Beiträge

Dieser Beitrag füllt das Türchen Nr. 19 im Blogger-Adventskalender auf apfelwiebirne.de !

Weihnachten rückt immer näher, und die Welt ist angefüllt mit festlichem Schmuck und unzähligen Lichtern. Besonders am Weihnachtsbaum darf dabei ein klassisches Accessoire nicht fehlen: Die spiegelnd glänzenden Christbaumkugeln. Heutzutage gibt es sie in unzähligen Ausführungen und Materialien, doch am edelsten sind in meinen Augen immernoch schlichte Kugeln aus hauchdünnem Glas, in deren metallisch glänzender Oberfläche man sich spiegeln kann.

Doch wie kommen die zarten Glaskugeln zu ihrem Spiegelglanz? Damit hat sich auch Sandra Morgenstern auf Chemie-Azubi.de beschäftigt und mich zu diesem Experiment inspiriert…. Normalerweise ist Glas schliesslich durchsichtig… Tatsächlich sorgt eine Metallschicht, genauer gesagt eine Schicht aus metallischem Silber, für den Spiegelglanz der Christbaumkugeln. Wie man solch einen Silberspiegel erzeugt und in die Kugeln hinein- oder von aussen darauf bekommt, kannst du mit diesem Experiment selbst ausprobieren.

Achtung! Zur Herstellung eines “Silberspiegels” werden Silbernitrat und andere ätzende Chemikalien benötigt!

Silbernitrat ist eine gefährliche Chemikalie der Gruppe 2 im Sinne des Schweizer Chemikalienrechts, denn es ist ätzend und kann schwere Haut- und Augenschäden verursachen. Auch Natronlauge und Ammoniak-Lösung wirken ätzend.

Dieses Experiment kann in passender Umgebung zu Hause durchgeführt werden, empfehlenswerter ist jedoch die Durchführung in einem Labor. Experimentiert, wenn ihr keine Erfahrung im Umgang mit ätzenden Chemikalien habt, in jedem Fall gemeinsam mit jemandem, der sich damit auskennt!


Wie das Silber in die Kugel kommt

Normalerweise sind Metalle bei Raumtemperatur Feststoffe (das einzige bei Raumtemperatur grundsätzlich flüssige Metall ist das giftige Quecksilber). Das heisst, sie sind mehr oder weniger (reines Silber eher mehr) weich und formbar, aber immernoch fest und nicht freiwillig dazu bereit, sich auf einer Glasfläche zu einer dünnen Schicht zu verteilen.

Da Quecksilber zur Verwendung als Weihnachtsdekoration zu giftig ist, läge es daher nahe, ein weniger giftiges und zudem reaktionsträges, glänzendes Metall – wie zum Beispiel Silber – zu schmelzen und als Anstrich zu verwenden. Unglücklicherweise liegt der Schmelzpunkt der allermeisten Metalle sehr hoch (der Schmelzpunkt von Silber beträgt 961,9°C !), sodass bei dem Versuch, Glas mit geschmolzenem Silber zu überziehen, unweigerlich auch das Glas schmelzen und von einer Christbaumkugel nicht viel übrig bliebe.

Deshalb muss ein Weg gewählt werden, auf dem Silber-Atome bei moderateren Temperaturen zu einem Teil einer Flüssigkeit werden können. Das bekommt man hin, wenn man eine Lösung von Silber-Ionen (also elektrisch geladenen Silber-Atomen, Ag+) in Wasser verwendet. Man löst also ein Salz, das Silberionen enthält, in Wasser auf und erhält so eine silberhaltige Flüssigkeit… wenn man denn ein wasserlösliches Silbersalz findet. Denn Silberionen bilden mit fast allen möglichen Gegenionen in Wasser äusserst schwerlösliche Salze – ausser mit dem einen Gegenion, das praktisch immer geht: Dem Nitrat-Ion NO3. Die Nitrate praktisch aller Metalle zeichnen sich nämlich durch ihre Wasserlöslichkeit aus – so auch das Silbernitrat AgNO3 .

So führt trotz einiger unangenehmer Eigenschaften von Nitrat-Ionen – sie bekommen Wasser- und Bodenorganismen überhaupt nicht gut und können sich in (heissem) Wasser zu giftigem Stickstoffdioxid zersetzen – beim Versilbern von Christbaumkugeln kein Weg am Silbernitrat vorbei.

