gut aufheben oder gleich für weitere Experimente verwenden!

Warum dauert der Versuch so lange?

Die Geschwindigkeit, mit welcher die Farben durch die Papierstreifen wandern, hängt ebenso von der Beschaffenheit der Servietten als auch von jener der Farbstoffmoleküle ab. Und es gibt mehr als jeweils eine Sorte Moleküle, die gelb, rot oder blau sein können.

Die Papierservietten, welche ich hier verwendet habe, habe ich auch bei der Trennung von Filzstiftfarben mit vielen Primarschulkindern eingesetzt. Und die Filzstiftfarben liefen innerhalb von wenigen Minuten die Streifen hinauf. Die Lebensmittelfarben (vom Grossverteiler mit dem orangen M) bestehen offenbar aus weitaus sperrigeren Molekülen. In meinen Farben sind das laut Verpackung

  • -Gelb : Curcumin (E 100) – das Gelb der Kurkuma-Wurzel
  • -Rot : Echtes Karmin bzw. Cochenille (E 120) – das Rot aus Cochenille-Schildläusen
  • -Blau : Spirulinaextrakt – ein Farbstoff aus Cyanobakterien (“Blaualgen”) der Gattung Spirulina
Der Farbkreis nach 4 Stunden: Die rote Farbe ist deutlich im Papier zu sehen, die gelbe Farbe erscheint am Glasrand noch blass und die blaue Farbe ist dort noch kaum zu sehen. Erst später werden die Farben intensiver und mischen sich in den vormals leeren Gläsern.

Das Karminrot wandert noch am schnellsten, gefolgt vom Curcumin-Gelb. Das Spirulina-Blau tut sich hingegen ganz schwer. Vielleicht findet ihr ja andere Farbstoffe, die schneller laufen?

Weitere Ideen zum Ausprobieren

-die unterschiedlichen Wandergeschwindigkeiten der Farben sichtbar machen: Mischt alle farbigen Lösungen in einem Glas und hängt einen Papierstreifen hinein. Welche eurer Farben läuft am weitesten hinauf, welche am wenigsten weit?
-probiert das Ganze mit Tinte, Kirschsaft oder anderen farbigen Flüssigkeiten auf Wasserbasis aus: Was läuft in euren Servietten am schnellsten?

Ich wünsche euch ganz viel Spass beim Experimentieren und Farben bestaunen!

Hier findet ihr übrigens noch mehr Farben in Keinsteins Kiste:

Und wie bringt ihr sonst Farbe in euren Februar-Alltag?

Rätsel-Experiment für Kinder: Womit funktioniert der Eiswürfel-Kran?

Wenn es draussen kalt und grau ist, mache ich es mir gerne im Warmen gemütlich. Aber was tun an langen Tagen daheim? Ich habe für euch ein winterliches Rate-Experiment:

Mit welcher “magischen” Substanz könnt ihr einen Eiswürfel an einem Bindfaden befestigen und hochheben?

Nein, ich meine nicht Klebstoff. Der würde an einem Eiswürfel soundso nicht haften, sondern ratzfatz wieder abgehen, wenn das Eis schmilzt. Es gibt jedoch einen anderen Stoff, der den Bindfaden dank eines raffinierten physiko-chemischen Tricks ganz wunderbar am Eiswürfel haften lässt.

Lasst die Kinder den “magischen” Stoff erraten!

Welcher Stoff kann sowas? Lasst insbesondere eure Nachwuchs-Forscher darüber nachdenken (und ratet selbst mit, wenn ihr noch nicht darauf gekommen seid), bevor ihr weiter (vor-)lest. Dann könnt ihr nach folgender Anleitung ganz einfach selbst ausprobieren, ob ihr recht hattet.


