Beiträge

Wahrheit über Energie : Ihre Erscheinungsformen in Formeln

Dieser Artikel ist ein Beitrag zum ScienceBlogs Blog-Schreibwettbewerb 2015. Deshalb gibt es ihn für einmal auswärts zu lesen – und eure Mitwirkung ist gefragt!

Was ist Energie? Wie tritt Energie in Erscheinung? Wie können wir Energie erschaffen? Wie sieht die Zukunft der Energie aus?

Die Energie selbst hat sich mit einigen Antworten an die Menschheit gewandt:

 

Werte Menschen,

Ihr kennt mich alle – oder glaubt vielmehr mich zu kennen: Ich bin die Energie. Keine eurer Naturwissenschaften kommt heute ohne mich aus, ich beschäftige ganze Parlamente, und die Spirituellen unter euch haben oft eine ganz eigene Vorstellung von mir. Wer ich bin, erscheint da geradezu simpel und selbstverständlich. Aber kennt ihr mich wirklich so gut?

 

Ob ihr die Energie wirklich so gut kennt, könnt ihr in meinem Wettbewerbsbeitrag auf Astrodicticum Simplex nachlesen und eure eigene Stimme beim Leser-Voting hinterlassen. Die Einzelheiten zu Ablauf und Abstimmung sind am Anfang des Wettbewerbsbeitrags verlinkt!

Schmelzwärme und ein AHA-Erlebnis

Dies ist eine wahre Geschichte um das rätselhafte Verschwinden von Wärme und davon, wie dieses Rätsels Lösung mein Leben prägte und zur Entstehung von Keinsteins Kiste führte. Zu all dem hat vor 20 Jahren das AHA-Erlebnis meines Lebens geführt, welches ich – ursprünglich im Rahmen einer Blogparade um AHA-Erlebnisse auf einem Blog, der heute nicht mehr existiert – hier mit euch teilen möchte.

 

Ein Versuch vor 20 Jahren

Als ich mit knapp 13 Jahren in meine erste Chemie-Stunde am Gymnasium ging, war meine Welt noch einfach. In der Physik war die Mechanik noch klassisch, und wenn man Dinge auf eine laufende Herdplatte stellte, wurden sie warm. Und zwar je länger man heizt, desto wärmer. Das hatte ich bis anhin bloss noch nicht mit Eiswasser probiert.

Genau das tat jedoch unser Chemielehrer in besagter erster Chemie-Stunde. ‘Eiswasser’ meint einen Topf voll Eiswürfel, der mindestens bis zur Hälfte mit Leitungswasser aufgefüllt wird. Der Topf samt Eiswasser wurde unter stetem Rühren gleichmässig erhitzt. Ein Quecksilber-Thermometer zeigte dabei laufend die Temperatur des Topfinhaltes an.

Begonnen hat der Versuch mit einer Temperatur von vielleicht -5°C, welche für Eiswürfel in Wasser nicht ungewöhnlich ist. Und anfangs ist sie dann auch ganz wie erwartet angestiegen. Bei 0°C war dann aber unvermittelt Schluss mit dem Anstieg. Die Temperatur des Eiswassers blieb bei 0°C, von geringfügigen Schwankungen (nichts und niemand rührt perfekt gleichmässig ) einmal abgesehen. Da konnte der Lehrer so viel heizen, wie er wollte, es nützte gar nichts. Nur die Eiswürfel schmolzen immer weiter dahin.

 

Die Welt aus den Angeln gehoben: Wohin verschwindet die Wärme?

Schon bald wurde mir bei der Sache ziemlich unbehaglich. Wohin verschwand die Wärme, die eigentlich von der Herdplatte in Topf und Inhalt übergehen sollte? Einen Energie-Erhaltungssatz, der das grundlose Verschwinden und Entstehen von Wärme verbietet, hatte es zu jener Zeit in meiner Welt schon gegeben ( spätestens nach “Jim Knopf und die wilde 13” hatte mein Vater mir die Hauptsätze der Thermodynamik darlegen müssen, um mich vom Nachbau des “Perpetumobils” abzubringen – aber das ist eine andere Geschichte).