Eine Silbernitratlösung kann schliesslich durch eine kleine Öffnung in eine Glaskugel eingebracht werden. Danach müssen die Silber-Ionen jedoch zu ungeladenen Silber-Atomen werden, denn nur die lagern sich zu dem bekannten Metall mit seinem typischen Glanz zusammen. Im Gegensatz zu einem ungeladenen Silber-Atom fehlt einem Silber-Ion ein negativ geladenes Elektron (sodass das Ion aufgrund seiner unvollständig ausgeglichenen Kernladung einfach positiv geladen ist), sodass die Silber-Ionen mit jeweils einem zusätzlichen Elektron ausgestattet (“reduziert”) werden müssen.

Eine chemische Reaktion, die das möglich macht, nennt sich Redox-Reaktion (mehr zu solchen Reaktionen erfahrt ihr hier auf der Grillparty). Eine Gruppe von Stoffen, die den Silber-Ionen zusätzliche Elektronen “spenden” können (und dabei “oxidiert” werden), sind die Aldehyde, eine bestimmte Klasse organischer Verbindungen. Absolut harmlose Vertreter dieser Stoffgruppe sind Zucker, wie zum Beispiel Glucose (auch bekannt als “Traubenzucker”), die sich ebenfalls gut in Wasser löst.

Die Reduktion von Silberionen durch Glucose läuft in alkalischer Umgebung, das heisst, bei einem hohem pH-Wert, ab. Der kann durch Zugabe von Natronlauge oder einer anderen alkalischen Lösung einfach erreicht werden. Bei hohem pH-Wert reagieren jedoch die Silberionen zu nurmehr schwer in Wasser löslichem Silberhydroxid (AgOH), das als weisser Feststoff im Gefäss mit der Lösung absinkt. Deshalb muss ein Trick angewendet werden: Gibt man Ammoniak-Lösung (NH3 in Wasser) in die Silberlösung, gehen je zwei Ammoniak-Moleküle mit einem Silberion eine sogenannte Komplex-Verbindung (“Diamminsilber-Ion” genannt) ein, die auch bei hohem pH-Wert in Wasser löslich ist und ebenfalls mit Hilfe von Glucose reduziert werden kann.

Sind eine alkalische Diamminsilber- und eine Glucoselösung erst einmal in einer Glaskugel, kann die Reaktion durch moderate Wärmezufuhr (z.B. im Wasserbad ab ca. 70°C) gestartet bzw. vorangetrieben werden. Die reduzierten, metallischen Silberatome “fallen” dabei aus der Lösung “aus” und lagern sich sich Atom für Atom an der Glasinnenfläche ab, bis eine spiegelnd glänzende Schicht entstanden ist!

Material

Arbeitsplatz und Schutzkleidung

Wenn der Versuch zu Hause durchgeführt werden soll, arbeitet – vornehmlich der Ammoniak-Dämpfe wegen – im Freien! Im Labor eigentlich sich ein Arbeitsplatz mit geeignetem Abzug (“Kapelle”). Führt den Versuch nicht in der Küche (auch nicht mit Dunstabzugshaube) durch, denn wo Lebensmittel zubereitet werden, haben Labor-Chemikalien nichts verloren!

Tragt beim Experimentieren stets lange Hosen, geschlossene Schuhe und einen Kittel oder andere Baumwollkleidung, die fleckig oder beschädigt werden darf, dazu – insbesondere beim Umgang mit ätzenden Stoffen – eine Schutzbrille.

Silbernitrat macht gelbe oder schlimmstenfalls schwarze Flecken auf der Haut, die ungefährlich sind, aber unschön aussehen und erst nach Tagen oder Wochen verblassen! Deshalb empfehle ich die Verwendung von Einmal-Handschuhen beim Umgang mit Silbernitrat.

Silbernitrat ist ausserdem sehr gefährlich für Wasserorganismen! Deshalb dürfen Reste des Salzes und silbernitrathaltiger Lösungen nicht ins Abwasser bzw. den Hausmüll entsorgt werden! Sammelt Reste der Lösungen in einer braunen Glasflasche und bringt sie in eine Sammelstelle für Chemikalienabfälle (“Sondermüll”)!

Zubehör zum Silberspiegel-Experiment
Die wichtigsten Hilfsmittel für den Versuch: Alter Stahlkochtopf auf einem Fondue-Brenner, Einmalhandschuhe, destillatgleiches Wasser aus dem Supermarkt, Ammoniak und Natronlauge aus einem alten Chemiebaukasten, Dextrose-Tabletten, Porzellanschale zum Zermahlen, Pipetten aus der Drogerie, Erlenmeyerkolben für die Silbersalz-Lösung (reaktive Chemikalien immer in Glasgefässe geben – Kunststoff hält nicht alles aus!), Plastikbecher für die Glucoselösung – Greifzange und Silbernitrat fehlen hier noch!

