Beiträge

Hermetosphäre

Neulich stiess ich im Netz auf ein erstaunliches Bild: Ein Glasgefäss, vielleicht eine alte Vorratsflasche aus einer Apotheke, mit geschlossenem Deckel – und darin eine atemberaubende Miniaturausgabe eines Regenwaldes! Pflanzen in einem geschlossenen Glasgefäss? Können die, eingesperrt und getrennt vom Rest der Welt, darin überhaupt überleben? Man hört ja nur allzu oft von schaurigen Formen der Tier-“Haltung” unter ähnlichen Bedingungen…

Zu jenem Bild gehörte glücklicherweise ein Link. Und der führte mich auf die Website von Ulf Soltau, seines Zeichens Diplom-Biologe, welcher dort zeigt: Ja, sie können! Und das ganz ohne Pflanzenquälerei!

Solch ein ungewöhnliches, an Fantasien von einer Mission zum Mars erinnerndes Pflanzgefäss trägt zudem einen Namen, der einer Science-Fiction-Welt wahrlich angemessen klingt: Hermetosphäre.

Die Beschreibung “hermetisch abgeschlossen” ist euch sicher geläufig – er leitet sich von Hermes Trismegistos, dem Urvater der Alchemie, ab und trifft auf das Innere einer Hermetosphäre tatsächlich so weit wie möglich zu. “Sphäre” leitet sich vom griechischen Wort für “Kugel” her, steht hier jedoch eher für “Gefäss” (auch wenn Ulf Soltau bewiesen hat, dass Hermetosphären auch kugelrund sein können). Dem Namen nach leben diese Pflanzen also tatsächlich in einem fest geschlossenen Gefäss – sind also weder Wind noch Wetter, und nicht einmal der Giesskanne ausgesetzt.

Und das funktioniert – über Jahre hinweg: Eine wirklich alte Hermetosphäre fand den Weg in die Daily Mail – ihr Besitzer hat seine begrünte Flasche über 40 Jahre lang nicht mehr geöffnet!

Aber wie genau kann das funktionieren? Was unterscheidet die Pflanzenwelt im Glas von der, die wir gewöhnt sind? Und wie könnt ihr euch eine eigene Hermetosphäre anlegen?

 

Stoffe auf der Erde werden im Kreis herumgereicht

 

Im Grunde genommen ist der Flaschen-Urwald gar nicht so ungewöhnlich. Schliesslich ist die Erde selbst eine gewaltige Hermetosphäre (zumindest annähernd), die von der Gravitation zusammengehalten durch die isolierende Leere des Weltalls kreist. Die Stoffe, aus welchen die Erde – einschliesslich des Lebens an ihrer Oberfläche – besteht, kreisen ebenfalls: Keine Verbindung, kein Molekül auf der Erde ist wirklich beständig. Vielmehr werden die Atome darin stets von einer Daseinsform an die nächste weiter gereicht. Und nach der letzten Station folgt wieder die erste.

Der Kohlenstoffkreislauf

503px-Carbon_oxygen_cycle_aerobic.svg

Einer der wichtigsten dieser Kreisläufe für das Leben ist der des Kohlenstoffs. Sämtliche organischen Verbindungen enthalten Kohlenstoff, und aus organischen Verbindungen bestehen alle Lebewesen. Der meiste Kohlenstoff ist jedoch in der Erdkruste gebunden – in Form von Kalk (CaCO3) und anderen Carbonaten. Besonders Kalk ist aber in geringen Mengen wasserlöslich und kann von fliessendem Wasser und etwas Geduld aus dem Gestein gewaschen werden (Verwitterung): Steter Tropfen höhlt eben den Stein.

Wenn Calciumcarbonat in Wasser gelöst wird, entsteht Kohlensäure, deren Moleküle nicht stabil sind:

.

Aus der Kohlensäure entsteht Kohlenstoffdioxid, welches im Zuge der Verdunstung von Gewässern in die Atmosphäre gelangen kann (die besteht in Bodennähe zu 0,03% aus Kohlenstoffdioxid). Beide Reaktionen sind ohne weiteres umkehrbar (und damit Teile von chemischen Gleichgewichten), sodass Kohlenstoffdioxid in Regenwasser gelöst zum Erdboden zurückgelangen und neuen Kalk – neues Gestein – bilden kann (Sedimentation).

Noch spannender als dieser anorganische Kohlenstoffkreislauf ist der organische Kreislauf, der mit dem Anorganischen in Verbindung steht, aber Lebewesen mit ins Spiel bringt. Am Anfang dieses Kreislaufs stehen solche Lebewesen, die aus anorganischen Kohlenstoff-Verbindungen organische Verbindungen herstellen können. Die Biologen nennen sie Produzenten (P) – dazu gehören vornehmlich die Pflanzen, Algen und einige Bakterien. Und zwar die Grünen unter ihnen. Die betreiben nämlich Photosynthese.

