Tag Archive for: Isotope

Radioaktivität: Warnschild in Prypjat

Es ist der 26. April 1986, 0:30 osteuropäischer Zeit. An der nördlichen Grenze der späteren Ukraine – derzeit noch Teil der Sowjetunion – hat Alexander Fjodorowitsch Akimov Bauchschmerzen. Akimov ist Schichtleiter im Reaktorblock 4 des Kernkraftwerks Tschernobyl und betrachtet voller Unbehagen die Anzeigen im Kontrollraum „seines“ Reaktors. Eigentlich sollte er längst damit beschäftigt sein, den Reaktor wieder auf Vordermann zu bringen – aber Genosse Djatlov besteht darauf, den geplanten Test innerhalb der nächsten Stunde durchzuführen. Und wenn der Chef sagt, es werde getestet, dann wird getestet. Denn Akimov ist nicht darauf aus, sich einen neuen Job zu suchen.

Es soll getestet werden, ob der Reststrom, den die Kraftwerksturbinen bei einem Stromausfall liefern, reicht, um die Zeit bis zum Anlaufen der Notstromgeneratoren zu überbrücken. Eigentlich hätte man das schon 1983 tun sollen, bevor man den Kasten für den Regelbetrieb freigab – und nun, nach 3 Jahren Bummelei, hatte man es plötzlich nur allzu eilig damit.

Der „Kasten“ – der Reaktor in Block 4 – besteht aus einem Zylinder aus Graphit – reinem Kohlenstoff – 8 Meter hoch, 12 Meter im Durchmesser, durchzogen von etwa 1700 Kanälen für Brennstäbe, Steuerstäbe und hindurchfliessendes Kühlwasser. Die Anlage ist dazu gedacht, mit einer Nennleistung von 3200 MW Strom zu erzeugen, indem sie bei einer Betriebstemperatur von etwa 300°C – erzeugt durch Kernspaltung – Wasser erhitzt, um mit dem Dampf Turbinen anzutreiben. Der Graphit sorgt dabei als Moderator für die Aufrechterhaltung der Kernspaltungsreaktion.

Einen Gefahren-Test macht man allerdings nicht unter Volllast. Und da man einen Kernreaktor nicht einfach mal schnell runterfahren kann, hat man schon am vergangenen Morgen mit der langsamen Regelabschaltung begonnen. Dann aber brauchten die Genossen unbedingt mehr Strom im Netz, sodass sie noch einen halben Tag bei halber Last weiterproduziert hatten, ehe man weiter herunterfuhr. Und jetzt ist der ganze Kasten voller Xenon-Gift, das die Kernspaltung und damit die ganze Reaktorfunktion ausbremst – so sehr, dass der Reaktor gerade eben wegen irgendeinem Mist beinahe völlig abgeschmiert wäre.

Inzwischen haben Akimov und die Crew nahezu alle Steuerstäbe, die die Kernspaltung bremsen sollen, aus dem Reaktor entfernt, und der Kasten läuft so gerade eben stabil. Von den Vorschriften ist das jedoch weit entfernt! Und das bereitet Akimov umso mehr Bauchschmerzen, je weiter die Vorbereitungen für den Test voranschreiten.

Um 1:23:04 ist es schliesslich soweit: Der Test beginnt. Das Notkühlsystem ist abgeschaltet, damit es im Testverlauf nicht dazwischenfunkt, und Akimov verdrängt den Knoten in seinem Magen, als er die Schliessung der Turbinenschnellschlussventile anordnet – das Startsignal für den Test.

Dadurch wird der Kühlwasserdurchfluss gestoppt, und es wird binnen Sekunden wärmer im Reaktor. Die Wärme fördert die Reaktorleistung ungemein – nun rasch die Bremsstäbe wieder einfahren…wenn die nur nicht so quälend langsam wären! Indessen steigt die Reaktorleistung geradezu exponentiell weiter, denn der anfahrende Reaktor reinigt sich in Sekundenschnelle selbst, während dem Schichtleiter der Schweiss ausbricht: Das gerät ausser Kontrolle – Sofort Abschalten! Akimov betätigt rasch den Notabschaltungsknopf, und alle Bremsstäbe fahren – immer noch langsam! – gleichzeitig in den Reaktor zurück. Doch die Spitzen der Stäbe bestehen aus Graphit, der die Kernreaktion fördert und nicht bremst, bis das eigentliche Bremsmaterial in den Stabschäften tief in den Reaktor gelangt. Doch bis dahin sind die „Bremsen“ wirkungslos: 40 Sekunden nach Testbeginn wird die Kernreaktion endgültig zum Selbstläufer.

So wird es unweigerlich zu heiss im Reaktorkern, und das Ganze fliegt Akimov und der Crew buchstäblich um die Ohren: Wasserleitungen brechen und Wasser kann mit heissem Graphit und Zirkonium aus den Brennstabmänteln reagieren. Es entsteht Wasserstoff, der mit Luft eine explosive Mischung bildet. Eine Knallgas-Explosion deckt schliesslich den Reaktordeckel und das Dach des Kastens ab. Indes fördert Graphit die Kernreaktion umso besser, je heisser er ist. So steigt die Temperatur im Reaktor bis über 2000°C. Die Brennstäbe und alles andere im Reaktorkern beginnen zu schmelzen. Durch das offene Dach kommt dabei Luft an das glühende Riesenbrikett, das vom Reaktor übrig ist, und Hunderte Tonnen Graphit brennen lichterloh. Eine radioaktive Rauchwolke steigt über 1000m hoch aus den Trümmern auf.

Es wird über zwei Wochen dauern, bis allein der Graphitbrand gelöscht und das Austreten des radioaktiven Rauchs unterbunden ist. Akimov erlebt dies nicht mehr. Er stirbt am 11.5.1986 an akuter Strahlenkrankheit.

havarierter Reaktor in Tschernobyl am 27. April 1986

Der havarierte Reaktorblock 4 am 27. April 1986 – rechts neben dem zerstörten Reaktor sind weitere Schäden am Dach der Turbinenhalle sichtbar. Helikopterpiloten und Fotograf sind während des Überflugs hochgefährlichen Strahlenmengen ausgesetzt. (Bild: Chernobyl NPP)

Wie man aus Atomen Energie gewinnt

Über Atome

Alle Materie der Welt besteht aus Atomen. Jedes Atom besteht aus einem Kern aus Protonen und Neutronen sowie aus einer Elektronenhülle. Auf der Erde sind 118 chemische Elemente bekannt, deren Atome sich durch ihre charakteristische Protonenzahl unterscheiden. Die Neutronenzahl ist hingegen für ein bestimmtes Element nicht festgelegt: Atome eines Elements mit verschiedener Neutronenzahl nennt man Isotope.

Wasserstoff-Isotope: Wasserstoff , Deuterium , Tritium

Die drei natürlichen Isotope des Wasserstoffs: Die Zahl links oben in der „Nuklidschreibweise“ steht für die Summe aller Kernteilchen bzw. die Atommasse. Die Zahl links unten steht für die Zahl der Protonen, welche die Zugehörigkeit zu einem Element bestimmt: Atome aller Wasserstoff-Isotope haben ein Proton. Einfacher Wasserstoff (auch „Protium“) und Deuterium sind stabil, Tritium ist radioaktiv. (Bild: Dirk Hünniger (Own work) [GFDL or CC-BY-SA-3.0], via Wikimedia Commons)

 

Atome können sich zu chemischen Verbindungen – Moleküle, Salze und andere – „zusammentun“, wobei sich ihre Elektronenhülle verändert, die Kerne aber unverändert bleiben (das ist Chemie).

Jedoch können auch Atomkerne verändert werden: Wenn sich dabei die Protonenzahl ändert, entstehen Atomkerne anderer Elemente (das ist Kernphysik bzw. Nuklearphysik).

