Beiträge

Experiment für Kinder: Eis schneiden

Kann man einen Eiswürfel zerschneiden? Sicherlich…oder doch nicht? In diesem Experiment könnt ihr durch Eis schneiden, ohne es dabei zu zerteilen. Klingt nach Zauberei? In jedem Fall aber nach der wahrlich zauberhaften Physik von Wasser!

Ein Eiswürfel- Experiment für kalte coole Tage

Mit dem letzten Wochenende kamen die ersten kalten Tage des bevorstehenden Winters. Das ist genau die richtige Zeit für buchstäblich “coole” Experimente mit Eis und Wasser. Bei beiden handelt es sich natürlich um den gleichen Stoff – einmal fest, einmal flüssig. Und bestimmt wisst ihr auch, bei welcher Temperatur das Wasser am der Erdoberfläche diesen Zustand ändert. Richtig: Bei 0°C schmilzt Eis bzw. gefriert flüssiges Wasser.

Das ist an sich nichts besonderes. Die meisten Stoffe wechseln an der Erdoberfläche bei einer bestimmten Temperatur vom festen zum flüssigen Zustand und zurück. Nur manche Stoffe wie Kohlenstoffdioxid oder Jod werden ohne Umweg vom Feststoff zum Gas (Physiker sagen, diese Stoffe “sublimieren”, anstatt zu schmelzen).

Wasser hat darüber hinaus jedoch eine weitere Eigenschaft, dank derer ihr es für geradezu magische Phänomene und Experimente gut ist. Und ein solches Experiment für Kinder möchte ich euch heute vorstellen: So könnt ihr durch Eis schneiden ohne es zu zerteilen – und dabei nicht nur die Anomalie des Wassers nutzen, sondern auch lernen, wie Schlittschuhe funktionieren.

Ihr braucht dazu

  • Eiswürfel
  • eine Gabel
  • 1,5l-Getränkeflasche mit Inhalt oder ähnliches Gewicht (leichtere gehen auch, aber: je schwerer das Gewicht, desto besser!)
  • dünnen Draht
  • einen Tisch
  • Klebeband (Panzertape hält sehr gut und lässt sich erstaunlich einfach wieder ablösen)
  • einen grossen Behälter (Wanne, Backblech,…)

So geht’s

  • Klebt den Stiel der Gabel so auf dem Tisch fest, dass das Kopfstück mit den Zinken über den Rand der Tischplatte schaut.
Der Gabelstiel ist mit Panzertape an der Tischplatte festgeklebt. So trägt er das 1,5kg - Gewicht locker!
Mit Panzertape hält die Gabel bombenfest und lässt sich nach dem Experiment doch gut wieder lösen.
  • Platziert das grosse Gefäss unter der überhängenden Gabel. Der Boden soll schliesslich nicht nass werden, wenn euer Eiswürfel schmilzt.
  • Wickelt ein Stück Draht so um den Hals der gefüllten (ob mit Wasser oder sonst einem Getränk ist egal) Flasche, dass eine lange Schlaufe absteht.
  • Nehmt einen Eiswürfel aus dem Gefrierfach und legt ihn auf die Zinken der Gabel.
    Hängt die Drahtschlaufe über den Eiswürfel und lasst die daran hängende Flasche vorsichtig los.
  • Wartet einige Minuten ab und beobachtet!
Gabel, Eiswürfel und Wasserflaschen-Gewicht mit Auffangblech am Tisch
Aufbau im Ganzen: Oben an der Tischkante die Gabel mit dem Eiswürfel, darüber der Draht, an welchem die Flasche hängt. Das Backblech unten fängt Schmelzwasser auf – so bleibt der Parkettboden heil.
Im Hintergrund ein Blick hinter die Kulissen: Das Fotozelt – hier Lichtquelle – liefert bei den handlicheren Experimenten in Keinsteins Kiste den weissen Hintergrund!