So nagte in mir die Frage, was mit der verschwindenden Wärme geschah. Hatte das Ganze mit dem Schmelzen der Eiswürfel zu tun? Würde die Welt wieder in Ordnung kommen, wenn alles Eis geschmolzen wäre? Die Unterrichtsstunde reichte nicht aus, um so lange zu warten. Aber als der Lehrer anbot, mit einem Freiwilligen in der grossen Pause noch einmal nachzusehen, wenn er den Versuch bis dahin weiterlaufen liesse, war ich auf der Stelle mit dabei.

Und zu meiner grossen Freude war die Welt in der Pause tatsächlich wieder in Ordnung: Das Eis war geschmolzen und die Temperatur im Topf stieg langsam wieder an. Erklärt war die verschwundene Wärme damit aber noch lange nicht. Meine Neugier war hingegen geweckt.

 

Wie Entwicklungs-Psychologen das AHA-Erlebnis beschreiben

Eineinhalb Jahrzehnte später sollte ich dann erfahren, was damals Bewegendes in mir vorgegangen ist, und weshalb mir jener Versuch zeitlebens in Erinnerung geblieben ist: In der Vorlesung zur pädagogischen Psychologie im Rahmen meiner Lehrerausbildung haben wir zwei unterschiedliche Lernwege kennengelernt.

Der übliche Lernweg besteht darin, dass eine neue Information, die in unser bestehendes Konzept unserer Welt passt, darin eingeordnet, also hinzugefügt wird. Dieses Vorgehen wird von den Fachleuten Assimilation genannt und findet zum Beispiel statt, wenn wir wissen, dass Wasser bei 0°C gefriert, und erfahren, dass Alkohol, eine andere Flüssigkeit, ebenfalls gefrieren kann, aber bei einer tieferen Temperatur.

Wenn unser Gehirn jedoch mit einer Information konfrontiert wird, die nicht ins bestehende Konzept passt, muss es den zweiten, wesentlich aufwändigeren Lernweg gehen: Was nicht passt, wird passend gemacht. Und da eine erhaltene Information nicht willkürlich geändert werden kann, muss zwangsläufig das Konzept angepasst werden. Die Fachleute nennen diesen Vorgang Akkomodation. Das Ergebnis einer solchen Anpassung ist mitunter ein regelrechtes AHA-Erlebnis, welches mehr oder minder tiefgreifende Folgen nach sich zieht.

 

Die Wärme verschwindet nicht: Kleine Teilchen liefern die Lösung

Im Falle des Eiswasser -Versuchs hat spätestens in der nächsten Unterrichtsstunde mein Chemielehrer die Welt wieder gerade gerückt: In den Augen der Chemiker (und auch der anderen Naturwissenschaftler) bestehen alle Stoffe aus unzähligen kleinen Teilchen. In einem Feststoff wie Eis sind diese Teilchen in regelmässiger Ordnung zusammengepackt, etwa wie ein Stapel Waren auf einer Euro-Palette. Anders als die Waren, die ruhig auf der Palette liegen (sollten), zittern die Teilchen im Feststoff jedoch ständig, und zwar umso stärker, je wärmer sie werden. Was wir als Wärme wahrnehmen, ist also nichts anderes als die Zitter-, oder besser Schwingungsenergie vieler, vieler kleiner Teilchen.

Wenn diese Teilchen irgendwann eine bestimmte Wärmemenge aufgenommen haben, können sie schliesslich aus der Ordnung ausbrechen und sich frei gegeneinander bewegen. Auf diese Weise entsteht aus einem Feststoff eine Flüssigkeit. Und Teilchen, die sich von einem Ort zum anderen bewegen, haben eine Bewegungsenergie, die sie zuvor im Feststoff nicht hatten (die Schwingungsenergie bleibt ihnen zusätzlich erhalten, denn auch die Teilchen der Flüssigkeit zittern munter weiter).

