Tag Archive for: Experiment

Experimente mit Elektrostatik: Blitze selber machen!

Ein langer, heisser Sommer geht heute zu Ende – sagen sie im Radio. Und wahrlich haben wir in den vergangenen Wochen oftmals vergeblich auf Gewitter mit reichlich Regen und Abkühlung im Gepäck gewartet. Seit vorgestern geht es aber endlich wieder ordentlich rund. Blitze längs und quer über den Himmel und dazu lauter Donner künden Wind und – endlich – Regen an.

Aber was sind Gewitter eigentlich? Die meisten von euch werden wissen, dass Blitze etwas mit Elektrizität zu tun haben. Aber was ist denn nun wieder Elektrizität?

Heute beantworte ich nicht nur diese Frage, sondern zeige euch auch ein paar ganz einfache Experimente, in welchen ihr selbst Elektrizität und sogar eure eigenen Blitze (im winzigkleinen Miniaturformat – ganz harmlos!) erzeugen könnt.

Was ist Elektrizität?

Landläufig werden mit „Elektrizität“ alle möglichen Erscheinungen und Technik rund um elektrische Aufladung und elektrischen Strom bezeichnet. Das erklärt aber nicht, worum es sich dabei handelt. Um das zu verstehen, müssen wir uns die winzigkleinen Teilchen, aus denen alle Stoffe bestehen, genauer ansehen.

Der Ursprung der Elektrizität: Eine Eigenschaft von Teilchen

Ursache für alle elektrischen Erscheinungen ist nämlich eine Eigenschaft dieser kleinen Teilchen. Die vielleicht naheliegendste Eigenschaft von Teilchen (und allen anderen Dingen) ist ihre Masse. Eine weitere Eigenschaft – um die es mir heute geht, ist die „elektrische Ladung“. Die gehört zu vielen Teilchen ebenso, wie den Teilchen ihre Masse gehört, oder einem Legostein seine rote Farbe.

Die elektrische Ladung gibt es in zwei (ganz streng genommen in drei) Formen, so, wie Legosteine rot oder blau sein können. Die Physiker nennen diese beiden Formen jedoch nicht „rot“ und „blau“, sondern „positiv“ bzw. „+“ (plus) und „negativ“ bzw. „-“ (minus). Ein Teilchen kann also eine Ladung „+“ oder „-“ haben – oder gar keine Ladung. Das nennen die Physiker die Ladung „0“ (null).

Elektrische Ladungen im Atom

Ein Atom besteht nun aus mehreren kleineren Teilchen mit verschiedenen elektrischen Ladungen. Im Atomkern befinden sich die Protonen, die eine Ladung „+“ haben, und die Neutronen mit der Ladung „0“. In der Atomhülle findet man die Elektronen, die eine Ladung „-“ tragen. Wenn man nun für jedes Proton +1, für jedes Neutron +0 und für jedes Elektron -1 rechnet, kommt man bei einem normalen Atom am Ende auf die Summe „0“. Das Atom hat – von aussen betrachtet – keine elektrische Ladung.

Es ist allerdings ganz leicht, Elektronen aus einem Atom zu entfernen oder weitere hinzuzufügen. Wenn das passiert, kommt bei der Addition aller Ladungen nicht mehr „0“ heraus. Von aussen gesehen hat das Atom damit eine elektrische Ladung (Physiker und Chemiker nennen ein solches Atom ein „Ion“)! Die ist positiv, wenn Elektronen fehlen, und negativ, wenn zusätzliche Elektronen im Atom sind. Ebenso sind entferne Elektronen nun von aussen „sichtbar“ elektrisch geladen. Und wenn man Elektronen und geladene Atome bewegt, bewegen sich ihre Ladungen natürlich mit.

Das Coulomb’sche Gesetz sorgt für Bewegung

Für elektrische Ladungen gelten zwei grundlegende physikalische Regeln, die gerne als das „Coulomb’sche Gesetz“ zusammengefasst werden:

1. Verschiedenartige Ladungen ziehen einander an.
2. Gleichartige Ladungen stossen einander ab.

(Für diejenigen, die mit der Physik schon etwas weiter sind: Sowohl die Anziehung auch die Abstossung zwischen Ladungen nehmen um so mehr zu, je näher sich die Ladungen kommen.)

Diese beiden Regeln sorgen ungemein für Bewegung in der Teilchenwelt. So streben zwei einander nahe „freie“ Elektronen, die beide eine Ladung „-“ tragen, wie von Geisterhand voneinander weg, während ein Elektron unweigerlich auf ein Ion mit positiver Ladung zustrebt.

Teilchenwanderung im Alltag

Einzelne Teilchen können wir dabei freilich nicht mit unseren Sinnen beobachten. Aber wenn genügend geladene Teilchen in Bewegung sind, können wir die Folgen dieser Bewegung wahrnehmen. Und solche Bewegungen sind für uns heute alltäglich: In einer Batterie werden Elektronen (mit der Ladung „-„) und positiv geladene Teilchen (mit der Ladung „+“) getrennt voneinander aufbewahrt. Sobald man zwischen den Teilchenlagern eine Verbindung (z.B. durch ein Kabel) herstellt, wandern (oder besser: fliessen) die Elektronen durch das Kabel der Anziehung folgend zu den positiven Ladungen hin. Dieser Strom von Elektronen auf Wanderschaft ist das, was wir „elektrischen Strom“ nennen!

Und wie alle bewegten Dingen enthält der elektrische Strom Energie, die in andere Energieformen wie Licht, Wärme oder Bewegung anderer Dinge umgewandelt werden kann (mehr zur Energie und ihren Formen erfahrt ihr hier).

Wie ihr selbst Ladungen trennen und Blitze machen könnt

Von den Atomen in vielen Stoffen könnt ihr ganz leicht Elektronen abreiben. Dazu zählen einige Kunststoffe, die ihr in eurem Haushalt finden könnt, das Fell von Tieren, aber auch eure eigenen Haare! Mit diesen Dingen könnt ihr ein paar einfache, aber wirkungsvolle Experimente machen. Sie alle funktionieren übrigens am besten bei trockener Witterung mit geringer Luftfeuchtigkeit. Dabei werden nämlich elektrische Ladungen getrennt gesammelt. Und die fliessen in feuchter Umgebung schnell wieder woandershin ab, anstatt am gewünschten Ort zu bleiben!

1.) Der klebende Luftballon

Diesen Klassiker hat schon mein Physikervater oft mit uns gemacht – und wir hatten als Kinder riesigen Spass daran: Blast einen Luftballon auf (nicht zu prall, damit er nicht platzt!) und reibt ihn kräftig an einem Wollpullover oder eurem Kopfhaar. Wenn es dabei hörbar knistert, legt den Ballon mit der geriebenen Seite an eine tapezierte Wand und lasst ihn los. Der Ballon bleibt an der Wand haften!

Oder haltet den Ballon mit etwas Abstand über einen Kopf mit feinem, trockenen Kinderhaar. Lasst das Kind dabei vor einem Spiegel stehen, denn: Die Haare werden angezogen – und die so entstehende Struwwelpeter-Frisur soll ja allen Beteiligten Spass machen!

Der durch Reibung aufgeladene Ballon zieht meine Haare an!

Funktioniert auch mit langen Erwachsenenhaaren (die am besten frisch gewaschen sind): Der Ballon zieht die Haare an!

 

2. Der „furchtsame“ Kunststoffstab

Der Klassiker aus dem Physikunterricht: Knotet einen Bindfaden um den Schwerpunkt eines länglichen Gegenstands aus Kunststoff (zum Beispiel ein Stück Plastikbesteck) und haltet es am freien Ende des Fadens so, dass es frei und möglichst bewegungslos schwebt. Nähert ein zweites Kunststoff-Stück, das ihr zuvor kräftig an Wolle gerieben habt, langsam dem schwebenden Stück an. Das schwebende Stück wird sich von dem geladenen Kunststoff wegdrehen. Durch Annäherung aus der entgegengesetzten Richtung lässt sich die Drehrichtung auch umkehren!

Das aufgehängte Plastikmesser dreht sich in Pfeilrichtung vom aufgeladenen Plastik fort.

Gleiche Ladungen stossen sich ab: Der rote Pfeil deutet die Drehrichtung des aufgehängten Plastikmessers an.

3. Mit Abfall Blitze machen

So könnt ihr eure eigenen Blitze machen (die Idee dazu habe ich von Alli Sonnier von Learn-Play-Imagine): Ihr braucht dazu eine saubere Grillschale oder Lebensmittelverpackung aus Aluminium, einen Bleistift mit Radiergummi, eine Reisszwecke, ein Stück Styropor und ein Kleidungsstück aus Wolle.

Damit könnt ihr eure eigenen Blitze machen: Styropor, Aluminium-Schale, Wollschal, Bleistift und Reisszwecke

Damit könnt ihr eure eigenen Blitze machen!

Die Reisszwecke stecht ihr in der Mitte der Alu-Schale von unten durch den Boden und dann in den Radiergummi am Ende des Bleistifts. Jetzt könnt ihr das Ganze am Bleistift hochheben, ohne mit der Schale in Berührung zu kommen. Reibt nun das Styropor-Stück eine Weile kräftig an der Wolle (nehmt euch dafür ruhig rund 2 Minuten Zeit!). Legt den Styropor nun auf einem nicht-leitenden, trockenen Platz (z.B. einem Holztisch) ab und senkt die Alu-Schale am Bleistift langsam darüber ab. Hört dabei aufmerksam hin! Im besten Fall sollte die Schale den Styropor nicht berühren – gebt darauf gründlich acht, da Styropor und Alu-Schale einander anziehen.

Die aufgespiesste Aluschale schwebt über dem Styroporblock. Noch ein Bisschen näher, und die Funken werden vernehmlich knistern!

