Tag Archive for: Medizin

Was ist im Grippe-Impfstoff drin?

Eigentlich will ich mich ja gegen die Grippe impfen lassen… aber eine wirklich penetrante Erkältung lässt mich (noch) nicht. Während die ausheilt habe ich Zeit, mich zu fragen: Was ist eigentlich in so einem Grippe-Impfstoff drin?

Die Frage kommt nicht von ungefähr, sind doch Impfungen einmal mehr in aller Munde. Nicht nur die Grippesaison steht vor der Tür. Zudem macht Deutschland mit dem Beschluss einer Impfpflicht gegen die Masern von sich reden.

Heute möchte ich aber vornehmlich beim Grippeimpfstoff bleiben, der einerseits ein spezieller Fall in der Impfstoff-Familie ist, andererseit aber als Beispiel für andere Impfstoffe herhalten mag.

Warum ist der Grippeimpfstoff speziell?

Letztlich aufgrund seiner eingeschränkten Wirksamkeit. Die beruht darauf, dass Grippeviren ganz besonders fiese Arschlöcher sind. Die mutieren nämlich schneller zu immer neuen Stämmen, als die Forscher Impfstoffe gegen sie entwickeln können (wie genau sie das machen, erklärt Mai Thi sehr gut in ihrem aktuellen Video).

So müssen Forscher schon zu Anfang eines neuen Jahres Vermutungen anstellen, wie der fieseste Grippevirus – besser die fiesesten Grippeviren – der kommenden Saison aussehen mögen. Denn Entwicklung, Herstellung und Erprobung einer neuen Impfstoff-Variante dauern gut ein halbes Jahr. Und danach können die Forscher nur hoffen, dass die tatsächlich grassierenden Viren den vermuteten zumindest ähnlich sind.

Anders als die Impfstoffe gegen Masern und andere Kinderkrankheiten, die nahezu immer schützen, bietet eine Grippeimpfung damit nur eingeschränkt Schutz gegen Grippe. Wenn es aber darum geht, ob man eine Woche statt drei Wochen flach liegt, ins Spital muss oder nicht bzw. mit einer massgeblich geringeren Wahrscheinlichkeit krank wird, lohnt sich die Impfung allemal. Auch jedes Jahr aufs Neue. Besonders, wenn man zu einer der Risikogruppen zählt, die das Schweizerische Bundesamt für Gesundheit nennt.

Die Grippeimpfung ist übrigens auch für Kinder einschliesslich Säuglingen ab 6 Monaten möglich. Und wenn die Kinder in die Krippe, den Kindergarten oder die Schule gehen, mag die Impfung sich für sie ebenso lohnen wie für ihre Lehrer und Erzieher.

Anbei: Für die aus medizinischen Gründen Gefährdeten (Senioren, Bewohner von Pflegeheimen, Kranke, Schwangere, Frühgeborene) übernimmt in der Schweiz die obligatorische Krankenversicherung die Kosten für die Impfung.

Aber was ist nun drin im Impfstoff?

In Impfkritiker-Kreisen kursieren zahllose Gerüchte um Quecksilber, Aluminium und andere angeblich fiese Hilfsstoffe, ganz zu schweigen von angeblich unsicheren Wirkstoffen.

Dabei lassen sich im Netz ziemlich einfach Fachinformationen mit genauen Inhaltsstofflisten im Netz auftreiben. Zum Beispiel im Arzneispezialitätenregister des Österreichischen Bundesamts für Sicherheit im Gesundheitswesen. Das einzige, was man dafür braucht, ist der Handelsnahme eines Impfstoffs.

Den habe ich mir aus einer Broschüre des Schweizerischen Bundesamtes für Gesundheit herausgepickt. Der Umstand, dass ich einen in der Schweiz gebräuchlichen Impfstoff in der österreichischen Datenbank gefunden habe, lässt mich darauf schliessen, dass solche Impfstoffe im DACH-Raum grenzübergreifend zum Einsatz kommen. Was jetzt kommt, wird demnach auch für Impfstoffe in Deutschland gelten.

Mein Beispiel-Impfstoff ist Fluarix Tetra®, zugelassen für Kinder ab drei Jahren und Erwachsene. Dieser Impfstoff kommt übrigens seit Jahren mit jeweils angepassten Virenstämmen zum Einsatz. Darin sind enthalten:

Inaktivierte Influenza-Virus Spaltantigene

Das ist der eigentliche „Wirkstoff“ im Impfstoff, welcher das Immunsystem veranlassen soll, die Informationen über die gefährlichen Grippeviren zu speichern. Wie das Immunsystem arbeitet und wie das genau funktioniert, könnt ihr übrigens hier in Keinsteins Kiste nachlesen.

Aber was bedeutet dieser Fachausdruck eigentlich?

Um das Immunsystem zur Informationsverarbeitung zu veranlassen, müssen ihm Krankheitserreger „vorgeführt“ werden. Damit der Körper dabei aber nicht krank wird, müssen diese Erreger entweder in einer abgeschwächten („zahnlosen“) Version daher kommen (das nennt man dann einen Lebendimpfstoff), oder man führt dem Immunsystem funktionslose Bruchstücke der Erreger vor (als Totimpfstoff).

Um solche Bruchstücke herzustellen, züchten die Entwickler in speziellen Labors Grippeviren und zerlegen sie dann in ihre Bestandteile. Dabei lösen sie unter anderem Proteine (die fiesen „Stacheln“, die in vielen Virus-Darstellungen zu sehen sind) aus der Aussenhülle der Viren, trennen sie vom Rest und packen sie in den Impfstoff.

Keine Kunst, sondern ein echtes, koloriertes „Foto“ von einem Grippe-Virus, aufgenommen mittels Elektronen-Tomographie (mit einem Elektronenmikroskop, das zum MRT für winzigkleine Dinge umgerüstet wurde). Die Protein-Stacheln in der Virushülle (blau) sind hier grün und gelb dargestellt. (US gov [Public domain], via Wikimedia Commons )

An diesen Proteinen erkennt nämlich unser Immunsystem die Viren. Nur – die Proteine allein, ohne Virenhülle und vor allem ohne Virenerbgut, können keine Grippe verursachen.

Moleküle, die unser Immunsystem erkennt, werden nun Antigene genannt. Da unsere Antigene bei ihrer Herstellung von Viren „abgespalten“ wurden, sprechen die Entwickler von Spaltantigenen. Und da sie allein keine Grippe („Influenza“) mehr verursachen können, sind diese Spaltantigene „inaktiviert“.

Wie züchtet man Grippeviren?

Viren können sich nicht selbst vermehren (und sind damit nach landläufiger Definition der Biologen keine Lebewesen), sondern müssen dazu lebende Zellen befallen und deren Vermehrungsanlagen kapern. Deshalb sind zur Virenzucht lebende Wirtszellen nötig.

In den 1960er Jahren haben Forscher dafür geeignete Zellen in befruchteten Hühnereiern entdeckt. Darin wachsen nämlich nebst dem Küken auch verschiedene blasenartige Hilfsorgane. Und die Zellen von deren Aussenhäuten sind offenbar besonders gut geeignet, um in kurzer Zeit viele Grippe- und andere Viren herzustellen. Und zwar so gut, dass man diese Methode bis heute verwendet:

Befruchtete Hühnereier werden 10 bis 11 Tage lang im Brutschrank bebrütet. Dann wird durch ein kleines Loch in der Schale der gewünschte Virenstamm in das Anhangsorgan eingebracht und drei Tage lang weiter bebrütet. In dieser Zeit vermehren sich die Viren sehr stark und gelangen in die Flüssigkeit im Innern „ihres“ Wirtsorgans. Dann wandern die Eier für einige Stunden in den Kühlschrank, sodass die Embryonen darin absterben (ich habe mir ja sagen lassen, dass der Tod durch Unterkühlung eine schmerzlose Angelegenheit sein soll, aber probiert habe ich es nicht), ehe die Flüssigkeit samt Viren entnommen wird.

Im Eier-Labor der FDA, USA: Ein Mitarbeiter spritzt Grippeviren in befruchtete Hühnereier, damit sie sich darin vermehren können. Im industriellen Massstab gibt es allerdings viel mehr Eier und das Ganze läuft automatisiert. (The U.S. Food and Drug Administration [Public domain], via Wikimedia Commons )

Es folgt das Zerlegen („Inaktivieren“) der Viren mit Hilfe von speziellen Tensiden (Stoffen mit Superwaschkraft – diese können Proteine aus Virushüllen „waschen“, ohne dass die Proteine babei beschädigt werden!) und die Reinigung des Ganzen, damit am Ende nur in der Impfdosis landet, was dort hinein soll.

Moment – dabei sterben doch Tiere?!

Ja, das ist bis dato leider unvermeidbar, wenn wir uns vor der Grippe schützen möchten. Denn einen anderen Schutz vor der Grippe gibt es – besonders für irgendwie geschwächte Menschen – aktuell nicht.

Natürlich ist man heute schon weiter als vor sechzig Jahren und kann Viren auch in Zellkulturen züchten. Bloss funktioniert das mit Grippeviren nicht besonders gut. Die Ausbeuten an Grippeviren aus Zellkulturen sind so schlecht, dass es im Normalfall viel zu teuer wäre, die gewünschte Impfstoffmenge auf diese Weise herzustellen.

Warum Grippe-Impfstoffe manchmal knapp werden

Einzig wenn ein besonders ansteckender oder/und gefährlicher Grippe-Stamm auftritt und besonders flächendeckend geimpft werden soll, können die Entwickler nicht genügend Eier für die Zucht auftreiben und müssen auf die teureren Zellkulturen ausweichen. Doch dabei gibt es ein neues Problem:

Zum Arbeiten mit besonders ansteckenden („pandemischen“) Grippe-Viren braucht man ein Labor der Sicherheitsstufe (BSL) 3. Und die haben viele Eier-Labors nicht. So bleiben die Produktionsmöglichkeiten auch unabhängig von den Kosten beschränkt.