„Nucleus“ ist übrigens das lateinische Wort für „Kern“. So hat alles, was in der Physik mit dem Begriff „nuklear“ behaftet ist, irgendwie mit Atomkernen zu tun. So hat die Bezeichnung „Nuklear-“ auch Eingang in die Sprache rund um die „Atomenergie“ gefunden.

 

Energie dank Massendefekt

Die Bildung von Atomkernen aus Protonen und Neutronen funktioniert ähnlich wie die Bildung von Molekülen in der Chemie: Beim Zusammenfügen der Teilchen wird Energie frei. Und je mehr Teilchen im Atomkern zusammenkommen, desto mehr Energie wird frei. Das wird ersichtlich, wenn man Atomkerne wiegt: Ein Heliumkern wiegt nämlich weniger als je zwei einzelne Protonen und Neutronen: Die fehlende Masse wurde als Energie abgegeben! Und da der „zu leichte“ Atomkern zu dem Gedanken verleitet, er sei irgendwie kaputt, nennt man diese Erscheinung „Massendefekt“.

Allerdings gilt das nur für Atomkerne, die höchstens so schwer sind wie ein Eisen-Kern. Um schwerere Kerne als die des Eisens zusammenzubauen, muss man Energie hinzufügen. So sind die Atomkerne der Elemente jenseits des Eisens tatsächlich schwerer als die Summe ihrer Protonen und Neutronen. Findige Physiker kamen so in der ersten Hälfte des 20. Jahrhunderts auf die Idee, schwere Atomkerne auseinanderzubauen, um an diese Energie heranzukommen und sie zu nutzen.

 

Der Coup mit der Kernspaltung:

Auf manche Kerne braucht man dazu bloss ein einzelnes Neutron zu schiessen: Sobald das Neutron von solch einem Kern aufgenommen wird, hält dieser nicht mehr zusammen: Er wird gespalten, d.h. er zerfällt in Stücke, darunter meist zwei Kerne leichterer Elemente und ein oder mehrere einzelne Neutronen. Zudem wird ein Teil seiner Kernbindungsenergie frei, teilweise als Bewegungsenergie der Bruchstücke, teilweise in Form von Gamma-Quanten („Licht“) und teilweise in Form grosser Mengen Wärme.

Das Praktische daran ist: Die frei werdenden Neutronen können weitere Atomkerne treffen und spalten, sodass sich die Kernspaltung in einer Kettenreaktion in einem spaltbaren Material unter den richtigen Bedingungen selbst unterhält.

Zu diesen Bedingungen zählt unter anderem die passende Energie bzw. „Geschwindigkeit“ der Neutronen-Geschosse: Zu schnelle Neutronen, wie sie bei einer Kernspaltung freigesetzt werden, prallen nämlich in den meisten Fällen wirkungslos von spaltbaren Kernen ab. Deshalb benötigt man für eine Kettenreaktion neben spaltbarem Material weitere Atome, von welchen schnelle Neutronen abprallen und dabei gebremst – „moderiert“ – werden können. Dafür eignen sich zum Beispiel Wasserstoff-Atome (viele heutige Kernreaktoren enthalten Wasser als „Moderator“), oder Kohlenstoff-Atome, wie Graphit sie enthält.

 

Nutzung der Kernspaltung: Von Bomben und Steuerstäben

Die Kettenreaktion lässt sich auf zweierlei Weise ausnutzen: Wenn man möglichst viele „langsame“ Neutronen gleichzeitig auf spaltbares Material loslässt, pflanzt sich eine Kettenreaktion in Sekundenschnelle fort und setzt ebenso schnell eine riesige Menge Energie frei, die zu der gewaltigen Explosion einer Atombombe führt.

In einer ausgeklügelten Anlage kann man hingegen die Menge der zur Kernspaltung nutzbaren Neutronen sehr genau steuern. Dazu verwendet man bewegliche „Steuerstäbe“ aus einem Material, dessen Atome Neutronen aufnehmen können ohne gespalten zu werden. Je weiter diese Stäbe in einen Block aus spaltbarem Material und Moderator eingebracht werden, desto mehr Neutronen werden „verschluckt“ und können nicht mehr an der Kettenreaktion teilhaben. Mit solch einem Reaktor, in dem kontrolliert Wärme durch Kernspaltung entsteht, kann man in einem Atomkraftwerk Strom erzeugen.

 

Und was ist mit der Strahlung?

Obwohl herumliegende Trümmer eindeutig eine andere Sprache sprechen, beharrt die Kraftwerksleitung in Tschernobyl bis zum Abend des 26. Aprils darauf, dass der Reaktor bei dem Unglück intakt geblieben sei. In Folge dessen wird die Bevölkerung der 5 km entfernten Siedlung Prypjat erst am 27. April evakuiert.

Erst, nachdem im 1200 km entfernten schwedischen Kernkraftwerk Forsmark am 28. April um 9:00 wegen erhöhter Radioaktivität Alarm ausgelöst wird, welche nach erfolgloser Suche nach eigenen Lecks auf einen Fallout aus (Wind-)Richtung Sowjetunion zurückgeführt wird, dringt die Nachricht von dem Unglück in Tschernobyl in den Westen durch.

Die Nachrichten von radioaktivem Niederschlag über weiten Teilen Europas schüren Verunsicherung und Ängste bei der Bevölkerung. Allein in Nordrhein-Westfalen werden Hunderte Naturwissenschaftler – „jeder, der irgendein chemisches Element buchstabieren konnte“ – rekrutiert, um die Notfall-Hotline der Landesregierung zu besetzen und die Fragen zahlloser verängstigter Bürger zu beantworten.

Ich bin viereinhalb Jahre alt, als mein Vater – einer der Physiker, die an jener Hotline Dienst taten – uns erklärt, dass Mama meine Schwester und mich nicht im Garten spielen lasse, weil es nach einem schlimmen Unfall weit im Osten „Gift“ geregnet habe.

Inzwischen sind die ersten der insgesamt 600.000 bis 800.000 „Liquidatoren“ in Tschernobyl mit Aufräumarbeiten beschäftigt: Jene Männer, die Trümmer des zerstörten Block 4 vom Dach des benachbarten Blocks 3 räumen, dürfen sich der Strahlung wegen nur jeweils 40 Sekunden auf dem Dach aufhalten. Ein Mann für jede Schaufel Abraum. Andere werfen mit Hubschraubern Löschmittel auf den havarierten Reaktor ab, begraben tonnenweise Erde unter Beton, versuchen Staub an den Boden zu binden. Das Gebiet im Radius von über 30 Kilometern um das Kernkraftwerk wird evakuiert, dort lebende Tiere getötet, damit sie die Strahlung nicht aus der Sperrzone hinaustragen…

 

Aber was ist „radioaktive Strahlung“ eigentlich, und warum ist sie so gefährlich?

Was ist Radioaktivität?

„Radioaktivität“ ist eine Eigenschaft einiger Atomkerne: Nicht alle Kombinationen von Protonen und Neutronen in einem Atomkern halten fest zusammen. Solche instabilen Kerne sind radioaktiv, sie „bröckeln“: Früher oder später löst sich ein „Bröckel“ aus dem Atomkern und fliegt – sofern er nicht von aussen beeinflusst wird – mit Geschwindigkeiten im Bereich von 10000 km/s [2] geradeaus davon.

Solche „Bröckel“ können α- oder β-Teilchen sein (da diese Teilchen geradlinig vom Atomkern wegfliegen, erscheinen sie auf den ersten Blick wie „Strahlen“ und werden oft auch so genannt). α-Teilchen sind nackte Helium-Atomkerne, bestehend aus je zwei Protonen und Neutronen, während β-Teilchen Elektronen (oder Anti-Elektronen, „Positronen“) sind, die entstehen, wenn ein Neutron im Kern zu einem Proton zerfällt und dabei ein Elektron abgibt (bzw. ein Proton ein Positron abgibt und als Neutron verbleibt). Die einzigen „echten“ Strahlen sind γ-Strahlen: Dabei handelt es sich um sehr energiereiche „Licht“-Wellen, die von besonders energiereichen Atomkernen abgegeben werden können.