Langsam nähere ich meine Alu-Schale dem aufgeladenen Styroporblock an. Noch einen Moment, dann wird es knistern! Der Funkenschlag selbst geht allerdings so schnell, dass er sich nicht fotografieren lässt.

Wenn die Alu-Schale dem Styropor nahe kommt, könnt ihr ein verräterisches Knistern hören. Wenn ihr das Ganze in einem dunklen Raum ausprobiert, könnt ihr vielleicht sogar kleine Funken sehen. Richtig – das sind Blitze im Miniatur-Format, und das Knistern ist der Miniatur-Donner dazu!

Was geschieht da?

Durch das Reiben der Gegenstände aneinander werden geladene Teilchen geradezu von der Oberfläche der Dinge abgerubbelt – und bleiben an der Oberfläche des Gegenstücks haften. Wenn wir annehmen, dass Elektronen vom Kunststoff abgerieben werden und an der Wolle oder Haaren haften bleiben, trägt die Wolle nach dem Reiben negative Ladungen, während der Kunststoff – die Ballonhülle oder das Plastikmesser – positiv geladen ist.

Elektrostatische Anziehung und Abstossung

Diese unterschiedlichen Ladungen ziehen sich an – so stark, dass der geladene Ballon an der Wand (die ebenfalls negative Ladungen trägt) haftet, anstatt zu Boden zu fallen, oder dass die leichten Haare sich der Schwerkraft entgegen aufrichten!

Das schwebende und das geriebene Plastikmesser sind dagegen beide positiv geladen (ein paar Elektronen werden allein schon durch das Anfassen und die Bewegung des schwebenden Messers abgerieben), sodass sie einander abstossen – und zwar so stark, dass das sich langssam drehende Messer abbremst und sich in die Gegenrichtung zu bewegen beginnt!

Im Übrigen: Wenn euch die Plastikmesser bekannt vorkommen, dann nicht umsonst. Auf derselben Abstossung beruht nämlich auch das magische Harry-Potter-Experiment mit dem krummeln Wasserstrahl!

Wie aus elektrostatischer Aufladung Blitze werden

Durch das gründliche Reiben des Styropors sammeln sich schliesslich so viele Ladungen auf der Styropor-Oberfläche an, dass sie – der Anziehung folgend – den schmalen, luftgefüllen Spalt zwischen Styropor und Aluminium* überqueren können: Für einen Sekundenbruchteil fliesst Strom durch die Luft – ein Funke springt über. Genau das passiert auch bei einem Gewitter – nur sind die Funken dabei sehr, sehr, sehr viel grösser und werden dann Blitze genannt.

Wie in einer Gewitterwolke Ladungen für so grosse Funken zusammenkommen und warum Blitze (und eure Miniatur-Funken) leuchten und lärmen, erkläre ich euch am Montag ausführlich.

*Wenn ihr euch nun fragt, warum das funktioniert, obwohl ihr das Aluminium nicht aufgeladen habt: Aluminium ist ein Metall, in welchem – anders als in Kunststoffen – Elektronen sich prima bewegen können. So sorgt schon die Nähe der Ladung des Styropors dafür, dass die Elektronen im Aluminium sich so verschieben, dass an dessen Oberfläche eine dem Styropor entgegengesetzte Ladung entsteht: Die beiden Teile ziehen sich an und es kommt allenfalls zum Funkensprung.

Bis dahin wünsche ich euch viel Spass beim Experimentieren und Beobachten! Probiert doch auch aus, was ihr sonst noch aufladen und anziehen oder abstossen könnt (zum Beispiel: Wer bringt Styroporflocken zum Fliegen?)!

Hast du die Experimente nachgemacht:

[poll id=“17″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Abfluss auf Nord- und Südhalbkugel: Physik oder Fake?

Marion, eine Leserin, auf deren Blog ich schon mehr als einmal als Gastautorin gewirkt habe, schickte mir neulich einen Link zu einem Video, das gerade auf Facebook die Runde machte. Darin zu sehen sind Einwohner Kenias bzw. Tansanias, die filmenden Touristen ein Experiment vorführen. Das Spannende daran: Diese beiden Länder liegen auf dem Äquator!

Die Anrainer dieser Kreislinie, welche den Globus genau in Nord- und Südhalbkugel teilt, möchten den Touristen mit ihrem Experiment weismachen, dass Wasser, welches durch ein enges Loch abläuft, je nach Position auf der Erdkugel in eine bestimmte Richtung wirbelt: Links herum auf der Nordhalbkugel, Rechts herum auf der Südhalbkugel und genau auf dem Äquator ganz ohne Wirbel, d.h. gerade nach unten durch das Loch. Und das soll mit Hilfe eines Trichters und eines Eimers Wasser auf einem vielleicht 30 Meter langen Stück Strasse nachprüfbar sein.

„Das ist doch alles fake, oder?“, fragte mich die Leserin. Und mein Instinkt sagte gleich, dass ihrem Bauchgefühl zu trauen sei. Dennoch habe ich nachgelesen und schnell bestätigt bekommen – unter anderem in der Lehrmaterialsammlung der Uni Karlsruhe – dass Marion ganz richtig liegt: Alles fake!

Aber wie kommt es dazu, dass derlei Gerüchte um die Drehrichtung von abfliessendem Wasser sich so hartnäckig um die ganze Welt verbreiten (auch in südamerikanischen Ländern auf dem Äquator sollen entsprechende Experimente gezeigt werden)? Warum sollte das Wasser auf der Nordhalbkugel links- und auf der Südhalbkugel rechtsherum in den Abfluss wirbeln?

 

Was die Drehrichtung des Wassers bestimmen soll: Die Corioliskraft

Urheber der vorbestimmten Drehrichtung sei – so heisst es in den meisten Gerüchten – die Drehbewegung der Erde um sich selbst. Die führt nämlich wirklich dazu, dass eine geheimnisvolle Kraft – die Physiker nennen sie Corioliskraft – von der Erdkugel ausgehende Bewegungen in eine bestimmte Richtung ablenkt!

Welche Bewegungen werden abgelenkt?

Die Corioliskraft wirkt auf solche Bewegungen, die von einem Pol zum anderen, also entlang der Längengrade (jener Linien, die auf der Weltkarte oder dem Globus Nord- und Südpol miteinander verbinden) oder von der Drehachse der Erde fort bzw. zu ihr hin (aus Sicht eines Menschen auf der Erdoberfläche „nach oben“ oder „nach unten“ verlaufen.

Wie kommt es zu der Ablenkung?

Die Erdumdrehung als Ursache

Die Erde ist (mehr oder weniger) eine Kugel, die sich stetig um ihre Mittelachse dreht – also um die gerade Linie, die Nord- und Südpol durch die Kugel hindurch miteinander verbindet. Da diese Erdkugel im Grossen und Ganzen ein fester Körper ist, müssen sich alles Material, aus dem sie besteht und alles, was sonst noch darauf haftet (Meere, Pflanzen, Tiere, Menschen und sogar die Lufthülle, die den Planeten umgibt!) stets im gleicher Lage zueinander mitdrehen, damit alles seinen Platz behält. Schliesslich ist es noch nie vorgekommen, dass jemand seine Fortbewegung durch die Erddrehung verschlafen hätte und ein paar Tausend Kilometer weiter westlich wieder aufgewacht wäre.

Alle Orte auf der Erde drehen sich gemeinsam

Dieser feste Zusammenhalt aller Teile der Erdkugel führt auch dazu, dass die Entfernung zwischen Tunis, der Hauptstadt Tunesiens in Nordafrika, und der Norwegischen Hauptstadt Oslo zu jeder Tages- und Nachtzeit gleich ist. Wenn ihr nun Tunis und Oslo auf einem Globus-Modell ausfindig macht (beide Städte liegen nahezu auf demselben Längengrad!) und kleines Bisschen von Physik versteht, mag euch eine Ungereimtheit ins Auge fallen:

Nicht alle Punkte auf der Erdoberfläche drehen sich gleich schnell

Tunis liegt deutlich weiter aussen auf der Wölbung des Globus‘ als Oslo, d.h. der Abstand von Tunis zur Mittelachse ist deutlich grösser als der Abstand von Oslo zur Mittelachse. Das bedeutet, dass der Kreis, welchen Tunis innerhalb eines Tages entlang bewegt wird, erheblich länger ist – d.h. einen grösseren Umfang hat – als der Kreis, welchen Oslo entlang bewegt wird!

Vom Abstand zum Kreisumfang

Die Länge einer Kreislinie, d.h. den Umfang U eines Kreises kann man berechnen, indem man seinen Radius r – den Abstand zwischen Kreislinie und Kreismittelpunkt – mit 2 und der Zahl Pi multipliziert.

Damit entspricht der (kürzeste) Abstand von Tunis bzw. Oslo zur Drehachse der Erde dem Radius, aus dem sich die Länge des Umlaufs der jeweiligen Stadt während eines Tages ergibt.

Damit die Entfernung zwischen beiden Städten stets gleich bleibt, müssen sowohl Tunis als auch Oslo sich an einem Tag (d.h. in 24 Stunden) genau einmal um die Erdachse wandern. Wegen des grösseren Abstands zur Drehachse muss Tunis dazu einen längeren Weg zurücklegen als Oslo. Das bedeutet: Tunis muss sich schneller bewegen als Oslo, um seine längere Umlaufstrecke am gleichen Tag zu schaffen!