Aber: Abhilfe ist bereits in Sicht

Da die Forscher jedoch weder Tiere töten noch Engpässe bei der Auslieferung wollen, arbeiten sie fleissig an neuen Möglichkeiten für die Virenzucht. Wie zum Beispiel in Münster mit Wimperntierchen (das sind Einzeller) als Wirten. Vielleicht gibt es ja schon ab 2025 eine wirtschaftliche Alternative zu den Hühnereiern.    

Anorganische Salze

Davon finden sich in Fluarix Tetra® eine ganze Reihe:

  • Natriumchlorid, NaCl (das „Kochsalz“)
  • Natriummonohydrogenphosphat, Na2HPO4
  • Kaliumdihydrogenphosphat, KH2PO4
  • Kaliumchlorid, KCl
  • Magnesiumchlorid, MgCl2 * 6 H2O

Alle diese Salze sind im Impfstoff in Wasser aufgelöst, sodass letztendlich folgende Ionen im Impfstoff enthalten sind: Na+, K+, Mg2+, Cl, HPO42-, H2PO4 (und für alle Chemiker, die es ganz genau nehmen, sind in verschwindender Menge auch PO43- und Phosphorsäure H3PO4 zu erwarten). Jedes dieser Ionen ist natürlicher Bestandteil praktisch jeder Körperflüssigkeit.

Die beiden Phosphat-Ionen ergeben zusammen einen Phosphat-Puffer, der dafür sorgt, dass der pH-Wert des Impfstoffs irgendwo zwischen 6 und 8 – also im „biologietauglichen“ Bereich – stabil bleibt. So werden die Virus-Proteine darin nicht durch pH-Abweichungen beschädigt – und der pH-Wert des Impfstoffs passt weitgehend zu dem des Muskels, in welchen er gespritzt werden soll.

Die übrigen Ionen sorgen vermutlich dafür, dass die Impfstoff-Flüssigkeit einer Körperflüssigkeit ähnlich ist (sodass nach der Injektion z.B. kein ungewollter osmotischer Druck entsteht (was der anrichten kann, könnt ihr mit diesen Experimenten – mit Ei, aber ohne Küken – erfahren)).

RRR-alpha-Tocopherolhydrogensuccinat

Oder mit anderen Worten: Vitamin E. Also ein alter Bekannter aus der Ernährung und Hautpflege, der für seine Wirkung als Antioxidans bekannt ist. Das heisst, Vitamin E reagiert gern mit Stoffen, die sonst andere Bestandteile unseres Körpers oxidieren und für Stress in unseren Zellen sorgen würden.

Und ausserhalb des Körpers kann es ebenso gut mit Stoffen reagieren, die sonst Virenproteine und andere Impfstoff-Bestandteile kaputt oxidieren könnten. Damit ist das Vitamin E der einzige Konservierungsstoff (nagut, ausser dem Phosphatpuffer), den ich auf der Liste gefunden habe!

Polysorbat 80 („Tween 80“) und Octozinol 10 („Triton 100“)

Zwei der speziellen Tenside, die mit ihrer Superwaschkraft die Proteine aus den Virenhüllen lösen können. Da die Hüllen von Grippeviren aus fettähnlichen Stoffen (Lipiden) bestehen, sind Proteine, die daraus entfernt werden, naturgemäss nicht sehr scharf darauf, sich in Wasser zu lösen (fettfreundliche Stoffe mischen sich nicht mit Wasser und wasserfreundliche Stoffe nicht mit Fetten!).

Da die genannten Tenside – im Grunde spezielle „Seifen“ –  nicht weitestgehend aus dem Impfstoff entfernt werden, vermitteln sie dort wohl auch weiterhin zwischen Proteinen und Wasser und sorgen so dafür, dass alle Bestandteile des Impfstoffs sich miteinander mischen.

Auf Lebensmittelpackungen werden solche Stoffe als „Emulgatoren“ vermerkt. Tatsächlich ist Polysorbat 80 als Lebensmittelzusatzstoff (E 433) zugelassen, da es chemisch wie biologisch als weitgehend reaktionsträge gilt. Ausserdem zählt es zu den wenigen Emulgatoren, die man nicht nur problemlos verspeisen, sondern auch spritzen kann.

Solvent-Detergent-Verfahren: Eine sichere Sache

Auch Triton 100 ist für seine Sicherheit in Sachen medizinische Anwendungen bekannt. Das „Solvent-Detergent-Verfahren“ (SD-Verfahren), mit welchem die Grippeviren bei der Impfstoffherstellung zerlegt werden, wurde nämlich ursprünglich zur Reinigung von Blutplasma zur Transfusion von darin unerwünschten Viren entwickelt (Und wer hats erfunden…? Nein, ein Amerikaner. Aber die Schweizer – genauer gesagt eine Firma aus dem von hier aus übernächsten Dorf – haben es finanziert und zur Marktreife gebracht).

Die Blutplasma-Reiniger hatten ein ähnliches Problem wie die Impfstoff-Hersteller: Mögliche Viren in gespendetem Blutplasma müssen unschädlich gemacht werden (damit sie den Empfänger nicht infizieren können), aber die Proteine im Plasma – insbesondere die Gerinnungsfaktoren – dürfen dabei ihre Funktion nicht verlieren.

Das SD-Verfahren leistet beides äusserst gründlich: Die Gerinnungs-Proteine in SD-Plasma bleiben zu wesentlichen Teilen funktionsfähig, während nach rund 10 Millionen Transfusionen bis 2009 keine einzige Infektion durch Viren mit Hülle (bei „nackten“ Virenarten funktioniert das Verfahren nicht, sodass man sich um solche anders kümmert) gemeldet worden ist. Ebensowenig wurde je beobachtet, dass mit dem SD-Verfahren gereinigtes Plasma (wobei auch „Triton 100“ zum Einsatz kommt/kam!), in irgendeiner Weise toxisch gewirkt oder eine Allergie ausgelöst hätte.

Wasser zu Injektionszwecken

Lösungsmittel – und zwar das Lösungsmittel, wenn es um lebende Organismen geht. „Zu Injektionszwecken“ meint keimfrei und vermutlich so sauber wie irgend möglich. Schliesslich soll das ja in menschliche Körper gespritzt werden.

Gemäss meiner Annahme ausserdem der Grund dafür, dass die beiden oben genannten Emulgatoren noch in nennenswerter Menge im Impfstoff enthalten sind. Denn ohne sie würden sich die Virenproteine schlecht mit dem Wasser mischen. Und würde man auf ein fettfreundliches Lösungsmittel für den Impfstoff ausweichen, würde der sich mit der wasserfreundlichen Umgebung im Muskel gewiss nicht gut vertragen.

Weitere mögliche Inhaltsstoffe im Spurenbereich

Natürlich ist kein Reinigungsverfahren perfekt. So bleiben in jedem Produkt, das Reinigungsschritte durchläuft, winzige Spuren von Stoffen aus der Produktion zurück. So auch bei Impfstoffen. Die heutige Analytik ist allerdings derart präzise, dass damit festgestellte „Spuren“ wirklich extrem winzig und meist gar nicht von Bedeutung sind.

In Fluorix Tetra® können folgende Stoffe in solch winzigen Spuren gefunden werden:

Bestandteile von Eiern

Unter anderem Proteine: Die bleiben bei der Trennung der Viren (-Bestandteile) vom Material aus dem Ei übrig. Unglücklicherweise (in diesem Fall) ist unser (adaptives) Immunsystem noch präziser als die moderne Spurenanalytik. So können schon einzelne Proteinmoleküle, die das Immunsystem „in den falschen Hals bekommt“, heftige allergische Reaktionen auslösen.

Menschen, die allergisch auf Ei-Proteine reagieren, können daher nicht mit den üblichen Impfstoffen gegen Grippe geimpft werden und sind deshalb auf Herdenschutz angewiesen!

Gentamicinsulfat

Ein Antibiotikum. Die kommen bei der Virenzucht in Eiern nicht zu knapp zum Einsatz (auch das ist ein Grund dafür, bald einen Ersatz für diese Methode zu finden). Die winzigen Mengen, die mit einer Impfdosis in den Muskel wandern, werden dort aber sicher rasch verstoffwechselt, bevor sie irgendetwas bewirken können.

Formaldehyd

Auch: Methanal, CH2O. Ist als Chemikalie in Flaschen ein ziemlich fieser Geselle (ein giftiges, ätzendes, erbgutschädigendes und krebserzeugendes wasserlösliches Gas).

Formaldehyd entsteht allerdings auch als Stoffwechselabfall im menschlichen Körper (und anscheinend auch in Hühnereiern bzw. beim Zerlegen von Viren). Und das in rauhen Mengen von 50 Gramm (!) pro Erwachsenem am Tag! Da solche Mengen Gift uns natürlich nicht zuträglich wären, baut der Körper diesen Abfall aber ratzfatz ab: Die Halbwertszeit von Formaldehyd im menschlichen Körper liegt bei 90 Sekunden bzw. 1,5 Minuten. Nach dieser Zeit ist von ursprünglichem Formaldehyd also nur noch die Hälfte vorhanden.

Mit einer Impfdosis gelangen nun schätzungsweise 1 bis 200 Mikrogramm Formaldehyd in den Körper. Zum Vergleich: Ein Liter Blut enthält normalerweise 2 bis 3 Milligramm davon. Das ist die 10- bis 1000-fache Menge! Enthält eine Impfdosis tatsächlich solche Spuren von Formaldehyd, fallen die vor dem Hintergrund des natürlichen Formaldehyds im Körper gar nicht auf.