 

Übergänge zwischen den drei Aggregatzuständen


Die drei alltäglichen Aggregatzustände von Stoffen im Teilchenmodell: Beim Übergang vom Feststoff zur Flüssigkeit, dem Schmelzen, wird Wärme in Bewegungsenergie der Teilchen umgewandelt (ebenso wie bei allen anderen durch rote Pfeile dargestellten Übergängen). Beim jeweiligen Übergang in umgekehrter Richtung (blaue Pfeile) wird dieselbe Menge Energie wiederum in Wärme umgewandelt.

Die Bewegungsenergie der Teilchen entsteht – gemäss dem Energie-Erhaltungssatz – nicht aus dem Nichts, sondern durch Umwandlung der von der Herdplatte ausgehenden Wärme. So kann ein Stoff nicht weiter erwärmt werden, während er schmilzt. Die zum Schmelzen einer bestimmten Menge Teilchen aufzuwendende Wärmemenge wird dementsprechend Schmelzwärme oder auch Schmelzenthalpie genannt.

Beim Verdampfen einer Flüssigkeit spielt sich übrigens das Gleiche ab: Die Flüssigkeit wird nicht wärmer, während sie verdampft, da eine Verdampfungswärme genannte Wärmemenge aufgewendet wird, um der Bewegungsenergie der Teilchen eine neue Note zu verleihen (im Gaszustand bewegen die Teilchen sich frei im Raum anstatt im Verbund gegeneinander!).

 

Meine prägende Erkenntnis aus meiner ‘Entdeckung’ der Schmelzwärme

Mit der Akkomodation meines Konzepts von Energie durch die Einführung einer mir völlig neuen Erscheinungsform der Energie in Gestalt der Bewegung kleiner Stoffteilchen, konnte ich nun das Kaltbleiben des Eiswassers auf der Herdplatte einordnen, ohne dass der erste Hauptsatz der Thermodynamik, der Energieerhaltungssatz, verletzt wurde.

Die “Entdeckung” der Schmelzwärme als solche wäre mir jedoch nicht über 20 Jahre so präsent im Gedächtnis geblieben. Eingeprägt hat sich mir vielmehr das überwältigende Gefühl, zunächst an die Grenzen der eigenen Welt zu stossen und diese dann zu aufregenden neuen “Ufern” hin zu überschreiten. Und die Erkenntnis, die jenes erste Überschreiten in mir keimen liess: Die Welt birgt hinter unserem Tellerrand erstaunliche Geheimnisse. Und wir können sie entdecken und staunen, wenn wir nur genau hinschauen!

Von jenem Tag war mein Hunger nach solchen Geheimnissen und dem überwältigenden Gefühl ihrer Enträtselung geweckt und die Welt der kleinen Teilchen hat mich nicht mehr losgelassen. Mit den Jahren ist neben diesem Hunger auch der Wunsch, meine Faszination zu teilen, gewachsen. So habe ich inzwischen nicht nur die kleinen Teilchen studiert, sondern auch die Lehrerausbildung in Angriff genommen und darüber hinaus in der Blogosphäre eine wunderbare Plattform gefunden, um meine Leser ganz nach meinen Vorstellungen zu faszinieren. Somit wünsche ich viel Freude und Staunen beim weiteren Stöbern in Keinsteins Kiste.

Ihr könnt die Schmelzwärme übrigens auch selbst entdecken: Hier habe ich eine Anleitung für euch, wie ihr das Experiment mit dem AHA-Effekt bei euch zu Hause nachmachen könnt!

Und welches erstaunliche Phänomen hat deine Welt aus den Angeln gehoben?

 

UV-Strahlung aus der Sonne: Sonnencreme kann davor schützen

Die Ferien rücken näher. Wir sehnen uns nach Sonne, Strand und einem kühlen Bad im Meer oder einem See. Doch neben all diesen Freuden erwarten uns auch einmal mehr unangenehme Souvenirs: Sonnenbrand, Hautalterung, und im schlimmsten Fall irgendwann Hautkrebs.