In der Natur gibt es viele derart instabile Kerne, die radioaktiv sind. Viele Elemente bestehen aus einem Gemisch aus stabilen und radioaktiven Isotopen, sodass Stoffe, die sich aus solchen Elementen zusammensetzen, automatisch diese verschiedenen Isotope enthalten. So findet man zum Beispiel in Bananen, die von Natur aus viel Kalium enthalten, auch Atome des radioaktiven Isotops  40K, und jeder Mensch, der naturgemäss aus Kohlenstoffverbindungen besteht, enthält Atome des radioaktiven Isotops 14C. Dass unsere Umgebung einschliesslich uns selbst „strahlt“, ist also erst einmal normal.

Einmal abgestrahlte α-Teilchen kommen jedoch nicht weit: Auf ihrem Weg stossen sie immer wieder gegen andere Teilchen und verlieren an Energie und damit an Geschwindigkeit. Schon nach ein bis zwei Millimetern Flugstrecke in Luft ergattern sie sich irgendwo zwei Elektronen und werden zu normalen Helium-Atomen. β-Teilchen (Elektronen) finden spätestens nach 10 Metern in Luft ein Atom als neue „Heimat“. γ-Strahlen verhalten sich hingegen wie fast alles durchdringendes Licht und breiten sich geradezu unendlich weit aus, wenn ihnen keine besonders dichte Materie, wie ein dicker Blei-Klotz, im Wege steht.

Das „Ende“ von α- und β-Teilchen deutet es schon an: Wenn solch ein reisender „Bröckel“ mit Volldampf auf ein Atom trifft, kann dieses „kaputtgehen“: Der Einschlag kann Elektronen aus der Hülle schleudern. Die „Strahlen“ wirken ionisierend (auch γ-Strahlen haben diese verheerende Wirkung: Sie sind energiereicher als Licht (Lichtphänomene) und regen Elektronen so stark an, dass diese „ihr“ Atom verlassen können!).

Der Begriff „Ionisierende Strahlung“ beschreibt diese herumfliegenden Atomtrümmer also besser als der Pleonasmus „radioaktive Strahlung“ („radioaktiv“ bedeutet nichts anderes als „strahlend“).

 

Wie misst man „radioaktive“ bzw. ionisierende Strahlung?

Die ersten Wissenschaftler, die sich mit Radioaktivität beschäftigten, ahnten noch nichts von ihrer Gefährlichkeit. So interessierten sie sich vornehmlich für die Menge der Strahlung, die von einem radioaktiven Stoff ausging. Die Curies „erfanden“ deshalb die später nach ihnen benannte erste Masseinheit für die Aktivität – den Vergleich mit der Aktivität von einem Gramm Radium.

In einem Gramm Radium zerfallen in jeder Sekunden 37 Milliarden Atome und geben „Strahlen“ ab. Das entspricht einer Aktivität von einem Curie (Ci). Dieser enormen Strahlungsmenge sollte man jedoch tunlichst fern bleiben. So wird heute eine wesentlich „handlichere“ Einheit für die Aktivität verwendet:

Eine Stoffmenge, in welcher im Mittel in jeder Sekunde ein Atom zerfällt, hat eine Aktivität von einem Becquerel (Bq).

 

Ein Gramm Radium hat also eine Aktivität von 37 Milliarden Becquerel! Ein Gramm Natur-Uran hätte hingegen eine Aktivität von 25.290 Becquerel, ein Gramm natürliches Kalium 31,2 Becquerel. [1]

Wer sich mit der Gefährlichkeit von ionisierender Strahlung beschäftigt, wird sich allerdings mehr dafür interessieren, wie viele Strahlen einen Menschen (oder anderen Organismus) tatsächlich treffen und in ihm Schaden anrichten. Und Schaden wird angerichtet, wenn die Atome des Körpers die (Bewegungs-)Energie einfallender Strahlung aufnehmen. Deshalb wird häufig eine Energiedosis für ionisierende Strahlung angegeben:

Ein Kilogramm Materie (zum Beispiel Körpermasse), die eine Energiemenge von einem Joule aus Strahlung aufnimmt, erhält eine Energiedosis von einem Gray (Gy).

 

Wir alle sind tagtäglich natürlicher ionisierender Strahlung aus dem Weltraum ausgesetzt. Jedes Kilogramm unserer Körper nimmt daher täglich 3*10-5 (drei Hunderttausendstel) Gray aus der Weltraumstrahlung auf [2]. Die 1000 Liquidatoren, die am ersten Tag nach dem Tschernobyl-Unglück in unmittelbarer Nähe von Reaktorblock 4 eingesetzt wurden, bekamen dort eine Energiedosis von etwa 2 bis 20 Gray ab [1].

Strahlung ist aber nicht immer gleich Strahlung. Wenn ein α-Teilchen mit hoher Geschwindigkeit auf ein Atom trifft, kommt das einem nuklearen Crash mit einem Lastwagen gleich, während sich die Begegnung mit einem ähnlich schnellen, aber rund 1000 mal leichteren β-Elektron im Vergleich dazu wie der Zusammenstoss mit einem Radfahrer ausnimmt. Zur Bestimmung der Gefährlichkeit der Strahlenarten muss ihre Energiedosis daher mit einem „Gefährlichkeitsfaktor“ multipliziert werden. Wenn dieser Faktor für β-Teilchen und γ-Strahlen 1 ist, beträgt er für α-Teilchen 20.

Durch die Multiplikation der Energiedosis mit dem Gefährlichkeitsfaktor erhält man schliesslich die Äquivalentdosis in Sievert (Sv), die in Strahlenschutz-Belangen Verwendung findet.

 

Pro Jahr ist ein Mensch durchschnittlich zwei Tausendstel Sievert (2 mSv) aus natürlicher Strahlung ausgesetzt, in Gegenden mit besonderen Vorkommen radioaktiver Elemente im Boden sogar deutlich mehr. Im Fall einer kurzzeitigen(!) Begegnung mit starker Strahlung macht sich eine Dosis bis etwa 200 mSv durch keinerlei Symptome bemerkbar. Erst darüber treten Symptome der Strahlenkrankheit auf. Wenn Menschen in kurzer Zeit einer Strahlendosis von 4,5 Sv oder mehr ausgesetzt sind, stirbt jeder zweite innerhalb von vier Wochen. Eine Dosis von 6 Sv oder mehr in kurzer Zeit gilt als absolut tödlich – die gleiche Dosis innerhalb von 50 Jahren bleibt hingegen ohne messbare Folgen [2].

 

Was bewirkt ionisierende Strahlung?

Ionisierende Strahlung kann mit einem Geigerzähler (eigentlich: Geiger-Müller-Zählrohr) registriert werden: In dem Zählrohr befindet sich ein dünnes Gas aus Atomen, die von einfallender ionisierender Strahlung in Ionen und Elektronen gespalten werden und in einem elektrischen Feld zu zwei Polen hingezogen werden. Die wandernden geladenen Teilchen schliessen so einen Stromkreis, was sich im angeschlossenen Lautsprecher als „Knack“ bemerkbar macht. Je mehr „Knacks“ es gibt, desto mehr ionisierende Strahlen sind in das Gas im Zählrohr eingeschlagen.

Wenn die ionisierende Wirkung ein Atom in einem Molekül trifft (zum Beispiel in einem Biomolekül wie DNA), kann das Molekül als solches Schaden nehmen. Da Radioaktivität eine ganz natürliche Sache ist, haben Zellen – auch menschliche – verschiedene Mechanismen entwickelt, um kaputte Biomoleküle, insbesondere DNA, bei Bedarf zu reparieren. Erst wenn die Zellen mehr ionisierende „Treffer“ einstecken müssen, als sie reparieren können, entstehen spürbare Zell- und Gewebeschäden.