Natriumdesoxycholat

Noch ein Tensid, das beim Virenzerlegen zum Einsatz kommt. Und ein Salz der Desoxycholsäure, einer sekundären Gallensäure, die in der Leber und von bestimmten Darmbakterien für den Einsatz im Fettstoffwechsel hergestellt wird.

Das Anion in diesem Salz ist Steroid-Hormonen sehr ähnlich. Vermutlich wird es deshalb – anders als die oben genannten Emulgatoren – vor der Fertigstellung des Impfstoffs vollständig wieder entfernt. Aber falls doch mal ein paar Ionen zurückbleiben, werden auch die zwischen den natürlichen Steroiden nicht weiter auffallen.

Was in diesem Impfstoff nicht enthalten ist

Nicht auf der Liste und damit nicht im Impfstoff enthalten sind folgende berüchtigte Kandidaten:

  • In irgendeiner Form krank machende Viren oder Virenbestandteile
  • Quecksilberverbindungen wie Thiomersal
  • Aluminiumverbindungen
  • Sonstige Konservierungsmittel (ausser Vitamin E und dem Phosphat-Puffer)

In den heutigen Impfstoffen, die meist als Einzeldosen verpackt und gekühlt auf den Markt kommen, ist generell kein Thiomersal mehr enthalten – weil es gar nicht mehr notwendig ist.

In früherer Zeit kamen solche Konservierungsstoffe zum Einsatz, als Impfstoffe noch in handlichen Flaschen zum vielfachen Aufziehen in die Spritze durch ein Septum ausgeliefert wurden.

Vorratsflasche mit Septum zum Durchstechen: So wird die Grippeimpfung bei uns in der Regel nicht mehr verabreicht (Jim Gathany [Public domain], via Wikimedia Commons )

Solche Flaschen kommen heute allenfalls dann noch zum Einsatz, wenn eine Pandemie droht und die Verteilung des Impfstoffs schnell gehen muss.

Und was ist mit anderen Impfstoffen?

Einen kurzen Blick habe dann doch noch auf die Fachinformation zu einem MMRV-Impfstoff (Priorix Tetra, neueste Zulassung in Österreich 2010): Masern-Mumps-Röteln-Windpocken) geworfen. Der wird tatsächlich in Durchstechflaschen vertrieben, allerdings in Pulverform, mit einem Lösungmittel (Wasser), das direkt vor der Benutzung dazugespritzt wird.

So kommt der MMR(V)-Impfstoff Priorix in den Handel: Im Fläschchen links das Impfstoff-Pulver, in der Einwegspritze Wasser als Lösungsmittel, und zwei Kanülen, die auf Spritzen aus dem Bestand jeder Arztpraxis passen (Dctrzl [CC BY-SA 4.0], via Wikimedia Commons ).

Es handelt sich um einen Lebendimpfstoff, der aus „zahnlosen“ Viren besteht, die wiederum in Zellkulturen gezüchtet werden (Masern und Mumps in embryonalen Hühnerzellen, weshalb Probleme für Ei-Protein-Allergiker auch hier nicht ganz ausgeschlossen werden können).

Darüber hinaus ist in diesem Impfstoff sogar noch weniger drin als im Grippe-Impfstoff. Neben den vier Virenstämmen nämlich Lactose (Milchzucker), die Süssstoffe Sorbitol und Mannitol (irgendetwas braucht man wohl als Trägersubstanz für die Viren) und verschiedene natürliche Aminosäuren. Ausserdem können Spuren des Antibiotikums Neomycin (auch Zellkulturen kommen nicht ohne Antibiotika aus) enthalten sein.

Auch hier: Kein Thiomersal, keine Aluminiumverbindungen, keine anderen Konservierungsmittel (Pulver halten sich oft besser als Flüssigkeiten).

Fazit

Auch wenn ich mir willkürlich nur einen einzigen Grippe-Impfstoff (und einen MMRV-Impfstoff) herausgegriffen habe, zeigt die Auflistung doch deutlich, dass praktisch alle Schreckensgeschichten über „böse“ Bestandteile von Impfstoffen Mythen sind. Und die Stoffe, die tatsächlich darin sind, sind so verträglich, wie Stoffe nur sein können.

Einzig die Herstellung der Impfstoffe in den Hühnereiern ist ein Wehrmutstropfen – vegan oder vegetarisch sind (die meisten) Grippe-Impfstoffe damit sicherlich nicht. Auch als bekennende Allesesserin drücke ich fest die Daumen, dass wir bis in 5 Jahren Alternativen ohne tote (Vielzeller-)Tiere, Probleme für Allergiker und all zu viel Antibiotikaeinsatz haben werden.

Nichts desto trotz werde ich mich gegen die Grippe impfen lassen, sobald meine Erkältung überstanden ist. Nicht nur um meinetwillen, sondern auch aus Solidarität gegenüber meinen Schülern und ihren Familien (denn als Nachhilfelehrerin und eifrige ÖV-Nutzerin habe auch ich mit vielen Menschen zu tun).

Und was ist mit euch? Habt ihr euch gegen die Grippe impfen lassen? Oder werdet ihr noch?

Was ist Krebs? - Zellbiologie erklärt zur Solidaritätskampagne von Kinderkrebs Schweiz

Meine Familie hat Glück gehabt. So weit ich zurückdenken kann oder aus Erzählungen der Älteren weiss, hat bei uns noch kein Kind Krebs bekommen. In Retos Familie ist das anders. Reto hat eine seiner Schwestern nie kennengelernt. Denn sie ist vor seiner Geburt an Leukämie gestorben – der häufigsten Krebs-Sorte, die Kinder bekommen.

Das ist jetzt über 40 Jahre her. Und trotzdem spüre ich bis heute die selischen Narben, die dieses furchtbare Schicksal bei Retos Familie hinterlassen hat. So etwas sollte keine Familie durchmachen müssen.

Heute – 40 Jahre später – kommt es schon weniger oft so weit. Heute werden nämlich vier von fünf Kindern, die Krebs bekommen, wieder gesund. Das heisst – so gesund wie es eben möglich ist. Denn der Kampf gegen den Krebs ist bis heute für den Körper und die Seele schrecklich anstrengend und ermüdend. Und für kleine Kinderkörper und -seelen ist er ganz besonders anstrengend.

Kinderkrebs Schweiz

Deshalb setzt sich der Dachverband Kinderkrebs Schweiz dafür ein, dass fleissig weiter an Mitteln gegen den Krebs geforscht wird, die den Kampf damit erleichtern, und damit aus 4 von 5 eines Tages 5 von 5 wieder gesunden Kindern werden.

Und auch jenen Kindern und Familien, die heute gegen den Krebs kämpfen müssen, möchte der Verein ein Stück Kraft und Zuversicht schenken. So sammelt Kinderkrebs Schweiz noch den ganzen September über eure lieben Wünsche an ein krebskrankes Kind auf dieser Website, um die schönsten darunter zu den Kindern zu bringen, die in den Kinderspitälern wegen Krebs behandelt werden müssen.

Mein Beitrag

Ganz gewiss haben die erkrankten Kinder selbst, ihre Geschwister, Eltern, Freunde und Verwandte ganz gewiss viele Fragen zu dem, was da mit ihnen bzw. ihren Angehörigen geschieht. Darum widme ich meinen heutigen Beitrag allen Kindern und Familien, die dieses schwere Schicksal teilen oder miterleben. Und ich versuche, darin einige Antworten in Worte für Kinder (und Laien) zu kleiden.

Was ist Krebs?

Krebs ist, wenn das Material, aus welchem euer Körper besteht, ungebremst zu wachsen beginnt. Und zwar dort, wo es nicht wachsen soll.

Bestimmt fragt ihr euch nun: Woraus besteht ein menschlicher Körper, und wie wächst er?

Woraus besteht dein Körper?

Der Körper jedes Menschen besteht aus winzigkleinen Zellen. Jede Zelle ist ein winziger Sack aus einer Haut aus Molekülen. Dieser Sack enthält (in der Regel) einen Zellkern und verschiedene winzige Organe, die für verschiedene „Körperfunktionen“ der Zelle zuständig sind. Im Zellkern ist das Erbgut der Zelle, die DNA, gelagert. Das ist eine Sammlung von Bauplänen für alle Bestandteile der Zellen und alle Stoffe, die die Zellen herstellen können.

Die Zellen sind so unglaublich klein, dass ihr sie ohne ein Mikroskop nicht sehen könnt. Ein erwachsener Mensch besteht aus 100 Billionen von ihnen – das sind 100’000’000’000’000, also 1000 x 1000 x 1000 x 1000 x 100, oder eine 1 mit vierzehn Nullen!

menschliche Zellen unter dem Fluoreszenzmikroskop: Der Zellkern ist blau, das Zellskelett grün gefärbt

Menschliche Körperzellen unter dem Mikroskop: Die Zellkerne mit der DNA sind mit blauer, das „Skelett“ der Zellen, welches zu ihrer Hülle gehört, mit grüner „Leuchtfarbe“ eingefärbt. So leuchten sie unter einer UV-Lampe in diesen Farben auf – sie fluoreszieren. Ein Mikroskop mit einer UV-Lampe nennt man deshalb „Fluoreszenz-Mikroskop“. Mit einem solchen wurde dieses Bild gemacht. ( By ZEISS Microscopy from Germany [CC BY 2.0 ], via Wikimedia Commons)

Wie ein Mensch entsteht

Jeder Mensch bestand am Anfang seines Lebens aus einer einzigen Zelle, die durch Verschmelzung von Mamas Eizelle und Papas Spermienzelle entstanden ist (wie das geht, habe ich hier beschrieben). Diese eine Zelle hat ihre ganze Bauplan-Sammlung abgeschrieben, ihre Bestandteile allesamt noch einmal hergestellt und sich schliesslich geteilt. Und die beiden neuen Zellen haben das gleiche getan. Und noch einmal, und noch einmal.