Experiment: Wir bauen einen Eiswürfel-Kran


Ihr braucht dazu

  • einen Eiswürfel
  • ein Glas Wasser
  • einen stabilen Holzstab(Schaschlikspiess etc.)
  • ein Stück Bindfaden
  • Zucker oder Salz oder Pfeffer oder Kaugummi
Das braucht ihr: Glas mit Wasser, Holzspiesse, Bindfaden, Eiswürfel

Nur mit einem dieser Stoffe funktioniert das Experiment. Nennt den Nachwuchs-Forschern ruhig diese Vier zur Auswahl. Vielleicht kommen sie selbst darauf, was sie wirklich brauchen. Stattdessen könnt ihr auch alle vier Möglichkeiten ausprobieren.

So geht’s

  • bindet das Stück Bindfaden an euren Stab, sodass ein kleiner Kran entsteht
  • legt den Eiswürfel in das Wasserglas: Er schwimmt (Wieso? s. hier–>Eis wächst)
  • fragt spätestens jetzt die Nachwuchs-Forscher: Was glaubt ihr: Welche der genannten Zutaten ist geeignet, um den Eiswürfel an den Faden zu heften?
  • streut etwas von der “magischen” Substanz auf den Eiswürfel und legt das freie Ende des Fadens dazu.
  • wartet ca. 30 Sekunden
  • hebt den Eiswürfel vorsichtig am Faden aus dem Wasser.

Das könnt ihr beobachten

Wenn ihr die richtige Zutat gefunden habt, haftet der Eiswürfel am Faden, sodass ihr ihn aus dem Wasser heben könnt!

Der Eiswürfel hängt frei am Bindfaden!
Geht nur mit der richtigen Zutat: Der Eiswürfel hängt frei am Bindfaden!

Welches ist die richtige “magische” Substanz?

Erinnert ihr euch an die Wirkweise von Streusalz (die habe ich hier erklärt)? Wenn dessen Ionen sich mit Wasser mischen, bringt das Eis in der Umgebung zum Schmelzen. Die Wassermoleküle sind nämlich derart damit beschäftigt, die Salzionen zu umhüllen, dass sie nicht mehr am stetigen Schmelzen und Gefrieren, das sich zwischen Eis und Wasser abspielt, teilhaben können.

Und dann – so besagt es das Gesetz von Le Châtelier – müssen diese Wassermoleküle ersetzt werden. Indem mehr Eis zu flüssigem Wasser schmilzt, als es das normalerweise tut.

Das Schmelzen aber verbraucht Energie, entzieht der Umgebung also Wärme. Die Umgebung von Salz und Faden kühlt also ab, bis schliesslich selbst das Salzwasser mitsamt dem Faden am Eiswürfel festfriert!

Entsorgung

Sobald das Eis geschmolzen ist, könnt ihr das Salzwasser einfach in den Abfluss geben. Zum Blumengiessen eignet es sich wahrscheinlich nicht mehr, da die Pflanzen zu viel Salz nicht vertragen.

Alltagstipp: Eis und Salzwasser als Kühlmittel

Im Labor nutzen Chemiker die Abkühlung, die Salz in Eiswasser verursacht, zur Kühlung von Experimenten, bei denen zu viel Wärme frei wird. Streusalz ist ein billiges Mittel dafür. Das entstehende Salzwasser ist zudem nicht giftig, sodass es nachher einfach in den Abfluss entsorgt werden kann.

Tafelsalz ist zwar etwas teurer, funktioniert aber ebenso: Wenn eure Getränke im Eiswürfelbad einmal nicht kalt genug werden, gebt etwas Wasser und Salz dazu und rührt vorsichtig, um ein Eisbad zwischen 0°C und -10°C zu erhalten!

Und probiert ihr den Eiswürfelkran selbst aus? Über eure Erfahrungsberichte freue ich mich sehr!

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Forscher-Advent: 13 Experimente mit Kerzen

Liebe Leser,

Ich wünsche euch allen ein grossartiges neues Jahr voller Experimente und spannender Naturbeobachtungen! Nach unserer grossen Reise durch Australien war binnen weniger Tage Weihnachten…und das Jahr 2018 genau so schnell zu Ende.

So sind nun noch reichlich Kerzen übrig – und ebenso dunkle Tage im Januar, die sie erleuchten können. Habt ihr auch noch Kerzen? Dann habt ihr jetzt eine wunderbare Gelegenheit zu einer ganzen Reihe spannender Experimente!