Aber warum wird die Sonne uns gefährlich? Was geschieht bei Sonneneinstrahlung in unserer Haut? Wie können uns UV-Filter in Sonnencreme vor gefährlicher Strahlung schützen? Und inwieweit können diese Inhaltsstoffe uns schaden, wie es derzeit in der Presse die Runde macht?

 

Was ist UV-Strahlung?

Jedes Kind kennt die Bezeichnungen „UV-Schutz“, „UVA“ und „UVB“ von den Verpackungen von Sonnenmilch und anderen Kosmetik-Artikeln. Doch was verbirgt sich eigentlich hinter diesen Buchstaben?
UV steht für ultraviolette Strahlung. Richtig: Das Licht, das wir sehen, ist nicht das einzige, was die Sonne abstrahlt. Tatsächlich macht das sichtbare Licht nur einen sehr kleinen Teil dessen aus, was von der Sonne ausgeht. Das Spektrum – eine geordnete Übersicht der Strahlung – zeigt eine ganze Reihe Strahlungsarten. All diese „Strahlen“ gehören zur gleichen Sorte Wellen (den elektromagnetischen Wellen) und unterscheiden sich nur in ihrer Wellenlänge – bzw. in ihrer Frequenz. Die Frequenz einer Welle ist nämlich umso grösser, je kleiner die Wellenlänge ist. Alle elektromagnetischen Wellen transportieren Energie, und zwar umso mehr, je grösser die Frequenz der Welle (oder je kleiner die Wellenlänge) ist.

1000px-EM-Spektrum.svg

Elektromagnetisches Spektrum: Die Gamma-Strahlen ganz links im Spektrum haben die kürzesten Wellenlängen, die grössten Frequenzen und folglich die meiste Energie, während Langwellen (der Name sagts) am längsten sind, die kleinste Frequenz und am wenigsten Energie haben. [  By EM_spectrum.svg: User:Zedhderivative work: Matt (EM_spectrum.svg) [CC BY-SA 2.5-2.0-1.0, GFDL or CC-BY-SA-3.0], via Wikimedia Commons ]

Die ultraviolette Strahlung finden wir gleich links von dem schmalen Bereich jener Wellen, die wir sehen können. UV-Licht besteht also aus kürzeren Wellen als das sichtbare Licht und hat dem entsprechend mehr Energie.

Und dieses Mehr an Energie ist das Problem. Unser Körper ist für sichtbares Licht geschaffen (immerhin macht sichtbares Licht Chemie in unseren Augen, die uns sehen lässt. Aber das ist eine andere Geschichte…). Strahlung mit mehr Energie als sichtbares Licht bereitet uns hingegen meistens Schwierigkeiten. Und nach Art und Umfang dieser Schwierigkeiten hat man die UV-Strahlen eingeteilt:

UV-A-Strahlen:
• sind mit Wellenlängen von 320 – 400 nm nur wenig kürzer als sichtbares Licht
• können Glas durchdringen, gelangen bis in unsere Lederhaut
• verursachen die Bräunung unserer Haut, aber auch Hautalterung

UV-B-Strahlen:
• sind mit Wellenlängen von 250 – 320 nm energiereicher als UV-A-Strahlen
• dringen nicht durch Glas und nur bis in unsere Oberhaut
• verursachen dort neben Bräunung jedoch auch Sonnenbrand und Hautkrebs

UV-C-Strahlen:
• sind noch energiereicher als UV-B-Strahlen
• können die Erdatmosphäre praktisch nicht durchdringen, wie alle noch energiereicheren  Strahlungsarten übrigens auch, sodass wir uns davor draussen nicht schützen müssen

 

Was bewirken UV-Strahlen in unserer Haut?

Wenn elektromagnetische Wellen auf Atome treffen, können sie ihre Energie an diese Atome abgeben. UV-Strahlen können so die Energie von Elektronen in der Atomhülle erhöhen (Chemiker sagen „anregen“), sodass diese Elektronen auf ein höheres Energieniveau „aufsteigen“ oder sogar die Atomhülle verlassen.