In den Chloroplasten, jenen Zellbestandteilen, die die Pflanzen grün erscheinen lassen, können Pflanzen Kohlenstoffdioxid aus der Luft und Wasser zu Glucose (Traubenzucker)  und anderen Kohlenhydraten umbauen:

Diese Reaktion erfordert Energie, die das Licht liefert, welches auf die Grünpflanzen mit ihren Chloroplasten fällt. Bei der Synthese von Glucose mit Hilfe von Licht wird diese Energie in den Glucose-Molekülen zwischengespeichert. Wenn nun andere Lebewesen (Konsumenten, K) die Pflanze mitsamt der Glucose fressen, können ihre Zellen die Glucose zerlegen und die darin gespeicherte Energie nutzbar machen:

Den dazu nötigen Sauerstoff (welchen Pflanzen an die Luft abgeben) atmen diese Lebewesen ein, das Kohlenstoffdioxid atmen sie aus, sodass es von Pflanzen wieder zu Glucose verarbeitet werden kann.

Wenn Pflanzen jedoch absterben, bevor sie gefressen werden, gibt es eine Reihe von Lebewesen – Pilze, einige “niedere” Tiere und viele Kleinstlebewesen (Mikroorganismen) – welche die Überreste abgestorbener Pflanzen (und Tiere) vollständig in anorganische Kohlenstoffverbindungen zerlegen – die Biologen nennen sie deshalb Zersetzer oder “Destruenten” (D).

Zu den anorganischen Kohlenstoffverbindungen zählen das Kohlenstoffdioxid, die Kohlensäure und ihre Salze, die Carbonate. In Form von Kohlenstoffdioxid findet der Kohlenstoff so zur Photosynthese in Pflanzen zurück – der Kreislauf schliesst sich.

 

Der Stickstoffkreislauf

557px-Nitrogen_cycle.svg

Ebenso wichtig für Lebewesen wie Kohlenstoff ist auch das Element Stickstoff, welches Bestandteil vieler Biomoleküle, zum Beispiel von Aminosäuren, Proteine, DNA und anderer ist. Die Erdatmosphäre besteht zu rund 78% aus Stickstoff in N2-Molekülen. Die beiden Stickstoff-Atome darin sind jedoch über eine Dreifachbindung sehr fest aneinander gebunden, sodass sie für die meisten Lebewesen nicht nutzbar sind.

Zum Glück haben sich einige Bakterienarten auf die Zerlegung von Stickstoffmolekülen unter grossem Energieaufwand (Stickstofffixierung) spezialisiert. Sie leben in Symbiose mit vielen Pflanzen und stellen aus Luft-Stickstoff Ammoniak her:

Pflanzen können Stickstoff aus Ammonium-Ionen (NH4+), die in Gegenwart von Wasser oder anderen Säuren aus Ammoniak entstehen, direkt in eine vorhandene Aminosäure einbauen “assimilieren” und anschliessend neue Aminosäuren daraus herstellen:

Da die Pflanzen aber, um Ammonium in ihre Wurzeln aufzunehmen, für jedes NH4+ ein H+-Ion abgeben müssen und damit Gefahr laufen “ihren” Boden zu versäuern, bevorzugen sie häufig Stickstoff in Form von Nitrat-Ionen (NO3), die sie in Wasser gelöst ohne Zutun “trinken” können. Die Nitrat-Ionen liefern verschiedene Bakterienarten, die Ammoniak oxidieren können:

Einmal aufgenommen werden die Nitrat-Ionen in den Pflanzen wieder zu Ammoniak bzw. Ammonium-Ionen reduziert und zur Herstellung von Aminosäuren verwendet. Und die werden gebraucht, damit eine Pflanze neue Proteine herstellen und wachsen kann. Deshalb verwenden Gärtner, die nicht darauf warten mögen, dass all die Bakterien im Boden ihre Arbeit tun, Nitrate oder Ammoniumverbindungen als Dünger.

Aus den organischen Bestandteilen absterbender Pflanzen kann schliesslich von den Destruenten unter den Lebewesen Ammoniak abgespalten werden (Ammonifikation), der seinen Weg zurück in den organischen Stickstoffkreislauf findet. Andere Mikroorganismen können hingegen Nitrat-Ionen bis zum elementaren Stickstoff (N2) reduzieren (Denitrifikation), der zurück in die Luft gelangt.

 

Wie ein Stoffkreislauf ins Wohnzimmer kommt

Solche Stoffkreisläufe im Grossen finden auch im Kleinen – in der Hermetosphäre statt! Die Pflanzen entnehmen ihrer Umgebung die Stoffe, die sie zum Leben brauchen, und geben sie früher oder später an ihre Umgebung zurück. Und da zwischen dem Inneren des Glases und der Aussenwelt kein Stoffaustausch stattfindet, geht letztlich nichts verloren. Einzig Energie muss solch einem System regelmässig zugeführt werden um der Thermodynamik gerecht zu werden. Und diese Energie gelangt hauptsächlich in Form von Licht ins Glas.