Bei sehr grossen Strahlenmengen äussert sich das als „Strahlenkrankheit“. Weniger grosse oder über längere Zeit ertragene Strahlenmengen spürt man hingegen nicht sofort – was sie so tückisch macht. Dauerhaft beschädigte DNA kann jedoch – auch lange nach der Begegnung mit der Strahlung – zu Erkrankungen wie Krebs und Leukämie führen.

 

Was hat Radioaktivität bzw. ionisierende Strahlung mit Atomkraftwerken zu tun?

Die wohl wichtigste Atomsorte, die für die Kernspaltung geeignet ist und in grösseren Mengen in der Natur vorkommt, ist das Uran-Isotop 235U. Deshalb findet 235U sowohl in ersten Atombomben als auch in Reaktoren Verwendung (eigentlich ist das Isotop 238U noch sehr viel häufiger, aber nicht spaltbar, sodass bei der Herstellung von Kernbrennstoff ein Teil des 238U  aufwändig vom Rest getrennt werden muss, um  für die Kettenreaktion ausreichend „anzureichern“).

Unglücklicherweise sind sowohl 235U als auch 238U  von Natur aus radioaktiv. Beide Isotope sind α-Strahler, d.h. sie zerfallen zu Heliumkernen und Isotopen des Elements Thorium – die wiederum radioaktiv sind. Die Halbwertszeit – also jene Zeitspanne, in welcher die Hälfte einer Portion einer Atomsorte zerfällt, beträgt für 235U 703,8 Millionen Jahre, für 238U  4,47 Milliarden Jahre (das entspricht etwa dem Alter der Erde!). Eine Portion Uran enthält also immer – grossteils radioaktive – Atome einer ganzen Reihe verschiedener Elemente, die im Zuge der Abfolge verschiedener Zerfälle entstehen.

Allein deshalb erfordert der Umgang mit Uran schon besondere Sicherheitsvorkehrungen. Der eigentliche Haken an der Sache kommt aber noch:

In den wenigen Wochen, die das Uran in einem Kernreaktor zubringt, entsteht eine Vielzahl von Spaltprodukten und sehr schweren Atomkernen, die oftmals ihrerseits radioaktiv sind, durch „Verschlucken“ der herumfliegenden Neutronen.

Zu den Spaltprodukten zählt zum Beispiel das Xenon-Isotop 135Xe, das mit Vorliebe Neutronen schluckt und die Kettenreaktion ausbremst. Deshalb wird dieses Isotop als „Reaktor-Gift“ (das ist der „Xenon-Müll“ in der Einleitung) bezeichnet. Wenn ein Reaktor unter Volllast läuft, reagiert das 135Xe jedoch ebenso schnell weiter, wie es entsteht, sodass es sich nicht ansammelt. Während der Reaktor in Tschernobyl einen halben Tag lang nur mit halber Kraft lief, ist hingegen mehr 135Xe entstanden als abgebaut werden konnte, was die Kettenreaktion regelrecht ausgebremst und zu dem dramatischen Leistungseinbruch vor Beginn des fatalen Tests geführt hat.

Das Berüchtigste unter den entstehenden schweren Elementen, auch „Transurane“ genannt, ist das Plutonium, dessen Isotop 239Pu ebenfalls spaltbar ist und sowohl als Reaktor-Brennstoff als auch für Atombomben taugt (deshalb werden Uran-Brennstäbe gemäss den Regeln der Internationalen Atomenergie-Behörde so lange im Reaktor belassen, bis das entstehende 239Pu zu nicht spaltbarem 240Pu weiterreagiert ist [2]).

Insgesamt strahlt die bunte Mischung von Atomkernen in „verbrauchten“ Brennstäben rund 10 Millionen mal stärker als „frisches“ Uran! Und dabei haben viele dieser Kerne solch lange Halbwertszeiten, dass die Brennstäbe selbst 10 Jahre nachdem sie ausrangiert wurden, noch rund eine Million mal stärker als „frisches“ Uran strahlen [2]. Daraus ergibt sich die ungeheure Problematik bei der Lagerung dieses „Atommülls“: „Verbrauchtes“ Brennmaterial sollte möglichst lange möglichst weit weg bzw. abgeschottet von allem lagern können, bis seine radioaktiven Bestandteile zerfallen sind. Und da „möglichst lange“ viele Jahrtausende meint, gibt es noch keine Technologie, welche eine gefahrlose Lagerung auf der Erde über so lange Zeit wirklich sicherstellt.

 

Leser fragen zu Kernkraft und Radioaktivität:

Cornel van Bebber fragt auf Google+:

Was ist der Unterschied zwischen dem radioaktiven Zerfall im Kernkraftwerk in Tschernobyl und der Atombombe?

Im Grunde genommen gibt es keinen – denn der Brennstoff im Reaktor und Atombomben bestehen aus den gleichen Stoffen (allerdings muss das spaltbare Material für den Bau einer funktionierenden Bombe um einiges stärker angereichert werden als für den Kraftwerksbetrieb). Die Reaktionen, welche in einem Kraftwerk innerhalb von Wochen und Monaten ablaufen, finden bei der Explosion einer Atombombe in Sekunden statt – die Spalt- und Nebenprodukte sind aber weitestgehend die gleichen.

Besonders berüchtigt sind vor allem Cäsium-137 (137Cs), ein β-Strahler mit einer Halbwertszeit von 30 Jahren, und Iod-131 (131I), ein β-Strahler mit einer Halbwertszeit von 8 Tagen. Beide sind mögliche Bruchstücke, die bei der Spaltung von 235U entstehen, und somit sowohl aus einer Bombe als auch aus einem havarierten Reaktor freigesetzt werden können.

Cäsium-137 ist besonders gefährlich, weil es chemisch den anderen Alkalimetallen, vor allem dem Kalium, ähnelt und leicht an deren Stelle  einen Weg in Organismen findet, und weil es zu energiereichen, „angeregten“ Barium-137-Kernen zerfällt, die wiederum γ-Strahlen abgeben, um zu nicht-strahlendem Barium-137 ( 137Ba ) zu werden. In der Medizin macht man sich diese γ-Strahlen bei der Strahlentherapie von Tumoren zunutze, aber in „freier Natur“ können sie auch auf gesundes Gewebe eine verheerende Wirkung haben.

Iod-131 zerfällt zwar recht schnell, aber der menschliche Körper lagert Iod-Atome rasch in der Schilddrüse ein, um sie zu Hormonen verarbeiten zu können. Dabei unterscheidet der Organismus nicht zwischen verschiedenen Isotopen, da diese sich chemisch gleichen. So kann in der Schilddrüse gesammeltes Iod-131 in kurzer Zeit merkliche Schäden anrichten und beispielsweise Schilddrüsenkrebs auslösen. Deshalb sind in der Schweiz im Einzugsgebiet von Kernkraftwerden Iod-Tabletten mit nicht-strahlendem Iod ausgegeben worden, die die Bevölkerung im Falle einer Freisetzung von Iod-131 schnell einnehmen soll. Damit soll erreicht werden, dass die betroffenen Körper das Tabletten-Iod zuerst einlagern und für Iod-131 möglichst keinen Platz mehr lassen.

Der grosse Unterschied zwischen Bombe und Kernkraftwerk besteht letztlich darin, dass das radioaktive Material durch die Explosion einer Atombombe weit verteilt wird und schnell ein grosses Gebiet „verstrahlt“, während es im Kernkraftwerk samt seiner abgestrahlten Teilchen und Strahlen im Reaktor bleibt und niemandem direkt schadet – normalerweise jedenfalls.