Vorgestellt habe ich die Experimente mit Kerzen und Flammen bereits vor Weihnachten im Rahmen des Adventskalenders des Netzwerks Schweizer Familienblogs bei den Angelones – und dort findet ihr auch jetzt noch alles, was ihr zum Mitexperimentieren braucht und wissen müsst.

Viel Freude beim Stöbern und Mitexperimentieren wünscht

Eure Kathi Keinstein

Weihnachten mit Keinsteins Kiste: Experimente und mehr im Advent

Liebe Leser, Ich verbringe die Adventszeit dieses Jahr ganz unweihnachtlich im warmen Australien. Das bedeutet aber nicht, dass ihr ganz auf adventliche Experimente und Weihnachtsgeschichten aus der Naturwissenschaft verzichten müsst. Davon habe ich nämlich in den letzten Jahren so einige gesammelt, die nach wie vor spannend sind und viel Spass machen. Und dazu kommt dieses Jahr noch ein ganz neuer Artikel mit sage und schreibe 13 Experimenten! Deshalb gibt es heute eine Übersicht über alle Beiträge in Keinsteins Kiste zu Chemie und mehr rund um Advent und Weihnachten, die bis Weihnachten 2018 erschienen sind.

Experiment: Wie setzt sich Kerzenlicht zusammen? Untersucht Lichtquellen mit einem selbstgebauten Spektroskop!

Ihr möchtet euch die Wartezeit im Advent mit Forscher-Aktivitäten versüssen? Dazu braucht es nicht viel – nur eine Pappschachtel und eine alte CD. Damit könnt ihr nach dieser Anleitung ganz einfach ein eigenes Spektroskop bauen!

Spektroskop im Einsatz

Ich probiere das Keksschachtel-Spektroskop am Adventskranz aus

Schaut durch dieses Gerät auf eine Lichtquelle, und ihr könnt die einzelnen Farben sehen, aus welchen das Licht besteht. Gibt es Unterschiede zwischen Kerzenlicht und LED-Lichterketten? Strahlen Leuchtstoffröhren anders als die Sonne? Findet dies und mehr hier selbst heraus!

Weihnachtsgeschichte: Was war der Weihnachtsstern wirklich?

Diese Frage hat die neunjährige Sarah ihrem Onkel Balthasar gestellt, der ein echter Himmelsforscher ist. Der nimmt sie mit an seinen Arbeitsplatz, eine richtig grosse Sternwarte. Mit Hilfe von Onkel Balthasars Forscher-Kollegen findet Sarah heraus, wie die bunten Farben eines Lichtspektrums den Wissenschaftlern von der Zusammensetzung der Sterne erzählen. Dabei begegnet sie einigen fantastischen Himmelserscheinungen. Ob der Weihnachtsstern, dem die drei “heiligen Könige” nach Betlehem folgten, auch dabei ist? Wissenschaft zum Vorlesen (und Selberlesen), verpackt in eine weihnachtliche Geschichte findet ihr in diesem Beitrag! Der Weihnachtsstern : Himmelsphänomen oder Fantasieprodukt?

Spannende Wissenschaft: Der molekulare Weihnachtsmann

Auch in unseren Zellen weihnachtet es – und das das ganze Jahr über. Da spaziert nämlich ein Molekül von den Fabriken im Zellinnern zur Zellaussenhaut und schleppt einen grossen Sack voller Geschenke mit sich….ja, richtig gelesen: Da _spaziert_ ein Molekül! Dieses Molekül ist das Transportprotein Kinesin, das sich tatsächlich auf eigenen Füssen an den Streben des Zellskeletts entlang bewegen kann. In vielfacher Ausführung kann es so säckeweise frisch produzierter Hormone zum Versand durch Aussenhülle der Zelle verfrachten. Und einige dieser Hormone können uns wahrhaft glücklich machen. Damit wird der molekulare Weihnachtsmann wahrlich seiner Rolle gerecht. Ein Kinesin-Molekül läuft mitsamt Geschenkesack über ein Aktin-Filament Erfahrt in diesem Einblick in die Zellbiologie, wie Kinesin-Moleküle laufen lernen und mit Hilfe fleissiger Weihnachtselfen ihre Geschenke ausliefern. Und wo es einen Weihnachtsmann gibt, gilt immer (auch hier): Obacht vor dem Grinch! Oder möchtet ihr selbst im Forscher-Labor Geschenke basteln? Da habe ich gleich drei Vorschlage:

Experiment: Weihnachtskugeln mit Silberspiegel

Warum kann man sich eigentlich in Christbaumkugeln spiegeln? Weil sie mit Silber beschichtet sind – und zwar von innen! Aber wie kommt das Silber in die Glaskugel? Das könnt ihr in diesem Experiment ausprobieren und dabei eure eigenen Kugeln verspiegeln.

Links eine unbehandelte Ersatzkugel, rechts die selbst verspiegelte Kugel

Dazu benötigt ihr Silbernitrat – ein Salz, das Silber-Ionen enthält. Ihr bekommt es in der Drogerie oder Apotheke – für ein paar Franken oder Euros, die in diese ganz besondere “Bastelarbeit” gut angelegt sind. Schliesslich kommt ja echtes Silber dabei raus! Um aus diesen Silber-Ionen das spiegelnde Edelmetall zu machen, braucht ihr nichts weiter als Zucker und eine Wärmequelle. Den Rest – wie ihr das Silbersalz dazu bringt, auf der Kugeloberfläche zu Silber zu reagieren und wie ihr die Reste sicher entsorgt (Silber ist ein Schwermetall!) – erfahrt ihr hier in der Experimentier-Anleitung.

Experiment: Kristalle züchten

Neben spiegelnden Christbaumkugeln machen sich auch funkelnde Kristallsterne gut als Baumschmuck. Und die könnt ihr ganz einfach selber züchten. Ihr braucht dazu Alaun – ein Salz, das ihr in der Apotheke oder Drogerie kaufen könnt, und destillatgleiches Wasser (“Bügelwasser”), das ihr in jedem Supermarkt beim Haushaltszubehör findet. Dazu kommen ein paar Tage Geduld und ihr könnt wunderschönen Kristallen beim Wachsen zusehen. Mit diesen Kristallen lassen sich natürlich nicht nur Sterne züchten – eurer Fantasie sind keine Grenzen gesetzt: Sollen es lieber Herzen, Engel, Tannenbäume sein? Und wenn ihr Zugang zu anderen, farbigen Salzen habt (wie Kupfersulfat oder Chrom-Alaun), könnt ihr sogar farbigen Baumschmuck züchten! Hier in der Experimentier-Anleitung bei den Monstamoons stelle ich die schneeweisse Ausführung mit einfachem (Kali-)Alaun vor.

Experiment: Schneekugeln selber machen

Eine selbstgestaltete Schneekugel ist ein wunderschönes Geschenk für eure Lieben! In der ganz einfachen Ausführung wird einfach Glitzer in destillatgleiches Wasser gemischt und in ein gestaltetes Glas gefüllt. Was aber, wenn ihr “richtige” Schneeflocken in eurer Kugel haben wollt? DIY Schneekugeln mit Benzoesäure Die könnt ihr aus Benzoesäure selbst herstellen. Dem Namen zum Trotz ist Benzoesäure ein Feststoff, eine organische Verbindung, die oft als Lebensmittelzusatzstoff zum Einsatz kommt. Deshalb könnt ihr sie auch problemlos in der Drogerie oder Apotheke kaufen. Zur Herstellung von Schneeflocken wird das kochsalzähnliche Pulver direkt im Schneekugel-Wasser “umkristallisiert”. Wie das geht, zeige ich euch hier in der Experimentier-Anleitung gemeinsam mit Mikkis Weihnachtengeln.