Was ihr beobachten könnt

Der Draht sinkt langsam nach unten in das Eis. Dabei entsteht jedoch kein Spalt. Stattdessen verfestigt sich das Eis über dem  Draht erneut! Wenn der Eiswürfel nicht zu schnell schmilzt, schneidet sich der Draht den ganzen Weg hindurch – ohne das Eis zu zerteilen!

Sicht von vorne: Der Draht ist vollständig in den Eiswürfel eingesunken.
Nach einigen Minuten ist der Draht komplett in den Eiswürfel eingesunken!

Tipp: Je kühler die Umgebungsluft, desto weniger schnell schmilzt der Eiswürfel weg. Wenn es im  Zimmer zu warm ist, könnt ihr das Experiment ebenso gut im Garten oder auf dem Balkon machen. Je nachdem, wo ihr das Experiment aufbaut, braucht ihr dann auch kein Auffanggefäss für das Schmelzwasser.

Eiswürfel frei schwebend auf der Drahtschlaufe: Runterfallen ist unmöglich!
Der Beweis: Hier halte ich nur die Flasche fest! Der Eiswürfel ist wie eine Perle auf dem Draht “aufgefädelt” und schwebt somit abseits der Gabel frei.

Was passiert da?

Um Eis zu schmelzen ist Energie nötig (das könnt ihr mit diesem Experiment deutlich machen). Wenn man einen Stoff schmelzen möchte, führt man diese Energie normalerweise in Form von Wärme zu. Wasser – und das macht diesen Stoff so einzigartig – kann allerdings auch durch Druck zum Schmelzen gebracht werden.

Die Gewichtskraft, die auf die Flasche wirkt (und einer Masse von mindestens 1,5kg bei Erdanziehung auf Bodenhöhe entspricht), zieht den Draht nach unten. So übt er an der Auflagefläche Druck auf das Eis aus und lässt es unter dem Draht schmelzen.

Wie kann Druck zum Schmelzen von Eiskristallen führen?

Wasser ist ein ganz besonderer Stoff. Während die Dichte (die Masse eines bestimmten Volumens) der meisten Stoffe um so grösser wird, je kälter die Stoffe werden, hat Wasser bei +4°C die grösste Dichte.

Das heisst, ein Kilogramm Wasser bei 4°C braucht nicht nur weniger Platz als ein Kilogramm Wasser bei 20°C, sondern auch weniger als ein Eisblock von einem Kilogramm Gewicht (der höchstens 0°C warm sein kann). Dass Eis “grösser” ist als flüssiges Wasser, könnt ihr übrigens mit diesem Experiment zeigen: Eis wächst!

Wirkt ein Druck auf einen Stoff, wird dieser – wenig überraschend – zusammengedrückt. Die meisten Stoffe brauchen unter hohem Druck als Feststoffe am wenigsten Platz. Da Wasser jedoch als Flüssigkeit am “kleinsten” ist, wird es unter Druck flüssig – und das erst noch, ohne besonders warm zu werden. Denn denn wenigsten Platz braucht es ja bei nur 4°C oberhalb seines Schmelzpunktes.

Die Moleküle von flüssigem Wasser sind – anders als im Eiskristall – weitestgehend frei beweglich. So gelangen sie um den Draht herum, der somit nach unten auf das verbleibende Eis sinkt und es weiter schmelzen kann. Auf diese Weise “schneidet” sich der Draht durch den Eiswürfel.

Warum friert der Spalt über dem Draht wieder zu?

Sobald das flüssige Wasser einen Weg um den dünnen Draht herum gefunden hat, steht es kaummehr unter Druck (der Atmosphärendruck ist natürlich noch vorhanden, spielt hier aber keine massgebliche Rolle). So kann es sich wieder auf seine ursprüngliche Grösse ausdehnen. Da zum Ausdehnen Energie aufgewendet werden muss, kühlt die unmittelbare Umgebung dabei ab, und das Wasser oberhalb des Drahtes wird wieder zu festem Eis.