Durch die Auswahl von bestimmten Bauplänen aus der Sammlung wurden einige der neuen Zellen zu Knochen- andere zu Muskel-, zu Haut-, zu Augen-, zu Herz- und Lungen- und Blut- und vielen anderen verschiedenen Zellsorten, aus denen ein vollständiger Körper besteht.

Und sie werden es noch. Damit Kinder immer grösser werden können, müssen ständig neue Zellen her. Selbst in den Körpern von Erwachsenen gibt es Zellen, die sich das ganze Menschenleben lang teilen. Hautzellen und Blutzellen (die ständig durch neue ersetzt werden) gehören dazu, aber auch solche, aus denen Haare und Fingernägel wachsen.

Wenn aus Wachstum Krebs wird

Damit einem Menschen genau zwei gerade Arme und Beine und passende Organe in der richtigen Grösse wachsen, enthalten die Baupläne in den Zellen Angaben und Regeln, wie schnell und wann welche Zellen sich wohin ausbreiten und welche Stoffe sie wann in welcher Menge herstellen sollen.

Molekülmodell eines DNA-Abschnitts

Ein kleines Stück eines DNA-Moleküls: Kohlenstoff-Atome sind grau, Wasserstoff-Atome weiss, Sauerstoff-Atome rot, Stickstoff-Atome violett und Phosphor-Atome gelb. Die Art und Weise, wie diese Atome miteinander verbunden sind, ist eine Art Geheimschrift: Sie kann in die Baupläne für unsere Zellen übersetzt werden!

Empfindliche Baupläne

Nun ist die DNA ist ein chemisches Molekül wie andere auch. Das heisst, sie kann in chemische Reaktionen verwickelt werden: Die Begegnung mit anderen, angriffslustigen Molekülen, oder der Einfluss von Licht oder anderer Strahlung kann dazu führen, dass Atome der DNA augetauscht werden oder verloren gehen. Oder dass Atome dazu kommen, die nicht zum Bauplan gehören. Ausserdem kommt es vor, dass die Zellen beim Abschreiben ihrer Baupläne für die Zellteilung Schreibfehler machen.

Deshalb gibt es in jeder Zelle Proteine, die ständig Korrektur lesen und Fehler oder Schäden an der DNA ausbessern. Und wenn sich etwas gar nicht mehr reparieren lässt, befehlen sie der einzelnen Zelle, lieber Selbstmord zu machen, bevor dem Körper etwas schlimmeres passiert.

Niemand ist perfekt – auch die Korrekturleser in den Zellen nicht

Wenn die „Rechtschreib“-Kontrolleure einer Zelle allerdings einen Fehler übersehen, passieren schlimme Dinge. Besonders dann, wenn der übersehene Fehler eine jener Regeln unlesbar macht, die die Zellteilung und damit das Wachstum von Körperteilen ordnen und begrenzen soll. Dann bleibt eine Zelle übrig, die ihre Grenzen nicht mehr kennt, sich unkontrolliert teilen kann und vielleicht sogar Stoffe von sich gibt, die kein Mensch braucht. Kurzum: Das ist ein furchtbar schlecht erzogener Rabauke – eine Krebszelle.

Und das schlimmste ist: Wenn die Krebszelle sich erneut teilt, schreibt sie den Fehler ganz ungeniert mit ab. So gibt es dann bald zwei von der schlimmen Sorte, dann vier, dann acht…

Im glücklichen Fall kommt ein Spezialagent des Immunsystems, eine „natürliche Killerzelle“ (über die und ihre Kollegen vom Immunsystem ihr hier mehr lesen könnt), vorbei und erkennt eine einzelne oder wenige Krebszelle/n von aussen. Dann gibt die natürliche Killerzelle ihnen sofort den Befehl zum Selbstmord – und schafft das Problem so aus der Welt.

Ein Tumor entsteht

Im unglücklichen Fall teilen sich die Krebszellen aber unbemerkt weiter und wuchern da hin, wo es ihnen gerade passt. Und uns nicht. Aus ein paar Zellen wird so ein Haufen, aus dem Haufen ein Gewebeknötchen, aus dem Knötchen eine Geschwulst, die wir spüren und manchmal sogar sehen können.

Manche dieser Zellen begnügen sich damit, ihre eigene Clique zu gründen, gemeinsam abzuhängen und einfach im Weg zu sein. Von solchen spricht man von einem „gutartigen“ Tumor. Der lässt sich meist einfach wegoperieren, wenn er stört, und die Sache ist in der Regel erledigt.

Wenn die Zellen aber richtige Rabauken sind, die sich mit „Ellbogen“ ihren Weg durch andere Zellgruppen in benachbarte Gewebe bahnen, handelt es sich um wirkliche Krebszellen, die einen „bösartigen“ Tumor bilden.

Schema: Krebszellen durchdringen eine Gewebegrenze

nach: Cancer Research UK (Original email from CRUK) [CC BY-SA 4.0 ], via Wikimedia Commons

Die fiesesten unter ihnen verlassen „ihren“ Tumor sogar irgendwann und reisen in der Blutbahn oder der Lymphe durch den Körper, um sich anderswo festzusetzen und Rabauken-Kolonien zu gründen. Die werden von den Krebs-Ärzten dann „Metastasen“ genannt.

Wie entstehen unerkannte Schreibfehler?

Schreibfehler entstehen dort, wo abgeschrieben wird. Wann und wo genau ein Abschreibfehler passiert und übersehen wird, ist letztenendes reines Pech. Für Pech gilt aber: Je mehr abgeschrieben wird, desto grösser ist die Wahrscheinlichkeit, dass dabei mal ein Fehler passiert und der Korrektur entgeht.

Alles in allem sind schlimme Schreibfehler besonders wahrscheinlich wenn

  • in den Körpern älterer Menschen die Korrekturleser nachlässig werden
  • äussere Einflüsse (z.B. Strahlung) die DNA häufiger beschädigen
  • viele andere Moleküle/Atome mit der DNA reagieren können
  • Fehler schon in der ersten Zelle eines Kindes vorhanden waren und so vererbt wurden
  • bestimmte Viren ihr Erbgut in die DNA von Zellen einbauen und dabei die Teilungsregeln beschädigen (gegen einige dieser Viren, wie das Gebärmutterhalskrebs-Virus HPV oder den Erreger der Leberentzündung Hepatitis kann man sich aber impfen lassen!)
  • und vor allem: Wenn in Zellen, die sich häufig, schnell und fortlaufend teilen, naturgemäss viel abgeschrieben wird
    → dazu gehören nachwachsende Gewebe wie die Haut
    → und die Zellen in Körpern von Kindern – denn Kinderkörper wachsen ja noch

In welchen Körperteilen kann Krebs entstehen?

Grundsätzlich in praktisch allen. Und obwohl man meinen könnte, dass das ganz besonders für Kinder gilt, bekommen Kinder anderswo Krebs als Erwachsene und alte Menschen. Warum das so ist, haben die Forscher noch nicht wirklich herausgefunden.

Besonders häufig – in drei Vierteln aller Fälle – werden bei Kindern nämlich die Zellen des Immunsystems und ihre Vorläufer (45%: 33% Leukämien, 12% (Non-)Hodgkin-Lymphome) oder die Zellen von Gehirn und Nerven (30%: 20% Hirn und Rückenmark, 7% sympathisches Nervensystem, 3% Augenkrebs) zu bösartigen Rabauken.

(Zahlen: Krebsliga Schweiz)

Augenkrebs?! Warum steht der hier unter Hirn und Nerven?

Ja, Augenkrebs gibt es wirklich. Der kommt aber nicht davon, dass ihr zu viel am Bildschirm sitzt oder schrille Farben anschaut, wie gern einmal behauptet wird. Stattdessen entstehen in der Netzhaut im Auge Rabauken-Zellen durch ebensolches Pech, wie bei anderen Krebsarten auch. Und die Netzhaut ist streng genommen ein ausgelagerter Teil des Gehirns – deshalb ordne ich den Augenkrebs bei den Krebsarten der Nerven ein.

Zum Glück lässt sich so ein „Retinoblastom“ – so heisst der Augenkrebs in der Ärztesprache – leicht erkennen und gut behandeln. Wie das geht, erklärt Kinderkrebs Schweiz hier. Bei früher Erkennung werden sogar 19 von 20 statt 4 von 5 Kindern mit Augenkrebs wieder gesund!

Weitere Krebsarten bei Kindern

Dazu kommen Weichteilkrebs (also Muskeln, Fett- und Bindegewebe, 7%), Nierenkrebs (5%), Knochenkrebs (4%) und Krebs der zur Fortpflanzung gedachten Keimzellen (3%). Habt ihr mitgerechnet? Da fehlen noch 6% bis zu den runden 100%! Das sind wohl verschiedene, bei Kindern sehr seltene Krebsarten an anderen Körperteilen.

Warum bekommen Kinder gerade dort Krebs?

Während Nervengewebe tatsächlich besonders im Kindesalter wachsen, werden Blut- und Immunzellen das ganze Leben lang neu gebildet. Allein daran wie häufig sich Zellen teilen, lässt sich also nicht festmachen, wo Krebs entsteht. Warum Kinder an ganz bestimmten Stellen – und an anderen als Erwachsene – Krebs bekommen, müssen die Forscher erst noch herausfinden.

Wie kann man Krebs behandeln?

Der simpelste Weg, Rabaukenzellen loszuwerden ist, sie in einer Operation aus dem Körper heraus zu schneiden. Das geht bei gutartigen Geschwulsten (meistens) recht einfach. Bei Krebszellen, die wild in anderes Gewebe eindringen, ist es aber schwer bis unmöglich, sie wirklich alle wegzuschneiden. Und bei Krebsarten der Blutzellen ist das ganz unmöglich, weil die Rabauken dabei nicht an einem festen Ort versammelt, sondern im Körper verteilt und oft beweglich sind. Deshalb müssen sie auf andere Weise getötet werden.