Experimente: 13 Versuche mit Kerzen

Und damit euch auch ganz bestimmt nicht langweilig wird, gibt es zum Schluss noch etwas Neues: Im Rahmen der Advents-Blogparade der IG Schweizer Familienblogs bei den Angelones stelle ich euch 13 ganz einfache Experimente mit Kerzen vor. Ganz einfach heisst dabei aber nicht weniger spektakulär. Denn eine Kerzenflamme ist nicht nur heiss und hell, sondern über alle Massen faszinierend. Warum brennen Kerzen eigentlich? Könnt ihr eine Kerzenflamme um ein Hindernis herum ausblasen? Wie erschafft man eine halbe Flamme? Was passiert, wenn man ein Glas über eine Kerze stülpt? Warum sind Adventskranz und Weihnachtsbaum brandgefährlich? Die Antworten auf diese und mehr Fragen könnt ihr in dieser Experimentier-Anleitung und vor allem durch selbst Ausprobieren finden! Forscher-Advent: 13 Experimente mit Kerzen   Nun wünsche ich euch viel Spass beim Lesen, Stöbern, Basteln und Experimentieren im Advent! Zumindest rechtzeitig zu Weihnachten werden wir wieder im Lande sein. Und dann würde ich mich sehr über eure Berichte und Ergebnisse vom Nachbasteln und -Experimentieren freuen! Eure Kathi Keinstein

Experiment: Gärung - die Superkraft von Hefe

Vor ein paar Tagen war es einmal wieder soweit: Ich hatte Geburtstag. Zur Feier des Tages habe ich mich in die Küche gestellt und der Biochemie gewidmet….ähm, Kuchen gebacken. Und zwar mit Hefe! Und damit wird das Kuchenbacken tatsächlich echte Küchen-Biochemie.

Was ist eigentlich Hefe?

Unsere Backhefe besteht aus richtigen Lebewesen! Aber nicht aus Pflanzen oder Tieren, sondern aus Pilzen mit dem komplizierten Namen “Saccharomyces cervisiae”.

Wenn ihr euch jetzt an Asterix und Obelix erinnert fühlt…richtig: Das Lieblingsgetränk der beiden Comic-Gallier ist lauwarme Cervisia – ein Bier. Tatsächlich ist die Backhefe der gleiche Pilz, der auch zum Bierbrauen verwendet wird.

Der erste Teil des Namens bedeutet übrigens so viel wie “Zuckerpilz”, womit der ganze Name sich etwa mit “Bier-Zuckerpilz” übersetzen lässt. Damit ist auch geklärt, wovon diese Pilze sich ernähren.

Hefen bilden übrigens keine Schirme und Hüte im Wald, wie ihr sie von anderen Pilzen kennt. Sie gehören nämlich zu den Einzellern und vermehren sich durch Zellteilung oder die Bildung von Ablegern. Deswegen sehen wir von ihnen ohne Mikroskop auch nicht mehr als eine gelblich-graue Masse. Mit einem Mikroskop hingegen kann man die einzelnen Hefezellen sehen:

Backhefe unter dem Mikroskop: Die Einzelzellen sind jetzt gut erkennbar.

Backhefe unter dem Mikroskop: Die Teilstriche der Skala sind jeweils 11 Mikrometer (Millionstel Meter!) voneinander entfernt. By Bob Blaylock [CC BY-SA 3.0 or GFDL], from Wikimedia Commons

Was macht ein Pilz in Brot und Kuchen?

Er lebt! Zumindest vor dem Backen. Und zwar wie alle Lebewesen von Zuckern. Nur ist Hefe dabei nicht zwingend auf Sauerstoff zum Atmen angewiesen. Während Menschen Sauerstoff als Oxidationsmittel brauchen, um aus den Zuckern chemische Energie zu gewinnen, können Hefen dazu auch andere chemische Reaktionen nutzen, die ohne Sauerstoff auskommen.

Solche Reaktionen werden zusammengefasst “Gärung” genannt. Bei der Gärung durch Hefe entsteht als “Abfall” der Trink-Alkohol “Ethanol” (auf den es die Bierbrauer abgesehen haben), und… findet es selbst heraus!