Um einen Kohlenstoff- bzw. Stickstoffkreislauf in einfachster Form im Kleinen zu betreiben, brauchen wir also:

  1. Luft, die Stickstoff und Sauerstoff, sowie ein wenig Kohlenstoffdioxid enthält
  2. Grünpflanzen als Produzenten, die aus anorganischem Material organische Verbindungen aufbauen können
  3. Bakterien und andere Klein- und Kleinststlebewesen, die organisches Material zu anorganischen Verbindungen abbauen und gegebenenfalls die Aufbereitung von Stickstoff übernehmen können
  4. Wasser als allgegenwärtiges Lösungsmittel und Rohstoff für die Photosynthese
  5. Licht als Energiequelle

Konsumenten stehen nicht auf der Liste. Die würden auch mehr Platz brauchen, als eine handliche Hermetosphäre zu bieten hat. Doch wer sorgt dann dafür, dass die Pflanzen nicht irgendwann das wenige CO2 in der Hermetosphären-Luft aufbrauchen und sie dafür mit Sauerstoff anreichern?

Die vorhandenen Kleinstlebewesen werden das kaum schaffen. Aber das müssen sie auch gar nicht. Pflanzen atmen nämlich ebenso wie alle anderen “aeroben” Lebewesen auch! Sie haben zwar keine Lungen, aber in Pflanzenzellen gibt es ebenso Mitochondrien, wie in den Zellen von Mensch und Tier. Diese kommen vor allem nachts zum Zuge, wenn keine Photosynthese stattfindet. Dann nämlich nehmen Pflanzen über ihre Oberfläche Sauerstoff auf, um damit in ihren Mitochondrien Glucose zu “verheizen” und Energie zu gewinnen.

So kann eine Hermetosphäre gut auf atmende Konsumenten verzichten, ohne dass die Luftzusammensetzung entgleist.

Das gilt übrigens auch für sogenannte fleischfressende Pflanzen (Carnivoren), die mit ausgeklügelten Fallen kleine Tiere festhalten und verdauen können. Diese tierische Nahrung dient den Carnivoren nämlich als zusätzliche, aber nicht als einzige Stickstoffquelle – sie können ihre Nährstoffe auch auf herkömmlichem Weg gewinnen.

 

Die Hermetosphäre zum Selbermachen

Eine Hermetosphäre lässt sich leicht selbst anlegen. Folgendes wird dafür benötigt:

Material

  • Ein fest verschliessbares Gefäss aus Glas oder durchsichtigem Kunststoff: eine möglichst weite Öffnung macht Bepflanzung und Pflege einfach. Das Material sollte farblos sein, da farbige Gläser oder Kunststoffe für die Pflanzen wichtige Lichtbestandteile herausfiltern (mehr zu Licht und Farben)! Meine Hermetosphäre auf dem Artikelbild ist in einem ca. 2-Liter-Vorratsglas mit Dichtungsring angelegt.
  • Material für den Untergrund (“Substrat“), auf dem die Pflanzen wachsen können: Um zu gewährleisten, dass die Stroffkreisläufe funktionieren, ohne dass die Bodenzusammensetzung oder gar der pH-Wert zu stark verändert werden, sollte das Substrat möglichst unbeteiligt am Gesamtgeschehen bleiben. Das heisst vor allem: Es darf möglichst keinen Kalk enthalten! In meiner Hermetosphäre habe ich feinkörnigen Blähton (4 bis 8 mm, für Hydrokultur-Pflanzen, erhältlich im Baumarkt oder Gartencenter) verwendet. Erfahrene “Hermenauten” schwören auch auf Lavagranulat. Beide sind formbeständig und gut durchlässig für Luft und Wasser. Dünger gehört übrigens nicht in eine Hermetosphäre – die damit zusätzlich verfügbaren Stickstoff-Verbindungen würden nur dazu führen, dass die Pflanzen über ihr verfügbares Raumangebot hinaus wachsen würden!
  • Ein dünnes Stück Filz und zwei Magnete: Ein kleines Filz-Stück wird auf einen der Magnete geklebt und von innen an die Gefässwand gelegt. Der zweite Magnet wird von aussen angebracht, sodass er den ersten anzieht und festhält. Dieser “Scheibenwischer” kann am äusseren Magneten über die Gefässwand bewegt werden und die Innenseite reinigen, ohne dass das Glas geöffnet werden muss. Für mein Vorratsglas waren zwei “Supermagnete” (aus Neodym-Eisen-Bor (“NdFeB”), auch die gibt es im Baumarkt – sie sind etwas teurer als einfache Kühlschrankmagnete) nötig, da zwei Kühlschrankmagnete sich durch die dicke Glaswand nicht fest genug anziehen. Der kleine Durchmesser (ca. 5 mm) der Magnete erlaubt zudem, den Scheibenwischer um die Kanten des Gefässes herum zu schieben!
    Magnet-Scheibenwischer