Das ist an sich sehr nützlich, denn viele wichtige chemische Reaktionen, wie z.B. die Herstellung von Vitamin D im menschlichen Körper, laufen nur nach Anregung durch UV-Strahlung ab (aber das ist eine andere Geschichte…).

Gefährlich werden UV-Strahlen dann, wenn Atome getroffen werden, die garnicht reagieren sollen. Und das ist leider meistens der Fall. Die meisten Moleküle in unserem Körper haben nämlich ganz bestimmte Aufgaben und tauschen Atome und Elektronen auf ganz bestimmten Wegen. UV-Strahlung ist jedoch nicht wählerisch und regt an, was ihr gerade passt. Wenn dabei ein einzelnes Elektron von seinem Atom getrennt wird, bleibt das Atom – bzw. das Molekül, zu welchem das Atom gehört – mit unvollständiger Elektronenhülle zurück. Ein Radikal ist entstanden, und Radikale neigen dazu, auf der Suche nach Ersatz für ihr fehlendes Elektron mit allem zu reagieren, was ihnen in die Quere kommt.

UV-Strahlen können also in unserer Körperchemie ein gehöriges Durcheinander anrichten. Unserer Haut passt chemisches Durcheinander aber gar nicht, was sie durch Rötung, Erhitzung und Schmerzen deutlich kundtut. Das bedeutet Stress, und Stress macht bekanntlich müde, sodass ausdauernd sonnenbestrahlte Haut ziemlich schnell alt aussieht.

Am schwersten trifft es uns, wenn die UV-Strahlung unsere DNA trifft, jene Riesenmoleküle im Kern unserer Zellen, in denen unsere Erbinformation gespeichert ist. Wenn ein DNA-Molekül beschädigt ist, werden die Daten über Aufbau und Funktion der Zelle fehlerhaft kopiert oder ausgelesen, sodass die Zelle und all ihre Nachkommen nicht mehr richtig funktionieren. Besteht die Fehlfunktion darin, dass die fehlerhaften Zellen sich unkontrolliert vermehren, entsteht Hautkrebs.

Damit es dazu aber garnicht erst kommt, gibt es in jeder Zelle nützliche Enzyme, die die DNA ständig überprüfen und Schäden reparieren. Allerdings arbeiten solche Enzyme nicht perfekt. Je mehr Schäden also entstehen, desto grösser ist die Wahrscheinlichkeit, dass ein Fehler übersehen wird und schwerwiegende Folgen hat.

 

Wie können wir unsere Haut vor UV-Strahlung schützen?

Nicht immer können wir die Sonne meiden oder lange Kleidung tragen (denn das wäre zweifellos der wirksamste Schutz). Deshalb streichen oder sprühen wir Sonnenschutzmittel mit sogenannten UV-Filtern auf unsere Haut, wenn wir uns länger der Sonne aussetzen. UV-Filter sind Stoffe, die UV-Strahlen daran hindern in unsere Haut einzudringen. Dabei kann man gemäss ihrer Arbeitsweise physikalische „Filter“ von chemischen „Filtern“ unterscheiden: 

Physikalische Filter: sind in der Regel kleine, anorganische Partikel, die wie Spiegel an der Hautoberfläche wirken und die eintreffende UV-Strahlung einfach reflektieren (zurückwerfen).

 
Häufig wird dazu Titandioxid, TiO2, verwendet, das auch als das Mineral Rutil oder Lebensmittelfarbstoff E 171 bekannt ist. Dieser steinartige Stoff ist nicht nur ungiftig, sondern zudem als Pulver auffallend weiss, was ihn als „Spiegel“ auszeichnet. Damit wir uns aber damit einstreichen können ohne weiss zu werden (in den frühen Jahren der Sonnencreme war das tatsächlich Gang und Gäbe!), wird das Titandioxid-Pulver so fein zermahlen, dass die einzelnen Partikel nur noch 1 bis 100 Nanometer klein sind (zum Vergleich: ein Atom ist noch etwa 1000 mal kleiner!). Diese TiO2-Nanopartikel sind für uns unsichtbar, eignen sich aber prima um UV-A- und UV-B- Strahlung zu reflektieren. Sonnenschutzmittel mit hohem Lichtschutzfaktor enthalten praktisch immer einen solchen physikalischen Filter.
 

