Beiträge

Experiment und Haushaltstipp: Kupfer mit Hausmitteln reinigen

Ein verregneter Frühling ist – wohl oder übel – Zeit für Schlechtwetterprogramm. Aber was tun? Experimentieren oder Haushalt? Warum nicht beides miteinander? Ich habe einen genialen Hack für euer Kupfer-Geschirr – mit Experiment für eure Kinder dazu!

Habt ihr einen Kupfertopf? Armaturen oder andere Gegenstände aus Messing? Und die sind mal wieder ziemlich angelaufen und sollten dringend geputzt werden? Dann legt los – und zwar ganz ohne kommerzielle Reinigungspaste. Denn was ihr braucht, findet ihr mit Sicherheit in der Küche.

Kupfer und Messing reinigen: Ihr braucht dazu

  • Angelaufenen Kupfertopf o.Ä.
  • Papiertücher (könnt ihr einfach entsorgen, da ihr sie nicht auswaschen müsst!)
  • Ggfs. Putzhandschuhe
  • Haushaltsessig
  • Kochsalz (Speisesalz, NaCl)

Und für ein simples, aber atemberaubendes Experiment für die Nachwuchs-Forscher das Ganze im Kleinformat…

Experiment: Kupfermünzen reinigen: Ihr braucht dazu

  • Kupfermünzen (nachweislich funktionieren Euro-Cents, britische Pennys und US-Cents, Münzen mit messinggoldener Oberfläche wie das Schweizer Füüferli oder tschechische 20 Kronen bringen kein gutes Ergebnis)
  • Haushaltsessig
  • Kochsalz
  • leeres Glas (z.B. Gewürzglas, praktisch mit gewölbtem Boden)
  • ggfs. Schutzbrille und Kittel für die Nachwuchs-Forscher

Haushaltsessig und andere Säuren wirken ätzend! Essigsäure ist jedoch eine schwache Säure, die unserer Haut dank deren Säureschutz nicht gleich Schaden zufügt. Deshalb trage ich beim Umgang mit solch kleinen Mengen keine Handschuhe.

Wenn ihr Essig auf die Haut bekommt, spült ihn einfach gründlich mit Wasser ab. Sollte euch ein Spritzer in die Augen geraten (die Schutzbrille sollte das verhindern!), spült die Augen sehr gründlich mit fliessendem Wasser aus (10 Minuten lang heisst es im Labor!) und geht bei bleibenden Beschwerden zur Sicherheit zum Augenarzt.

Wenn Spritzer auf die Kleidung kommen, zieht sie aus und wascht sie ebenfalls sofort sehr gründlich aus. Wenn die Säure die Textilien angreift, können sonst später beim Waschen in der Maschine noch Löcher entstehen!

So geht’s

Experiment

Gebt ca. 1 cm hoch Haushaltsessig ins Glas, dann eine angelaufene Kupfermünze hinein. Schliesslich gebt ihr reichlich – etwa einen Teelöffel – Kochsalz hinzu.

Münze im Essig-Kochsalz-Bad: Ein paar Sekunden reichen – ihr könnt zuschauen, wie sie blank wird! Das Kochsalz muss sich übrigens nicht vollständig im Essig lösen. Direkt auf die Münze gegeben wirkt es am besten.

Kupfertopf reinigen

Gebt einen Schuss Essig auf euren Lappen und streut Kochsalz auf den nassen Fleck. Nicht damit sparen! Dann poliert euren Kupfertopf oder Messinggegenstand mit dem Gemisch. Sobald der Topf blank ist, könnt ihr ihn mit einer kleinen Menge Speiseöl einreiben, damit er nicht sogleich wieder anläuft.

Was ihr beobachten könnt

Beim Experimentieren

Die dunkel angelaufene Kupfermünze wird innerhalb von Sekunden hell! Fischt die Münze aus dem Glas, sobald sie hell genug ist (eine Gabel ist dabei sehr hilfreich) und spült sie kurz mit Wasser ab.