    Magnet-Scheibenwischer von aussen

  • Geeignete Pflanzen: In einer Hermetosphäre herrscht ständig eine Luftfeuchtigkeit von praktisch 100% und es wird darin fast unweigerlich lauschig warm. Unter solch extremen Bedingungen fühlen sich vornehmlich tropische Pflanzen wohl. Im Fachhandel für Terrarienbedarf findet man solche, wie auch manchmal bei Verkaufs-Aktionen von botanischen Gärten. Ich habe im Gartencenter eine kleine Mosaikpflanze (Fittonia) und eine nur 10 bis 12 cm hohe Alocasia (dem Aussehen nach) entdeckt. Erstere steht auf Ulf Soltaus Liste möglicher Hermetosphären-Bewohner, letzterer bin ich (in der grossen Version) schon häufiger in feucht-warmen Gewächshäusern begegnet.
  • Zersetzer (Destruenten): Kleinstlebewesen gibt es in einer Hermetosphäre unweigerlich. Ohne sie würde die Welt in der Flasche auch nicht funktionieren, weshalb es wenig Anlass gibt, den Eintrag von Bakterien und anderen Winzlingen bei der Bepflanzung bewusst zu vermeiden. Um den Kleinsten die Arbeit zu erleichtern, können weisse Asseln oder tropische Springschwänze sehr hilfreich sein. Beide Arten sind nur wenige Millimeter gross und ernähren sich von abgestorbenen Pflanzenteilen und Schimmelpilzen! Man bekommt sie im Fachhandel für Terrarienbedarf, da sie als Putzkolonne für Tropen-Terrarien ebenso beliebt sind wie als Snack für zwischendurch für deren tierische Bewohner. Ich habe weisse Asseln im Netz bei einem Fachhändler für Amphibienhaltung bestellt. In der kalten Jahreszeit ist das jedoch riskant (tropische Tiere haben es nicht gerne kalt), sodass man die Tierchen dann besser direkt beim Händler abholt.
  • Dekoration: Zur Gestaltung von Hermetosphären können verschiedene, witterungsbeständige Materialien zum Einsatz kommen: nicht-kalkhaltige Steine (z.B. Basalt), trockenes, nicht moder-anfälliges Holz oder Xixam-Platten (Baumfarn-Material, im Terrarien-Fachhandel erhältlich) sind nur einige Beispiele. Aus Platzgründen habe ich zunächst auf weitere Dekoration verzichtet.
  • Nützliches Werkzeug: Eine lange Küchenpinzette kann das Bepflanzen tiefer Gefässe erheblich vereinfachen. Eine Ballbrause, wie Bonsai-Züchter sie verwenden, kann zur Reinigung von Glaswänden bzw. zur anfänglichen Bewässerung dienen.

 

Eine Hermetosphäre einrichten:

Die folgende Anleitung beschreibt, wie ich meine erste Hermetosphäre eingerichtet habe, angelehnt an die ausführliche Beschreibung von Ulf Soltau:

  1. Reinige das Glasgefäss aussen und innen gründlich und spüle es mit klarem Wasser aus.
  2. Gib das Substrat (z.B. den Blähton) in ein Küchensieb und spüle unter fliessendem Wasser den Staub ab. Fülle das Glasgefäss zu 10 – 20% in zwei Etappen mit dem (nassen) Substrat:
  3. Nachdem du zwei Drittel des Substrats eingefüllt hast, kannst du die Pflanzen mit der Pinzette oder geschickten Händen (bei grosser Gefässöffnung) platzieren. Da meine Pflanzen vom Gartencenter in Erde kamen, habe ich diese zuvor vorsichtig entfernt und die Wurzeln ebenso vorsichtig unter fliessendem Wasser abgespült. Mit dem letzten Drittel des Substrats bedecke die Wurzeln.
  4. Bodendecker und Moose legst du einfach auf das Substrat.
  5. Je nach Geschmack kannst du die Hermetosphäre mit Dekoration versehen.
  6. Wenn die Glaswände beim Bepflanzen verschmutzt worden sind, kannst du sie mit der Ballbrause abspülen. Wenn sich dabei zu viel Wasser im Gefäss sammelt, lasse es einige Tage offen stehen, bis das überflüssige Wasser verdunstet ist.
    Ulf Soltaus Faustregel: Die richtige Wassermenge ist erreicht, wenn das Substrat nass, aber kein Wasser am Gefässboden sichtbar ist!

    Da ich Substrat und Pflanzen nass eingebracht habe und die Wände sauber blieben, musste ich weder Wasser zugeben noch verdunsten lassen.

  7. Setze die Zersetzer ein: Ich habe einige weisse Asseln mitsamt etwas von ihrem Zucht-Substrat (in welchem sie geliefert wurden) auf einem langen Löffel gesammelt und auf dem Boden meiner Hermetosphäre platziert. Die Tierchen verkriechen sich zudem gerne unter Rindenstückchen, die dann mitsamt der Asseln in die Hermetosphäre gelegt werden können. Ich habe die Asseln übrigens problemlos erst einige Tage nach dem Einrichten der Bepflanzung eingesetzt.
  8. Wenn alles beisammen ist und der Wassergehalt stimmt, schliesse das Gefäss und stelle es an einem möglichst hellen Ort auf. Direkte Sonneneinstrahlung ist aber unbedingt zu vermeiden, da die Sonne die Hermetosphäre innerhalb weniger Minuten stark aufheizt!