Geräte und Chemikalien

  • Durchsichtige Christbaumkugel aus Glas oder Glasgefäss mit Öffnung (bei vielen
  • Glaskugeln verbirgt sich unter dem Aufhänger eine Öffnung!)
  • Heizgerät (elektrische Heizplatte, Spiritus- oder Gasbrenner), ggfs. Feuerzeug/Streichhölzer
  • Dreifuss oder andere Vorrichtung zum Kochen (sofern nicht Teil des Heizgeräts)
    Topf mit Leitungswasser
  • 2 Bechergläser (oder andere Chemikaliengefässe zum Ansetzen von Lösungen)
  • 2 Pasteur-Pipetten oder Spritzen
  • Reagenzglas-Klemme oder Greifzange
  • Einmal-Handschuhe
  • Schutzbrille
  • Silbernitrat (Lösung 0,1M) 
  • Glucose (Lösung gesättigt, 10%), zum Beispiel aus “Dextrose”-Tabletten
  • verdünnte Natronlauge 
  • Ammoniaklösung (3,5%) 
  • Destilliertes (oder entionisiertes, d.h. “destillatgleiches”) Wasser

Versuchsanleitung

Vorweg eine Grundregel für die Verwendung gefährlicher Chemikalien: Verwendet stets kleinstmögliche Mengen, sodass möglichst wenig Abfall entsteht!

Christbaumkugeln aus klarem Glas
Zwei durchsichtige Glaskugeln – gekauft mit Dekor-Farbe, die aber siedendem Wasser nicht unbedingt standhält!

Die folgenden Mengenangaben genügen zum Verspiegeln von ein bis zwei Kugeln (Durchmesser ca. 7cm)-

  • Stelle eine gesättigte Glucose-Lösung her: Wiege bei Raumtemperatur in einem Becherglas 25g Glucose ab und gib 50ml destilliertes Wasser hinzu. Gut umrühren! Ein kleiner Rest der Glucose bleibt gewöhnlich ungelöst am Gefässboden zurück.
    Dextrose-Tabletten lösen sich meiner Erfahrung nach schlechter, eigenen sich aber genauso für den Versuch: Zerstampfe zwei Tabletten zu Pulver und gib 50ml destilliertes Wasser hinzu. Gut umrühren, bis sich ein Grossteil des Pulvers gelöst hat!
  • Trage ab jetzt Handschuhe: Stelle in einem weiteren Becherglas eine Silbernitrat-Lösung her: Wiege 0,5g Silbernitrat ab (entspricht einer Spatel- bzw. Messerspitze, falls du keine Feinwaage zur Hand hast) und gib 30ml destilliertes Wasser hinzu. Diese Lösung kann in einer braunen Flasche aufbewahrt werden.
  • Bereite eine Diamminsilber-Lösung vor: Fülle so viel Silbernitrat-Lösung ab, wie du heute zum Verspiegeln brauchst (diese Lösung darf nicht aufbewahrt werden!). Gib mit einer Pasteur-Pipette verdünnte Natronlauge hinzu, bis graubraunes Silberhydroxid die Lösung trübt. Dann tropfe Ammoniak-Lösung (nicht einatmen, draussen arbeiten!) hinzu, bis sich die Trübung vollständig auflöst. Gut umrühren oder schwenken, damit sich alles gut vermischt!
  • Heize das Leitungswasser im Topf auf 70 – 100°C (also beinahe oder leicht kochend).
  • Löse inzwischen den Aufhänger der zu verspiegelnden Glaskugel und gib erst 30ml Diammin-Silber-Lösung, dann ca. 20ml Glucoselösung in die Kugel. Wenn du kein Becherglas mit Giesse hast, verwende eine Pipette oder eine Spritze zum sauberen Einfüllen. Setze den Aufhänger anschliessend wieder auf die Kugel.
Glaskugel ohne Verschluss (liegt daneben) – die Porzellanschale passt zufällig auch als Halterung – Glucose und Silbersalzlösung stehen bereit
  • Greife den Hals der Kugel mit der Reagenzglasklemme oder der Greifzange und tauche sie tief in das vorgeheizte Wasser im Topf. Schwenke die Kugel fortlaufend hin und her, damit die Lösung darin sich auf die gesamte Innenfläche verteilen kann. Achte darauf, dass keine Lösung aus der Kugel in das Wasserbad gerät! Wenn das geschieht (das Wasserbard wird in diesem Fall schwarz werden!), darf das Wasserbad nicht mehr in den Ausguss entsorgt werden!
Die (noch klare) Reaktionslösung ist in der Kugel, die Kugel wird in das Wasserbad getaucht. Wenn das Wasser wirklich heiss ist, die Kugel nicht mit der blossen Hand halten!

Die Lösung in der Kugel wird in der Hitze dunkel werden, und innerhalb einiger Minuten wird die Kugelinnenfläche sich erst graugrün trüben, ehe die Fläche silbern metallisch zu spiegeln beginnt!