Nach dem Unglück in Tschernobyl durften meine Schwester und ich unseren Physiker-Vater in den Garten begleiten, um Bodenproben aus dem Sandkasten, Mamas Beeten und vom Grund des Gartenteichs zu nehmen. Mit den Proben sind wir dann nach Düsseldorf in die Uni gefahren, wo es eine Zähl-Apparatur gab, mit welcher Papa die Strahlung aus dem „Gift“ in unserem Garten messen und – so hofften wir zumindest – das Draussen-Spiel-Verbot allenfalls wieder aufheben konnte. Unsere und andere Messungen von Papas Kollegen ergaben allerdings, dass von den Böden in der Umgebung doch um einiges mehr Strahlung ausging als normal gewesen wäre.

 

Sichtbare Radioaktivität: Iod 131 in Gras aus Berlin, detektiert auf Planfilm 19 Tage nach dem Tschernobyl-Unglück

Schüler in West-Berlin legten am 15. Mai 1986 ein Büschel Gras von ihrem Schulhof für knapp 2 Tage auf einen Planfilm. Ionisierende Strahlung schwärzt, vergleichbar mit Licht, Filmmaterial. Auf dem hier gezeigten Negativ erscheinen stark strahlende Bereiche weiss. Der runde, schwarze Fleck rührt von einer Münze her, welche die gestreute Strahlung abschirmt. Wenn die weissen Flecken hier tatsächlich, wie von den Autoren angegeben, von Iod-131 herrühren, ist dem Datum nach davon auszugehen, dass hier allenfalls ein Viertel des ursprünglich in diesem Fallout freigesetzten Iod-131 „detektiert“ wurde (bei einer Halbwertszeit von 8 Tagen hat sich die Menge des Isotops seit der Freisetzung schon zweimal halbiert). (Bild: ViolaceinB (Own work) [CC BY-SA 4.0], via Wikimedia Commons)

 

Cedric97 von itscedric.de fragt:

Block 4 ist ja in die Luft geflogen, aber die anderen drei Reaktoren liefen ja noch Jahre weiter. Meine Frage: Warum wurden die anderen Reaktoren weiter betrieben?

Laut der Wiener Umweltanwaltschaft, die auf Wikipedia zitiert wird, hat das Kernkraftwerk Tschernobyl – für die Sowjetunion eine „Vorzeige-Anlage“ – seinerzeit ein Sechstel des Atomstroms auf dem Gebiet der Ukraine geliefert, was 4 bis 10% des Gesamtstroms entspricht. Darauf konnte oder wollte der Staat seinerzeit nicht von jetzt auf gleich verzichten. Tatsächlich war die Fertigstellung der im Bau befindlichen Blöcke 5 und 6 nach Absinken der Radioaktivität noch geplant. Erst nach dem Zusammenbruch der Sowjetunion konnte die Regierung der seither unabhängigen Ukraine gegen Ausgleichszahlungen seitens der EU dazu bewegt werden, die verbliebenen Blöcke 1 bis 3 des Kraftwerks endgültig abzuschalten („Memorandum of Understanding“ zwischen den G7-Staaten und der Ukraine vom 20.12.1995).

Gibt es bereits Vergleiche mit Tschernobyl zu den beschädigten Kernkraftanlagen in Belgien?

In meinen Augen wäre ein solcher Vergleich gar nicht sinnvoll: Die Kernkraftwerke Doel und Tihange in Belgien arbeiten mit Druckwasser-Reaktoren. Darin wird Wasser als Moderator und Wärmeüberträger verwendet, welches durch Überdruck im Reaktor-Druckbehälter am Verdampfen gehindert wird. Diese Druckbehälter einer bestimmten Baureihe weisen in Belgien nun eine grosse Anzahl Haarrisse auf. Würde ein solcher Behälter Leck schlagen, sodass es zu einem Druckabfall kommt, könnte das Wasser darin verdampfen und seine wärmeabführende Wirkung verlieren. Dann bestünde die Gefahr einer Kernschmelze.

Der Tschernobyl-Reaktor vom Typ RBMK-1000 war hingegen ein Siedewasser-Druckröhrenreaktor, der statt einem Druckbehälter viele unter Druck stehende Röhren mit Brennstoff sowie Graphit als Moderator enthielt. Auch weitere Sicherheitshüllen („Containment“), wie sie die belgischen (und andere westliche) Reaktoren umgeben, haben die RBMK-Reaktoren nicht. Die Freisetzung des hoch radioaktiven Materials aus dem Reaktor-Kerns nach der einmal eingetretenen Kernschmelze ist demnach nicht zuletzt auf die baulichen Schwächen dieses Reaktor-Typs zurückzuführen.

Erstarrte "Lava" aus vormals geschmolzenem radioaktivem Reaktormaterial im Dampf-Ventil im Keller von Tschernobyl

Geschmolzenes radioaktives Material aus dem havarierten Reaktor ist im Keller von Block 4 in Tschernobyl aus einem Ventil zur Dampf-Ableitung ausgetreten und erstarrt. Hier gab es keine Sicherheitsbehälter, die die lavaartige Schmelze hätten zurückhalten können. (Bild: The Kurchatov Institute (Russia) and the ISTC-Shelter (Ukraine); Quelle: International Nuclear Safety Program)

Als Nicht-Kernkraft-Ingenieurin kann ich also nur hoffen, dass die Verantwortlichen in Belgien (wie auch in der Schweiz – das Kernkraftwerk Mühleberg verwendet einen Reaktor-Druckbehälter des gleichen Herstellers wie die Kraftwerke in Belgien) wissen, was sie tun, und sich anders als die Ingenieure in Tschernobyl an ihre Vorschriften halten, bis die betreffenden Reaktoren endgültig vom Netz genommen werden.

 

Renate Thormann schreibt auf Facebook:

Ich halte es für wichtig, dass man sich immer und immer wieder der Langzeitfolgen bewusst bleibt. Da wird nicht genug hingesehen und es ist auch mangels Erfahrung gar nicht bekannt, was alles geschieht, wenn man lange auf kontaminiertem Gebiet lebt. Im Staate Washington ist grade wieder eine Riesenkatastrophe mit nuklearem Material geschehen. Das Leck dort bestand schon seit 2011 .. jetzt leckt es mehr als massiv, nämlich katastrophal. Was hört man davon? Nix? Eben … darum finde ich es am wichtigsten so viel wie möglich zu informieren. Langzeitfolgen im Auge zu behalten und Erfahrungen mit Radioaktivität auszutauschen. Es gibt eine „Sarkophag“ Seite, die immer über Tschernobyl berichtet ..

Innerhalb von 206 Tagen nach der Havarie von Tschernobyl umschliessen rund 90.000 Liquidatoren den gesamten Reaktorblock 4 mit einem zwanzig „Stockwerke“ hohen Kasten aus Stahlbeton, in dem die verbliebenen Überreste des geschmolzenen Kerns seither ruhen wie in einem Sarkophag.

Dieses schon gewaltige Bauwerk war auf eine Lebensdauer von etwa 30 Jahren ausgelegt, doch der Zahn der Zeit zeigte seine Spuren schon weitaus früher – es gibt verschiedene Berichte von Undichtigkeiten oder gar Teil-Einstürzen. So ist im Augenblick ein zweiter Sarkophag im Bau, welcher noch über den ersten geschoben werden und 100 Jahre halten soll. Doch was kommt dann?

der neue Sarkophag für den Reaktor von Tschernobyl im März 2016

Der neue Sarkophag im März 2016: Nach seiner Fertigstellung soll er über den alten Sarkophag (links im Hintergrund) geschoben werden. Das macht ihn zum bis Dato grössten beweglichen Gebäude der Welt. (Bild: Tim Porter (Eigenes Werk) [CC BY-SA 4.0], via Wikimedia Commons)

 

Und die Reaktor-Ruine von Tschernobyl ist nicht die einzige unnatürliche Quelle ionisierender Strahlung. Moderne, nach allen Sicherheitsvorschriften betriebene Kernkraftwerke zählen meines Wissens nicht dazu. Stattdessen sind es Altlasten, die zunehmend Sorgen bereiten. Da ist die von Renate erwähnte Hanford Site in Washington State im Nordwesten der USA, ein ehemaliges Versuchsreaktoren-Gelände, auf welchem grosse Mengen radioaktiver Abfälle in Tanks lagern – Tanks, die altern und zunehmend Lecks aufweisen. Da ist der Reaktorunfall in Fukushima in Japan, der letztlich von Naturgewalten ausgelöst wurde. Die austretende Strahlung ist in der Natur dennoch nicht vorgesehen. Da sind die über Hiroshima und Nagasaki eingesetzten Atombomben und zahllose weitere Atomwaffentests

Nichts desto trotz ist das Atomzeitalter, wenngleich es sich nach der Meinung vieler dem Ende neigen sollte, noch jung – es zählt weniger als 100 Jahre. So sind unsere Kenntnisse der Langzeitfolgen durch das  Tschernobyl-Unglück und anderer unnatürlicher Strahlenquellen bestenfalls lückenhaft, in mancher Hinsicht noch gar nicht abzusehen, und sie werden nach wie vor kontrovers diskutiert.