Hermetosphäre ganz

Pflege einer Hermetosphäre

Die kleine Welt in der Hermetosphäre ist erhält sich weitestgehend selbst: Wasser und Nährstoffe werden in geschlossenen Kreisläufen herumgereicht. Die Bevölkerung mit Zersetzern passt sich dabei der Gefässgrösse und dem Nahrungsangebot an.

Es ist jedoch nicht ungewöhnlich, dass gleich am Anfang einzelne Blätter absterben. Diese kammst du dann mit der Pinzette entfernen, um eine Belastung durch organischen Abfall gering zu halten.

Eine Hermetosphäre muss daher weder gegossen noch gefüttert oder gar gedüngt werden. Da sich jedoch unweigerlich Kondenswasser an den Glaswänden niederschlagen wird (vornehmlich an den kühleren, oft einem Fenster zugewandten Seiten), solltest du das Gefäss regelmässig drehen. So bekommen die Pflanzen gleichmässig von allen Seiten Licht, und Algenbildung an immer feuchten Wänden kann vorgebeugt werden. Zusätzlich kannst du die Wände jederzeit mit dem Magnet-Scheibenwischer reinigen.

Darüber hinaus kannst du deine Stoffkreisläufe im Glas nun einfach bestaunen und die Entwicklung der Hermetosphäre beobachten. Einzig etwa einmal im Jahr solltest du den Wassergehalt zu überprüfen und gegebenenfalls nachfüllen. Denn Wassermoleküle sind so winzig, dass sie früher oder später durch jede noch so kleine Ritze entweichen können.

 

Fazit

Meine Pflanzen fühlen sich nach 5 Tagen in der Hermetosphäre noch sichtlich wohl. Ich hoffe nun sehr, dass mir die Alocasia (die ich eigentlich sehr viel grösser kenne) nicht über den Kopf wachsen wird (sollte sie dank begrenztem Stickstoff-Vorrat eigentlich nicht können). Falls doch, werde ich mich irgendwann nach einem grösseren Glas umsehen müssen…

Die weissen Asseln zeigen sich seit dem Einsetzen nicht mehr. Das ist jedoch kein Wunder, sind sie doch nur im Dunkeln richtig aktiv. Es scheint mir aber, sie machen an einigen angeschlagenen Blatträndern der Fittonia durchaus ihren Job.

Ich bin nun sehr gespannt, wie diese Welt im Glas sich entwickeln wird. Wenn es Neues gibt, werde ich hier ein “Update” hinterlassen. Und ich bin sicher, dass diese erste Hermetosphäre nicht meine Einzige bleiben wird!

Und habt ihr auch schon einmal eine Hermetosphäre angelegt? Oder habt ihr es vor? Welche Erfahrungen habt ihr gemacht?

Letzte Woche hast du hier lesen können, warum viele Stoffe farbig erscheinen und warum wir unsere Welt bunt sehen. Jetzt im Herbst präsentieren sich Farben aber noch wundersamer als sonst: Die im Sommer grünen Blätter von Bäumen und Sträuchern werden gelb, orange und rot: sie ändern ihre Farbe!

Stoffe erscheinen farbig, weil ihre Elektronen Licht mit ganz bestimmten Wellenlängen schlucken und vorübergehend auf ein anderes, erreichbares Energieniveau – eine höhere Etage im atomaren Hochhaus – wechseln können. Wenn sich die Farbe eines Gegenstands ändert, bedeutet das also, dass sich entweder der farbige Stoff darin verändert (und damit die Abstände zwischen den atomaren Hochhaus-Etagen), oder dass der Gegenstand mehrere farbige Stoffe enthält, deren Mischungsverhältnis sich ändert.

Mit dem hier beschriebenen Versuch kannst du nachweisen, dass Blätter von Pflanzen mehrere Farbstoffe enthalten. Dieser Versuch lässt sich bei Beachtung der Anleitung und Sicherheitsanweisungen in diesem Artikel und auf den Chemikalien-Behältern gefahrlos zu Hause durchführen. Kinder experimentieren nur unter der Aufsicht durch Erwachsene! Für Schäden in Folge der Durchführung, insbesondere bei Nichtbeachtung der Anweisungen, übernimmt Keinsteins Kiste keine Haftung.

Grüne Blätter enthalten Chlorophyll, einen grünen bzw. blaugrünen Stoff, der im Rahmen der Photosynthese die Energie absorbierter Lichtwellen in chemische Energie umwandelt. Diese Energie muss dann auf andere Moleküle übertragen werden. Das übernehmen andere Stoffe, die ebenfalls farbig sind: Die Carotinoide sind chemisch mit Vitamin A (beta-Carotin) verwandt und haben ähnlich diesem gelbe, orange bis rotbraune Farben. In einem frischen Blatt werden die Carotinoide jedoch vom Chlorophyll verdeckt bzw. damit vermischt, sodass die meisten Blätter im Sommer saftig grün erscheinen.

Im Herbst stellen viele Pflanzen ihren Photosynthese-Betrieb jedoch ein und machen Winterpause. Das damit überflüssige Chlorophyll in den Blättern wird dabei abgebaut, während die Carotinoide länger in den Blättern verbleiben. Ohne die Abdeckung durch bzw. die Mischung mit Chlorophyll erscheinen uns die Carotinoide nun uneingeschränkt gelb, orange und rot.