Dazu verwenden kann man

Zellgifte = Chemotherapie

Diese Medikamente (sogenannte Zytostatika, d.h. „Zellbremsen“) stören Zellen bei der Teilung, in dem sie sich Beispiel an die DNA heften und so das Abschreiben der Baupläne verhindern. So entstehen keine neuen Krebszellen, während die alten Krebszellen an den Schreibblockaden sterben.

Cisplatin, ein nach wie vor häufig genutztes Medikament zur Chemotherapie, lagert sich an DNA an.

Moleküle des Chemotherapie-Medikaments „Cisplatin“ (in dessen Mitte befindet sich tatsächlich ein Platin-Atom) verbinden sich mit einem Strang der DNA-Doppelspirale. Die Abschreibe-Proteine der Zelle laufen die DNA-Stränge entlang und bleiben an einem solchen Hindernis hängen. So kann die DNA nicht weiter abgeschrieben werden. Das funktioniert bei den allermeisten Krebsarten – aber leider auch bei gesunden Zellen. (By AlchemistOfJoy [CC BY-SA 3.0 ], from Wikimedia Commons)

Solche Gifte wirken auf sich schnell teilenden Zellen besonders stark – also auf Krebszellen, aber auch auf solche, aus denen Haare wachsen oder Blutzellen entstehen. Deswegen fallen vielen Krebspatienten, die eine Chemotherapie erhalten, die Haare aus. Ausserdem werden auch viele andere Zellen bei ihrer Arbeit gestört – deshalb wird den Patienten von der Chemotherapie nicht selten furchtbar schlecht.

Damit all das nicht (oder weniger) geschieht, versuchen Forscher, die Zellgifte gut verpackt direkt zu den Krebszellen zu bringen und erst dort loszulassen. Oder sie erfinden neue Zellgifte, die Krebszellen (besser) von normalen Zellen unterscheiden können.

(Be-)Strahlung

Dass Strahlung die DNA-Baupläne beschädigen kann, hatte ich weiter oben schon erwähnt. Und wenn die Beschädigungen gross genug sind, sterben die Zellen daran. Auch die Krebszellen. Zudem kann man Strahlung genau auf bestimmte Stellen bündeln. Dazu können die Krebs-Ärzte Röntgenstrahlen (also sehr energiereiches, unsichtbares Licht) oder Elektronen bzw. Protonen (das sind winzige Teilchen, die auf Zellen wie Kanonenkugeln wirken) verwenden.

Auch wenn man solch einen Beschuss ziemlich genau auf ein Krebsgeschwulst richten kann, leiden darunter auch die gesunden Zellen in der Umgebung. So kann einem leider auch von der „Bestrahlung“ ziemlich schlecht werden.

Antikörper

Das sind ganz besondere Proteine, die normalerweise von Zellen des Immunsystems hergestellt werden, um Krankheitserreger zu erkennen und zur Bekämpfung zu markieren (wie das im Einzelnen vor sich geht, könnt ihr hier bei mir nachlesen). Krebsforscher versuchen nun, passende Antikörper zu den jeweiligen Krebszellen eines Patienten zu basteln. Wenn die ihr Ziel – die Krebszellen – finden und sich daran heften, rufen sie die Zellen des Immunsystems auf den Plan. Die können nun die Krebszellen (und bestenfalls nur die) gezielt angreifen und vernichten.

 

Zum Töten von Krebszellen NICHT verwenden kann man

Methoden und Mittel aus der „alternativen Medizin“

Wer gesagt bekommt, dass er Krebs hat, hat Angst. Angst um sein Leben und vor den unangenehmen Behandlungen, die auf ihn zukommen mögen. Das ist ganz natürlich. Genauso natürlich ist auch die Verlockung, die davon ausgeht, wenn jemand einen „einfacheren“, „sanften“ oder gar „natürlichen“ Weg verspricht, die fiesen Krebszellen wieder los zu werden.

Homöopathische „Medikamente“, Wunder- und Geistheiler, eine besondere Ernährungsweise oder das unsinnige Verwenden teils gefährlicher Chemikalien sind nur eine kleine Auswahl dessen, was den Menschen (auch) „gegen Krebs“ verkauft wird. Häufig deshalb, weil jemand damit viel Geld verdienen möchte.

Wo „alternative“ Methoden dennoch helfen können

Manche Vorgehensweisen aus dem Bereich „neben“ der Medizin können dennoch ihren Nutzen haben. Nämlich dann, wenn sie zur Begleitung der Behandlung durch den Krebs-Arzt (den „Onkologen“) angewendet werden. Dazu zählen besonders solche Dinge, bewirken, dass ein Patient mit Krebs sich besser fühlt, weniger Angst hat und weniger unter den Nebenwirkungen seiner Behandlung leidet.

Es ist aber ganz wichtig, solche Massnahmen immer mit dem Krebsarzt/den Krebsärzten zu besprechen. Viele solche Mittel und Methoden – auch solche, die ganz harmlos erscheinen – können nämlich mit den eigentlichen Krebsmedikamenten „in Streit“ geraten und deren Wirkung stören. NIE solltet ihr die eigentlichen Krebsmedikamente ohne Besprechung mit eurem Krebsarzt einfach weglassen, um „etwas anderes“ zu probieren!

Dazu, wie ihr hilfreiche Angebote für Krebskranke von den „Geldverdienern“ unterscheiden und sie gut mit eurem Krebs-Arzt besprechen könnt, hat die Krebsliga Schweiz eine tolle Broschüre herausgegeben, die ihr hier als .pdf-Datei herunterladen könnt.

Besondere Hochachtung habe ich übrigens vor den ehrenamtlichen Klinik- bzw. Spitalclowns, welche die (nicht nur krebs-)kranken Kinder im Spital besuchen und Freude in ihren schweren Alltag bringen. Lachen soll schliesslich sehr gesund sein! Die Clowns – wie meine treue Leserin Claudia alias „Clownine Kunst“ in Leipzig, Deutschland – kosten die jungen Patienten und ihre Familien in Regel gar nichts und haben gewiss eine grössere Wirkung als manch überteuertes „Mittelchen“.

Kann man die Krankheit Krebs ganz und gar besiegen?

DAS wirksame und nebenwirkungsarme Mittel gegen alle Krebsarten hat man leider noch nicht gefunden. Dazu kommt, dass die meisten Krebsbehandlungen zuerst für Erwachsene erfunden werden. Kinder funktionieren aber in vielen Dingen anders als Erwachsene. Denn Kinder müssen schliesslich noch wachsen. So muss für jedes neue Mittel noch einmal neu untersucht werden, ob und wie es auch bei Kindern eingesetzt werden kann.

Denn Kinder sollen schliesslich nicht nur gesund, sondern auch gross werden und ein möglichst normales Leben führen können.

Dazu wird immer wieder der Erfolg neuer Behandlungsweisen bei Kindern an mutigen jungen Patienten untersucht. Bei so einer „Frühen Klinischen Studie“ (Early Clinical Trial, ECT) werden Methoden und Medikamente, die z.B. bei Erwachsenen schon funktionieren, versuchsweise bei Kindern eingesetzt. Dabei passen die Ärzte ganz besonders genau auf ihre Schützlinge auf. Denn sie wollen schliesslich nicht nur „ihre“ Kinder gesund machen, sondern möglichst nützliche Ergebnisse sammeln, um später noch mehr Kinder gesund machen zu können.

Mein Wunsch an krebskranke Kinder

Deshalb lautet mein Wunsch für ein – eigentlich für alle krebskranken Kinder: Behaltet eure Zuversicht. Freut euch an den kleinen Dingen und geniesst es, euren schweren Alltag für ein paar Augenblicke zu vergessen. Immer wieder. Und ich wünsche euch, dass aus 4 von 5 schnell 5 von 5 werden: Dass bald ein Weg für euch erforscht wird, der leichter zu gehen und für euch alle zu schaffen ist!

Eure Kathi Keinstein

Dieser Artikel enthält Affiliate-Links aus dem Amazon-Partnerprogramm (gekennzeichnet mit (*) ) – euch kosten sie nichts, mir bringen sie vielleicht etwas für meine Arbeit ein. Ich habe für diese Rezension ein Rezensionsexemplar des Buches erhalten. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Die Geschichten in Keinsteins Kiste drehen sich in der Regel um den Alltag von heute – und der allein hat reichlich Spannendes zu bieten. Und manchmal scheint es gar so, als wäre die Wissenschaft fertig, könne alles erklären, was das Leben bietet, als könne die Technik alles leisten, was man zum Leben braucht. Und doch erwarten uns im Alltag von morgen unzählige neue Geschichten, die heute noch geradezu unglaublich klingen mögen – oder eben nach Science Fiction. Und genau diesen Geschichten widmet sich der Physiker Gerd Ganteför in seinem spannenden Buch „Heute Science Fiction, morgen Realität? – An den Grenzen des Wissens und darüber hinaus“.

[…]Doch Forschung ist nie am Ende und die Faszination der Wissenschaft ist ungebrochen, so Ganteför. Schliesslich gebe es Tausende von offenen und sehr spannenden Fragen.

Gibt es ein Ende der Welt? Sind wir dazu verurteilt, alt und schwach zu werden und zu sterben? Gibt es ausserirdisches Leben? Werden wir neue und unerschöpfliche Energiequellen entwickeln?

Diese und viele andere Fragen aus verschiedenen Diziplinen der Naturwissenschaft, die heute längst nicht nur Wissenschaftler bewegen, diskutiert Ganteför in seinem Buch – und die Häufigkeit, mit welcher er dabei zu der Antwort „möglich“ oder gar „bald möglich“ kommt, lässt mich staunen.