  • Hebe die verspiegelte Kugel aus dem Wasserbad und lasse sie auf einem alten Handtuch (im Labor: auf einem Korkring) abkühlen. Dann öffne den Aufhänger erneut und giesse die Lösung aus der Kugel in ein Becherglas (Achtung, dieses kann auch verspiegelt werden!) oder in eine weitere Kugel, mit der du nach Zugabe neuer Glucoselösung wie mit der ersten verfährst.


Was in der Kugel im Einzelnen geschieht:

Silbernitrat ist Salz, besteht also aus Kristallen, die sich wiederum aus Ionen zusammensetzen, die sich säuberlich geordnet zu einem Festkörper zusammengelagert haben. Beim Auflösen in Wasser werden diese Ionen voneinander getrennt: (Gleichgewichtsgleichungen!)

Gibt man Natronlauge (NaOH) (oder eine andere Base) hinzu, gelangen OH-Ionen in die Lösung, die sich mit Silberionen zu schwerlöslichem Silberhydroxid (AgOH) zusammenlagern:

Des weiteren zugefügte Ammoniak-Moleküle führen zur Enstehung von Diamminsilber-Ionen:

Da es sich bei den Reaktionen zum dynamische Gleichgewichte handelt, führt der Verbrauch von Silberionen für Reaktion (3) dazu, dass Reaktion (2) rückwärts läuft, um den Verbrauch auszugleichen: Das Silberhydroxid löst sich wieder auf (Monsieur Le Châtelier erklärt das Geheimnis des chemischen Gleichgewichts auf dem Flughafen genauer).

Gibt man Glucose zu einer Lösung mit OH– und Silber-Ionen, wird die Glucose (C5H11O5CHO(aq)) zu Gluconsäure (C5H11O5COOH) oxidiert. Dabei gibt ein Glucose-Molekül zwei Elektronen (e) ab:

Diese Elektronen werden von Silber-Ionen aufgenommen, welche auf diese Weise reduziert werden:

Jedes Glucose-Molekül kann also zwei wasserunlösliche Silber-Atome erzeugen, die sich fein verteilt irgendwo aus der Lösung absetzen:

Schwenkt man die Lösung in einem Glasgefäss bzw. einer Christbaumkugel, während die Reaktion abläuft, verteilen sich die Silberatome somit gleichmässig auf der Glasoberfläche, sodass das Glas mit einer Spiegelfläche überzogen wird.

Christbaumkugel mit und ohne Silberspiegel
Links die unbehandelte Ersatzkugel, rechts die verspiegelte Kugel!

Silberspiegel von aussen und als Tollens-Probe

Anstatt das Reaktionsgemisch in die Kugel zu geben, könnte man auch eine grössere Menge davon herstellen und die Kugeln hineintauchen. So würde ein Silberspiegel auf der Kugelaussenseite entstehen. In der Industrie bietet sich das auch an, weil sich das Eintauchen leichter automatisieren lässt. Angesichts der ätzenden und umweltgiftigen Wirkung der verwendeten Chemikalien ist das Verspiegeln von innen im Heimlabor jedoch sparsamer und sicherer.

Denn: Je weniger gefährliche Chemikalien wir verwenden, desto weniger müssen wir entsorgen!

Die Erzeugung eines Silberspiegels wurde früher – und heute häufig zur Demonstration im Schulunterricht – auch als Nachweis für die als Reaktionspartner notwendigen Aldehyde verwendet. In diesem Zusammenhang wird die Reaktion dann “Tollensprobe” und die alkalische Diamminsilber-Lösung “Tollens Reagenz” genannt – beides nach dem Agrikulturchemiker Bernhard Tollens, der sich seinerzeit mit der Chemie von Zuckern – also Aldehyden – beschäftigte.

Entsorgung von Chemikalienresten

Festes Silbernitrat und ammoniakfreie (!) Silbernitratlösung können im geschlossenen Originalbehälter fern von Kinderhänden und Licht langfristig aufbewahrt werden.

Sobald eine Silbernitrat-Lösung Ammoniak enthält, muss sie umgehend (das heisst im Verlauf des Versuchs, zu dem sie angesetzt wurde) vollständig zur Reaktion gebracht werden! Verwende die Lösung also munter für mehrere Kugeln, bis sich kein Silber mehr absetzt und gib zum Schluss noch einmal reichlich Glucose dazu, damit sicher alles reduziert ist.

Aus einer Diamminsilber-Lösung kann beim Eintrocknen nämlich Silbernitrid (Ag3N) entstehen – ein Salz, das bei grober Handhabung (z.B. beim Aufschrauben eines damit verkrusteten Flaschendeckels) schnell und heftig explodieren kann!