Schlittschuhspass dank der Anomalie des Wassers

Diese besondere Fähigkeit des Wassers habt ihr wahrscheinlich schon genutzt, ohne es zu wissen. Auf diese Weise funktionieren nämlich Schlittschuhe: Die Kufen üben Druck auf das Eis aus, sodass dessen Oberfläche direkt unter ihnen schmilzt. So entsteht ein dünner Film aus beweglichen Wassermolekülen, auf welchem eure Schlittschuhe fast ohne Reibungswiderstand über das Eis gleiten können!

Dabei müsst ihr euch keine Sorgen machen, dass eure Eisfläche durch das Schlittschuhlaufen wegschmilzt. Denn sobald eure Kufen weiter geglitten sind, kann sich das darunter zusammengedrückte Wasser wieder ausdehnen und gefrieren. Wenn ihr das nächste Mal auf der Eisbahn seid, achtet darauf: So lange die Lufttemperatur nicht übermässig hoch ist, werdet ihr keine flüssigen, sondern allenfalls fest wirkende Spuren hinterlassen.


Entsorgung

Wenn ihr die Eiswürfel aus Leitungswasser gemacht habt, könnt ihr das Schmelzwasser nachher wie Leitungswasser verwenden: In den Ausguss geben, die Blumen damit giessen,… Den Inhalt der Getränkeflasche könnt ihr selbstverständlich trinken – und damit zum Beispiel auf den gelungenen Versuch anstossen ;).

Sollte das Klebeband Rückstände auf dem Tisch hinterlassen, können Lösungsmittel wie Brennsprit/Spiritus (Ethanol), Fleckbenzin oder Aceton bei der Entfernung helfen. Testet vorher immer, ob eure Tischoberfläche sich mit dem Lösungsmittel eurer Wahl verträgt! Mein Panzertape habe ich übrigens ganz ohne Rückstände von der matt lackierten Holzplatte lösen können.

Nun wünsche ich euch viel Spass beim Experimentieren! Erzählt doch mal, wie das Experiment bei euch funktioniert – oder von euren Beobachtungen beim Schlittschuhlaufen!

gefrorenes Wasser : Das Glas wird voller

Warum ist es eigentlich keine gute Idee, eine geschlossene Glasflasche mit Wasser ins Tiefkühlfach zu legen? Dieses Experiment zeigt euch eine ungewöhnliche, verblüffende Eigenschaft des Wassers – seine Dichteanomalie!

Der Januar war hier in den niedrigen Regionen der Schweiz viel zu warm, aber der Februar grüsst heute Morgen mit einer feinen Puderzucker-Schneeschicht. So könnt ihr in diesem Winter vielleicht doch noch Beobachtungen machen, die spannende Fragen aufwerfen: Warum friert bei einem Teich zuerst die Oberfläche zu, während das Wasser darunter flüssig bleibt? Und warum sieht ein Wasserkübel voller aus, wenn das Wasser darin zu Eis erstarrt?

Dass der Kübel tatsächlich voller ist, könnt ihr mit diesem einfachen Experiment nachweisen!

Ihr braucht dazu

  • Ein – möglichst schmales – Trinkglas, das in euer Tiefkühlfach passt
  • Ein Tiefkühlfach (wenn es draussen friert, genügt auch Platz auf Balkon oder Terrasse)
  • Kaltes Leitungswassser
  • Einen wasserfesten Filzstift
  • Ein Lineal
  • Optional: Gefäss mit Skala und eine Küchen- oder Laborwaage
Material für das Experiment
Das ist alles was ihr braucht, um Wasser wachsen zu lassen!