Kupfermünze mit Essig und Kochsalz gereinigt: Die linke Münze ist nach wenigen Sekunden im Essig-Salz-Bad blank, die rechte, angelaufene dient als Vergleich
Rechts: Angelaufene 2-Eurocent-Münze; Links: eine vergleichbar angelaufene 2-Eurocent-Münze nach wenigen Sekunden im Essig-Kochsalz-Bad

Beim Reinigen des Kupfertopfes oder Messinggegenstandes

Das Kupfer oder Messing wird sofort blank, wie beim Putzen mit einer kommerziellen Reinigungspaste!

Entsorgung

Kupferionen sind giftig für Wasserorganismen und andere Kleinstlebewesen. Deshalb gehören sie grundsätzlich als Sondermüll entsorgt. Die winzigen Mengen, welche beim Experimentieren mit Münzen entstehen, könnt ihr aber mit dem Essig-und-Salz-Gemisch in den Abfluss entsorgen.

Die Papiertücher, mit welchen ihr Kupfertöpfe und Messing putzt, könnt ihr in den Hausmüll geben oder – wenn ihr die Kupfergeschirr-Komplettausstattung eurer Profi-Küche poliert und so grössere Mengen erzeugt habt 😉 – trocknen lassen und zur Sonderabfall-Sammelstelle bringen.

Was passiert da?

Die dunkle Farbe angelaufenen Kupfers ist ein Belag aus Kupferoxiden, hauptsächlich aus schwarzem Kupfer(II)oxid (CuO). Dieses Salz besteht aus Cu2+– und O2- -Ionen. Cu2+-Ionen können sich in Wasser lösen, wobei sie von Wassermolekülen umgeben werden.

Dabei nehmen sechs Wassermoleküle der innersten Wasserschicht um ein Cu2+-Ion ganz bestimmte, geometrische Positionen ein: Die Ecken eines lang gezogenen Oktaeders.

Hexaaquakupfer(II) - Komplex: Die beiden H2O auf der Längsachse sind etwas weiter vom Kupfer entfernt als die vier übrigen
Der Hexaaquakupfer(II)-Komplex: Die Pfeile deuten die Bindungen durch “geliehene” Elektronenpaare an. Die Wassermoleküle markieren die Ecken eines Oktaeders (eine viereckige Doppelpyramide), wobei die beiden Moleküle oben und unten etwas weiter weg vom Kupfer sind als die übrigen vier. Die Folge: Der Oktaeder erscheint etwas in die Länge gezogen.

Wie sie dazu kommen? Ein Cu2+-Ion hat relativ wenig Elektronen (immerhin zwei weniger, als zum Ausgleich seiner Kernladung nötig wären). Wassermoleküle hingegen haben – zumindest am Sauerstoff-Ende – ziemlich viele davon, und zwar ganze zwei äussere Elektronenpaare, die für keine chemische Bindung innerhalb des Moleküls gebraucht werden. So können Wassermoleküle eines dieser nichtbindenden Elektronenpaare einem Cu2+-Ion “ausleihen”.

Damit entsteht eine chemische Bindung zwischen Wasser und Kupfer-Ion, die von den Chemikern “koordinative Bindung” oder “Komplexbindung” genannt wird. “Komplex” ist daran allerdings nur, dass ein Bindungspartner dem anderen ein Elekronenpaar ausleiht, anstatt dass wie bei der kovalenten oder Atombindung jeder Partner ein Elektron dazu beisteuert.

Komplexbildungsreaktionen sind Gleichgewichtsreaktionen

Cu2+-Ionen sind nun damit zufrieden, von sechs geliehenen Elektronenpaaren jeweils ein Bisschen zu haben. Allerdings lange nicht so zufrieden wie damit, einen Platz in einem CuO-Kristallgitter zu haben.