Sammelt schliesslich alle Restlösungen in braunen Flaschen – dabei darf das vollständig reduzierte verbrauchte Reaktionsgemisch nicht mit Silbernitratresten vermischt werden, denn es kann immernoch Ammoniak enthalten! – und bringt sie zur Chemikalienabfall- (Sondermüll-) Sammelstelle!

Wer im Labor einen Abzug mit geeigneter Filteranlage zur Verfügung hat, kann die Reste der Lösungen nach der Reduktion des Diamminsilbers im geschlossenen Abzug eindampfen und die Rückstände im Behälter für feste Schwermetall-Abfälle entsorgen.

Und habt ihr schon einmal Christbaumkugeln verspiegelt? Die Tollens-Probe in anderem Zusammenhang gemacht? Oder sogar diese Versuchsanleitung ausprobiert?

Hast du das Experiment nachgemacht: 

Silberspiegel: Hat das Experiment bei dir funktioniert?

View Results

Loading ... Loading ...

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Farben, Licht und Glanz: Wie Stoffe zu ihrem Aussehen kommen

Es ist Herbst geworden. Die Blätter an den Bäumen färben sich leuchtend gelb, orange oder rot. Am zurückliegenden herrlichen Oktober-Wochenende schien die Sonne vom strahlend blauen Himmel, und wir haben braune Walnüsse aus dem noch saftig grünen Gras unter den Nussbäumen gesammelt.

Aber warum sind all diese Dinge eigentlich bunt? Unter welchen Umständen erscheinen Stoffe uns farbig? Und warum sind andere Stoffe farblos oder sogar durchsichtig, wie Glas? Und warum glänzen wieder andere wie ein blanker Spiegel?

 

Wie wir Farben sehen

Um zu erfahren wie Farben, Transparenz und Glanz entstehen, solltest du wissen wie der menschliche Sehsinn funktioniert. Unsere Augen funktionieren nämlich ganz ähnlich wie eine Kamera: Wir “sehen” Licht, welches durch unsere Augäpfel (deren Innenleben im Normalfall durchsichtig ist) auf die Netzhaut fällt und dort chemische Reaktionen auslöst. Die Produkte dieser Reaktionen führen zu elektrischen Signalen, die über den Sehnerv an das Gehirn weitergeleitet und dort zu einem Bild interpretiert werden. Die Ausgangsstoffe für die Reaktionen zur Erzeugung eines einfachen “Hell”-, aber auch von Farb-Signalen sind Abkömmlinge von Vitamin A bzw. Retinol, Varianten des “Seh-Stoffs” Retinal.

Licht ist aber nicht gleich Licht, sondern kommt in unterschiedlichen Wellenlängen, d.h. mit unterschiedlicher Energie daher. Die Bandbreite möglicher Wellenlängen reicht dabei von extrem langwelligen (und energiearmen) Radiowellen bis zu energiereicher Röntgen- oder gar Gamma-Strahlung mit extrem kurzen Wellenlängen. Das menschliche Auge ist in der Lage einen kleinen Teil dieses Spektrums (eine grafische Darstellung des gesamten Licht-Spektrums findest du hier), das “sichtbare Licht”, wahrzunehmen und nach Wellenlängen zu unterscheiden.

Dazu gibt es in der Netzhaut drei verschiedene Arten von Zapfen-Zellen, welche nach ihrer jeweiligen Licht-Empfindlichkeit benannt sind. In den K-Zapfen reagiert eine Retinal-Variante mit kurzwelligem (violetten bis blauen), in den M-Zapfen mit mittelwelligem (blaugrünen bis gelben), und in den L-Zapfen mit langwelligem (orangegelben bis roten) Licht.

Das erinnert nicht umsonst an das gängige RGB-Farbschema zur Darstellung von Farben auf dem Computerbildschirm. Dieses nutzt schliesslich aus, was unser Gehirn tut: Es mischt sich aus den “blau”-, “grün”- und “rot”-Signalen der Netzhaut-Zapfen die gesehenen Farben zusammen. Da sich die Wellenlängenbereiche, die in den jeweiligen Zapfen Reaktionen auslösen, überlappen, erzeugt jede Wellenlänge ihre ganz eigene Kombination von Signalen, die das Gehirn auf 1 bis 2 Nanometer Licht-Wellenlänge genau bestimmen kann. Wir können damit 200 verschiedene Farbtöne sehen, jeden für sich in unterschiedlichen Sättigungen (Grau-Beimischungen).

Wenn die Netzhaut alle möglichen Farben gleichzeitig, oder zumindest die Signale für zwei “komplementäre” Farben zusammen empfängt, macht das Gehirn daraus die Information “weiss”.