Wie ihr das Experiment durchführt

  • Füllt das Glas etwa zwei Drittel hoch mit Leitungswasser und stellt es auf eine waagerechte Fläche.
  • Markiert die Höhe des Wasserspiegels mit einem Filzstift-Strich. Mit dem Lineal könnt ihr die Füllhöhe zudem auch in Zentimetern messen.
  • Stellt das Glas mit dem Wasser in euer Tiefkühlfach oder bei Frost nach draussen und wartet einige Stunden.
  • Wenn das Wasser vollständig gefroren ist, nehmt das Glas wieder aus dem Tiefkühlfach bzw. nach drinnen und wartet wenige Minuten, bis die Luftfeuchtigkeit nicht mehr sofort einen weissen Schleier auf der Glasoberfläche bildet. Wischt eventuelle Reste dieses Schleiers ab (gebt dabei acht, dass der Filzstift-Strich erhalten bleibt!).
  • Vergleicht die Höhe der Eissäule im Glas mit eurer Markierung. Mit dem Lineal könnt ihr den Höhenunterschied in Millimetern messen!

Wenn ihr eine Waage und ein Gefäss mit unterteilter Skala, zum Beispiel einen Messzylinder, habt, könnt ihr auch die Veränderung der Dichte des Wassers messen:

  • Wiegt das Glasgefäss vor und nach dem Einfüllen des Wassers. Der Gewichtsunterschied entspricht der Masse des eingefüllten Wassers. Lest dann das Volumen des eingefüllten Wassers (in Millilitern oder Kubikzentimetern cm3) von der Skala des Gefässes ab. Notiert beide Werte.
  • Um die Dichte des Wassers zu erhalten, teilt die Masse des Wassers durch sein Volumen (die Zahlen werden sich sehr ähneln, sodass das Ergebnis in der Nähe von 1 g/cm3 liegen wird).
  • Nachdem das Wasser gefroren ist, lest das Volumen noch einmal ab (wenn die Oberfläche der Eissäule sich gewölbt hat, versucht den Wert zu schätzen!) und rechnet die Dichte des Eises wie in 2. aus (ein zweites Mal wiegen müsst ihr dazu nicht – die Masse des Wassers ändert sich nicht!).

 

Was ihr beobachten könnt

Nach dem Gefrieren reicht die Oberfläche der Eissäule deutlich über den ursprünglichen Wasserspiegel hinaus: Eis nimmt mehr Platz ein als das flüssige Wasser, aus dem es entsteht – das Wasser ist beim Einfrieren gewachsen! In meinem Glas ist die Eissäule ganze 8 Millimeter (wenn ich zudem die Wölbung berücksichtige, mindestens 1 Zentimeter) höher als das Wasser, das ich eingefüllt hatte!

Dichteanomalie sichtbar gemacht: Das Wasser ist gewachsen!

Wenn ihr die Dichte von Wasser und Eis bestimmt, werdet ihr feststellen, dass der Wert für das Eis etwas kleiner ist als der für das Wasser (die Masse bleibt dabei unverändert: Vor und nach dem Gefrieren ist (annähernd) gleich viel Wasser im Glas).

Wie kann Wasser wachsen, wenn es friert?

Nur ganz wenige Stoffe können das. Normalerweise werden Stoffe grösser, je wärmer sie werden. Das rührt daher, dass die Teilchen in warmen Stoffen sich heftiger bewegen als die gleichen Teilchen in kalten Stoffen. Und was ständig herumzappelt oder gar -wuselt, braucht einfach mehr Platz. Das heisst auch, dass diese Stoffe kleiner werden, wenn man sie abkühlt – also auch, wenn sie gefrieren.

Wasser und einige wenige Stoffe, wie die Elemente Bismut, Gallium, Germanium, Plutonium, Silicium und Tellur , fallen da allerdings aus dem Rahmen: Sie werden mitunter grösser, wenn sie abkühlen.