So schliesse ich mich Renate von Herzen an: Erinnern wir uns an jene schicksalhafte Nacht auf den 26. April 1986, und an alle anderen schicksalhaften Augenblicke des Atomzeitalters und behalten wir ihre Folgen im Auge, um daraus für die Zukunft zu lernen.

Dieser Post enthält (nicht nur) meine Erinnerung und mag hoffentlich helfen zu verstehen, worum es bei Atomen, Kernkraft und Radioaktivität eigentlich geht.

 

Erinnert ihr euch noch an das Tschernobyl-Unglück? Wie habt ihr jene Tage vor 30 Jahren erlebt? Oder seid ihr erst „nachher“ zur Welt gekommen? Welche Bedeutung haben die Ereignisse für euch?

Literatur:

[1] Es gibt einen ausführlichen Artikel zum Unglück von Tschernobyl auf Wikipedia:  https://de.wikipedia.org/wiki/Nuklearkatastrophe_von_Tschernobyl. Die Einleitung des Posts ist eine freie Nacherzählung anhand der dortigen Darstellung des Unfallhergangs.

[2] Rudolf Kippenhahn (1998): Atom.Forschung zwischen Faszination und Schrecken. Erweiterte Taschenbuchausgabe im Piper-Verlag GmbH, München. (Das Buch ist vergriffen, aber auf dem Gebrauchtmarkt und in Bibliotheken zu finden: Ein umfassendes, auch für den Laien verständliches Werk, das durch die Geschichte der Atome und ihrer Erforschung führt und schliesslich umfassende Informationen zu Kernenergie und Radioaktivität bereithält.

[3] Weitere Einzelheiten und Bilder rund um Tschernobyl und das Unglück in englischer Sprache gibt es auch auf http://chernobylgallery.com/

Die IUPAC hat den Nachweis der Existenz der chemischen Elemente 113, 115, 117 und 118 offiziell bestätigt. Diese Nachricht geistert dieser Tage durch die Presse – teilweise in höchst zweifelhafter Qualität. Die grosse Aufmerksamkeit, die diesen exotischen, von Menschenhand geschaffenen Elementen zuteil wird, mag daher rühren, dass solche Nachrichten selten sind: Zuletzt wurde vor 4 Jahren der Nachweis der Elemente 114 und 116 bestätigt. Entdeckt – besser: erschaffen wurden die vier jüngsten chemischen Elemente aber schon vor Jahren!

Das derzeit jüngste Element unseres Periodensystems hat die Ordnungszahl 117 und den vorläufigen Namen Ununseptium (lateinisch für einhundertsiebzehn). Tatsächlich wurde Element Nummer 118 früher nachgewiesen, schlichtweg weil seine Erschaffung einfacher war: Atome mit ungerader Ordnungs- bzw. Protonenzahl sind schwieriger zu erzeugen als Atome mit gerader Ordnungszahl). Nummer 117 wurde erstmals im „Joint Institute for Nuclear Research“ (JNIR) in Dubna, Russland, nachgewiesen und die Ergebnisse im Frühling 2010 veröffentlicht [1]. Das dazu notwendige Experiment ist allerdings von einem derart wahnwitzigen Umfang, dass Dutzende Wissenschaftler in mindestens 6 Forschungseinrichtungen rund um die Welt an seiner Realisierung beteiligt waren.

Und da Wissenschaftler nur das akzeptieren, was sich reproduzieren lässt, hat eine zweite, noch weltumfassendere Forschungsgemeinschaft den Nachweis von Nummer 117 im GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Deutschland, wiederholt und die Bestätigung der Ergebnisse aus Dubna 2014 veröffentlicht [2]. Trotzdem nimmt die IUPAC es mit der Überprüfung solcher Ergebnisse sehr genau, sodass sie nun erst, am 30.12.2015, offiziell grünes Licht gegeben hat um 117 und die anderen drei jüngsten Elemente zur endgültigen Benennung freizugeben.

Aber wie erzeugt und detektiert man heutzutage neue Elemente?

Wie Atomkerne entstehen

Atomkerne bestehen aus elektrisch positiv geladenen Protonen und elektrisch ungeladenen Neutronen. Diese beiden Sorten von Kernteilchen sind nahezu gleich schwer, sodass die im Periodensystem verzeichnete Masse eines Atomkerns in der Masseneinheit u nahezu der Anzahl aller seiner Kernteilchen entspricht. Die Anzahl Protonen von Atomen eines Elements ist immer gleich und entspricht der Ordnungszahl im Periodensystem. Ein Wasserstoff-Atom enthält also stets ein Proton: die Ordnungszahl von Wasserstoff ist 1.

Die Anzahl Neutronen ist hingegen nicht festgelegt. Häufig gibt es von einem Element verschiedene Atome mit verschiedenen Neutronenzahlen, wie zum Beispiel der „herkömmliche“ Wasserstoff, auch Protium genannt, dessen Kern aus einem einzigen Proton besteht, und die Kerne von Deuterium (ein Proton und ein Neutron) und Tritium (ein Proton und zwei Neutronen). Diese unterschiedlichen Vertreter eines Elements werden „Isotope“ genannt. Protium, Deuterium und Tritium sind also Isotope des Elements Wasserstoff.

 

The_3_isotopes_of_Hydrogen

Wasserstoffisotope: Die „Nuklid-Schreibweise“ unter den bildlichen Darstellungen der Kerne gibt das Elementsymbol, links oben die Zahl aller Kernteilchen und links unten die Protonen- bzw. Ordnungszahl an. (By Johannes Schneider (Own work) [CC BY-SA 4.0], via Wikimedia Commons

 

 

Wer sich die Darstellung von Atomkernen als Klumpen aus kleinen Kugeln ansieht, mag sich fragen, wie diese Teilchen eigentlich zusammen halten. Schliesslich stossen sich gleiche elektrische Ladungen doch ab, und ungeladene Teilchen sollten der Elektrizitätslehre nach keinen Grund haben einander anzuziehen. Gemäss der Kernphysik haben sie jedoch einen sehr guten Grund dazu: Zwischen Kernteilchen wirkt nämlich die sogenannte „starke Kernkraft“ überaus anziehend, sobald diese erst nah genug beieinander sind. Denn ihrer extrem kurzen Reichweite zum Trotz ist die starke Kernkraft um einiges stärker als die Abstossung zwischen den positiven Ladungen der Protonen in einem Kernklumpen!

Um Atomkerne zu schaffen muss man einzelne Kernteilchen oder kleine Atomkerne also so dicht zusammenbringen, dass die starke Kernkraft wirken kann. Wenn das gelingt, entsteht ein neuer, grösserer Atomkern: Das nennt man  Kernfusion.