Farbenkreis: Komplementärfarben liegen einander gegenüber

Im Farbkreis liegen Komplementärfarben einander gegenüber. Nebeneinander nehmen wir sie grösstmöglicher Kontrastwirkung wahr, während das Gehirn ihre Überlagerung als ‘weiss’ interpretiert. (by Benutzer:Golden arms (von mir erstellt) CC-BY-SA-3.0 via Wikimedia Commons])

Weiss entspricht also keiner eigenen Licht-Wellenlänge, sondern einer Zusammenstellung verschiedener Wellenlängen. Wenn man eine Farbe also als bestimmte Wellenlänge sichtbaren Lichts definiert, ist Weiss keine Farbe.

 

Warum sehen Stoffe bunt aus?

Das Licht, das unseren Tag erhellt, kommt üblicherweise von der Sonne oder von elektrischen Leuchtmitteln und erscheint uns weiss. Tatsächlich ist dieses Tagelicht ein Gemisch von Lichtwellen aller Wellenlängen (nicht nur) im sichtbaren Bereich (für Sonnenlicht gelten einige Ausnahmen, aber das ist eine andere Geschichte!). Wer dafür einen Beweis möchte, besorge sich ein Prisma – das ist ein durchsichtiger, symmetrischer Gegenstand, der das weisse Licht in seine farbigen Bestandteile “bricht”.

Prisma : zerlegt das Licht in seine Farben

Weisses Licht besteht aus Lichtwellen aller Farben: Das weisse Lichtbündel kommt von links unten und wird an der Oberfläche des Prismas teilweise reflektiert (ein kleineres Lichtbündel geht nach oben ab). Der Rest wird beim Austritt aus dem Prisma rechts abhängig von der jeweiligen Wellenlänge gebrochen: Die unterschiedlichen Farben der Lichtwellen werden sichtbar. (by Spigget (Own work) [CC BY-SA 3.0via Wikimedia Commons])

Wenn wir direkt in eine Lampe (aber niemals direkt in die Sonne!!) schauen, sehen unsere Augen das Licht, wie es aus der Glüh- (oder Leuchtstoff-)birne kommt: alle Wellenlängen miteinander, und das Gehirn interpretiert “weiss”. Wenn das weisse Tageslicht aber zunächst auf einen Rasen fällt und dann unser Auge erreicht, nehmen wir “grün” wahr. Was ist mit dem Licht passiert?

Elektronen bewegen sich im atomaren Hochhaus

Gras enthält Moleküle des Stoffs Chlorophyll, die aus verschiedenen Atomen zusammengesetzt sind. Diese Atome sind (wie alle Atome) mit “Wolken” umgeben, welche ihre Elektronen enthalten. Im Molekül sind diese Wolken teilweise miteinander verbunden (die Atome “teilen” ihre Elektronen miteinander, was sie zusammenhält: eine chemische Bindung entspricht solch einer “Gemeinschaftswolke”).

Jedes Elektron, das sich in solch einer Wolke befindet, hat eine ganz bestimmte, der Position “seiner” Wolke entsprechende Energie, sodass die Elektronenhülle eines Atoms mit einem Hochhaus mit vielen von Elektronen bewohnten (und unbewohnten) Etagen vergleichbar ist. Analog zur klassischen Mechanik, gemäss der jemand, der nach oben will, Energie aufnehmen muss (die Treppe raufgehen ist anstrengend!), entsprechen die “oberen” Wolken (oder “Orbitale”) im atomaren Hochhaus viel Energie, während “darunter” Wolken mit weniger Energie zu finden sind.

Fällt nun ein Lichtquant (eine elementare Portion einer Lichtwelle) mit passender Energie auf ein Elektron in einer niedrigen Wolke, kann das Elektron mit dieser Energie in eine höher gelegene, leere Etage umziehen. Das Lichtquant entspricht also einer Schlüsselkarte für den Fahrstuhl, welche diesen veranlasst eine bestimmte Strecke nach oben zu fahren. Wenn sich genau dort eine Fahrstuhltür zu einer leeren Etage öffnet, kann das Elektron aussteigen und einziehen (wenn nicht, d.h. wenn der Fahrstuhl an seinem Ziel vor einer Wand halten würde, tritt es die Fahrt erst gar nicht an).