Geschwindigkeit und Drehgeschwindigkeit

Die Geschwindigkeit v einer gleichförmigen, d.h. stetig in die gleiche Richtung verlaufenden Bewegung kann man ausrechnen, indem man einen zurückgelegten Streckenabschnitt durch die dafür benötigte Zeitspanne teilt:

Eine vergleichbare Beziehung gilt auch für eine gleichförmige Kreisbewegung, in welcher der zurückgelegte Winkel Phi (φ) den Streckenabschnitt ersetzt. Die so berechnete Grösse nennen die Physiker Dreh- oder Winkelgeschwindigkeit und schreiben dafür statt v ein kleines Omega (ω):

Wenn die benötigte Zeit für zwei Bewegungen gleich ist, aber ein Streckenabschnitt bzw. Winkel grösser als der andere, ergibt sich mit dem somit grösseren Zähler im Bruch auf der rechten Seite der Gleichung aus dem grösseren Streckenabschnitt bzw. Winkel eine grössere Geschwindigkeit.

Gut sichtbar wird das, wenn ihr euch die Erdkugel einmal von „oben“ anseht:

Ablenkung eines Balls auf dem Weg von Oslo nach Tunis

Die Erde von einem Punkt über dem Nordpol aus gesehen: Die Nordhalbkugel erscheint als flache Scheibe mit dem Nordpol als Mittelpunkt. Ein Fussball fliegt von Oslo in der Nähe des Mittelpunkts nach Tunis, welches weiter vom Mittelpunkt entfernt liegt. Aus der Summe der Geschwindigkeiten von Oslo (kurzer blauer Pfeil) und der Südwärtsbewegung des Balles (durchgezogener roter bzw. langer blauer Pfeil) ergibt sich Punkt (2) als Zielpunkt für den Ball. Tunis, das sich schneller als Oslo bewegen muss, um seinen längeren Kreisabschnitt in gleicher Zeit zu schaffen, befindet sich dann aber schon an Punkt (3)! Der Weg des Balls kann auch durch die gekrümmte gepunktete Linie beschrieben werden: Eine Kraft – die Corioliskraft, die nach „rechts“ wirkt, lenkt den Ball von der geraden Flugbahn ab.

Die Grafik zeigt die Erde aus der Sicht eines Astronauten, der über dem Nordpol (in der Grafik der Mittelpunkt der Kreise) schwebt. Die gestrichelte Kreisline markiert den Weg, auf dem sich Oslo mit der Erde dreht. Die mittlere, durchgezogene Kreislinie zeigt den Weg, den Tunis nimmt (da Tunis auf der Kugelwölbung weiter aussen liegt, ist dieser Kreis grösser). Der ganz äussere Kreis ist der Äquator – die Südhalbkugel ist aus dieser Richtung nicht zu sehen.

Ein Fussballspiel von Oslo nach Tunis

Stellt euch nun vor, ein besonders kräftiger Spieler würde einen Fussball vom Anstosspunkt im Osloer Stadion über die Stadionmauer in Richtung Tunis (also genau nach Süden) treten. Wenn der Fussballspieler nun als Kind in den Zaubertrank gefallen ist und der Ball seine Reise über Europa hinweg antritt…wo würde er dann – die Lufthülle der Erde mal ausser Acht gelassen – landen? Im Tor im Stadion von Tunis?

Die Krux mit der Impulserhaltung

Eines der grundlegenden Gesetze der Physik – das Gesetz der Impulserhaltung – schreibt vor, dass jede Bewegung eines jeden Gegenstands in jede Richtung erhalten bleibt, so lange keine Kraft in die der Bewegung entgegengesetzte Richtung wirkt und ihn ausbremst.

Da der Fussball vor dem Anstoss auf der Erde gelegen hat, hat er sich zunächst mit der Geschwindikgeit von Oslo um die Erdachse gedreht. Diese Drehrichtung und -geschwindigkeit bleibt dem Ball auch, nachdem der Fussballer ihn in Richtung Süden getreten hat. Die Bewegung in Richtung Süden wird einfach zur Bewegung in Richtung der Oslo-Kreisbahn hinzugezählt.

Wie man Bewegungen addiert

Die geraden Pfeile in der Grafik zeigen die Richtungen der Teilbewegungen an – die Länge der Pfeile steht für die Geschwindigkeit bzw. den Impuls in der jeweiligen Richtung. Verschiebt man nun das hintere Ende eines Pfeils an die Spitze des ersten, zeigt der neue Pfeil vom hinteren Ende des einen zur Spitze des anderen Pfeils die Richtung der Gesamtbewegung (und dessen Länge die Gesamtgeschwindigkeit). Dieses Verfahren nennen die Mathematiker Vektoraddition (denn die Pfeile heissen bei ihnen Vektoren).

Die Grafik zeigt: Obwohl nach Süden getreten bewegt sich der Fussball diagonal über Europa nach Südosten – wobei die Geschwindikeit in Ost-Richtung der von Oslo entspricht. Damit landet der Ball am Punkt 2 irgendwo an der tunesischen oder algerischen Mittelmeerküste und nicht in Tunis (das befindet sich inzwischen weiter östlich an Punkt 3). Denn weil Tunis sich schneller bewegt als Oslo, ist es während der Flugzeit des Fussballs weiter nach Osten gewandert als der von der Impulserhaltung als „südlich von Oslo“ vorgegebene Punkt 2! Der Schuss geht also gründlich daneben.

Durch Drehbewegung auf die krumme Bahn

Wenn der Astronaut, der über dem Nordpol unbewegt schwebt, dieses unglaubliche Fussballspiel beobachtet und filmt, um anschliessend die Position des Balles in regelmässigen Zeitabschnitten einzublenden, erhält er eine Linie, die dem nach links gekrümmten gestrichelten Pfeil in der Grafik entspricht. Solch eine gekrümmte Flugbahn lässt sich mathematisch beschreiben, indem man annimmt, dass eine Kraft den Fussball in Ablenkungsrichtung beschleunigt – die sogenannte Corioliskraft.

Kraft und Beschleunigung: Zwei physikalische Grössen mit Richtung

Das Grundgesetz der Mechanik beschreibt die einfache Beziehung zwischen Kraft (F) und Beschleunigung (a):

Je grösser die Kraft ist, die auf einen Gegenstand mit der Masse m wirkt, desto grösser ist dessen Beschleunigung – d.h. desto schneller wird der Gegenstand schneller. Die physikalische Grösse für die Beschleunigung ist – wie auch jene für die Geschwindigkeit – stets mit einer Richtung versehen, die gemäss der Gleichung auch für die Kraft gilt.

Da die Corioliskraft mathematisch nur „in Erscheinung tritt“, wenn man das Fussballspiel wie der Astronaut von aussen beobachtet (die Zuschauer im Stadion in Oslo, die vor dem Abstoss mit Stadt und Ball um die Erdachse kreisen, kommen mit Hilfe der Vektoraddition weiter oben auf das Ziel des Balles), wird sie von den Physikern eine Scheinkraft genannt.

Die Corioliskraft ist aber durchaus real

Trotzdem könnt ihr selbst die Corioliskraft spüren, wenn ihr zum Beispiel versucht, auf einer sich drehenden Karussell-Scheibe auf dem Spielplatz geradewegs zu ihrem Mittelpunkt zu laufen. Das ist nämlich gar nicht so einfach – ihr müsst schon ordentlich gegenhalten, damit euch die Corioliskraft nicht von eurem direkten Weg ablenkt!

Ähnlich verhält es sich auch mit unserem unwahrscheinlichen Fussballspiel: Wenn die tunesische Küstenwache den Fussball aus dem Mittelmeer fischen und ins Stadion von Tunis bringt, sodass ein wiederum sehr starker Spieler den Ball in Richtung Oslo abstossen kann, würde auch er das Tor der Norweger nicht treffen. Denn da der Ball nun die höhere Drehgeschwindigkeit von Tunis mitnimmt, wird das langsamere Oslo den durch die Addition der Teilbewegungen ermittelten Zielpunkt beim Eintreffen des Balls noch nicht erreicht haben: Stattdessen fällt der Ball weiter östlich vielleicht auf die Grenze zwischen Norwegen und Schweden.

Die Regeln für die Ablenkung durch die Corioliskraft

Ganz gleich, in welche Richtung der Ball auf der Nordhalbkugel gespielt wird: In Flugrichtung gesehen lenkt die Corioliskraft den Ball stets „nach rechts“ (d.h. in Nord-Süd-Richtung nach Westen und in Süd-Nord-Richtung nach Osten).

Würde man ein ebenso unwahrscheinliches Fussballspiel auf der Südhalbkugel austragen, müsstet ihr die Zeichnung oben in einem Spiegel betrachten: An die Stelle des Nordpols tritt der Südpol (der ist auch auf jeder europäischen Landkarte unten, sodass ihr euren Atlas nun richtig herum halten könnt) und Osten ist nun rechts, sodass die Erde sich nun rechts herum dreht. Demnach „wirkt“ auch die Corioliskraft nun in spiegelverkehrter Richtung:

Ganz gleich, in welche Richtung der Ball auf der Südhalbkugel gespielt wird: In Flugrichtung gesehen lenkt die Corioliskraft den Ball stets „nach links“ (d.h. in Nord-Süd-Richtung nach Osten und in Süd-Nord-Richtung nach Westen).
Warum das unwahrscheinliche Fussballspiel?

Vielleicht habt ihr euch schon gefragt, weshalb ich so eine hanebüchene Begebenheit wie ein Fussballspiel von Oslo nach Tunis ersinne, um die Ablenkung durch die Corioliskraft zu beschreiben. Würden realistischere Umstände nicht den gleichen Zweck erfüllen?