Einzelne Farbstoffe werden sichtbar, wenn man sie trennt

Um die einzelnen Farbstoffe im Farbgemisch der Blätter sehen und unterscheiden zu können, müssen wir sie voneinander trennen. Zum Trennen von Stoffen haben Chemiker viele verschiedene Strategien ersonnen, mit welchen sie die verschiedenen Eigenschaften verschiedener Stoffe nutzen. Bei Farbstoffen, die wir allein durch Ansehen unterscheiden können, genügt es diese an verschiedene Orte zu sortieren, an welchen wir sie einzeln betrachten können.

Die passende Strategie dazu wird Chromatographie genannt: Das Farbstoffgemisch wird mit einem Fliessmittel vermengt (auch bewegliche bzw. mobile Phase genannt) und durch eine Art Flussbett (auch ruhende bzw. stationäre Phase)strömen gelassen. Die Farbstoffe verhalten sich dabei wie Treibgut im Fluss: Je nach ihrer Beschaffenheit bleiben sie unterschiedlich stark an Grund und Ufern (also dem Flussbett) des Flusses haften und kommen in einer vorgegebenen Zeit unterschiedlich weit voran. Die unterschiedlichen Treibgutsorten (oder Farbstoffe) können wir dann an verschiedenen Abschnitten des Flussbetts einzeln betrachten.

Um Blattfarbstoffe zu trennen genügt ein Streifen Papier als stationäre Phase, der in einem Honigglas oder ähnlichem, das als Trennkammer dient, aufgehängt wird. Als Fliessmittel, das gemeinsam mit den Farbstoffen die mobile Phase bildet, kann ein Gemisch aus Aceton und Benzin verwendet werden.


Vorbereitung für einen Versuch: Trennung von Blattfarbstoffen mittels Papier-Chromatographie

Wichtig! Lies dir die folgende Anleitung bis zum Ende durch, bevor du mit einem Versuch beginnst! Sie enthält wichtige Hinweise zu möglicherweise gefährlichen Stoffen und zur richtigen Entsorgung von Abfällen!

Für die Papier-Chromatographie zur Trennung von Blattfarbstoffen brauchst du:

  • grüne (im Herbst auch gelbe und/oder rote) Blätter von Pflanzen (z.B. Ahorn-Blätter)
  • Zeichenblock
  • Aceton (ein Lösungsmittel, das man im Baumarkt im Malerbedarf bekommt)
  • Fleckbenzin (aus der Drogerie oder Apotheke)
  • Mörser und Stössel
    oder eine kleine, stabile Glas- oder Keramik-Schale und ein Werkzeug zum Zerstossen (wenn du mehrere Farbstoffgemische gleichzeitig trennen möchtest, empfehle ich für jedes Gemisch einen eigenen Mörser)
  • sauberen Sand (eine Messerspitze je Farbstoffgemisch)
  • ein leeres, sauberes Honig- oder Marmeladenglas mit Deckel und möglichst geradem Boden
  • Zwei Pasteur-Pipetten oder andere Dosierhilfen für kleine Flüssigkeitsmengen (z.B. Nasentropfen-Deckelpipetten aus der Drogerie)
  • Stecknadeln mit Kopf
  • Schere, Bleistift
  • Einen passenden Ort zum Experimentieren:
    Aceton und Benzin sind leicht flüchtig und sollten nicht unnötig eingeatmet werden! Arbeite deshalb im Freien oder in einem gut durchlüfteten Raum auf einer abwischbaren, lösungsmittelfesten Unterlage (kein Kunststoff!). Am Experimentierplatz und vor allem beim Experimentieren wird nicht gegessen, getrunken oder geraucht! Benzin und Aceton und ihre Dämpfe sind leicht entzündbar! Achte darauf, dass die Chemikalienflaschen wann immer möglich geschlossen sind. Da die Farbstoffe sehr lichtempfindlich sind, solltest du zudem bei gedämpftem Licht (in keinem Fall bei direkter Sonneneinstrahlung) und zügig arbeiten können.
  • Ich empfehle dir zudem eine Schutzbrille zu tragen:
    Lösungsmittel können die Augen reizen. Bei Augenkontakt mit den Flüssigkeiten wasche die Augen gründlich (10 Minuten lang!) aus und gehe danach im Zweifelsfall zum Augenarzt. Mit Schutzbrille ist es jedoch sehr unwahrscheinlich, dass Lösungsmittel-Spritzer in deine Augen gelangen.

So bereitest du den Versuch vor

Zur Vorbereitung des Versuchs (hier ist weder Eile noch Lichtschutz nötig) schneide von einem Zeichenblock-Bogen (Din A4) einen Querstreifen von 3 bis 5 cm Breite ab und führen ihn senkrecht in das offene Honigglas, bis er den Boden berührt. Markiere die Höhe des Glasrandes auf dem Streifen und falte ihn ca. 1 mm unter der Markierung. Schneide den Bereich “oberhalb des Glases” in der Mitte senkrecht ein bis zum Falz, sodass du nun einen Halbstreifen nach vorn, den anderen nach hinten knicken kannst. Wenn du den Papierstreifen nun wieder in das Glas hängst, sodass die beiden Halbstreifen auf dem Rand aufliegen, sollte der ungeteilte Streifen senkrecht und gerade hängen und unmittelbar über dem Glasboden enden. Das ist unsere stationäre Phase.