Anregung von Elektronen durch Lichteinfall: Das Schema stellt stark vereinfacht die Besetzung von Energieniveaus bzw. “Etagen” im atomaren Hochhaus durch Elektronen (blaue Kreise) dar. Die Energie von sichtbarem Licht, das auf ein Atom im Grundzustand (1) fällt, entspricht genau dem markierten Abstand zum übernächsten Energieniveau (blauer Pfeil). Das Elektron absorbiert das Licht und zieht um in den angeregten Zustand (2). Der Weg zurück in den Grundzustand (3) verläuft für dieses Elektron in zwei Schritten über das Zwischengeschoss: Die entsprechenden Energien bzw. Licht-Wellenlängen liegen im Infrarot-Bereich und sind damit nicht sichtbar.

 

Die Energie des Lichtquants wird bei einem erfolgreichen Umzug vom Elektron absorbiert, also “geschluckt”, und wird erst wieder abgegeben, wenn das Elektron wieder in seine vorherige, tiefer gelegene Etage zurückkehrt (da es dazu häufig die “Treppe” benutzt und die Energie auf dem Weg über Zwischengeschosse in kleineren, also langwelligeren, für uns unsichtbaren Portionen (im Infrarot-Bereich) abgibt, sehen wir das einmal absorbierte Licht oft nicht mehr wieder).

Das Farben-Hochhaus des Chlorophylls

Die Abstände zwischen den Wolken-Etagen eines Chlorophyll-Moleküls sind nun genau so beschaffen, dass vornehmlich “rote” Lichtquanten die Elektronen zu einer höher gelegenen Aufzugtür und damit auf ein höheres Energieniveau befördern können. Wenn also weisses Licht auf das Chlorophyll im Gras fällt, werden darin enthaltene rote Lichtwellen von aufzugfahrenden Elektronen geschluckt. Alle übrigen Wellen werden unverrichteter Dinge wieder zurückgeschickt (reflektiert) und können in unser Auge gelangen und als “alles ausser rot” empfangen werden. Und das Signal für “alles ausser rot” entspricht für das Gehirn “grün”.

Wenn wir einen farbigen Gegenstand sehen, weil er von weissem Licht beleuchtet wird, sehen wir also den Rest des weissen Lichts, der nicht von den Elektronen im Gegenstand geschluckt bzw. absorbiert worden ist.

Manche Stoffe haben genügend verschiedene Wolken-Etagen, um Lichtwellen aller sichtbaren Wellenlängen zu schlucken, sodass keine davon unser Auge erreicht. Solche Stoffe erscheinen uns schwarz. Damit ist Schwarz streng genommen auch keine Farbe, sondern einfach “dunkel” bzw. “kein Licht”. Andere Stoffe, die (mangels passender Etagen-Abstände) gar kein sichtbares Licht absorbieren können, erscheinen uns dagegen weiss.

Was farbig leuchtet

Selbst leuchtende Stoffe funktionieren übrigens genau umgekehrt. Die orange-gelb strahlenden Strassenlaternen, die man mancherorts findet, enthalten zum Beispiel Natrium-Atome, deren Elektronen mittels der Energie aus elektrischem Strom nach “oben” umziehen, d.h. angeregt werden. Anschliessend fahren sie mit dem Fahrstuhl wieder nach “unten” auf ihre Ausgangs-Etage (den Grundzustand) und geben dabei je ein Lichtquant mit der zugehörigen “gelben” Wellenlänge ab (genauer gesagt gibt es im Natrium-Atom zwei sehr ähnliche “gelbe” Abstände, die so überbrückt werden können).

Wenn wir etwas farbig leuchten sehen, nehmen wir Licht mit genau den Wellenlängen wahr, die von angeregten Elektronen bei der Rückkehr in den Grundzustand abgegeben bzw. emittiert worden sind.

Dass wir auch im gelben Licht einer Natrium-Lampe erkennen, dass ein Stück Papier weiss ist, obwohl es nur gelbes Natrium-Licht an unser Auge weiterschicken kann, haben wir übrigens der Photoshop-Software unseres Gehirns zu verdanken, die weiss, dass das Papier weiss zu sein hat und das empfangene Bild entsprechend bearbeitet.

 

Warum glänzen Metalle?

Ein Stück Metall besteht aus einem einzigen Riesenverbund gleichartiger Atome, die sich allesamt eine Riesen-Elektronenwolke teilen (Chemiker sprechen hier gern von einem “Elektronen-Gas”). Solch eine Wolke, die Etagen aller daran beteiligten Atome umfasst, kommt auf so viele dicht beieinander liegende Wolken-Etagen bzw. Energieniveaus, dass sich diese gar nicht mehr auseinanderhalten lassen.  Entsprechend können sich die Elektronen des Metalls frei in der Riesenwolke bewegen und jede sichtbare Licht-Wellenlänge zum Umziehen absorbieren.