Stets kehren Cu2+-Ionen aus der Lösung in das Kristallgitter zurück: Die [Cu(H2O)6]2+ – Komplexe befinden sich stets mit dem Kupfer-Ionen im Kristallgitter in einem chemischem Gleichgewicht (Le Chatelier erklärt euch das Gleichgewicht hier auf dem Flughafen genauer).

Dieses Gleichgewicht liegt in Wasser allerdings ganz weit auf der Seite des Salzkristalls, es sind nur ganz wenige [Cu(H2O)6]2+ -Komplexe in Lösung.

Kochsalz übt einen Zwang aus

Gibt man nun reichlich Kochsalz (NaCl) in das Wasser, löst sich dessen Gitter auf: Na+– und Cl-Ionen gehen einzeln ins Wasser über . Die Cl-Ionen können ebenfalls Komplexe mit Kupfer bilden: Sie können Wassermoleküle im [Cu(H2O)6]2+ ersetzen, sodass Komplexe wie [Cu(H2O)5Cl]+ entstehen:

Die Art Reaktion nennen die Chemiker “Ligandenaustauschreaktion”: Die Teilchen, welche dem Kupfer-Ion (dem “Kern”) im Zentrum des Komplexes die Elektronenpaare leihen, heissen nämlich “Liganden” (von lateinisch ligare = binden).

Durch solche Reaktionen können bis zu vier Wassermoleküle ausgetauscht werden. Die zwei verbleibenden Wassermoleküle bilden nun die Spitzen des langgezogenen Oktaeders.

Tetrachlorocuprat(II) in wässriger Lösung: Der quadratisch-planare Kupfer-Komplex wird von zwei Wassermolekülen zum langgezogenen Oktaeder ergänzt.
Tetrachlorocuprat(II): So heisst der Komplex, welcher entsteht, wenn die maximal mögliche Anzahl Wassermoleküle gegen Chlorid-Ionen ausgetauscht wird.

All diese Komplexe stehen miteinander im Gleichgewicht. Das schiere Überangebot an Cl-Ionen allein sorgt dafür, dass diese Gleichgewichte jeweils auf die Seite mit mehr Chlorid im Komplex gedrängt werden. So einem Zwang wie dem Cl-Überschuss will das ganze System nämlich ausweichen.

Der Knackpunkt dabei: Durch die Entstehung der Komplexe mit Chlorid wird dem Gleichgewicht zwischen CuO und gelösten Kupferionen das  [Cu(H2O)6]2+ entzogen! Laut dem Prinzip von Le Chatelier strebt das Gleichgewicht danach, auh diesen Verlust auszugleichen: Der Verlust der Kupferionen mit reiner Wasserhülle zieht das Gleichgewicht förmlich auf die Seite des gelösten [Cu(H2O)6]2+. So geht in der Anwesenheit von reichlich Cl mehr Cu2+ aus dem CuO in Lösung.

Und was tut der Essig dabei?

Mit Kochsalz und blossem Wasser funktionieren diese Ligandenaustauschreaktionen kaum: Das Kupferoxid bleibt an der Oberfläche haften – der Kupfertopf bleibt dunkel.

So lautete meine erste Vermutung Die Säure (Haushaltsessig ist nichts anderes als Essigsäure gelöst in Wasser) fördert irgendwie die Entstehung der chloridhaltigen Komplexe. Befriedigend war diese Erklärung aber lange nicht.

Deshalb habe ich meine Chemiker-Gedanken weiter gesponnen und bin zu folgender Erklärung gelangt:

Wenn Cu2+-Ionen aus dem CuO in Lösung gehen, müssen die O2--Ionen aus dem Gitter auch irgendwo hin. Allerdings können die nicht einfach von Wassermolekülen umgeben existieren. Stattdessen reagieren sie mit dem Wasser zu OH-Ionen:

Auch zwischen diesen Reaktionspartnern besteht ein Gleichgewicht, das nicht all zu weit auf der Seite der OH-Ionen liegen mag. Ist im Wasser allerdings eine Säure (ein Stoff, der mit Wasser H3O+-Ionen erzeugen kann) vorhanden, reagieren die OH-Ionen allerdings gleich wieder zu Wasser:

Diese Gleichgewichtsreaktion nennen die Chemiker “Neutralisation”! Es liegt nämlich recht weit auf der Wasser-Seite, sodass eine Säure wie H3O+ und eine Base wie OH ganz von selbst miteinander reagieren. Durch den “Verbrauch” von OH-Ionen durch die Neutralisation wird wiederum das Gleichgewicht zwischen O2- im CuO-Gitter und den OH-Ionen in Lösung auf die OH-Seite gezogen.

Zum besseren Überblick habe ich die wichtigsten Gleichgewichte und ihre Abhängigkeiten voneinander noch einmal zusammengefasst:

Überblick über die Gleichgewichtsreaktionen: So löst sich Kupfer in Essig mit Kochsalz
Die roten Pfeile deuten die Verlagerung der Gleichgewichte an: Die Reaktionen ganz rechts “ziehen” die Gleichgewichte weiter links auf die Seite der Lösung: Das Kupferoxid an der Kupferoberfläche wird aufgelöst!

Wenn meine Erklärung zutrifft, müsste das Ganze auch mit Kochsalz in anderen Säuren funktionieren. Ich habe es ausprobiert: Kochsalz in Zitronensäure zeigt beim Polieren die gleiche Wirkung.

Aber Kupfer(II)-Komplexe sind doch farbig?

Die Chemie-Erfahreneren unter euch wissen vielleicht, dass die Komplexe mit Cu2+-Ionen eigentlich sehr farbig sind: [Cu(H2O)6]2+ ist zum Beispiel cyanblau, während die chloridhaltigen Komplexe zunehmend grün sind. Warum sieht man dann beim Reinigen der Münzen die Farben nicht?

Ich gehe davon aus, dass diese Komplexe insgesamt in so kleiner Menge entstehen, dass uns die äusserst blasse blau-grüne Färbung schlichtweg nicht auffällt.


Wie verträglich ist die Reinigung mit Essig und Kochsalz für die Kupfer-oberfläche?

Durch die Ligandenaustauschreaktionen wird das Kupfer-Metall nicht wieder hergestellt. Stattdessen wird bereits oxidiertes Kupfer in Wasser gelöst, sodass es abgewaschen werden kann. Wie bei allen anderen mir bekannten Mitteln zur Entfernung von Korrosionsspuren würde auch dieses bei wiederholtem Putzen irgendwann das Metall “aufbrauchen”.

Im praktischen Gebrauch bei der Reinigung von Kupfertöpfen und ähnlichen Gegenständen fällt diese Verlust jedoch nicht ins Gewicht. Zudem gehe ich davon aus, dass kommerzielle Reinigungspasten nach dem gleichen Prinzip funktionieren. Ihr könnt also getrost eure Kupfertöpfe mit Essig und Kochsalz polieren.

Und Messingoberflächen?

Messing ist eine Legierung – also ein Gemisch – aus den Metallen Kupfer und Zink. Auch in Messing sind also Kupferatome enthalten, die, wenn sie zu CuO oxidiert werden, dem Metall ein dunkles, stumpfes Aussehen geben. Damit sollte sich dieses Problem mit Hilfe der selben Reaktionen beheben lassen.

Tatsächlich habe ich auch den Messinggriff meines Kupfertopfes problemlos mit Essig und Kochsalz polieren können. Lasst dabei jedoch die Mischung nicht unnötig lange einwirken, sondern spült sie gleich nach dem Putzen ab!

Beim Experimentieren mit Messingmünzen habe ich nämlich festgestellt, dass die Mischung Zink oder/und andere Bestandteile der Legierung aus der Oberfläche herauslösen kann. Die Folge: Die ehemals messinggoldene Oberfläche wird zwar blank, aber rot wie Kupfer!