Mit dieser klugen Frage kommen wir zu den Wasserwirbeln in Kenia und Tansania zurück. Der gekrümmte Pfeil in der Grafik deutet es schon an: Da die Ablenkung durch die Corioliskraft auf unterschiedlichen Geschwindigkeiten von Start- und Zielort einer Bewegung beruht, fällt eben diese Ablenkung um so grösser aus, je grösser der betreffende Geschwindigkeitsunterschied ist. Und der Geschwindigkeitsunterschied ist um so grösser, je weiter die Abstände von Start und Ziel von der Drehachse sich unterscheiden – d.h. je weiter Start und Ziel in Nord-Süd-Richtung voneinander entfernt liegen!

 

Warum die Corioliskraft für das Abfluss-Experiment keine Bedeutung hat

Beim Abfliessen aus einem vielleicht 40cm durchmessenden Trichter kommen die strömenden Wasserteilchen auf eine Bewegung von höchstens 20 Zentimeter in Nord-Süd-Richtung und wieder zurück. Dementsprechend winzig ist der Einfluss der Corioliskraft auf die Bewegungsrichtung der Teilchen – und dementsprechend einfach lässt sich die Bewegung durch andere Kräfte sehr gezielt beeinflussen.

Solche Kräfte lassen sich zum Beispiel durch eine angepasste Trichterform ausüben, welche die daran vorbei strömenden Wasserteilchen ganz unscheinbar in die gewünschte Richtung lenkt. Die Bemalung mit den auffälligen Spiralmustern lenkt recht erfolgreich von diesen kleinen Unterschieden ab.

Wenn ihr genau hinschaut, könnt ihr im Video erkennen, dass der Trichter, der „auf dem Äquator“ zum Einsatz kommt (welcher übrigens den Wirbel mittig halbiert, sodass die entgegengesetzte Wirkung der Coriolis-Ablenkung in der Nord- und Südhälfte sich aufheben soll), eine andere Form zu haben scheint als die Trichter für den Norden und den Süden.

 

Wo ihr die Auswirkung der Corioliskraft wirklich beobachten könnt

Wenn bei der Wettervorhersage im Fernsehen eine bewegte Wetterkarte zum Einsatz kommt, sind darauf meist riesige Wolkenwirbel zu sehen, die sich in die eine oder andere Richtung drehen. Es handelt sich dabei um Gebiete mit besonders hohem oder besonders tiefem Luftdruck. Ein hoher Luftdruck führt dazu, dass Luft in alle Richtungen von dem Gebiet wegströmt, während tiefer Luftdruck dazu führt, dass aus allen Richtungen zum betreffenden Gebiet hinströmt.

Diese Luftströmungen sind Hunderte bis Tausende Kilometer lang – und da die Lufthülle des Planeten sich im Grossen und Ganzen mit der Erde mitdreht, wirkt auf die strömenden Teilchen eine Corioliskraft. Die führt dazu, dass die Luftströme nicht geradlinig auf ein „Tief“ zu oder von einem „Hoch“ weg strömen, sondern in krummen, einen abflussähnlichen Wirbel bildenden Bahnen.

Der Coriolis-Ablenkung wegen drehen sich die Wirbel um Hochdruckgebiete auf der Nordhalbkugel stets „nach rechts“, also im Uhrzeigersinn, während die Wirbel um Tiefdruckgebiete – hier strömt die Luft in umgekehrter Weise – sich stets „nach links“, also gegen den Uhrzeigersinn drehen. Auf der Südhalbkugel, wo die Corioliskraft in seitenverkehrter Weise wirkt, ist das genau umgekehrt.

Um dagegen die Wirkung der Corioliskraft auf Wasserwirbel sichtbar zu machen, müssen diese mindestens ein paar Meter durchmessen und in aufwändig vor äusseren Einflüssen geschützter Umgebung im Labor kreisen können – auf der Strasse in Kenia funktioniert das jedenfalls nicht!

Seid ihr dem Mythos um die Drehrichtung von abfliessendem Wasser auch schon begegnet?

Und wenn ihr anlässlich der kommenden Weltmeisterschaft nur noch Fussball im Kopf habt, habe ich auch eine passende Anekdote aus der Chemie: Die Natur hat nämlich ein originalgetreues Fussball-Molekül erfunden!

Oster-Experiment: Wie geht das Ei in die Flasche?

Lang ist es nicht mehr hin: Nächste Woche ist schon Ostern – da ist noch gerade eben Zeit für ein schnelles Freihand-Experiment, bis der Osterhase kommt. Besser gesagt, für ein kleines Rätsel, das ihr eurer Familie oder euren Freunden zum Osterfest aufgeben könnt:

Wie bekommt ihr ein Ei in eine scheinbar zu enge Flasche – ohne es mit der Hand zu quetschen?

Ihr braucht dazu

  • Ein hartgekochtes Ei, ohne Schale
  • Eine Glasflasche, deren Öffnung nur wenig kleiner als das Ei ist
  • Streichhölzer – oder ein Feuerzeug und einen Streifen Papier

Was ihr braucht: Glasflasche mit weiter Öffnung, hartes Ei und Streichhölzer

Wie ihr das Experiment durchführt

Präsentiert euren Zuschauern das gepellte Ei, die Flasche und die Streichhölzer bzw. das Feuerzeug samt Papier. Stellt ihnen die Aufgabe: Bringt das Ei in die Flasche, ohne dass es kaputt geht – also nicht mit der Hand quetschen! Wenn sie die Antwort nicht selbst herausfinden, macht wie folgt weiter:

  1. Entzündet 3 Streichhölzer gleichzeitig und lasst sie sogleich brennend in die Flasche fallen. Alternativ: Steckt das Papier mit dem Feuerzeug in Brand und lasst es ebenfalls brennend in die Flasche fallen.
  2. Sobald das Feuer erlischt, setzt das gepellte Ei mit dem schmalen Ende nach unten auf die Öffnung, sodass es diese dicht schliesst.
Streichhölzer sind aus - das Ei ist auf der Öffnung.
Bis hier hin und nicht weiter: Da brauchte ich dann schwerere Geschütze.
  • Wartet einige Minuten: Das Ei wird wie von selbst in die Flasche gleiten!
  • Das Ei wandert in die Flaschenöffnung.
    Jetzt geht es besser: Das Ei schiebt sich in den Flaschenhals.
  • Sollte das Ei nicht ganz durch den Flaschenhals gleiten, könnt ihr die Flasche auch ein paar Minuten in den Kühlschrank – oder an diesem voraussichtlich kalten Osterfest nach draussen – stellen.
  • Das Ei steckt fast ganz im Flaschenhals!
    Noch ein Bisschen, dann…

    Wenn die Flaschenöffnung zu schmal (oder das Ei zu gross für die Öffnung ist) – da können Millimeter entscheidend sein – kann dabei passieren, was mir passiert ist:

    Die Flasche war zu eng fürs Ei : Jetzt ist nur die Hälfte drin!
    Dumm gelaufen: Die Kräfte der Natur haben das Ei entzwei gerissen.

    Das Ei wird förmlich halbiert! Wenn ihr bei eurer Vorführung Wert auf ein heiles Ei legt, probiert das Ganze vorher aus, bis ihr die passende Flasche zu euren Eiern bzw. die passenden Eier zur Flasche habt.

    Was passiert da?

    Teilchen-Bewegung ist Wärme

    Luft ist ein Gas (genau: ein Gemisch aus mehreren Gasen), das aus unzähligen winzig kleinen Teilchen besteht. Diese Teilchen sausen kreuz und quer durch den Raum und stossen ständig gegeneinander und gegen feste (und flüssige) Stoffe, die ihnen im Weg sind. Mit anderen Worten: Die wuseligen Luft-Teilchen brauchen eine Menge Platz – so wie die Kinder einer Schule, die auf dem Pausenplatz spielen.

    Wie sehr die Luft-Teilchen wuseln, können wir direkt spüren – wir nehmen ihre Bewegung nämlich als Wärme wahr. Das heisst: Je mehr die Teilchen sich bewegen, desto wärmer ist die Luft. Und das heisst wiederum: Je wärmer die Luft ist, desto mehr Platz braucht sie!

    Teilchen-Bewegung ist Druck

    Indem ihr brennende Streichhölzer oder Papier in die Flasche werft, sorgt ihr dafür, dass das Feuer die Luft ordentlich aufwärmt, sodass die Luft-Teilchen in der Flasche sich schneller bewegen und häufiger gegeneinander und gegen die Flaschenwände rempeln. So brauchen die Teilchen mehr Platz – und diejenigen, die nun nicht mehr in die Flasche passen, werden durch die Öffnung nach draussen gedrängt. Da der Raum draussen – die Erdatmosphäre – praktisch unbegrenzt ist, wird so gewährleistet, dass in der Flasche und draussen letztendlich der gleiche Druck herrscht.

    Sobald ihr das Ei auf die Öffnung setzt, verschliesst es diese vollständig. Wenn danach die Luft in der Flasche langsam wieder abkühlt, bewegen die Teilchen sich weniger und brauchen weniger Platz: Die Luft-Teilchen rempeln weniger gegeneinander, gegen die Flaschenwände und gegen das Ei. Da die Flasche nun verschlossen ist, können die zuvor hinausgedrängten Teilchen jedoch nicht wieder hinein. So entsteht im Inneren der Flasche ein Unterdruck.

    Wie die Luft-Teilchen das Ei bewegen

    Draussen bleibt der Druck dagegen stets gleich – und damit höher als drinnen. So drückt die Luft draussen die Umhüllung der Luft drinnen zusammen. Der Glasflasche macht das jedoch nichts – die ist hart und steif. Das Ei hingegen ist bis zu einem gewissen Grad formbar und überdies nicht fest mit der Flasche verbunden. Im Gegenteil: Es ist ziemlich glatt, sodass es an der Glaswand entlanggleiten kann.