Demnach sollten Metalle also schwarz sein (nur sehr wenige Metalle, vornehmlich Gold und Kupfer, haben dennoch eine Farbe). Die freie Beweglichkeit erlaubt den Elektronen jedoch auch, ebenso leicht mit dem Fahrstuhl nach unten zu fahren wie sie nach oben gekommen sind, sodass sie ein absorbiertes Lichtquant bei ihrer Rückkehr in die untere Etage unverändert wieder abgeben können. Wenn das an einer polierten, d.h. gleichförmigen Oberfläche aus gleichartigen Atomen passiert, kommt das Licht genauso wieder zurück, wie es auf die Oberfläche getroffen ist.

Fällt solches Licht von einer Lichtquelle zuerst auf unser Gesicht, dann auf eine glatte Metalloberfläche und schliesslich zurück in unser Auge, sehen wir uns selbst in einem “Spiegel”. Deshalb wird “Metallglanz” auch “Spiegelglanz” genannt. Manche Mineralien (besonders solche, die viele Metallatome enthalten), sind reinen Metallen in ihrem Aufbau übrigens so ähnlich, dass sie ebenfalls Spiegelglanz zeigen, obwohl sie chemisch keine Metalle, sondern Ionenverbindungen sind.

Pyrite-49354

Pyrit oder “Katzengold” ist ein Mineral, das aus Eisen- und Schwefel-Ionen besteht. In seinem Aufbau ist es einem Metall dennoch so ähnlich, dass die glatte Oberfläche der Kristalle das Licht spiegelt. (by Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC BY-SA 3.0], via Wikimedia Commons)

Metalle glänzen, weil ihr “Elektronen-Gas” sichtbares Licht nicht nur uneingeschränkt absorbieren, sondern ebenso wieder abgeben kann. An einer glatten, gleichförmigen Oberfläche wird das Licht somit genauso reflektiert, wie es gekommen ist.

 

Warum ist Glas durchsichtig?

Ein Stück Glas ist chemisch ähnlich aufgebaut wie ein Quarzkristall (der ist auch durchsichtig). Beide bestehen aus Silizium- und Sauerstoff-Atomen (in dem Glas, das wir im Alltag nutzen, kommen noch verschiedene andere Elemente dazu, die dem Glas weitere erwünschte Eigenschaften geben), die zu einem einzigen Riesenmolekül verbunden sind.

Im Kristall sind Atome und Bindungen in einem regelmässigen, sich stetig wiederholenden Gitter angeordnet (das macht einen Kristall aus), während die Atome im Glas zu einem ungeordneten Netzwerk verknüpft sind: Glas ist eine Flüssigkeit, die erstarrt ist, ohne dass die Teilchen darin sich zu einem Kristall hätten ordnen können – eine “unterkühlte Schmelze”.

Quarz_vs_Glas

Aufbau von Quarzkristall und Quarzglas: Im Quarzkristall sind Silizium- (rot) und Sauerstoffatome (blau) regelmässig angeordnet. Im Glas bilden sie ein ungeordnetes Netzwerk. In beiden Stoffen sind die Elektronen fest an ihre jeweiligen Atome gebunden, sodass sie mit sichtbarem Licht nicht wechselwirken können.

Sowohl im Kristall als auch im Glas sind die Elektronen den einzelnen Atomen und Bindungen fest  zugeordnet. Daraus ergeben sich grosse Abstände zwischen den Orbitalen bzw. “Wolken-Etagen”, die vornehmlich mit der Energie von UV-Licht überwunden werden können (tatsächlich ist Glas für UV-Licht “undurchsichtig”: Hinter Glas bekommt man so schnell keinen Sonnenbrand!). Licht mit Wellenlängen im sichtbaren Bereich kann hingegen keine Elektronen im Glas anregen (zum Umziehen bewegen) und geht somit unverändert hindurch.

Anders als in weissen, undurchsichtigen Stoffen wird das Licht in Glas zudem nicht nennenswert gestreut: Eine gleichmässige Streuung von Licht verschiedener Wellenlängen findet nur an Strukturen statt, deren Grösse in der Grössenordnung dieser Wellenlängen liegt – für sichtbares Licht sind das einige hundert Nanometer. Atome und kleine Moleküle, aber auch Atomgruppen in einem Kristall oder Glas sind hingegen mindestens 1000 mal kleiner.

Glas ist also durchsichtig, weil sichtbares Licht weder die richtige Wellenlänge hat, um von den fest verorteten Elektronen des Materials absorbiert, noch um darin gestreut zu werden.

Während es draussen zunehmend grauer und dunkler wird, werden die Oktober-Geschichten in Keinsteins Kiste ganz im Zeichen von Licht und Farben stehen. Macht euch auf spannende Entdeckungen und Phänomene gefasst!

 

Und was ist deine Lieblingsfarbe? Oder bist du vielleicht sogar farbenblind?