Zink ist nämlich ein ziemlich unedles Metall, sodass es von der Säure angegriffen werden könnte. Die Säurekorrosion habe ich hier zur Rostparade oder zum Anhören in der neuen Folge des Proton-Podcasts (erscheint in Kürze) erklärt.

Bild: Tschechische 20-Kronen-Münze rot verfärbt

Was euch die Verwendung dieses Hausmittels bringt

Wie bereits erwähnt vermute ich, dass im Handel erhältliche Reinigungspaste für Kupfer und Messing auf die gleiche Weise funktioniert wie das Gemisch aus Säure und Kochsalz – nämlich mit Chemie. Welchen Vorteil habt ihr dann aber von diesem Hausmittel?

Wie ihr seht: Ohne Chemie geht nichts im Haushalt. Anders als bei einer Reinigungspaste aus dem Handel wisst ihr beim Einsatz eines solchen Hausmittels oder Chemie-Hacks ganz genau, welche Chemie bzw. Chemikalien darin enthalten sind. Nämlich garantiert nichts, was euch gefährlich werden könnte (so lange ihr das Kochsalz nicht löffelweise esst oder euch die Säure in die Augen spritzt – aber das versteht sich ja von selbst). Das ist doch ein beruhigender Gedanke, oder?

Und wie reinigt ihr Kupfer und Messing in eurem Haushalt?

Kalkfänger aus Edelstahl-Wolle

Eine Leserin hat einen Kalkfänger gekauft: Einen Ring aus Edelstahl-Wolle, welchen man in einen Wasserkocher oder eine Kaffeemaschine legen kann. Dort soll er den Kalk daran hindern, sich an Wänden und Boden des Wasserbehälters abzusetzen. Doch wie funktioniert so ein Kalkfänger? Wie verwendet man ihn richtig? Und birgt so ein Ring Gesundheitsgefahren?

Wie funktioniert ein Kalkfänger?

Wenn du den Kalkfänger verstehen möchtest, musst du zunächst wissen, was er eigentlich fangen soll.

Was ist Kalk?

Kalk, eigentlich Calciumcarbonat, ist eine Verbindung aus zweierlei Ionen, nämlich Calcium- (Ca2+) und Carbonat (CO32-) – Ionen, die sich zu einem festen Kristallgitter zusammenlagern können. Solch eine Ionenverbindung wird kurz und bündig auch “ein Salz” genannt.

Wie der Name vermuten lässt, gehört auch das jedem bekannte Kochsalz zu den ionenverbindungen. Sowohl die Ionen des Kochsalzes (Na+ und Cl) als auch die Ionen des Kalks können sich in Wasser lösen. Das heisst, ein jedes Ion kann sich frei zwischen den Wassermolekülen bewegen. Anders als die Paarung von Na+ und Cl im Kochsalz sind Ca2+ und  Hydrogencarbonat (HCO3), das beim Auflösen aus CO32- entsteht, in Wasser nur wenig darauf erpicht, voneinander zu lassen: Kalk ist sehr viel weniger gut wasserlöslich als Kochsalz.

Das bedeutet, dass schon wenige anfangs gelöste Calcium- und Carbonat-Ionen sich schnell zu einem festen Ionenkristall zusammenlagern, sobald die äusseren Bedingungen sie dazu “auffordern”. Und eine dieser Aufforderungen besteht in der Zunahme der Wassertemperatur – also beim Erhitzen des Wassers im Kochgerät.