Chemische Filter: sind in der Regel organische Moleküle, die UV-Strahlen absorbieren, d.h. „schlucken“ können.

 
Solche Moleküle werden ganz normal von UV-Strahlen angeregt, können ihre zusätzliche Energie aber durch einen Prozess, der „innere Umwandlung“ genannt wird, ganz schnell wieder loswerden. Während normale Moleküle Energie nur in Form von Strahlung abgeben können (oder kaputtgehen), wird die Zusatz-Energie von angeregten Elektronen bei der inneren Umwandlung einfach in Schwingungen überführt: Das Molekül erzittert und schubst dabei seine Nachbarn an, die so die absorbierte Energie übernehmen (Schwingungen von Molekülen sind letztlich nichts anderes als Wärme).

Die innere Umwandlung ist extrem schnell (sie dauert nur Femto- bzw. Billiardstelsekunden!) – viel schneller als jede ungewollte chemische Reaktion einschliesslich der Entstehung von Radikalen. So können UV-Strahlen, die auf Moleküle eines chemischen Filters treffen, keinen Schaden mehr anrichten.

Die mit Abstand besten chemischen UV-Filter sind übrigens das Hautbräune-Protein Melanin und unsere DNA höchstselbst (was unsere Reparaturenzyme ganz gewaltig entlastet). Diese Beiden schlucken 99,9% aller UV-Treffer unversehrt, während guten synthetischen UV-Filtern in Sonnencremes bei nur bis 81% aller Treffer die innere Umwandlung gelingt.

 

Können diese praktischen Stoffe unserer Gesundheit schaden?

Vielerorts wird darüber spekuliert, dass Nano-Partikel, weil sie so klein sind, auf ungeahnten Wegen in unseren Körper eindringen und ungewollte (schädliche) Wirkungen haben können. Tatsächlich sind Titanoxid-Verbindungen z.B. bei Entwicklern von Knochenprothesen sehr beliebt, gerade weil sie mit Knochenoberflächen und anderem Gewebe reagieren und Bindungen eingehen können (aber das ist eine andere Geschichte…).

Bevor man sich jedoch ausmalt, was Nano-TiO2 in unserem Körper anrichten könnte, bleibt die Frage zu klären, ob es überhaupt da hinein kommt. Und da sagen bis heute vorliegende Studien: Das Nano-TiO2 in Sonnencremes kann unsere Haut nicht durchdringen. Auch dann nicht, wenn die Haut, z.B. durch schon vorhandenen Sonnenbrand, beschädigt ist. Ausserdem sind die als UV-Filter eingesetzten Nanopartikel mit einer speziellen Schicht überzogen, die jene Reaktionen, für die Titanoxide bekannt sind, im Zweifelsfall verhindert.

Weniger einfach verhält es sich mit den chemischen UV-Filtern. Da gibt es so viele verschiedene Bedenken, wie es eingesetzte Stoffe gibt.

Zu den meistkritisierten chemischen Filtern gehört eine Substanz namens Octinoxat oder EHMC (Chemiker nennen den Stoff 4-Methoxyzimtsäure-2-ethylhexylester, was für den ‚Hausgebrauch‘ entschieden zu lang ist). Dieser Stoff beherrscht die innere Umwandlung für einen synthetischen Filter sehr gut. Allerdings verursacht er verbreitet Stirnrunzeln, weil in Studien mit Zellkulturen und Ratten eine hormonaktive Wirkung des Octinoxat beobachtet worden ist.