Zum Inhalt des Buches

Gibt es eigentlich noch etwas zu entdecken oder wissen wir schon alles? Werden wir immer einen Grossteil unseres Lebens arbeiten müssen, um unseren Lebensunterhalt zu verdienen? Wird es immer Krankheiten geben? […] Werden wir jemals die Sterne erreichen?

Diese Fragen, welche am Anfang des Buches stehen, lassen schon erahnen, dass die Forschung nicht nur in Ganteförs Augen noch lange nicht „fertig“ ist. Es gibt noch zahlreiche spannende und überaus weltbewegende Fragen zu beantworten. Überdies sind Visionen und die Forschung daran notwendig für eine weitere Entwicklung und damit den Erhalt der menschlichen Zivilisation.

So soll Ganteförs Buch in einer Zeit, in welcher viele Menschen dem wissenschaftlichen Fortschritt skeptisch gegenüber stehen, Möglichkeiten bzw. Chancen für die Bewältigung der heutigen grossen Probleme der Gesellschaft, die die Wissenschaft von morgen eröffnet, aufzeigen. Dazu sollen in verschiedenen Bereichen der Wissenschaft die Grenzen des heutigen Wissens aufgezeigt werden, um dann einen Blick darüber hinaus auf das zu wagen, was uns hinter diesen Grenzen Aufregendes und Nützliches erwartet.

Ganteför beginnt seinen Rundgang ganz und gar nicht bescheiden mit dem Universum selbst. Zu Beginn miit den Eckdaten unseres Kosmos ausgerüstet geht es an die Fragen nach einer zweiten Erde irgendwo da draussen und möglichem Leben darauf. Mit Wasser scheint beides möglich, doch angesichts des unermesslichen Platzes im Universum und der Zeit, die die Evolution benötigt, ist laut Ganteför fraglich, ob zwei intelligente Zivilisationen in erreichbarer Nähe und zeitgleich erscheinen.

Daraus ergibt sich förmlich die Frage nach Reisen zu den Sternen. Da der Hyperraum uns, könnten wir ihn erreichen, uns der unverletzlichen Kausalität wegen die Rückkehr verweigern und das Beamen an den gleichen unfasssbaren Ressourcenmengen, wie sie schon Lawrence M. Krauss vor 19 Jahren in „Die Physik von Star Trek“ beschrieb, scheitern würde, bleibt uns für Langstreckenreisen im Weltraum letztlich die Kombination von Fusionsenergie und einem Staubstrahltriebwerk, das seinen Treibstoff während seiner Reise aus dem Raum aufliest.

Bei der näheren Betrachtung möglicher Energiequellen der Zukunft beschreibt Ganteför neben schwarzen Löchern als recht unwahrscheinliche künftige Energiequelle die Fusionsreaktoren, an welchen heute schon geforscht wird. Die Kernfusion bekommt man darin sogar hin – allerdings sie die Geräte für irgendeine Anwendung noch bei Weitem zu sperrig.

So wendet sich Ganteför als nächstes den Visionen der Biologie zu. Können die Dinosaurier wiederz um Leben erweckt werden? Das ist seit Jurassic Park wohl eine der populärsten Fragen an die Biologie. Unglücklicherweise hält sich DNA, wie gut sie auch konserviert ist, nicht länger als etwa eine Million Jahre, was die Dinos unerreichbar macht. Der Wiederbelebung in jüngerer Zeit ausgestorbener Arten sind Wissenschaftler jedoch aufregend nahe gekommen – wie auch der Molekularbiologie Martin Moder in „Treffen sich zwei Moleküle im Labor“ zu berichten weiss.

Eine weitere grosse Frage der Biologie ist jene nach dem Ursprung des Lebens – der heute im Umfeld heisser Quellen am Meeresgrund vermutet wird, wo die ersten Moleküle, die sich selbst reproduzieren können, entstanden sein mögen. Und da man über derartige Moleküle schon ziemlich viel weiss, ist laut Ganteför auch eine „synthetische“ Biologie von Menschenhand designter Lebewesen denkbar.

Die grossen Visionen der Medizin sind bei Ganteför die Fragen nach der Heilbarkeit aller Krankheiten einschliesslich Nervenverletzungen durch Unfälle, nach einem ewigen Leben oder zumindest einem verlangsamten Altern und der Erschaffung von „Supermenschen“. In allen drei Bereichen führt Ganteför das Verstehen von Körperfunktionen im ganz Kleinen (also auf molekularer Ebene) als Voraussetzung für diese grundsätzlich möglichen Errungenschaften an und gewährt spannende Einblicke in Gegenstände heutiger Forschung unter anderem zu personalisierter Medizin, Regeneration von Nervengewebe und zu den möglichen Gründen dafür, dass wir altern.

Von der Regeneration von Nervengewebe geht es im Kapitel „Geist und Bewusstsein“ zu den Möglichkeiten der Direktverbindung zwischen Computer und Gehirn: Kann man Daten von einem Computer ins Gehirn laden – oder umgekehrt den Inhalt eines Gehirns samt Bewusstsein auf einen Computer-Speicher schreiben? Können Computer Gedanken lesen? Oder gar selbst eine künstliche Intelligenz entwickeln? Was hier reichlich nach Fantasy klingt, ist tatsächlich Gegenstand heutiger Forschung, die Ganteför hier vorstellt.

Von den Visionen geht es schliesslich zu den Grenzen des Wissens in der Physik: Zunächst gibt Ganteför eine Übersicht über das heute etablierte, wenn auch nicht ganz problemfreie Standardmodell der Teilchenphysik, aus welchem sich die Fragen nach einer Weltformel, nach der Natur von Raum und Zeit und Teilchen als solchen bis hin zur Bedeutung des erst vor wenigen Jahren experimentell bestätigten Higgs-Feldes ergeben.

Neben den Teilchen gehören auch scheinbar unverrückbare Naturgesetze und -konstanten zu unserer heutigen physikalischen Welt. Warum die Naturgesetze so sind, wie sie sind, was die Werte der Naturgesetze bestimmt und warum in unserem Universum Leben möglich ist, sind heute noch weitgehend offene Fragen.

Auch das Universum selbst wirft noch unbeantwortete Fragen auf. Heute ist die Urknall-Theorie als Entstehungsgeschichte des Universums anerkannt, obwohl sie Fragen offen lässt: Warum gibt es im Universum keine Antimaterie? Expandierte das Universum am Anfang seines Daseins mit Überlichtgeschwindigkeit? Was war vor dem Urknall? Was ist dunkle Materie und woher kommt die dunkle Energie?

Das elfte und letzte Kapitel ist schliesslich eine Zusammenfassung des vorangehenden bunten Reigens von Visionen und offenen Fragen.

Mein Eindruck vom Buch

Gerd Ganteför bietet seinen Lesern einen spannenden und für Laien gut verständlichen Rundgang durch die Themen der Forschung von morgen: Da erwartet uns in Zukunft viel Aufregendes, das sich in Ganteförs überaus klarem und nüchternem Schreibstil sehr angenehm lesen lässt.

So vielfältig die diskutierten Fragen sind, so oberflächlich werden die einzelnen Forschungsgebiete im begrenzten Umfang des Buches auch dargestellt. Das wird besonders in den Kapiteln deutlich, welche Themen behandeln, die mir besonders vertraut sind: Dort sind mir wiederholt kleine inhaltliche Ungenauigkeiten ins Auge gefallen, wie das Aufzählen der Lichtgeschwindigkeit als Naturkonstante ohne zu erwähnen, dass Licht sich nur im Vakuum mit dieser Geschwindigkeit bewegt, oder die Behauptung, man sei heute noch nicht in der Lage, Energie aus Masse zu gewinnen (genau das ist die Grundlage der Energiegewinnung mittels Kernspaltung!).

Solche Ungenauigkeiten zu erwähnen mag als Korinthenkackerei angesehen werden, aber ich vermag nicht einzuschätzen, inwiefern sie auch in den Abschnitten auftauchen, die mir weniger vertraute Themen behandeln und dort womöglich zur Entstehung fehlerhafter Vorstellungen beitragen.

Wer sich für die beschriebenen Themengebiete näher interessiert, findet jedoch in den Literaturlisten am Ende jedes Kapitels reichlich vertiefendes Material zum Weiterlesen. Dabei kommen auch und vor allem die Netz-Nutzer unter den Lesern nicht zu kurz, denn erstaunlich viele Verweise führen zu Wikipedia und andere Wissens-Sammlungen (was in meinen Augen für die zunehmende Qualität der Inhalte solcher Portale spricht).

Darüber hinaus stellt Ganteför die behandelten Visionen und Möglichkeiten auffallend unkritisch dar. So findet man in seinem Buch keine tödlichen Designerviren, feindlichen Alien-Zivilisationen, ethischen Diskussionen über Tierversuche zur Wiederbelebung ausgestorbener Arten oder Nebenwirkungen von „Verbesserungen“ von Menschen.

Das entspricht der Zielsetzung, die der Autor gemäss Einleitung mit seinem Buch verfolgt: Nämlich in einer Zeit, in welcher Wissenschafts- und Fortschritts-Skeptiker vielerorts den Ton angeben, einen positiven Einblick in die Möglichkeiten, die uns die Forschung in Zukunft eröffnen kann, zu gewähren. Und diese Möglichkeiten sind gemäss Ganteför dafür geeignet, die grossen Probleme der Menschheit zu lösen.

Für eine sachliche Diskussion der Möglichkeiten und Anforderungen künftigen wissenschaftlichen Fortschritts an die Gesellschaft liefert das Buch nur eine Seite der Medaille. Wenn man die andere Seite durch den verbreiteten Wissenschafts-Skeptizismus als gegeben annimmt, liefert „Heute Science Fiction, morgen Realität“ ein wohltuendes, wenn nicht gar aufregendes Gegengewicht zu weit verbreitetem Pessimismus und vielfältiger Panikmache.