Wasser verhält sich nicht “ganz normal”

Flüssiges Wasser verhält sich genaugenommen ganz normal, so lange seine Temperatur über rund 4°C liegt. Dann gilt auch hier: Je wärmer das Wasser ist, desto wuseliger sind die Teilchen, aus denen es besteht, und desto mehr Platz nimmt es ein. Oder umgekehrt: Je kälter das Wasser ist, desto weniger wuseln die Teilchen und desto weniger Platz nehmen sie ein.

Bei rund 4°C passiert dann etwas neues: Wenn das Wasser noch kälter wird, bereiten die Wasserteilchen sich darauf vor, Eiskristalle zu bilden: Sie rotten sich zusammen und bewegen sich nurmehr in der Nähe der Plätze, die sie in einem Eiskristall-Gitter einnehmen würden. So wie Kinder, die “die Reise nach Jerusalem” spielen und – wenn sie erwarten, dass die Musik abbricht – darauf aus sind, in der Nähe der freien Stühle zu sein.

Und das Eiskristall-Gitter hat es in sich: Das Muster , in dem die Wasserteilchen darin angeordnet werden, ist nämlich ziemlich grobmaschig. Die anziehenden Wechselwirkungen, “Wasserstoffbrücken” genannt, welche die Wasserteilchen im Gitter zusammenhalten, halten sie nämlich gleichzeitig ziemlich auf Abstand voneinander.

Ein Modell des Eiskristall-Gitters : Jeder schwarze Knoten ist ein Wasserteilchen. Die Wasserstoffbrücken – dargestellt als grüne Streben – halten die Teilchen auf Abstand!

So kommt es, dass die Wasserteilchen schon beim Zusammenrotten vor dem Gefrieren auf Abstand gehen – so wie es die spielenden Kinder wohl täten, wenn man die freien Stühle voneinander entfernt aufstellen würde. Deshalb braucht flüssiges Wasser zunehmend mehr Platz, wenn es kälter als 4°C wird.

Unmittelbar vor dem Gefrieren sind die Wasserteilchen am weitesten – also entsprechend der Maschen im Eiskristallgitter – verteilt und nehmen schliesslich ihre festen Plätze im Gitter ein: Wenn Wasser einmal erstarrt ist, wächst das Eis nicht mehr weiter!

Weil das “Wachsen” eines abkühlenden Stoffes im Vergleich zu den meisten anderen Stoffen nicht ganz normal ist, nennen Chemiker und Physiker diese ungewöhnliche Eigenschaft eine Dichteanomalie.

Dichte – und warum Teiche stets von oben zufrieren

Der eingefrorene Wasserkübel sieht also nicht nur voller aus – er ist tatsächlich voller! Man kann das Ganze jedoch auch aus einem anderen Blickwinkel betrachten:

Würde die Wasserteilchen in einem Milliliter kaltem Wasser zählen und ihn dann einfrieren, dann wäre der entstehende Eisklumpen grösser. Um einen ordentlichen Vergleich anzustellen, könnte man aus diesem Eisklumpen einen Eiswürfel herausschneiden, der einen Milliliter fasst (das Volumen des Eiswürfels beträgt einen Milliliter). Würde man die Teilchen in diesem Eiswürfel zählen, wäre das Ergebnis eine kleinere Zahl als für einen Milliliter flüssiges Wasser – denn die Wasserteilchen, die nach dem Wachsen keinen Platz mehr im Würfel fanden, hat man schliesslich vorher weggeschnitten.

Da man mit dem Zählen von Stoffteilchen aber eine schiere Ewigkeit beschäftigt wäre, ist es wesentlich praktischer, die Teilchen alle zusammen zu wiegen. Denn jedes Teilchen hat seine Masse, die es zur Gesamtmasse eines Milliliters beisteuert. Da in einem Milliliter Eis weniger Teilchen sind, als in einem Milliliter flüssigen Wassers, wiegt ein Milliliter Eis entsprechend weniger.