 

Experiment 1: Hefegärung sichtbar machen

Ihr braucht dazu

Eine Glasflasche mit engem Hals (ca. 0,5l),
Einen Luftballon, nicht aufgeblasen
Backhefe (1 Päckchen Trockenhefe)
Wasser (lauwarm)
Einen Teelöffel Haushaltszucker

Das braucht ihr für das Experiment

So geht es

Blast den Luftballon mehrmals hintereinander auf und lasst die Luft immer wieder heraus. So wird die Ballonhülle schon einmal gedehnt und lässt sich später leichter aufblasen.

Füllt die Flasche halb mit lauwarmem Wasser und löst den Zucker darin auf. Gebt die Hefe dazu und schwenkt die Flasche kurz, sodass sich alles gut mischt.

Stülpt dann die Öffnung des Luftballons über die Flaschenöffnung und stellt das Ganze an einen warmen Ort (ideal sind 28-32°C).

Wartet ab und beobachtet, was geschieht: In der Flasche geht es sichtlich geschäftig zu, und: Der Ballon bläht sich auf!

Im Laufe von 45 Minuten bläht der Ballon sich immer weiter auf!

Ein Gas entsteht: Links der Aufbau zu Beginn des Experiments, dann von links nach rechts: nach 15min, 30min, 45min

Was geschieht da?

Die Hefe verdaut den Zucker. Dabei entsteht ein Gas, das den Ballon füllt!

Was für ein Gas ist das?

Ihr könnt es selbst nachweisen!

Experiment 2: Gas-Nachweis

Ihr braucht dazu

Die Hefemischung in der Flasche aus Experiment 1
Ein Streichholz, etwas zum Anzünden
Eine Pinzette

So geht es

Entfernt den Luftballon von der Flasche. Entzündet das Streichholz und führt es mit Hilfe der Pinzette in die Flasche mit der Hefemischung (nicht eintauchen!). Beobachtet: Das Streichholz geht aus!

Was passiert da?

Das Gas, welches die Hefe produziert, ist Kohlenstoffdioxid (CO2)! Es ist schwerer als Luft und verdrängt so den Sauerstoff nach oben aus der Flasche. Ohne Sauerstoff kann Feuer nicht brennen – und geht aus.

 

Was in den Hefezellen passiert

Der wichtigste Zucker, von dem Hefe sich ernährt, ist Traubenzucker (Glucose). Das ist ein “Einfachzucker” (ein Monosaccharid), besteht also aus überschaubar kleinen, einzelnen Zuckermolekülen.

alpha-D-Glucose in 6-Ringform: Haworth-Strukturformel

Ein Glucose-Molekül

Aus Traubenzucker- bzw. Glucose-Molekülen können alle Lebewesen schnell Energie gewinnen. Die Hefe verwendet dazu eine Folge von Reaktionen, die die Biochemiker als “anaerobe Glykolyse” bezeichnen.

Dabei wird aus einem Molekül Glucose in mehreren Schritten ein Molekül “Pyruvat” hergestellt. Im Zuge dieser Schritte werden zwei Energieträger-Moleküle, die die Biochemiker abgekürzt “ADP” nennen, “aufgeladen”, indem je ein Phosphorsäure-Anion an jedes dieser Moleküle gehängt wird (die aufgeladenen Energieträger-Moleküle heissen dann “ATP”).

Für das Aufladen sind jedoch weitere Reaktionspartner (Moleküle namens NAD+) nötig, die ihrerseits recycelt werden müssen.

Gärung: Aus Pyruvat wird Ethanol. Dabei wird ein Molekül CO2 frei und ein Molekül NAD+ rezykliert.

Alkoholische Gärung By Arne “Norro” Nordmann. [GFDL, CC-BY-SA-3.0 or CC BY-SA 2.5 ], via Wikimedia Commons

Deswegen haben die Hefepilze ein weiteres Enzym (die Pyruvatdecarboxylase), das von den Pyruvat-Molekülen je ein Molekül Kohlenstoffdioxid (CO2) abspaltet.

Das Kohlenstoffdioxid wird danach aus den Zellen entsorgt und füllt euren Luftballon!

Übrig bleibt ein Molekül Acetaldehyd. Das ist für Zellen giftig und wird deshalb schnell zu Ethanol weiterverarbeitet, wobei die Abfall-Moleküle NADH aus der Glykolyse zu NAD+ recycelt werden.