Eckdaten rund um das Buch

(*)

Textlink (Amazon): Gerd Ganteför: Heute Science Fiction, morgen Realität? – An den Grenzen des Wissens und darüber hinaus (*)
WILEY-VCH Verlag GmbH & Co. KGaA, 2016
Hardcover, 224 Seiten
ISBN: 978-3-527-33881-8

 

Fazit

Mit „Heute Science Fiction, morgen Realität?“ bietet Gerd Ganteför auch und gerade absoluten Wissenschafts-Laien einen spannenden und leicht verständlichen Einblick in die Möglichkeiten der Wissenschaft von morgen, welche ebenso vielfältig bunt sind wie das Cover des Buches. Doch dank ebendieser Themenvielfalt bin auch ich als „Wissenschafts-Profi“ bei der Lektüre hier und da ins Staunen gekommen.

Die dargestellten Visionen kritisch zu betrachten und ethische Gesichtspunkte abzuwägen bleibt dabei ganz dem Leser überlassen. Wer gerne unkritisch staunt und sich von spannenden Aussichten verzaubern lässt, wird in diesem Buch eine kurzweilige und letztlich auch ermutigende Lektüre finden.

Und was ist eure liebste Zukunfts-Vision?

Tierversuche : Wistar-Laborratte

Peter bekommt eine neue Leber

Das Telefon klingelt. Wieder einmal laufen Peter Schauer über den Rücken. Ob das der lang ersehnte Anruf ist? Peter nimmt den Hörer ab und hört zu. Sein Gesicht nimmt einen Ausdruck irgendwo zwischen Furcht und Freude an, der zu sagen scheint: Endlich ist es soweit!

Peter ist schwer krank und steht auf der Organempfängerliste. Seine Leber funktioniert nicht mehr richtig. Wenn Peter leben möchte, braucht er eine gesunde Leber. Am Telefon ist die Klinik – sie haben ein passendes Spenderorgan und bestellen ihn zur Verpflanzung ein.

Während Peter seine Siebensachen packt und sich zur Vorbereitung auf die grosse OP in die Klinik aufmacht, wartet einige Hundert Kilometer entfernt ein Helikopter an einem anderen Krankenhaus darauf, seine kostbare Fracht entgegen zu nehmen: Sorgfältig in einen Kühlbehälter verpackt wird die Leber eines eben verstorbenen Spenders zum Landeplatz gebracht, um zu ihrem wartenden Empfänger geflogen zu werden. Während des Transports ruht das Organ in einer speziellen Lösung, welche es vor der Kälte und allen anderen Widrigkeiten ausserhalb eines funktionierenden Körpers bestmöglich schützen soll. Nur so kann es so gesund wie möglich verpflanzt werden und dem Empfänger ein „neues“ Leben ermöglichen…

 

Ein Morgen im Labor

Im Institut für physiologische Chemie an der Universitätsklinik Essen herrscht morgens um 9 Uhr schon reger Betrieb. Im Präparationsraum spritzt eine Medizinisch-technische Assistentin soeben eine stattliche weisse Ratte in das Reich der ewigen Träume. Das Tier wird narkotisiert, um anschliessend einem strengen Protokoll folgend die Zellen seiner Leber zu entnehmen. Zellen, auf welche die Wissenschaftler des Instituts bereits warten, um Zellkulturen daraus anzufertigen, an welchen sie ihre Experimente machen können. Die spendende Ratte wird aus ihrer Narkose nie wieder erwachen.

Der Raum gegenüber gleicht noch mehr einem richtigen kleinen Operationssaal. Ein Doktorand der Medizin sitzt dort bereits an seinem Arbeitstisch. Vor ihm liegt eine weitere weisse Ratte in tiefer Narkose. Der junge angehende Arzt nimmt an dem Tier eine Lebertransplantation vor: Er entnimmt der Ratte ihre Leber und konserviert sie in einem Behälter mit spezieller Lösung. Dann pflanzt er dem Tier eine andere Leber ein, welche er am Vortag einer anderen Ratte entnommen und in ebensolcher Lösung im Kühlschrank gelagert hatte. Nach Abschluss der Operation wird die Ratte aus ihrer Narkose aufwachen. Die Zeit, welche die Ratte anschliessend mit ihrer neuen Leber überlebt, dient als Indikator dafür, wie gut die verwendete Konservierungslösung für ihren Zweck – das Organ ausserhalb des Körpers gesund zu erhalten – geeignet ist…

Es ist unschwer zu erkennen: In diesem Institut werden Tierversuche gemacht. Und ich bin zu jener Zeit mittendrin – gehöre als Diplomandin zu den Wissenschaftlern, die ihre Zellkulturen aus Zellen der eingeschläferten Ratte anfertigen. Fast ein Jahr meiner Studienzeit habe ich im Tierversuchs-Labor zugebracht, mit den Wissenschaftlern dort gearbeitet und war selbst – zumindest indirekt – an der Nutzung von Tieren für Versuchszwecke beteiligt.

 

Was mich zur Arbeit im Tier-Labor bewegte

Die Faszination, die Geheimnisse des Lebens ein Stück weit zu entschlüsseln und etwas beitragen zu können, das kranken Menschen hilft, hat mich zu meiner Spezialisierung in einem solchen Bereich bewegt. Und wenngleich ich der Forschung im Tier-Labor inzwischen den Rücken gekehrt habe, hat mir dieses eine Jahr wertvolle Einblicke hinter die Kulissen von Tierversuchen gewährt.

Denn das Thema ‚Tierversuche‘ wird kontrovers und oft hoch emotional diskutiert – sogar Ärzte („gegen Tierversuche“), welche man als hoch gebildet einschätzen mag, greifen da zuweilen zu unsachlichen Mitteln, um ihr an sich redliches Ziel zu erreichen: den vollständigen Verzicht auf Tierversuche.

Aber was spielt sich in Tierversuchs-Labors tatsächlich ab?

 

Einige Einblicke in den Alltag im Tierlabor, die auf meinen persönlichen Erfahrungen in Essen fussen:

 

1. Tierversuche macht man nicht „einfach mal eben so“

Bevor ein Wissenschaftler oder seine Arbeitsgruppe Tierversuche machen können, muss er oder sie ein aufwändiges, gesetzlich vorgeschriebenes Antrags- und Bewilligungsverfahren meistern. Das gilt für Deutschland ebenso wie für die Schweiz.

Wer eine Studie mit Tierversuchen plant, muss seine Ziele darlegen und die Eignung bzw. Notwendigkeit der geplanten Versuche zur Erreichung dieser Ziele nachweisen. Zudem setzt sich der Antragsstellende mit der Belastung der Tiere während der Versuche auseinander und wägt die schutzwürdigen Interessen aller Beteiligten (das Wohl der Tiere wie auch den eigenen Nutzen bzw. den Nutzen der Menschheit und Umwelt an den Versuchen) gegeneinander ab.

Schliesslich entscheidet eine Kommission aus Fachleuten darüber, ob ein solcher Antrag bewilligt wird. Die Kantonale Tierversuchskommission (TKV) des Kantons Zürich besteht beispielsweise aus 11 Mitgliedern, darunter 3 Vertretern von Tierschutzorganisationen sowie einem Ethiker und anderen Fachleuten von der Universität Zürich bzw. der ETH.

Erfahrene Wissenschaftler kennen die Vorschriften „ihres“ Landes für Tierversuche gut und können oft abschätzen, welches Vorhaben die Mühe eines Antrags lohnt, und welches nicht. Manchmal treiben die strengen Reglementierungen jedoch geradezu Blüten: Unsere Dozenten erzählten dereinst von der Zurückweisung des Einsatzes eines gut wirksamen Narkosemittels im Tierversuch, weil der Wirkstoff als potentiell krebserzeugend gilt. Pikant ist dieser Entscheid deshalb, weil die Tiere im geplanten Versuch nie wieder aus ihrer Narkose aufwachen sollten – womit ihnen reichlich wenig Zeit geblieben wäre, um des Wirkstoffs wegen Krebs zu entwickeln.

 

2. Die „3 R“ – Refine, Reduce, Replace – waren auch Anfang 2009 schon massgeblich

Der Einsatz von Tieren in „belastenden“ Versuchen, also solchen, die den Tieren Schmerzen, Leiden oder Schäden zufügen, ist gemäss Artikel 17 des Schweizer Tierschutzgesetzes auf das „unerlässliche Mass“ zu beschränken (gleiches gilt auch in Deutschland).

Um dieser Vorgabe gerecht zu werden, folgen Tier-Experimentatoren, auch meine damalige Arbeitsgruppe in Essen, dem 3R-Prinzip: Replace, Reduce, Refine – zu Deutsch: Ersetzen, Verringern, Verbessern.

  • Replace – Ersetzen

Für den Ersatz von Tierversuchen durch alternative Methoden ist meine eigene Arbeit in Essen ein gutes Beispiel: Ich habe – wie eigentlich die meisten Mitglieder der Arbeitsgruppe – die meisten Versuche an Zellkulturen gemacht. Zellkulturen sind Ansiedelungen lebender Zellen in künstlicher Umgebung, an welchen die Reaktion einzelner Zellen oder von Zellverbänden auf bestimmte Einflüsse beobachtet werden kann.