Wenn du dich ein wenig mit Chemie auskennst, weisst du vielleicht, dass eine höhere Temperatur des Lösungsmittels normalerweise dazu führt, dass sich Salze besser darin lösen. Die Fällungs.Reaktion, die zur Kalk-Entstehung führt, ist allerdings eine ganz besondere:

Aus den in Wasser (aq) gelösten Ionen entsteht neben festem (s) Kalk (CaCO3) und Wasser das Gas (g) Kohlenstoffdioxid (CO2)! Kohlenstoffdioxid löst sich wiederum in Wasser oder verflüchtigt sich in die Umgebungsluft – beides um so besser, je höher die Temperatur des Ganzen ist. Der  in der Gleichung deutet an, dass sich alle genannten Beteiligten miteinander in einem dynamischen Gleichgewicht befinden. Le Châtelier erklärt das auf dem Flughafen genauer. Hier sei nur dass nach ihm benannte Gesetz benannt, welches besagt, dass solche Gleichgewichte einem auf sie ausgeübten Zwang stets ausweichen. Entfernt man also CO2 auf der “rechten” Seite – zum Beispiel. durch Lösen oder Verdampfen – reagieren mehr Ionen zu CO2, um dieses zu ersetzen. Dabei entstehen dann zwangsläufig auch Wasser und fester Kalk.

In unserem Leitungswasser sind nun immer mehr oder weniger Calcium- und Carbonat-Ionen enthalten. Und sobald wir das Wasser in einem Schnellkocher oder einer Kaffeemaschine zum Kochen oder nahe daran bringen, verschiebt sich das “Kalk-Kohlensäure-Gleichgewicht” darin nach “rechts”, auf die Seite mit dem festen Kalk., In Folge dessen ordnen sich die Ionen auf den an die Lösung grenzenden festen Oberflächen (Wand und Boden des Kochgefässes) zu festen, als “Kalk” bekannten Strukturen an.

Wie alles, was in Eile entsteht, haben solche Kalkschichten auf den ersten Blick wenig mit symmetrischen weil sorgfältig aufgebauten Kristallen gemein. Stattdessen sind sie rauh, weisslich, formlos und oft porös, sodass sie vielerlei Kleinstlebewesen wie Bakterien oder Pilzen Lebensraum bieten können. So macht Kalk sich in der Küche gleich mehrfach unbeliebt.

Kalk unter dem Elektronenmikroskop

Erst unter dem Elektronenmikroskop wird erstichtlich, dass Kalk – auch bekannt als “Kesselstein” – aus symmetrischen Kristallen besteht. Stefandiller at the German language Wikipedia [CC-BY-SA-3.0], via Wikimedia Commons

Wie kalkhaltig ist mein Wasser?

Kalkhaltiges Wasser wird landläufig auch als “hartes” Wasser bezeichnet – vermutlich, weil daraus feste, also harte Ablagerungen hervorgehen können. Die Wasserhärte wird je nach Land in verschiedenen “Härtegraden” angegeben. Der einfachen Messbarkeit halber steht ein Härtegrad für die Menge an gelösten Metallionen ( Ca2+ und – für alle, die es genau nehmen – auch das chemisch eng verwandte Magnesium-Ion Mg2+) in einem bestimmten Wasser-Volumen – also für die Konzentration derselben.

In Deutschland und Österreich wurde früher der deutsche Härtegrad °dH verwendet, wobei 1°dH einer Konzentration von rund 0,18 Millimol Ionen pro Liter Wasser (über die Stoffmengeneinheit mol kannst du hier mehr erfahren!) entspricht. In der Schweiz verwendet man bis heute den französischen Härtegrad °fH, der wesentlich weniger krumm definiert ist: 1°fH entspricht 0,1 Millimol Ionen pro Liter Wasser (das entspricht übrigens einem Metall-Ion auf 10000 Wasser-Moleküle).

Wie hart das Leitungswasser in deiner Region ist, kannst du im Netz nachschlagen. Hier gibt es Übersichtskarten für die Schweiz, für Deutschland und für Österreich. In meiner Heimatgemeinde am oberen Zürichsee ist das Wasser demnach mittelmässig hart.

Wie kann Stahlwolle das Verkalken verhindern?

Damit Kalk sich ablagern kann, braucht es stets eines: Eine Oberfläche, auf der die ersten Ionen Platz finden. Normalerweise haben sie da im Wasserkocher keine grosse Wahl – ihnen bleibt nur die meist glatte Fläche von Boden und Wänden des Gefässes.