Das bedeutet, Proteine im Körper der Ratten (wie auch in den kultivierten Zellen), die dafür geschaffen sind mit Hormonen, also Botenstoffen, zu reagieren, verwechseln Octinoxat mit Geschlechtshormonen aus der Gruppe der Estrogene. Die Proteine interpretieren bei der Begegnung mit Octinoxat also eine Botschaft, die das fremde Molekül gar nicht hat, und setzen Stoffwechsel-Vorgänge in Gang, die es eigentlich gar nicht braucht. Folgen davon sind Durcheinander im Hormonhaushalt, nicht angedachtes Wachstum von Geschlechtsorganen und manches mehr. Und was bei Ratten geht, geht bei Menschen leider meistens auch.

Deshalb hat sich das Wissenschaftliche Kommittee der EU für Kosmetik- und Non-Food-Produkte für den Endverbraucher (SCCNFP) seinerzeit mit den Studien zu diesem und ähnlichen UV-Filtern beschäftigt. Und die Kommission hat die Meinung geäussert, dass diese Stoffe wohl hormonaktiv wirken können, aber längst nicht so stark wie andere hormonaktive Stoffe, die z.B. in Nahrungsmitteln (Sojaprodukten) oder der Antibaby-Pille zu finden sind. Ehe wir uns also wegen Octinoxat und Co einen Kopf machen, ist es demnach sinnvoller sich über wichtigere Quellen hormonaktiver Stoffe Gedanken zu machen. Trotzdem wird Octinoxat in Europa nur noch selten in Sonnencremes verwendet.

Wesentlich häufiger findet man dafür die Substanz Octocrylen, die zwar kein besonders guter UV-Filter ist, aber dafür sorgen kann, dass andere Filterstoffe in der Sonnencreme stabil bleiben. Von diesem Stoff heisst es, dass er eine Kontaktallergie auslösen kann, wie es z.B. auch Nickel manchmal tut.

Das bedeutet, der Körper hält das Octocrylen fälschlicherweise für gefährlich und löst eine unnötige Abwehrreaktion aus: Die Haut, die mit dem Stoff in Kontakt kommt, wird rot, fängt an zu jucken und bekommt Pusteln. Bei einer Kontaktallergie sind es allerdings weisse Blutzellen (TH1-Lymphozyten), die sich irren und die Bekämpfung der vermeintlichen Gefahr aufnehmen. Das dauert erheblich länger als die Reaktion abwehrbereiter Antikörper bei der zuweilen gefährlichen direkten Allergie (auch das ist eine andere Geschichte…).

Ein allergischer Schock durch Octocrylen ist daher nicht zu befürchten, wohl aber Hautreizungen, die mit einer „Sonnenallergie“ verwechselt werden können.

Kontaktallergien können übrigens im Prinzip von jedem Fremdstoff ausgelöst werden. So sind auch entsprechende Reaktionen auf EHMC und sogar auf das relativ harmlos genannte Butylmethoxydibenzoylmethan bekannt.

 

Was können wir also tun?

Meiner Meinung nach geht der Nutzen von UV-Filtern und Sonnencreme weit über die möglichen Risiken hinaus. Daher streiche ich mich stets gründlich ein, wenn ich draussen in der Sonne unterwegs bin. In den Bergen ist das übrigens auch im Winter zu empfehlen, weil in der Höhe die schützende Erdatmosphäre dünner ist als auf Meereshöhe und der weisse Schnee als die einfallende Strahlung vom Boden auf uns zurückwirft.

UV-Filter sind aber längst nicht mehr nur in Sonnencreme zu finden, sondern auch in vielen anderen Kosmetik-Produkten, vom Make-up bis zum Lippenstift. Und hier können wir meines Erachtens unnötige Risiken vermeiden, wenn wir darüber nachdenken, wann wir UV-Schutz wirklich benötigen und wann nicht. Im abendlichen Ausgang oder im Büro bzw. im Schulzimmer bekommen wir jedenfalls weder Sonnenbrand noch alte Haut.

Und wenn ihr zu den unglücklichen 10% gehört, die im Zusammenhang mit Sonne und Sonnencreme allergische Reaktionen erleben, ist es meiner Meinung nach sinnvoll den Auslöser genau zu ermitteln und – sollte es sich um einen Inhaltsstoff von Sonnencreme handeln – künftig ein Produkt ohne diesen Stoff zu benutzen.