    So können die Luft-Teilchen, die von aussen gegen das Ei rempeln – also Druck machen – das Ei damit in den Flaschenhals hinein schieben, sobald die Luft-Teilchen innen mangels Wärme nicht mehr dagegen halten können! Wenn durch das Abkühlen der Temperatur- und damit der Druckunterschied zwischen drinnen und draussen gross genug wird, kann das Ei vollständig in die Flasche hinein geschoben – oder, wenn die Öffnung zu eng ist, im schlimmsten Fall entzwei gequetscht werden.


    Wie ihr das Ei wieder aus der Flasche bekommt

    Es ist dazu nicht nötig, die Flasche zu zerschlagen! Geht stattdessen einfach wie folgt vor:

    1. Dreht die Flasche um, sodass das Ei von innen auf die Öffnung fällt und den Flaschenhals vollständig verschliesst.
    2. Lasst heisses fliessendes Wasser über den Flaschenbauch laufen (passt dabei auf eure Finger auf!) oder erwärmt die Flasche mit einem Haarföhn. So wie sich die Luft in der Flasche wieder ausdehnt, gleitet das Ei genauso wieder nach draussen, wie es in die Flasche hinein gekommen ist. Das hat sogar mit meinem halben Ei funktioniert!

    Ihr könnt das Ei natürlich auch mit Hilfe des Haarföhns oder heissen Wassers in die Flasche hinein bekommen, wenn ihr kein offenes Feuer verwenden möchtet. Dann benutzt allerdings besser einen Kochhandschuh um die Flasche festzuhalten, während ihr sie gründlich erwärmt.

    Entsorgung

    Gibt es keine! Das hartgekochte Ei (oder seine beiden Hälften) könnt ihr nach dem Experiment einfach aufessen. Sollte Russ daran gekommen sein, könnt ihr ihn vorher leicht abwaschen. Die Flasche könnt ihr sauber machen und für das nächste Osterfest und weitere Experimente aufheben!

    Mehr Experimente mit Eiern findet ihr übrigens hier – und hier könnt ihr mehr über die Farbstoffe erfahren, mit denen wir unsere Ostereier färben.

    Damit wünsche ich euch viel Spass beim Experimentieren und schöne Ostern!

    Und wie sehen eure Naturforscher-Ostern aus?

    Hast du das Experiment nachgemacht: 

    [poll id=“20″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

    Deko im Frühling mit Superabsorber

    Es ist die Zeit der Hasen, Küken Blumen…. Wie wäre es mit einer Osterdeko im Forscher-Stil – die gleich noch ein Experiment beinhaltet? Und (nicht nur) im Frühling jedes Heim-Labor verschönert? Ich habe ein tolles Gadget gefunden, das nicht nur eine besondere Sicht auf das Leben von Pflanzen gewährt, sondern auch eine verblüffende Eigenschaft von bestimmten Riesenmolekülen offenbart: Superabsorber!

    Ich habe das Material für das Experiment aus eigenem Antrieb beschafft. Für die Idee dazu danke ich Marion Rotter vom Luxury Lifestyle Magazine, in welchem diese spannende Frühlingsdekoration auch einen Platz finden wird.

    Superabsorber statt Pflanzenerde für Zwiebelblumen

    Hydroperlen aus Superabsorbern sind ganz besondere Kunststoffgebilde, die unglaubliche Mengen Wasser speichern und wieder abgeben können. Dabei sind sie durchsichtig und nach Wunsch bunt. So geben sie nicht nur einen praktischen Ersatz für Pflanzenerde ab (das kann z.B. Blähton für die Hydrokultur auch), sondern gewähren, wenn man sie in gläsernen Blumentöpfen verwendet, einen spannenden Blick auf das Wurzelwerk der Pflanzen.

    Und da Zwiebelblumen sich besonders leicht ein- und umsetzen lassen, bietet der Frühling die ideale Gelegenheit zum Experimentieren mit Superabsorbern!

    Ihr braucht dazu

    • Glasgefässe mit weiter Öffnung: Für den Labor-Stil können das zweckentfremdete Behälter sein, wie mein Honigglas, mein Einmachglas oder der Glaszylinder aus meinem Windlicht. Auch ein Labor-Becherglas eignet sich natürlich.
    • Zwiebelblumen, die idealerweise schon ein wenig ausgetrieben haben
    • Superabsorber: Die gibt es als „Hydrokristalle“ oder „Hydroperlen“ für kleines Geld in verschiedenen Shops für Krimskrams, Gadgets oder Geschenkartikel (meine Bezugsquelle hat mich letztlich nicht zu einer Erwähnung überzeugt, da sie stark verspätet und erst nach meiner Nachfrage geliefert und mich überdies trotz meiner Nicht-Zustimmung mit einer ganzen Flut von Newslettern zugeschüttet haben).
    • Leitungswasser, ein Lavabo bzw. Spülbecken zum Reinigen von Pflanzenwurzeln
    • Ein paar Stunden Zeit für viele Tage Freude
    Material : Zwiebelpflanzen, Hydroperlen, leere Gläser

    Wie ihr eure gläsernen Topfpflanzen setzt

    Zunächst müsst ihr die Superabsorber in Wasser ziehen lassen, damit sie sich ordentlich voll saugen. Das dauert ein paar Stunden, sodass es sich anbietet, sie über Nacht ziehen zu lassen. Eine Anleitung dazu liegt normalerweise der Verpackung der Hydrokristalle oder Hydroperlen bei. So bin ich mit meinen vorgegangen:

    • Schätzt ab, wieviele (Milli)Liter Wasser in die Gefässe passen würden, die ihr bepflanzen wollt. Entnehmt der Verpackung so viele Perlen bzw. Kristalle, wie ihr laut Angaben auf der Packung für dieses Volumen braucht. Achtung! Das sieht nach verdammt wenig aus, aber das passt schon: Ihr habt die grosse Überraschung ja noch vor euch!
    Hydroperlen bzw. Hydrokristalle für etwa 600ml Wasser
    Das sind genug Hydroperlen für die zwei Gläser oder insgesamt 600 Milliliter Wasser!
    • Verteilt die Hydroperlen bzw. Hydrokristalle auf die leeren Gefässe entsprechend ihrer Grösse. Dann füllt die Gefässe mit Wasser auf.
    Hydroperlen bzw. Hydrokristalle in Wasser
    Die Hydroperlen in den Gläsern, gleich nach dem Auffüllen mit Wasser. Und wirklich: Das genügt!
    • Stellt die Gefässe dorthin, wo sie nicht stören und deckt sie ggfs. gegen Staub ab (z.B. Deckel lose auflegen). Schaut in den nächsten Minuten bzw. Stunden immer mal wieder nach den Gläsern: Schon in den ersten Minuten werden die Perlen/Kristalle merklich wachsen und dabei zunehmend durchsichtiger erscheinen.
    Superabsorber in Aktion: Hydroperlen trocken und nach einer Nacht im Wasser
    Nach einer Nacht: So gross sind die Perlen geworden!
    • Nach einer Nacht sind meine Perlen von ursprünglich rund 2 mm im Durchmesser auf sage und schreibe 12 mm angewachsen und füllen die Gläser fast vollständig! Wenn es bei euch so weit ist, giesst das übrige Wasser ab.
    Superabsorber: Hydroperlen bzw. Hydrokristalle nach einer Nacht in Wasser
    Am nächsten Morgen: Die Hydroperlen sind über Nacht gewachsen und haben fast alles Wasser aufgesogen!

    Jetzt könnt ihr mit dem Bepflanzen beginnen.

    • Wenn ihr bereits ausgetriebene Blumenzwiebeln umsetzt: Nehmt die Zwiebeln aus dem Topf und befreit die Wurzeln vorsichtig von der Erde (die könnt ihr zum Gärtnern aufheben). Spült die Wurzeln dann gründlich unter fliessendem Wasser, bis sie blitzsauber sind.
    • Nehmt einen Teil der Hydroperlen bzw. Hydrokristalle aus eurem Pflanzgefäss, legt sie in einem anderen Behälter beiseite (die Perlen sind jetzt elastisch wie Gummibälle – passt auf, dass sie euch nicht davonspringen!).
    • Platziert die Zwiebel mit den Wurzeln nach unten im Gefäss und füllt die Zwischenräume zwischen den Wurzeln behutsam mit den beiseite gelegten Perlen bzw. Kristallen auf (die Superabsorber gehen nicht so leicht kaputt, die Pflanzenwurzeln können dagegen recht empfindlich sein).
    Zwiebelblumen in Hydroperlen: Frühlings-Deko im Labor-Style
    Fertig! Jetzt heisst es geduldig warten!
    • Wenn die Zwiebel stabil untergebracht ist, platziert das Gefäss an einem hellen, nicht zu warmen Ort (wenn es nicht mehr friert auch draussen). Zwiebelblumen wie Krokusse, Narzissen und andere Frühlingsblüher sind für kühles Frühlingswetter geschaffen und welken bei zu hoher Raumtemperatur schnell.
    • Freut euch die nächsten Wochen an eurer Forscher-Frühlingsdeko und beobachtet die Pflanze und ihre Wurzeln beim Wachsen! Die Hydroperlen oder -kristalle werden mit der Zeit wieder schrumpfen, wenn das Wasser verdunstet oder die Pflanze davon trinkt. Insgesamt sollten die Pflanzen aber bis zu zwei Wochen ohne Giessen auskommen! Danach giesst einfach etwas Wasser nach, und die Superabsorber sollten wieder aufgehen.

    Was passiert da?

    Was genau sind eigentlich Superabsorber?

    Superabsorber sind riesige Moleküle, sogenannte Polymere. Das sind lange Ketten aus sich immer wiederholenden kleinen Atomgruppen, die bei der Herstellung der Polymere miteinander verbunden werden. Was wir als „Plastik“ oder „Kunststoff“ bezeichnen, besteht aus solchen Riesen-Kettenmolekülen. Doch auch die Natur hält verschiedenste Polymere bereit, wie Proteine, Stärke, Zellulose oder unsere DNA.