Zellkulturen können aus verschiedenen Quellen gewonnen werden: Krebsähnlich entartete Zellen, die sich nahezu unbegrenzt teilen, können fortlaufend vermehrt und zu Versuchszwecken „herangezüchtet“ werden: Eine bestimmte Sorte solcher Zellen mit einem regelrechten „Stammbaum“ wird als Zell-Linie bezeichnet. Ihre „Entartung“ schränkt jedoch gleichzeitig die Aussagekraft von Versuchen an Zell-Linien ein. Deshalb werden auch Zellen aus gesunden Organen verschiedener Lebewesen eingesetzt. Diese „primären“ Zellen vermehren sich in der Regel jedoch nicht mehr, sodass für jeden Versuchsdurchlauf neue Zellen gewonnen werden müssen. Primärzellen können aus Organen zu diesem Zweck getöteter Versuchstiere (wie der Ratte aus der Einleitung), aber auch aus Schlacht- oder gar OP-Abfällen gewonnen werden.

Zellkulturen und andere Methoden können einen lebenden Organismus jedoch (noch) nicht vollständig ersetzen. Dennoch eignen sie sich gut für viele Fragestellungen in der Grundlagenforschung: Biochemische bzw. molekularbiologische Prozesse innerhalb einzelner Zellen können nachvollzogen und beeinflusst, oder eine Vorauswahl möglicher Wirkstoffe getroffen werden, ehe aussichtsreiche Kandidaten in Tierversuchen und danach in klinischen Studien weiter untersucht werden.

  • Reduce – Verringern

Neben der Verringerung der Anzahl benötigter Versuchstiere durch die sinnvolle Einordnung von Tierversuchen zwischen grundlegender Forschung an Zellkulturen und klinischen Studien, trug in Essen ein weiteres „oberstes Gebot“ zur Minimierung der Anzahl benötigter Tiere dar:

Verschwendung gilt als Todsünde! Ein- bis zweimal in der Woche gab es eine Ratte, die Zellen für die ganze Arbeitsgruppe lieferte, welche bestmöglich zu verwenden waren. Auch deshalb hatten alle Mitarbeiter peinlichst genau darauf zu achten, dass ihre Kulturen stets keimfrei blieben und möglichst restlos für Versuche eingesetzt werden konnten. So sollte keine Ratte unnütz sterben müssen.

  • Refine – Verbessern

Die Wissenschaftler in Essen zeigten sich für Verbesserungen offen: Als ich im Rahmen des Studiums erstmals in das Labor meiner künftigen Arbeitsgruppe kam, wurde die zur Leberzell-„Spende“ vorgesehene Ratte zur Narkose-Einleitung noch in einen Kasten mit CO2 gesetzt (das Gas ist dichter als Luft und behindert die Atmung, sodass das Tier im Kasten daran erstickt!), ehe sie eigentlich einschläfernde Spritze bekam. Als ich später die Vorbereitung auf die Diplomarbeit begann, erfolgte die Narkose-Einleitung mit Isofluran, einem in der Tiermedizin gebräuchlichen Narkosegas.

Diese Art methodischer Verbesserungen gestaltet die Arbeit für alle Beteiligten weniger belastend. Die Ratte schläft unter Isofluran-Einfluss relativ friedlich ein anstatt zu ersticken, und den Experimentator belastet es gewiss weniger, dabei zuzusehen. Überdies liefern weniger gestresste Tiere auch weniger gestresste Zellen, sodass Versuche aussagekräftiger und einfacher zu reproduzieren (mit vergleichbarem Ergebnis zu wiederholen) sind. So dienen Verbesserungen wie diese nicht nur dem Wohl der Tiere, sondern können auch die Anzahl eingesetzter Tiere vermindern.

Den Bemühungen um die Beschränkung von Tierversuchen auf ein unerlässliches Mass ist anzurechnen, dass in der Schweiz im Jahr 2014 rund 600.000 Tiere für Tierversuche verwendet wurden – Anfang der 1980er Jahre waren es noch 2 Millionen jährlich. Das Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV) veröffentlicht regelmässig Listen mit allen Forschungsprojekten, für welche Tierversuche durchgeführt worden sind.

3. Tier-Experimentatoren sind gut ausgebildet

Wer Tierversuche machen möchte, muss neben seiner wissenschaftlichen Ausbildung auch im Umgang mit Tieren geschult sein: Neben Versuchs- bzw. Operationstechniken lernt, wer eine Fortbildung zur Befähigung zu Tierversuchen macht, auch ganz allgemeine Fertigkeiten zur sicheren und möglichst stressfreien Handhabung von Tieren, Tierpflege und die Einschätzung der Befindlichkeit (Schmerzen!) von Tieren (was besonders bei Kleinnagern nicht ganz einfach ist, da diese als Beutetiere darauf angewiesen sind, sich Schwächen nach Möglichkeit nicht anmerken zu lassen).

Überdies gehörte ein Tierarzt zu unserer Arbeitsgruppe, zu dessen Aufgaben es gehörte, ein Auge auf die Tiere und die Experimentatoren zu haben.

Ich selbst hatte ebenfalls die Möglichkeit, in meiner Diplomanden-Zeit die Befähigung zu Tierversuchen zu erwerben und die Gewinnung der Ratten-Leberzellen zu erlernen. Letztlich konnte ich mich aber tief im Herzen nicht dazu durchringen, selbst Hand an die Tiere zu legen.

 

4. Tier-Experimentatoren sind nette, anständige Leute

Die Wissenschaftler und Mitarbeiter, die ich im Tierversuchs-Labor kennengelernt habe, sind in keiner Weise kaltherzig, sondern empfindsame und verantwortungsbewusste Menschen, die sehr daran interessiert sind, „ihren“ Tieren möglichst wenig Leid zuzufügen. In ihrem Arbeitsalltag müssen sie jedoch einen gewissen Pragmatismus an den Tag legen, um mit den Belastungen, die auch ein Experimentator bei der Arbeit mit Versuchstieren erfährt, fertig zu werden.

Nichts desto trotz tauschte man sich über Erlebnisse und Vorkommnisse, auch schon einmal in Form einer „Gruselgeschichte“, mit den Tieren aus. Ich nehme deshalb an, es gab innerhalb des Institutes diesbezüglich wenig Geheimnisse oder Beschönigungen. Auch nicht gegenüber Studenten.

So ist es für jemanden, der in einem Tierversuchs-Labor dieser Art arbeitet, kaum zu übersehen, dass die Tiere letztendlich leiden. Und das tat wohl seinen guten Teil dazu bei, dass ich diesem Forschungsbereich am Ende den Rücken gekehrt habe.

 

Was können wir tatsächlich tun, um das Leid der Tiere im Dienste der Menschheit zu vermindern?

Als Gesellschaft können wir

  • Eine Gesetzgebung anstreben, die in ihrer Umsetzung das Handeln gemäss der drei grossen R fördert, anstatt sie zu behindern
  • Die Geduld aufbringen, welche für die Entwicklung praktikabler und sicherer Alternativen zu Tiermodellen nötig ist – und gleichzeitig den Bedarf nach solchen Entwicklungen erhalten: Die kritische Einstellung der Öffentlichkeit gegenüber Tierversuchen macht Alternativen dazu aus wirtschaftlicher Sicht erst notwendig und befeuert den Einsatz von Zeit und Geld dafür.

 

Jeder Einzelne kann

  • Die Debatte um Tierversuche sachlich (was nicht gleich beschönigend ist) führen: Sachliche Darstellungen und Auseinandersetzungen mit dem Thema (das gilt nicht nur für Tierversuche) erscheinen glaubwürdig und können sinnvolle Wege eröffnen, auf denen wirklich etwas zum Wohl der Tiere erreicht werden kann.
  • Bei persönlichen Feldzügen in thematisch verwandten Gebieten einen möglichen Zusammenhang mit Tierversuchen beachten – Beispiel: Für die Zulassung neuer Inhaltsstoffe von Medikamenten, Kosmetika und anderer Alltagshelfer schreiben Gesetzgeber, sowohl in der Schweiz als auch in der EU, Tierversuche zur Überprüfung dieser Stoffe auf ihre (Neben-)Wirkungen vor (diese müssen nicht gesondert genehmigt werden und tauchen daher in der Veröffentlichung des BLV nicht auf). Das bedeutet, wenn ein Inhaltsstoff in der Öffentlichkeit als potentiell gefährlich Ablehnung erfährt, wiederholt überprüft und schlimmstenfalls durch eine Neuentwicklung ersetzt wird, geht dies stets mit neuen Tierversuchen einher. Es macht also Sinn abzuwägen, inwieweit eine mögliche Gefährdung durch einen Stoff die Entwicklung eines Ersatzes auf dem „Rücken“ von Versuchstieren wirklich rechtfertigt.
  • Für sich bewusst überdenken, welche unserer heutigen „Alltagshelfer“, deren Entwicklung und Anwendung Tierversuche erfordert, verzichtbar sind. Ein derzeit populäres Beispiel für eine in meinen Augen verzichtbare „Technologie“ ist die Anwendung von Botox in der Schönheits-Industrie: Botox, besser „Botulinumtoxin“, ist eines der stärksten Gifte der Welt. Deshalb muss jede neue Charge botoxhaltiger Produkte von Gesetz wegen in neuen Tierversuchen auf korrekte Dosierung überprüft werden.

 

Mein Fazit

Auch und besonders nach meiner Zeit im Tier-Labor erachte ich Alternativen zu Tierversuchen als dringendes Anliegen, das unbedingt weiter zu verfolgen ist. Bis solche Alternativen in allen Bereichen verfügbar sind, sollte der Bedarf danach in meinen Augen durch sachliche Auseinandersetzungen wach gehalten werden. Jene, die an Tierversuchen und damit auch an Entwicklungen zum Wohl der Tiere beteiligt sind, verdienen Vertrauen in ihre Menschlichkeit, keine Polemik.

Und ich hoffe, ich habe etwas zu dieser Sachlichkeit beitragen können.

Wie steht ihr zu Tierversuchen? Was kann eurer Meinung nach dagegen/dafür getan werden? Was tut ihr selbst?