Der Trink-Alkohol “Ethanol” ist übrigens für uns Menschen giftig, weil es in unseren Zellen das Enzym Alkoholdehydrogenase auch gibt – nur fördert es da die Reaktion in umgekehrter Richtung: Aus Ethanol wird Acetaldehyd. Und das beschert und einen mächtigen Kater (über diesen biochemischen Katzenjammer könnt ihr hier mehr lesen).

Wie wird dann Haushaltszucker vergoren?

Die Moleküle des Haushaltszuckers (Saccharose) bestehen aus je zwei verbundenen Einfachzuckern: dem Traubenzucker Glucose und dem Fruchtzucker Fructose.

Saccharose, unser Haushaltszucker dargestellt in der Haworth-Strukturformel

Ein Saccharose-Molekül

In den Hefepilz-Zellen gibt es deshalb ein Enzym, das diese Paare spalten kann, bevor die Einzelteile wie oben gezeigt “verdaut” werden.

Diese Fähigkeit – Haushaltszucker zu spalten und zu verwerten – hat der Backhefe schliesslich ihren wissenschaftlichen Namen (Saccharomyces…) eingebracht.

Wie “geht” Hefe in Milch?

Normale Vollmilch besteht zu ca. 5% aus Milchzucker (Laktose) – das sollte ja genug Futter für die Hefe sein, oder? Weil Reto laktoseintolerant ist, habe ich allerdings laktosefreie Milch für den Kuchen benutzt…und hatte schon Sorge, die Hefe würde damit nicht aufgehen. Stattdessen ging meine Hefe aber schon nach dem Mischen mit der Milch ab wie Schmitz’ Katze!

Hefe in laktosefreier Milch

Laktose ist auch ein Zweifachzucker, sie besteht aus je einem Molekül Glucose und Galactose.

Ein Laktose-Molekül: Haworth-Strukturformel

Auch Laktose ist ein Zweifach-Zucker, der vor der Verwertung gespalten werden muss

Unglücklicherweise hat die Back-Hefe aber kein Enzym, um Laktose zu spalten und so an die Glucose zu gelangen (sie ist also “laktoseintolerant”, wenngleich Hefepilze keinen Darm haben, der deswegen verstimmt sein könnte). Zum Glück für die Hefe enthält normale Vollmilch jedoch immer auch freie Glucose.

Laktosefreie Milch wird nun hergestellt, indem man das Enzym Laktase dazugibt, welches die Laktose in Glucose und Galactose spaltet (deshalb ist laktosefreie Milch ein wenig süsser als normale). So findet die Hefe in laktosefreier Milch sogar mehr zu fressen als in normaler Vollmilch und geht dementsprechend eifrig auf!

Was im Ofen mit der Hefe passiert

Und bevor euch nun bei all den lebendigen Pilzen der Appetit auf Brot und Kuchen vergeht: Wie alle Lebewesen sind Hefepilze auf gemässigte Temperaturen angewiesen. Wenn ihr euren Hefeteig also in den Ofen schiebt und erhitzt, sterben alle Pilze ab.

Das Kohlenstoffdioxid, das sie vorher im Teig freigesetzt haben, dehnt sich jedoch in der Hitze aus und lässt so Kuchen und Brot aufgehen und so wunderbar fluffig werden. Wenn indessen Stärke, Proteine, Fett und Zucker im Teig zu einem festen Molekülgerüst reagieren (zum Beispiel im Zuge der Maillard-Reaktion, zu der ihr hier lesen könnt), fällt das Ganze nach dem Abkühlen auch nicht mehr zusammen.

 

Entsorgung

Das Hefe-Wasser-Gemisch könnt ihr in den Ausguss entsorgen – oder vielleicht ein Brot damit backen? Den Luftballon könnt ihr nach Belieben weiter benutzen.

 

Ich wünsche euch viel Spass beim Ausprobieren und Beobachten! Was macht ihr sonst am liebsten mit Hefe bzw. Hefeteig?