Stahlwolle besteht jedoch aus einer Vielzahl feiner, auf engem Raum miteinander verworrener Bänder oder Drähte, die zusammengenomme eine vielfach grössere Oberfläche als der Wasserbehälter haben. Wenn Kalk sich absetzt, suchen sich die Ionen im Wasser in zufälliger Reihenfolge die nächstbeste Oberfläche, um sich dort anzuordnen. Und wenn nun 9 von 10 Teilen der gesamten verfügbaren Oberfläche zum herausnehmbaren Stahlring gehören, werden sich so 9 von 10 absetzwilligen Ionen darauf niederlassen, während nur eines auf der Gefässwand landet.

Demnach verkalken die Gefässwände, wenn ein solcher gedachter Kalkfänger zum Einsatz kommt, im Idealfall 10 mal langsamer als ohne.

 

Wie wende ich den Kalkfänger richtig an?

Die Erklärung macht deutlich: Ein Kalkfänger kann die Ablagerung von Kalk im Wasserkocher niemals verhindern, sondern nur verlangsamen. Noch weniger kann er bereits vorhandene Kalkrückstände entfernen!

Um die beste Leistung aus deinem Kalkfänger aus Stahlwolle herauszuholen, beachte daher folgendes:

  1. Verwende den Kalkfänger nur in einem kalkfreien, also frisch entkalkten oder neuen Kochgefäss.
  2. Entkalke das Kochgefäss künftig merklich seltener als zuvor 🙂 .
  3. Wenn Kalkablagerungen auf bzw. in dem Stahlring sichtbar werden, wasche ihn aus oder lege ihn eine Weile in Kalklöser ein.
  4. Je härter dein Leitungswasser ist, desto grösser wird der Bruchteil der Ionen sein, die trotz Stahlwolle den Weg auf die Gefässwände finden (wie auch der Anteil auf der Stahlwolle grösser ist, sodass der Ring ggfs. öfter gereinigt werden muss).

 

Wie kann ich mein Gefäss und den Kalkfänger entkalken?

Die Ionenverbindung Calciumcarbonat leitet sich von der Kohlensäure ab – einer sehr schwachen Säure. Eine Gesetzmässigkeit der Chemie besagt, dass stärkere Säuren die einer schwächeren Säure verwandten Salze auflösen können. In Folge dessen kann man Kalkablagerungen mit praktisch jeder gängigen Säure ein Ende machen.

Fülle einfach das zu entkalkende Gefäss mit Wasser und gib gemäss der Dosierungsanleitung auf der Packung Essig bzw. Zitronensäure dazu (je mehr Kalk zu beseitigen ist, desto mehr Säure wirst du brauchen) und warte ein paar Stunden.

Ich bevorzuge zu diesem Zweck Essigsäure (z.B. Essigessenz, Haushaltsessig) oder Zitronensäure in Wasser. Diese beiden organischen Säuren bzw. ihre Verbindungen sind nicht nur Bestandteil vieler Lebensmittel, sondern auch unseres Körpers. So ist es völlig unbedenklich, sollten wir ein wenig davon aufnehmen. Im Gegenteil: In Zitrusfrüchten bzw. Salatsauce schätzen wir sie schliesslich sehr.

Essigsäure kannst du auch aufkochen (Zitronensäure kann dabei das ebenfalls schwerlösliche Salz Calciumcitrat bilden, die also nicht zu stark erhitzen!) – die aufsteigenden Dampfblasen helfen dabei, die Kalkablagerungen von der Gefässoberfläche abzulösen – dann geht die Reinigung schneller.

Achte nur darauf, dass keine Säurespritzer in deine Augen kommen – auch Essig und Zitronensäure wirken ätzend!

Der Nachteil dieser beiden Säuren ist ihr deutlicher Eigengeruch und -geschmack. Wenn du also kein Zitronen- bzw. Essig-Aroma in deinem Tee oder Kaffee wünschst, spüle dein Kochgerät bzw. den Kalkfänger nach dem Entkalken sehr gründlich aus.