Vorlage Chromatographie-Streifen

Muster für die Vorbereitung der stationären Phase:Der Streifen Zeichenblock-Papier ist quer dargestellt. Das rechte Ende entspricht unten und wird später in die Flüssigkeit in der Trennkammer getaucht. Fliessmittel und Farbstoffe laufen (bzw. steigen) im Versuch nach oben (entlang der Pfeilrichtung, die hier nach links dargestellt ist).

Nimm den Papierstreifen erst einmal wieder aus dem Glas. Fülle dann 8 ml (oder 8 gut gefüllte Pipetten) Fleckbenzin und 2 ml ( 2 gut gefüllte Pipetten) Aceton in das Glas. Sollte der Glasboden nicht ganz bedeckt sein, gib noch etwas mehr Benzin und Aceton im Verhältnis 4 : 1 hinzu. Schraube den Deckel auf das Glas, damit die Lösungsmitteldämpfe (du wirst sie riechen) nicht entweichen können.


Wie du die Farbstoffe aus den Blättern bekommst

Ab jetzt solltest du deinen Experimentierplatz vor direkter Sonneneinstrahlung bzw. Beleuchtung schützen und ohne längere Unterbrechung arbeiten können.

Gib eine Messerspitze Sand in einen Mörser. Zerschneide ein grünes (oder gelbes oder rotes) Ahornblatt in kleine Stücke (ich schneide das Blatt dazu alle 3 bis 5 mm längs ein und dann senkrecht dazu, sodass kleine Quadrate oder Rechtecke im Rechenkästchenformat entstehen) und gib die Schnipsel in den Mörser. Gib gerade so viel Aceton dazu, dass Flüssigkeit im Mörser sichtbar bleibt – in meinem Espressotassen-Mörser waren das eine, höchstens zwei Nasentropfen-Pipetten.

Aceton und Benzin müssen in einer Sondermüll-Sammelstelle entsorgt werden! Indem du kleinstmögliche Mengen verwendest, die im Idealfall in kurzer Zeit verdunsten, vermeidest du unnötigen Abfall und bestenfalls den Gang zur Sammelstelle!

Zermahle die Blattschnipsel mit Sand und Aceton einige Minuten lang gründlich (sollte das Aceton dabei verdunsten, gib einfach noch ein paar Tropfen hinzu), bis das Aceton sich tief grün (oder gelb oder rot) gefärbt hat. Diese Lösung sollte möglichst viel Farbstoff in möglichst wenig Aceton enthalten. Eventuell überschüssiges Aceton kannst du einfach verdunsten lassen (den Behälter vor Licht schützen!).


Wie du die Chromatographie startest

Schiebe die Blattschnipsel beiseite und kippe den Mörser mit der Farbstofflösung etwas, sodass du die Flüssigkeit über dem Sand stehen siehst. Tauche einen Stecknadelkopf in die Lösung und tupfe die Flüssigkeit unten auf deinen Papierstreifen. Der Farbtupfer muss später oberhalb des Flüssigkeitsspiegels im Glas verbleiben! Ich habe meine Tupfer daher ca. 1 cm über dem unteren Streifenrand angebracht.

Lasse den ersten Tupfer kurz antrocknen und tupfe weitere Lösung auf dieselbe Stelle. Wiederhole das Auftragen, bis der Farbtupfer deutlich sichtbar und von intensiver Farbe ist. Dann schraube das Honigglas auf und hänge den Streifen wieder hinein, sodass sein Ende in die Flüssigkeit darin taucht. Lege den Deckel umgekehrt wieder auf die Glasöffnung, um die Lösungsmitteldämpfe am Entweichen zu hindern. Bewege das Glas jetzt nach Möglichkeit nicht mehr.

Chromatographie-Streifen im Honigglas

Papier-Chromatographie im Honigglas:Links der Papierstreifen, welcher die stationäre Phase bildet, mit einer getrennten Farbspur (aufgenommen nach dem Versuch); Rechts befindet sich der Streifen in der Honigglas-Trennkammer. Der graue Rand unten zeigt, wie weit das Papier in die Flüssigkeit eintaucht. Der zweite, nach hinten gecknickte Halbstreifen der Aufhängung wird hier durch den Deckel verdeckt.


Wie du deine Versuchsergebnisse sicherst

Die Flüssigkeit wandert von unten nach oben in den darin eintauchenden Papierstreifen – anfangs sehr schnell, später zunehmend langsamer. Dabei schwemmt sie die verschiedenen Farbstoffe unterschiedlich weit mit. Lasse den Versuch ca. 15 Minuten lang, maximal so lang, bis die Flüssigkeit den Falz fast erreicht hat, laufen, bevor du den Papierstreifen aus dem Glas nimmst und damit den Fluss stoppst. Schraube das Glas anschliessend gleich wieder zu.