    Die Superabsorber unter den Polymeren haben zwei besondere Eigenschaften:

    1. Die langen Kettenmoleküle sind über Querstreben aus weiteren Atomgruppen miteinander vernetzt. Das Ergebnis ist ein regelrechter Molekül-Schwamm, dessen Poren in der Grössenordnung von einigen Atomdurchmessern liegen. Das bedeutet, eine Hydroperle bzw. ein Hydrokristall ist im Grunde genommen ein einziges gigantisches Molekül – so gross, dass wir es sehen und anfassen können!
    2. Die Atomgruppen, aus welchen die Superabsorber-Polymere bestehen, sind so gestaltet, dass sie und Wassermoleküle einander anziehen: Chemiker sagen, die Atomgruppen sind „hydrophil“ – sie mögen Wasser. Wie Atomgruppen aussehen müssen, die Wasser mögen, und wie die gegenseitige Anziehung funktioniert, habe ich im Artikel über Tenside genauer beschrieben.

    Kurz gesagt: Zu den wasserfreundlichsten Kohlenstoffverbindungen (zu diesen zählen die meisten Kunststoffe) gehören solche, die elektrische Ladungen tragen, also Ionen sind. Deshalb tragen die riesigen Superabsorber-Moleküle eine Unzahl an negativen Ladungen auf ihrem Netz aus Atomketten. Die wiederum ziehen nicht nur Wasser an, sondern auch positiv geladene Metall-Ionen. Mit solchen gehen die negativ geladenen Atomgruppen des Molekül-Schwamms Ionen-Bindungen ein – wie die Natrium- und Chlorid-Ionen in einem Kochsalzkristall!

    Woraus meine (und höchstwahrscheinlich auch eure) Hydroperlen bestehen

    Superabsorber sind also riesige Molekül-Netze, die aus zahllosen kleinen Carbonsäure-Gruppen (sehr häufige Monomere sind Acrylsäure bzw. ihre stickstoffhaltige Variante Acrylamid*, aus denen auch meine Hydroperlen bestehen) zusammengesetzt sind. In trockenem Zustand werden die Ladungen durch in den Maschen gebundene Natrium (Na+)-Ionen ausgeglichen, sodass das Netz sich auf sehr engem Raum dicht zusammenpacken lässt. So fühlen sich die trockenen, winzigen Hydroperlen hart und massiv an. Tatsächlich kann man sagen: Ein (trockener) Superabsorber ist sowohl ein Polymer als auch ein Salz!

    *Wenn der Begriff „Acrylamid“ bei euch die Alarmglocken klingeln lässt: In verketteter Form, also als Polyacrylamid bzw. „Polyamid“ ist diese Verbindung absolut nicht giftig!

    Wie funktionieren Superabsorber?

    Wenn ihr trockene Hydroperlen oder Hydrokristalle in Wasser legt, passiert mit ihnen das selbe, was auch mit meinem nackten Ei (ein weiteres spannendes Oster-Experiment!) passiert ist: Die Ionen im Inneren des Molekül-Schwamms streben danach, sich mit Wassermolekülen zu mischen und mit ihnen zu wechselwirken. Dabei sind zunächst im Schwamm viele Ionen zwischen wenigen bis gar keinen Wassermolekülen, während das Wasser draussen nur wenige Ionen enthält – und die Natur verlang danach, diesen Unterschied auszugleichen: Physiker nennen dieses Verlangen „osmotischer Druck“.

    Mit Osmose zum Gel

    Dem osmotischen Druck folgend dringen die Wassermoleküle rasch in den Molekül-Schwamm ein. Dort umlagern sie die Natrium-Ionen, welche sich daraufhin vom Molekül-Netz lösen, und die Anionengruppen. Letztere bleiben allerdings fest mit den Kohlenstoff-Maschen des Polymers verbunden, sodass der Schwamm selbst sich nicht auflöst. Dabei stossen sich die negativen Ladungen, die nicht länger von Natriumionen aufgehoben werden, gegenseitig ab und treiben das anfangs eng gepackte Netz immer weiter auseinander.

    Das Ergebnis ist ein riesiges Schwamm-Molekül, in dessen wachsenden Poren Wassermoleküle regelrecht kleben, während es immer mehr Raum einnimmt. Solch ein Gebilde, das weder wirklich ein Feststoff noch wirklich in Wasser gelöst ist, nennen die Physiker ein Hydrogel. Damit die Hydroperlen für eure Topfpflanzen bei all dem aber nicht völlig aus dem Leim gehen, ist ihre Oberfläche von einem zusätzlichen Polymer-Netz umgeben, das sich nur begrenzt ausdehnt und so dafür sorgt, dass die Perlen ihre Form behalten und so lustig herumspringen können.

    Wo finden Superabsorber sonst noch Verwendung?

    Ihrer Supersaugkraft wegen werden Superabsorber auch in Babywindeln eingebaut, damit Babys Popo auch die ganze Nacht trocken bleibt (ebenso saugen sie wirksam die Folgen einer Blasenschwäche auf). Dabei wird auf die formgebende Aussenhülle verzichtet, denn die Windel selbst hält ja alles an Ort und Stelle. Was passiert, wenn man Superabsorber ohne begrenzende Hülle mit Wasser tränkt, zeigen die Simple Chemics hier sehr eindrücklich:


    Da kann man bestimmt auch Pflanzen hinein setzen, aber man sieht dabei auch nicht mehr als in richtiger Erde. Ausserdem haben die springenden Gelbällchen es mir wirklich angetan. Man kann damit wunderbar herumspielen!

    Indem man kleine Superabsorber-Körner mit Erde mischt, wird zudem Blumenerde hergestellt, die auch ohne den „Labor-Look“ besonders viel Wasser speichern kann.


    Entsorgung

    Polyacrylsäure und Polyamid sind nicht giftig. Polyacrylsäure wird sogar als Grundstoff für Medikamente und Kosmetik wie Gels zum Auftragen oder Augentropfen als Tränenersatz verwendet. Deshalb machen sie auch bei der Entsorgung keine Umstände.

    Die Hydroperlen oder Hydrokristalle können immer wiederverwendet werden – es ist nicht nötig, sie nach einmaliger Benutzung wegzuwerfen! Falls ihr sie doch irgendwann nicht mehr braucht, können sie in den Restmüll gegeben werden. Blumenzwiebeln könnt ihr bis im Herbst in den Garten oder auf den Balkon auspflanzen. Welke Pflanzenteile können ganz normal auf den Kompost oder in den Bioabfall.

    Und wir sieht eure – vielleicht auch ungewöhnliche – Frühlings- oder Osterdekoration aus?

    Hast du das Experiment nachgemacht: 

    [poll id=“21″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

    Experiment im Frühling: Blumen färben

    Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

    Blogparade: Kinder sind Forscher!

    Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

    Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

    Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

    So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

    Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

    Papa daraufhin: „Aber wir haben doch schon Hortensien im Garten…“

    Klein-Kathi: „Aber die sind rosa!“ (Und meine Lieblingsfarbe war -und ist- eben blau.)

    Papa: „Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.“

    Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

    Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

    Experiment: Wir färben Blumen um

    Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

    Ihr braucht dazu

    • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
    • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
    • Ggfs. Gummi- bzw. Einmalhandschuhe
    • Eine kleine Vase oder anderes Glasgefäss
    • Ein paar Stunden, ggfs. einen Tag Zeit
    Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

    Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

    Wie ihr das Experiment durchführt

    • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
    • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
    Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

    Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

    • Füllt das farbige Wasser in die Vase mit den Blumen.

    Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

    • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

    Was passiert da?

    Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen „Rohrleitungen“ durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

    Die Adern in den Blütenblättern sind deutlich blau gefärbt

    Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

    Und was ist der „Antrieb“ dieser Wasserversorgung?

    Pflanzen sind in der Lage zu „schwitzen“: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

    Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

    Warum funktioniert das nicht mit Topfpflanzen?

    Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

    Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

    Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der „Topf“ geradezu unendlich gross ist.

    Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

    Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

    Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel „Wasserblau“.

    Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

    Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

    Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach „Chemie“. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

    Entsorgung

    Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

    Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

    Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

    Hast du das Experiment nachgemacht:

    [poll id=“22″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

    DIY Taschenwärmer mit Natriumacetat

    Aus gegebenem Anlass habe ich auch an diesem Montag ein Experiment für euch: Denn es ist arktisch kalt draussen. Da kommen euch Taschenwärmer mit Sicherheit sehr gelegen. Und die könnt ihr aus ganz einfachen Zutaten aus dem Haushalt selbst machen – und euch mit einem ganz ungefährlichen Chemie-Trick warm halten! Und so macht ihr euch eure eigenen DIY – Taschenwärmer :

    Ihr braucht dazu

    • Soda (Natriumcarbonat, zum Beispiel Waschsoda oder Backpulver)
    • Haushaltsessig (bzw. Essigessenz)
    • Einen wasserdichten Plastikbeutel (zum Beispiel einen „Ziplock“-Beutel)
    • Die Aluminiumhülse eines Teelichts
    • Ein Gefäss mit hohem Rand
    • Kochtopf, Herd, Backofen, Rührstab
    • Ein ganz sauberes Glasgefäss
    • Evtl. Trichter und Filterpapier (z.B. einen Kaffeefilter)
    • eine Schutzbrille (das ist sicherer, damit nichts in eure Augen spritzt)

     

    Das braucht ihr für einen DIY Taschenwärmer

    Wie ihr einen Taschenwärmer herstellt

    Zuerst müsst ihr Natriumacetat herstellen

    Das ist das spezielle Salz, das ihr später in den Taschenwärmer füllt. Ihr könnt es auch in der Apotheke oder Drogerie kaufen – dann könnt ihr diesen Abschnitt überspringen. Aber das wäre dann ja nur ein halbes DIY.