Bei der Entstehung von leichten Kernen ( also kleineren Atomkernen als jenen des Elements Eisen) durch Kernfusion werden dabei gewaltige Mengen „Kernbindungsenergie“ frei (In Folge dessen ist die Masse des neuen Kerns kleiner als die Summe der Massen seiner einzelnen Bausteine – dieser Umstand ist als Massendefekt bekannt). Diese Energiemenge kann so gewaltig sein, dass sie die Sonne strahlen lässt, einer Wasserstoff-Fusions-Bombe ihre Sprengkraft verleiht und dass ihre friedliche Nutzung in Reaktoren ein Menschheitstraum ist. Dennoch muss niemand fürchten, dass Experimente zur Erschaffung neuer Elemente ihren Schöpfern gleich einer Wasserstoff-Bombe um die Ohren fliegen.

Atomkerne, die schwerer als Eisen sind, sind nämlich – anders als die leichten Kerne – weniger stabil als ihre losen Bausteine. Das heisst, die Erschaffung schwerer Atome „verbraucht“ Energie anstatt sie frei zu setzen, sodass die Masse des neuen Kerns grösser ist als die Summe der Massen seiner Bausteine (umgekehrt wird diese Energie beim radioaktiven Zerfall solch schwerer Kerne wieder frei und macht sich als Bewegungsenergie abgestrahlter α- und β-Teilchen, als γ-Strahlung oder Wärme bemerkbar).

 

Wie Kernteilchen zusammenfinden

Der simpelste Weg sehr schwere Atomkerne/Elemente zu machen besteht darin, vorhandene Kerne mit Neutronen zu beschiessen, denn wie makroskopische Geschosse sind bewegte Neutronen sehr energiereich und kommen beim Aufprall sehr, sehr nah an ihr Ziel heran. Ausserdem können Neutronen zu Protonen und Elektronen zerfallen (das entspricht einem β-Zerfall: ein aus einem Atomkern abgestrahltes Elektron wird auch β-Teilchen genannt), sodass aus einem Atomkern nach der Eingliederung eines oder mehrerer Neutronen ein nahezu gleich schwerer Kern mit höherer Ordnungszahl entstehen kann!

Das funktioniert im bekannten Universum unter vier Umständen, unter denen genug Neutronen-Geschosse aufgebracht werden, um schwere Kerne aufzubauen: Im Innern eines strahlenden Sterns innerhalb von Jahrmillionen, in einer Supernova, im Feuer einer Wasserstoff-Fusions-Bombe, und in Atom-Reaktoren. Aber wie man es dreht und wendet: Mit Neutronenbeschuss kommt man nur bis zum Element Fermium mit der Ordnungszahl 100.

Danach nimmt ein Problem überhand: Alle Atomkerne mit 84 oder mehr Protonen sind radioaktiv, d.h. sie zerfallen früher oder später durch Abgabe von α- oder β-Teilchen oder spalten sich ganz von selbst in zwei oder mehr grössere Bruchstücke. Und Elemente mit mehr als 100 Protonen zerfallen schneller, als dass sie durch Aufnahme einzelner Neutronen aufgebaut werden könnten.

Deshalb muss man die Atomkerne neuer Elemente in einem Schritt aus zwei grösseren Teilkernen zusammenschmelzen: Das kleinere Teilstück (ein Atomkern ohne Elektronenhülle ist das Extrem eines Ions, weshalb man diese Teilchen Schwer-Ionen nennt) wird beschleunigt und auf das grössere Teilstück geschossen. Wenn dabei ein genauer Treffer gelandet wird, entsteht aus beiden Teilen ein neuer Kern. Da zu dieser Form der Verschmelzung keine unfassbare Sternenhitze nötig ist, nennt man das Verfahren „kalte“ Schwerionenfusion. Ein dabei entstehender neuer Kern besteht in der Regel nur wenige Sekundenbruchteile, ehe er entweder α-Teilchen abgibt oder sich spontan spaltet.

Ziel solcher Experimente ist die Schaffung neuer Kerne, die α-Teilchen abgeben anstatt sich spontan zu spalten. Denn die Energie dieser α-Teilchen lässt sich vorab anhand von Kern-Modellen sehr genau berechnen, sodass die Registrierung von α-Teilchen mit der passenden Energie als Nachweis für die zeitweilige Existenz der neuen Kerne verwendet werden kann.

Die meisten neuen Kerne geben jedoch der spontanen Spaltung den Vorzug, weil sie bei der Schwerionenfusion etwas mehr Energie erhalten, als für die Verschmelzung notwendig ist. Mit viel Glück können sie dieses „Mehr“ an Energie jedoch rechtzeitig loswerden, indem sie einzelne Neutronen ab“strahlen“, bis der α-Zerfall schliesslich einsetzt. Allerdings funktioniert dieses „Abdampfen“ von Neutronen ziemlich selten: Schon bei der Schwerionenfusion von zwei Teilkernen zum Element Bohrium (Ordnungszahl 107) gelingt dies nur bei einem von 1000 Kernen [3]!

 

Was man für die Erschaffung eines neuen Elements braucht

Für ein Experiment zur Erschaffung eines neuen Elements braucht man also ein Zielmaterial (englisch „target“) aus Atomen eines ausreichend schweren Ausgangselements, passende schnelle Schwerionen und einen schnellen aber hochempfindlichen Detektor, der einzelne α-Teilchen aus dem Teilchensalat eines nuklearen Trommelfeuers filtern und registrieren kann.

Für den Nachweis von Element 117 wurden Atome des Elements Berkelium (Ordnungszahl 97) verwendet. Berkelium kann demnach in speziellen Atomreaktoren durch Beschuss mit Neutronen entstehen, wie im Hochfluss-Isotopen-Reaktor des Oak Ridge National Laboratory (ORNL) in Tennessee, USA. In diesem Reaktor werden Atome der Elemente Curium (Ordnungszahl 96) und Americium (Ordnungszahl 95) etwa 250 Tage lang „gebrütet“, bis aus ihnen Atome des Berkelium-Isotops mit der Masse 249 entstanden ist. Dieses Isotop ist so stabil (seine Halbwertszeit beträgt 330 Tage), dass man die Atome isolieren, von Tennessee nach Russland schaffen, zu „Targets“ verarbeiten und in Experimenten verwenden kann, bevor sie wieder zerfallen sind.

Da allerdings maschinengewehrgleicher Beschuss mit Schwerionen jedes Material alsbald in atomare Trümmer zerlegt, wurden Folien mit Berkelium auf ein Rad montiert, das sich später im Schwerionenstrahl drehte. So konnte das Trommelfeuer und damit seine Zerstörungskraft bei durchgehendem Beschuss auf mehrere Folien verteilt werden.

Berkelium_Targetrad_klein

Berkelium-Target-Rad, wie es im Labor der GSI Verwendung findet. Foto: Christoph Düllmann/GSI Helmholtzzentrum für Schwerionenforschung GmbH

 

Die Schwerionen-Geschosse waren Kerne des Calcium-Isotops der Masse 48. Die Herstellung solcher Ionen ist weniger kompliziert – um sie auf Touren zu bringen, braucht man jedoch einen Teilchenbeschleuniger für schwere Teilchen: Ein solcher ist das Schwerionen-Zyklotron U-400 im JINR Dubna. Der Ionenfluss, der damit auf das Target losgelassen wurde, betrug 7*1012 (7 Billionen) Ionen pro Sekunde!

Wer wissen möchte, wie so ein Beschleuniger aussieht, kann einen virtuellen Spaziergang durch das Beschleuniger-Labor in Dubna machen. Der eigentliche Teilchenbeschleuniger U-400 ist der flache gelbe Zylinder (sein Durchmesser beträgt 4 Meter), der in dem grossen blassblauen Kasten steckt. Die Ionen werden darin auf einer engen Spiralbahn beschleunigt und fliegen schliesslich durch die speichenartigen Fortsätze ihrem Ziel entgegen.