Um diese veränderliche Eigenschaft von Stoffen zu beschreiben, verwenden Physiker die “Dichte”: Sie geben die Masse für ein bestimmtes Volumen des jeweiligen Stoffes an: rho = m/V . Damit lassen sich verschiedene Gesetzmässigkeit einfach ausdrücken: Aus “die meisten (flüssigen) Stoffe werden um so kleiner, je kälter sie werden” wird so “die Dichte der meisten (flüssigen) Stoffe nimmt zu (d.h. mehr Teilchen drängen sich in einem festgelegten Volumen zusammen – das Volumen wird schwerer), wenn sie kälter werden”.

Warum Eis schwimmt

Die wenigen Stoffe, für die das nicht uneingeschränkt gilt, weisen damit eine Dichteanomalie auf. Dieser Anomalie wegen hat Eis eine geringere Dichte als Wasser.

Und damit kommen wir zu einer weiteren Gesetzmässigkeit über die Dichte von Stoffen: Füllt man zwei Stoffe (davon ist mindestens einer flüssig und keiner ein Gas) mit unterschiedlicher Dichte, die sich nicht vollständig mischen, in ein Gefäss, dann schwimmt der Stoff mit der geringeren Dichte oben.*

*Tatsächlich gilt dies nur unter Vernachlässigung einiger äusserer Umstände, zu denen ihr bald hier mehr erfahren könnt.

Das gilt natürlich auch für Eis und Wasser – deshalb schwimmen die Eiswürfel im gekühlten Drink stets obenauf!

Warum Teiche von oben einfrieren

Darüber hinaus gilt das Gesetz auch innerhalb ein und desselben flüssigen Stoffs, wenn dieser in verschiedenen Bereichen eine unterschiedliche Dichte hat (weil diese Bereiche unterschiedlich warm sind). Wenn ein anfangs warmer Teich abkühlt, ordnet sich das kalte Wasser (das die höhere Dichte hat) unterhalb des wärmeren Wassers (mit niedrigerer Dichte) an. Da Wasser bei rund 4°C die höchste Dichte hat, landet das 4°C kalte Wasser somit ganz unten – darüber sind die Schichten wärmer.

Wenn es nun im Winter richtig kalt wird, kühlen die oberen Wasserschichten unter 4°C ab. Der Dichteanomalie wegen nimmt ihre Dichte dabei jedoch ab – und die kalten Schichten bleiben oben. Mehr noch: Die kälteste Sicht – mit der geringsten Dichte – ordnet sich ganz oben an, und erstarrt dort schliesslich als erstes zu Eis.

Wasser im Teich nach Dichte sortiert
Dichteverteilung im Teich: Links wenn es warm ist: unten – bei 4° ist das Wasser am dichtesten. Rechts wenn es kalt ist: Das dichteste Wasser ist unten – kälteres Wasser ist weniger dicht! By Klaus-Dieter Keller, details from KnowItSome, Tango! Desktop Project, Julo, Spax89 [CC BY-SA 3.0], via Wikimedia Commons

So freuen wir uns, wenn wir auf der Teichoberfläche Schlittschuh laufen können, während die Fische darunter sicher sein können, flüssiges Wasser zum Schwimmen und Atmen zu finden, wenn sie nur nach ganz unten tauchen (so lange der Teich nicht komplett durchfriert).

Dank der Dichteanomalie des Wassers können nicht nur Fische den Winter überleben – womöglich hat auch das Leben auf der Erde dank dieser ungewöhnlichen Eigenschaft mehrere Eiszeiten überdauern können – sodass wir die Anomalie heute in einem Glas im Tiefkühlfach beobachten können. Spannend, nicht?


Und nun zum Abschluss eine Quizfrage: Welche “äusseren Umstände” führen dazu, dass das Gesetz “der Stoff mit der geringeren Dichte schwimmt oben” in Wirklichkeit mehr eine Faustregel ist, die oftmals nicht streng zu gelten scheint?

Die Auflösung samt einem spannenden Experiment gibt es nächste Woche hier in Keinsteins Kiste!