    Gebt für einen kleinen Handwärmer etwa 250 ml Haushaltsessig (das sind ca. 10% Essigsäure gelöst in Wasser) in das Gefäss mit dem hohen Rand.

    Essig und Soda für den Handwärmer

    Essig und Soda: Wenn ihr sie abmessen möchtet, helfen Messbecher und Waage. Diesen Messbecher benutze ich übrigens nur fürs Experimentieren! Für die Küche habe ich einen eigenen – das ist sicherer.

    Gebt langsam(!) etwa 25 g Soda dazu. Das Gemisch wird stark aufschäumen! Wenn ihr die Soda langsam hinzugebt, schäumt es nicht über. Wenn sich die Soda vollständig unter Schäumen gelöst hat, gebt langsam noch etwas mehr dazu, bis das Aufschäumen nachlässt (Ihr könnt die passende Menge auch genau ausrechnen, wie ich es beim Start meiner Essig-Carbonat-Rakete gezeigt habe). Rührt dabei immer gut um!

    Wenn ihr ganz sicher gehen wollt, könnt ihr den pH-Wert der Mischung mit einem pH-Streifen überprüfen: Essig ist eine Säure, die einen Universalindikatorstreifen rot färbt (pH < 7). Wenn die Säure durch die Soda neutralisiert ist, färbt sich der Streifen grün (pH = 7). Dann ist euer Mischungsverhältnis genau richtig. Wenn ihr zu viel Soda – eine Base – hinzu gebt, wird der Streifen blau (pH > 7). Falls das passiert, gebt einfach noch ein paar Tropfen Essig dazu, bis der pH-Wert stimmt.

    Ihr habt nun eine Lösung des Salzes Natriumacetat in Wasser. Gebt diese in ein Gefäss, das ihr erhitzen könnt, und lasst das Wasser auf dem Herd einkochen. In meinem relativ grossen Kochtopf ist die Flüssigkeit breit auf der Herdplatte verteilt – so verdampft sie schneller als in einem engen Gefäss.

    Natriumacetat-Lösung auf dem Herd

    Den ausrangierten Kochtopf benutze ich zum Kochen nicht mehr. Zum Experimentieren taugt er aber noch: Es bilden sich bereits Dampfbläschen in der Lösung.

    Der zurückbleibende weisse Feststoff darf nicht heisser als 324°C werden – ab dieser Temperatur zerfällt das Natriumacetat! Passt daher gut auf und nehmt den Topf von der Platte, sobald kein Wasser mehr sichtbar ist (wenn ihr meinen Beitrag über Schmelz- bzw. Verdampfungswärme gelesen habt, wisst ihr, dass siedendes Wasser nicht heisser als 100°C werden kann).

    Natriumacetat nach dem Abdampfen

    Das Wasser ist verdampft – jetzt kratze ich das feuchte Salz aus dem Topf.

    Stellt das noch feuchte Natriumacetat anschliessend ca. 45 Minuten bei 150°C in den Backofen, um es ganz zu trocknen.

    Natriumacetat im Ofen

    Umgefüllt in ein handliches Gefäss (nicht zwingend nötig) kann das Natriumacetat nun trocknen.

     

    Bereitet jetzt die Füllung für den Taschenwärmer vor

    Während das Natriumacetat trocknet, schneidet ihr ein handliches Plättchen aus dem Boden der Aluminium – Teelichthülse. Das Metall ist so dünn, dass es sich problemlos mit einer Küchenschere schneiden lässt. Legt den Plastikbeutel und das Plättchen bereit. Bringt schliesslich noch etwas Wasser zum Kochen.

    Das mittlere Teil kommt in den Taschenwärmer.

    Das mittlere Teil kommt in den Taschenwärmer.

    Stellt das Natriumacetat auf der Herdplatte bereit (ich habe es der Handlichkeit wegen vor dem Trocknen und jetzt noch einmal umgefüllt – das ist aber nicht zwingend nötig). Gebt ein wenig kochendes Wasser dazu (je 1 ml Wasser auf 9 g Natriumacetat!) und schaltet sofort die Herdplatte ein, sodass das Gemisch weiterhin beinahe kocht. Wenn ihr gut umrührt, löst sich das Salz vollständig im heissen Wasser. Falls nicht, gebt tropfenweise mehr Wasser hinzu.

    Natriumacetat löst sich in heissem Wasser.

    Links: Hier muss ich noch etwas rühren. Rechts: Das Salz hat sich vollständig aufgelöst. Jetzt noch schnell filtrieren, dann ist die Füllung für den Taschenwärmer fertig!

    Jetzt wird es ein wenig kniffelig: Wärmt euren Trichter am besten vor, indem ihr ihn unter fliessendes heisses Wasser haltet (verbrüht euch eure Finger aber nicht!). Legt das Filterpapier ein und filtriert die heisse Lösung schnell in das sehr saubere Gefäss. Ich habe das saubere Gefäss dazu auf die noch heisse Herdplatte gestellt, denn die Lösung darf bei diesem Schritt nicht abkühlen!

    Ihr habt nun eine heisse, klare Natriumacetat-Lösung, die keinerlei sichtbaren Partikel mehr enthält. Bewegt diese Lösung möglichst nicht mehr und lasst sie an der Raumluft abkühlen. Dabei sollte die Flüssigkeit klar und – natürlich – flüssig bleiben. Falls beim Abkühlen Kristalle entstehen, erwärmt den Behälter noch einmal auf der Herdplatte, bis die Kristalle verschwunden sind und lasst ihn wieder abkühlen.

    Jetzt könnt ihr euren Taschenwärmer füllen und benutzen

    Giesst die abgekühlte Natriumacetat-Lösung vorsichtig in den Plastikbeutel. Fügt das ausgeschnittene Aluminium-Plättchen hinzu und verschliesst den Beutel fest.

    Wenn euch kalt ist, knickt das Plättchen (es muss dabei in der Flüssigkeit liegen), bis der Inhalt des Beutels fest zu werden beginnt. Ihr werdet merken: Sobald das Natriumacetat fest wird, wird es ziemlich warm!

    Handwärmer in Aktion

    Zugegeben: Mein Ziplock-Beutel ist etwas zu gross für das Bisschen Natriumacetat. Aber das macht nichts: Warm wird es trotzdem – das Thermometer beweist es!

    Haltet den Beutel in den Händen oder steckt ihn in eine Tasche und geniesst die Wärme!

    Ihr könnt diesen Taschenwärmer ausserdem beliebig wiederverwenden:

    Legt den Beutel mitsamt Inhalt in kochendes Wasser und die Natriumacetat-Kristalle werden sich wieder auflösen. Lasst den Beutel langsam abkühlen. Wenn euch wieder kalt ist, knickt das Metallplättchen erneut, sodass wiederum Kristalle entstehen und dabei Wärme freisetzen!

    Was passiert da?

    …Bei der Herstellung von Natriumacetat

    Der Taschenwärmer-Trick funktioniert mit einem ganz besonderen Salz, das ihr aus Essigsäure (CH3COOH) und Natriumcarbonat (Na2CO3, Soda) herstellen könnt. Essig ist eine Säure, Natriumcarbonat hingegen eine Base. Beide reagieren miteinander, indem sie sich neutralisieren. Das heisst, aus einer relativ starken Säure und Base entstehen sehr viel schwächer saure und basische Stoffe:

    Kohlensäure (H2CO3) ist nicht nur eine sehr schwache Säure, sondern zerfällt zudem leicht in Kohlenstoffdioxid und Wasser:

    Das Gas Kohlenstoffdioxid steigt aus der Lösung auf (Deswegen schäumt das Ganze so. Ausserdem ist dieses Gas ein prima Treibstoff für viele andere spektakuläre Experimente!). So erhaltet ihr eine Lösung, die ausschliesslich Natrium (Na+)- und Acetat (CH3COO)-Ionen enthält. Wenn ihr nun das Wasser einkocht und trocknet, bleibt das feste Salz Natriumacetat übrig:

    Warum Natriumacetat „auf Kommando“ fest wird

    In warmem Wasser löst sich mehr von einem Stoff als in kaltem Wasser. Das gilt auch für Natriumacetat. Deswegen macht ihr das Wasser so heiss wie möglich, um möglichst viel Natriumacetat in sehr wenig Wasser aufzulösen.

    Wenn solch eine heisse Lösung abkühlt, „vergisst“ das Natriumacetat leicht, dass es fest werden sollte. So bleibt auch in kaltem Wasser mehr gelöst, als „erlaubt“ ist. Die Chemiker nennen so etwas eine übersättigte Lösung. Und diese spezielle übersättigte Lösung kann man auch als unterkühlte Schmelze ansehen – denn wenn ihr euren Taschenwärmer genau anseht, nachdem er seine Wärme angegeben hat, werdet ihr feststellen, dass von dem Wasser darin nicht mehr viel zu sehen ist: Nahezu der ganze Inhalt ist zu Kristallen erstarrt!

    Ob übersättigte Natriumacetat-Lösung  oder unterkühlte Natriumacetat-Schmelze: Das Ganz ist sehr empfindlich. Ein „Tritt in den Hintern“ durch das Knicken des Plättchens oder in der Lösung herumwirbelnde Schwebstoffe oder ein winzigkleiner Natriumacetat-Kristall genügen, um das Salz daran „zu erinnern“, dass es fest zu werden hat. Deshalb muss das Gefäss, indem die Natriumacetat-Lösung abkühlt, so vollkommen sauber sein.