Das Experiment wurde schliesslich so aufgebaut, dass neu entstehende Kerne beim Aufprall der Schwerionen aus der Target-Folie geschleudert und durch luftleere Leitungen in den α-Teilchen-Detektor aus hochempfindlichen Halbleiter-Bausteinen sausen konnten, noch während sie aus dem sie begleitenden Trümmerstrom aussortiert wurden. Um das Sortieren zu erleichtern, wurde zudem der Schwerionenbeschuss nach jedem Signal, das auf die Freisetzung eines gewünschten Kerns aus dem Target hindeutete, für drei Minuten eingestellt.

Transactinide-Separator_klein

Der Transactiniden-Separator TASCA: Die hochmoderne Teilchen-Sortiermaschine der GSI. Verschiedene Teilchen werden im Flug durch Magnetfelder auf verschiedene Bahnen gelenkt. Damit wurde auch die Erschaffung von Element 117 erfolgreich wiederholt. (Foto: Gaby Otto/GSI Helmholtzzentrum für Schwerionenforschung GmbH)

 

Wie die Entdeckung eines neuen Elements abläuft

Die Bestrahlung eines Targets mit Schwerionen in diesem Experiment dauerte schliesslich 70 Tage mit insgesamt 79 Stunden Feuerpause. In dieser Zeit wurde bei ein vom Zerfall eines Atoms von Element 117 mit der Masse 293 stammendes α-Teilchen mit der berechneten Energie von 39MeV fünfmal beobachtet. In einem zweiten Experiment, das ebenfalls 70 Tage dauerte, wurde mit leicht veränderten Energie-Werten gearbeitet und einmal der Zerfall eines Atoms von 117 mit der Masse 294 beobachtet.

Zerfallsreihen_117

Zerfallsreihe der beiden registrierten Isotope von Element 117: Durch Schwerionenfusion entsteht das Isotop mit der Masse 297 (rot), welches 3 bzw. 4 Neutronen abgeben kann. Anschliessend verliert das jeweilige 117-Isotop mit jedem abgestrahlten Alphateilchen 2 Protonen und 2 Neutronen (gelbe Kette), bis ein Dubnium- bzw. Röntgenium-Atom (grün) übrig bleibt, das sich spontan in zwei Teile (F1 und F2) spaltet. Die Übereinstimmung zwischen den berechneten (schwarz) und gemessenen (hellblau) Abfolgen von Zerfallszeiten und Teilchenenergien dienen als Beweis dafür, dass die dargestellten Kernreaktionen – angefangen mit Element 117! – so stattgefunden haben. (Quelle: Oganessian et al.,2010 [1])

 

 

Nach der Ingangsetzung des Experiments haben die Wissenschaftler also jeweils 70 Tage in gespannter Erwartung ausgeharrt und auf ein Signal des Computers gehofft, das den Zerfall von Element 117 anzeigte. In 140 Tagen Beschuss rund um die Uhr ist das insgesamt sechsmal passiert! Damit haben die Wissenschaftler auf diese Weise die kurzzeitige Existenz von insgesamt bloss 6 Atomen von Element 117 nachweisen können! Neue Elemente finden erfordert also wochenlange, geduldige Warterei.

Die Veröffentlichung dieser Ergebnisse vom 7. April 2010 hat 33 Autoren, angeführt von Yu. Ts. Oganessian, die in mindestens sechs verschiedenen Forschungsinstituten an diesem Experiment und seinen Vorbereitungen mitgearbeitet haben.

Eine vergleichbare internationale Zusammenarbeit von 72 Wissenschaftlern in 16 Forschungszentren rund um den Globus führte bis Mai 2014 zu einem zweiten Nachweis von Element 117 unter ähnlichen Bedingungen am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, welcher für die offizielle Anerkennung der Entdeckung eines neuen Elements notwendig ist.

 

Warum zur Hölle macht man sowas?

Weil man es kann. Zudem: Die Halbwertszeit von Element 117 (14 ms für 293117 bzw. 78 ms für 294117) ist wie die seiner Nachbarn im Periodensystem so kurz, dass es höchst aufwändig ist, die Eigenschaften seiner Atome oder gar des Stoffs mit derzeit verfügbaren Mitteln eingehender zu untersuchen. Im Blog der GSI Darmstadt kann man nachlesen, wie es dabei zu und her geht: Element 114: Gas oder Metall?

Aber der Nachweis solcher Elemente bestätigt die Genauigkeit des Atomkern-Modells, anhand dessen neben den Energien abgestrahlter α-Teilchen viele weitere Eigenschaften unbekannter Elemente vorausberechnet werden können.

Diese Fähigkeit der Vorhersage von Eigenschaften ist übrigens alles andere als selbstverständlich. Sie erst macht die Modelle der Kernphysik, wie auch der Chemie zu einem unglaublich mächtigen und faszinierenden Instrument, mit welchem nicht nur Atome berechnet, sondern – und ganz besonders – auch Moleküle und Stoffe am Reissbrett entworfen und geschaffen werden können!

Und die Berechnungen zur Vorhersage der nächsten unbekannten Elemente lassen darauf schliessen, dass es im Bereich der Ordnungszahlen 114 bis 126 Elemente gibt, deren Atome ausreichend stabil sind, um sie – zumindest während ihres Vorbeiflugs – eingehender untersuchen und weitere Vorhersagen bestätigen zu können.

Die Kernphysiker ordnen schliesslich alle bekannten (und vorhergesagten) Atome in einer Tabelle an, die Nuklidkarte genannt wird. Diese „Karte“ zeigt stabile Atome in Form eines „Kontinents“ in einem Meer aus Einträgen für instabile Kerne an. Die Anhäufung der vermuteten Stabileren unter den Atomen der unbekannten Elemente wird deshalb häufig als „Insel der Stabilität“ abseits des Kontinents im „Meer der Instabilität“ bezeichnet.

791px-Isotopentabelle_Segre.svg

Nuklidkarte nach Segré: Man erkennt den langgestreckten „Kontinent“ aus stabilen, schwarz markierten Atomsorten (Nukliden) im Meer der instabilen, d.h. radioaktiven Nuklide. Die Liste unter „Zerfallstyp“ gibt an, welche Teilchen die zerfallenden Atome abgeben. „Fission“ ist der Fachbegriff für die Kernspaltung (hier: spontane Spaltung). Die Insel der Stabilität wird irgendwo oben rechts jenseits der gelben Spitze vermutet. (By Matt [CC BY-SA 3.0 or GFDL], via Wikimedia Commons)

 

Und die Kernphysiker suchen in diesem „Meer“ gleich einstigen Entdeckern auf den Weltmeeren nach ihrer legendären Insel. Wenngleich Kernphysiker dabei keine lukrativen atomaren Handelsrouten zwischen den Kernen entdecken mögen, hoffen sie gleich manch einem Weltumsegler, ihre Theorien vom Aufbau der Welt beweisen zu können. Ihr nächstes Ziel, Element Nummer 120, haben sie bis dato noch nicht erreicht.

 

Gemäss den Regeln der IUPAC dürfen chemische Elemente nach einer ihrer Eigenschaften, einem Mineral, einem/r bedeutenden Wissenschaftler/in oder einem Ort benannt werden. Welchen Namen würdet ihr Nummer 117 (und den drei anderen) geben?

 

Und wer noch mehr lesen möchte: Das Buch „Moderne Alchemie – Die Jagd nach den schwersten Elementen“ (Literatur [3]), verfasst von Wissenschaftlern der GSI in Darmstadt, erzählt verständlich und – wie ich finde – äusserst spannend von der Physik superschwerer Atomkerne und ihrer Erforschung.

 

Literatur:

[1] Oganessian,Yu.Ts. et al.(2010). Synthesis of a New Element with Atomic Number Z = 117. In: Physical Review Letters, 104, 9.April 2010, 142502.

[2] J. Khuyagbaatar et al. (2014)48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr. In: Physical Review Letters, 112, 1.Mai 2014, 172501.

[3] Münzenberg , G., Schädel, M. (1996). Moderne Alchemie – Die Jagd nach den schwersten Elementen. Wiesbaden: Vieweg (Facetten).