 

Birgt ein Kalkfänger Gesundheitsgefahren?

Kurz gesagt: Nein. Kalkfänger bestehen aus rostfreiem Edelstahl, also aus einer Legierung hauptsächlich aus metallischem Eisen und Chrom, und Spuren weiterer Elemente wie Mangan, Silizium und Kohlenstoff. Kochgeschirr, Essbesteck, Küchenoberflächen und viele andere Geräte bestehen aus demselben Material, weil es einige sehr nützliche Eigenschaften in sich vereint:

  • Stahl ist für ein Metall bzw. ein Gemisch aus Metallen vergleichsweise hart, sodass er auch bei Beanspruchung weitgehend glatt und daraus gefertigte Klingen oder Kanten scharf bleiben.
  • Die Hauptbestandteile, Eisen und Chrom, und die Stahlherstellung sind vergleichsweise preisgünstig (ein Kalkfänger aus Goldwolle würde wohl auch funktionieren – den würde nur kaum jemand bezahlen wollen).
  • Wie der Name sagt, rostet “rostfreier” Stahl unter normalen Umständen – und die schliessen Kochvorgänge mit Wasser ein – nicht. Das heisst, er wird von Sauerstoff und Wasser nicht angegriffen und oxidiert (mehr zu Rost und Korrosion erfährst du hier).

Die Beständigkeit gegenüber Korrosion bringt überdies mit sich, dass Edelstahl in der Küche – also auch Kalkfänger aus Edelstahl-Wolle – gesundheitlich unbedenklich sind. Schliesslich sind sie dazu geschaffen, sich nicht aufzulösen. Und sollte sich dennoch im Zuge eifrigen Kochens das ein oder andere Atom aus der Metalloberfläche lösen, gelten für diese Abtrünnigen zwei Dinge:

  • Ungeladene Eisen- und Chromatome, wie sie in einer Metalloberfläche vorkommen, haben für Reaktionen in Lebewesen praktisch keine Bedeutung. Erst, wenn sie oxidiert und damit zu Ionen werden, stellt sich die Frage nach ihrem Nutzen oder ihrer Giftigkeit.
  • Eisen-Ionen erfüllen im Körper lebenswichtige Aufgaben (zum Beispiel als Bestandteil des roten Blutfarbstoffs) und sind daher ein wichtiger Bestandteil unserer Nahrung. Auch Chrom-Ionen (Cr3+) sind Bestandteil unseres Körpers – ob sie dort einen besonderen Nutzen haben, ist hingegen umstritten. Damit sind weder Eisen- noch Cr3+-Ionen dem menschlichen Körper fremd. Selbst wenn sich also ein paar Metall-Atome aus einem Kalkfänger davonmachen und oxidiert werden (Magensäure kann das beispielsweise!), schaden sie der Gesundheit nicht.

 

Wie sinnvoll ist der Einsatz eines Kalkfängers tatsächlich?

Ich habe noch nie einen Kalkfänger verwendet. Das Beitrag zeigt daher ein Stahlwolle-Knäuel, das zum Reinigen von Töpfen verkauft wird – aber genauso gut als Kalkfänger funktionieren sollte.

In den Kundenbewertungen verschiedener Anbieter im Netz scheiden sich jedoch über dem Nutzen oder Nicht-Nutzen der Stahlwolle die Geister. Ein guter Teil der schlechten Erfahrungen geht wahrscheinlich auf falsche Erwartungen bzw. Anwendungsfehler zurück. Letztendlich gebe ich diese Frage aber an euch zurück:

Habt ihr schonmal einen Edelstahl-Kalkfänger eingesetzt? Hat er in euren Augen funktioniert? Wie weit könnt ihr damit das Entkalken eures Kochgeräts hinausschieben? Teilt eure Erfahrungen in den Kommentaren mit uns!