Sieh dir die Verteilung der Farben an, während du den Streifen kurz trocknen lässt (die Lösungsmittel verdunsten sehr schnell, sodass das Papier im Nu trocken sein sollte). Markiere die farbigen Banden mit Bleistift und beschrifte sie. Da die Farbstoffe sich am Licht nach wie vor schnell zersetzen, können die Markierungen ggfs. für spätere Versuche als Referenz dienen. Wenn du Fotos machen möchtest, dann tu das am besten gleich nach dem Versuch, so lange die Farben noch am deutlichsten sichtbar sind. Der trockene Streifen lässt sich überdies zwischen den Seiten eines Buchs oder in einer geschlossenen Schachtel lichtgeschützt aufbewahren.

Papierchromatographie von grünen Blättern

Ergebnis der Chromatographie eines Farbstoffauszugs aus einem noch grünen Ahorn-Blatt: Beide Chlorophyll-Varianten sind deutlich zu sehen. Ausserdem haben sich die besser beweglichen Carotinoide vom etwas langsameren Lutein abgesetzt.

Wenn du die Farbstoffe aus einem grünen Blatt getrennt hast, solltest du von unten nach oben folgende Banden sehen können:

  • Startpunkt: Einige Stoffe wandern nicht erkennbar bzw. gar nicht, sodass der ursprüngliche Tupfen, nun gelblich-grau, immer noch sichtbar ist
  • gelbgrün: Chlorophyll B : Diese Variante des Chlorophylls wandert in Papier am langsamsten.
  • blaugrün: Chlorophyll A : Diese Variante des Chlorophylls wandert etwas schneller als Chlorophyll B.
  • gelb: Lutein (Xanthophyll) : Dies ist ein gelboranger Carotin-Farbstoff, der z.B. auch Eigelb gelb färbt.
  • orangegelb: einige weitere Carotinoide wandern noch schneller und damit weiter als Lutein.

Farbtupfer aus gelben Blättern enthalten keine sichtbaren Chlorophylle mehr, weshalb die Banden für Chlorophyll A und B bei solchen fehlen. Rote Blätter enthalten ebenfalls noch gelbe Carotinoide. Die roten Farbstoffe lösen sich weniger gut in Aceton und bewegen sich im beschriebenen Versuch nicht sichtbar vom Startpunkt fort.

Zum besseren Vergleich können auch mehrere Farbgemische auf einem breiten Papierstreifen nebeneinander untersucht werden.

Papierchromatographie von bunten Herbst-Blättern

Papier-Chromatographie mit mehreren Proben: Rechts eine weitere Probe von dem grünen Blatt aus dem ersten Versuch, in der Mitte eine Probe des Auszugs aus einem gelben Ahorn-Blatt, links aus einem dunkelroten Ahorn-Blatt. Das grüne Blatt enthält deutlich sichtbar Chlorophyll, das gelbe und rote Blatt nicht. Die Carotinoide und das Lutein sind bis an den Falz gewandert und dort gestaut worden (stoppe den Versuch, bevor das passiert!). Die roten Farbstoffe in der linken Probe haben sich nicht vom Startpunkt wegbewegt.


Weitere Chromatographie-Versuche

Enthalten Blätter von verschiedenen Pflanzenarten die gleichen Farbstoffe? Enthalten rote bzw. gelbe Lebensmittel (z.B. Gemüse, Früchte, Paprika-Gewürz) auch Carotinoide? Wie sieht es mit gelben und roten Blütenblättern aus?

Diesen Fragen kannst du mit weiteren Versuchen gemäss dieser Beschreibung einfach nachgehen. Fallen dir vielleicht noch mehr ein?


Entsorgung von Abfällen

Schraube das Honigglas nach dem Experimentieren gut zu, um den Rest des Fliessmittels für spätere Versuche aufzuheben. Mörser mit zermahlenen Blättern lasse über Nacht draussen (auf dem Balkon oder der Terrasse) stehen, bis die Lösungsmittelreste darin verdunstet sind. Blattreste und Sand kannst du dann in den Rest-Abfall geben. Lösungsmittelreste, die nicht verdunstet sind, müssen in einer Sondermüll-Sammelstelle abgegeben werden. Fülle sie dazu in eine fest verschliessbare Flasche aus Glas oder Polyethylen (PE) bzw. Polypropylen (PP) (andere Kunststoffe werden eventuell von Aceton aufgelöst!) und lagere sie licht- und wärmegeschützt, bis du sie zur Abfall-Sammelstelle bringen kannst.

Fazit

Grüne Ahorn-Blätter enthalten zwei Varianten des Chlorophylls, den Carotin-Farbstoff Lutein und andere Carotinoide. Im Herbst werden die Chlorophylle schnell abgebaut, die Carotinoide wesentlich langsamer, sodass die Blätter sich gelb, noch später rot verfärben. Mittels Papier-Chromatographie mit Aceton/Benzin lassen sich Chlorophylle und Carotinoide mit wenig Zeitaufwand trennen.

Und die Farbstoffe welcher Pflanzenarten hast du getrennt?