    Ansonsten – oder wenn ihr den Prozess durch das Knicken des Metallplättchens gezielt auslöst – geschieht folgendes:

    Das heisst, das Wasser, das euch anfangs als Lösungsmittel gedient hat, wird grösstenteils in die Natriumacetat-Kristalle eingebaut. Die Kristalle enthalten also Kristallwasser! Der Stoff rechts vom Reaktionspfeil heisst deshalb korrekterweise „Natriumacetat-Trihydrat“.

    Und nun der Trick: Woher die Wärme kommt

    Der Umstand, dass es sich bei der Natriumacetat-Lösung in eurem Taschenwärmer eigentlich um eine Schmelze handelt, macht den Trick mit der Wärme möglich: Wie ihr auch an Wasser überprüfen könnt, wird zum Schmelzen Energie – die sogenannte Schmelzwärme – benötigt, die anschliessend der Schmelze innewohnt.

    Das gilt auch für eine Natriumacetat-Schmelze, die auf Umwegen, nämlich durch das Auflösen von Natriumacetat in wenig Wasser, entsteht: Die Wärme wird dabei aus der Herdplatte bzw. dem kochenden Wasser in der Lösung „entnommen“ und in der Schmelze gespeichert (d.h. ohne Herdplatte würde das Wasser durch das Auflösen des Natriumacetats abkühlen!). Das heisst, diese Energie verbleibt in der Schmelze auch dann verborgen, wenn sie abkühlt. Erst wenn die unterkühlte Schmelze wieder „auf Kommando“ fest wird, wird diese Energie wieder abgegeben – und eure Hände werden warm!

    Ich wünsche euch damit einen warmen Start in die kälteste Woche dieses Winters! Und verratet uns doch: Was tut ihr, um euch warm zu halten?

    Hast du das Experiment nachgemacht:

    [poll id=“23″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

    Experiment: Abendrot im Milchglas

    Zur Zeit bekommen wir ihn hier am Zürichsee selten zu sehen: Den klaren, blauen Himmel. Im Winter hängt nämlich meistens dicker, grauer Hochnebel über dem See. Wenn der sich aber doch einmal verzieht, ist die Farbe des Tageshimmels um so auffälliger blau – mit einer weissen Sonne darin. Und wenn die Bewölkung bis zum Abend locker bleibt, ist Romantik pur angesagt: Die lockeren Wolken oder dünnen Schleier glühen bei Sonnenuntergang (und ebenso bei Sonnenaufgang) rosa oder sogar leuchtend rot, während die Sonne darin rotgolden strahlt.

    Aber wie entsteht eigentlich das wechselnde Farbenspiel an unserem Tageshimmel? Mit diesem einfachen Experiment könnt ihr selbst erforschen, wie die Farben an den Himmel kommen!

    Warum der Himmel blau ist

    Wenn wir draussen nach oben schauen, blicken wir durch die Atmosphäre unserer Erde. Die besteht hauptsächlich aus Stickstoff und Sauerstoff – zwei Gasen, die eigentlich farblos, d.h. durchsichtig sind. Das zeigt sich uns nachts, denn dann sieht man die Atmosphäre tatsächlich nicht, sondern den dunklen Weltraum dahinter mitsamt der Sterne darin.

    Bei Tag ist es allerdings vorbei mit der Durchsichtigkeit – sobald Licht auf unsere Atmosphäre fällt, erscheint der Himmel farbig, und die Sterne dahinter sieht man nicht mehr. Das liegt daran, dass Sonnenstrahlen, die auf die Atmosphäre treffen, von einigen Teilchen darin in verschiedene Richtungen abgelenkt – die Physiker sagen gestreut – werden. Ein Teil des geordneten Strahlenbündels, das von der Sonne kommt, erreicht uns am Ende des Weges durch die Atmosphäre somit als wildes Strahlendurcheinander, ohne dass wir den Ursprung der einzelnen Strahlen feststellen könnten.  So sehen wir den Himmel als helle Fläche aus unzähligen Einzel-Lichtstrahlen.

    Und weil Himmel und Sonne zu gross und sperrig sind, um damit herum zu probieren, könnt ihr euch solch einen Himmel mit ein paar simplen Zutaten aus der Küche als handliches Modell nachbauen!

    Ihr braucht dazu

    • Einen grossen Glasbehälter
    • Leitungswasser
    • Ein wenig Milch
    • Eine weiss leuchtende Taschenlampe
    • Einen dunklen Raum

    Wie ihr das Experiment durchführt

    • Füllt das Glas mit Leitungswasser.
    • Gebt einen Schuss Milch dazu und rührt ggfs. um, bis sich die Milch gleichmässig im Wasser verteilt hat.
    • Nehmt das Glas und die Taschenlampe mit in den dunklen Raum.
    • Haltet die Taschenlampe direkt an das Glas und leuchtet so hindurch (ein dunkler Schal kann ggfs. Ritzen zwischen Glas und Lampe abdichten, sodass kein Streulicht hindurch dringt).
    • Leuchtet zunächst von der Seite durch das Glas und schaut von vorne bzw. oben, dann leuchtet von hinten bzw. unten und schaut durch das Glas hindurch direkt in das Licht. Ihr könnt natürlich auch andere Winkel ausprobieren!

    Was passiert da?

    Ein Glas mit sauberem Wasser ist durchsichtig, wie der Himmel in der Nacht: Ihr könnt sehen, was sich dahinter befindet. In Wasser wird das Licht praktisch nicht gestreut. Wenn ihr etwas Milch dazu gebt, mischt ihr Teilchen in das Wasser, die das Licht stark streuen (Milch enthält relativ grosse Teilchen, wie Fettmoleküle und Proteine, die sich zudem nicht gut mit Wasserteilchen mischen lassen). So erscheint das Wasser-Milch-Gemisch bei (unsortiertem) Tageslicht undurchsichtig weiss.

    Die Taschenlampe ist in diesem Modell die Sonne: Sie sendet kegelförmig geordnete Strahlen aus – in unserem Experiment direkt durch das durchsichtige Glas in das Milchwasser. Die Strahlen werden von den Milchteilchen abgelenkt, sodass selbst dann einige selbst dann in eure Augen fallen, wenn ihr das Glas von der Seite anleuchtet: Das ganze Milchwasser leuchtet – wie der Himmel am Tag!

    Die Milch bringt Farbe ins Modell

    Wenn ihr ganz genau hinschaut, werdet ihr feststellen: Das Milchwasser strahlt bläulich, wenn ihr mit der Taschenlampe von der Seite leuchtet und von vorn schaut. Wenn ihr direkt durch das Milchwasser ins Licht schaut, erscheint dagegen rötlich-golden!

    Wie das kommt?

    Weisses Licht ist ein Strahlengemisch aus Strahlen mit allen möglichen Wellenlängen – das bedeutet mit allen möglichen Farben (diese Farben könnt ihr zum Beispiel mit einem DIY-Spektroskop sichtbar machen, das auf Lichtbrechung und nicht auf Lichtstreuung beruht). Diese Farben werden aber nicht alle in gleicher Weise gestreut. Wie die streuenden Teilchen in der Luft streuen auch die Milchteilchen die blauen Strahlen (mit kurzen Wellenlängen) stärker als die roten (mit langen Wellenlängen).

    Mittag im Modell

    Wenn das weisse Licht nun von der Seite oder von oben kommt, werden die blauen Strahlen besonders weit (etwa im rechten Winkel) abgelenkt, sodass vornehmlich solche unsere Augen erreichen. So erscheint das Milchwasser blau, wenn die Taschenlampe von der Seite, von oben oder von unten strahlt, und der Himmel erscheint ebenfalls blau, wenn die Sonne hoch oben steht.

    Experiment : Im Milch - Modell ist der Mittagshimmel blau

    Morgen und Abend im Modell

    Schaut ihr dagegen durch das Milchwasser in die Lampe, werden vornehmlich die blauen Strahlen zu den Seiten abgelenkt, sodass vornehmlich rotes Licht eure Augen erreicht: Das Milchwasser erscheint rötlich – wie auch der Himmel beim Sonnenuntergang oder -aufgang. Wenn ihr einen solchen beobachtet, werdet ihr tatsächlich feststellen, dass der Himmel nur in Richtung der Sonne rot leuchtet – je weiter ihr nach Norden, Süden oder sogar in die entgegengesetzte Richtung schaut, desto weniger rot werdet ihr finden.

    Experiment: Im Milch-Modell ist der Sonnenuntergang rot

    Mit der Taschenlampe könnt ihr so den Lauf der Sonne nachstellen und die Farbänderung beobachten: Leuchtet zunächst von rechts nach links und bewegt die Lampe dann hinten um das Glas herum (Licht nach vorn!), bis sie schliesslich von links nach rechts leuchtet.

    Und wie kommt es nach Sonnenuntergang zur „blauen Stunde“?

    Wenn die Sonne erst einmal hinter dem Horizont verschwunden ist und kein direktes Licht mehr zum Streuen schickt, zeigt sich, dass ein Bestandteil der Atmosphäre tatsächlich blau ist: Das Ozon, welches in der Stratosphäre – also weit oben – die schützende Ozonschicht bildet, schluckt nämlich den roten Anteil der letzten Strahlen-Irrläufer, die auch nach Sonnenuntergang (und vor Sonnenaufgang) um die Erdkugel herum finden. So kommt vornehmlich der blaue Anteil dieses letzten Lichtes bei uns an und beschert uns eine „blaue Stunde“, ehe es wirklich dunkel und die Atmosphäre damit durchsichtig wird.

    Die Ozonschicht ist natürlich auch bei Tag vorhanden – dann aber wird weitaus mehr blaues Licht auf die Erde gestreut, als das Ozon schlucken kann (wie Stoffe Licht schlucken und warum so „dezimiertes“ Licht uns farbig erscheint, habe ich übrigens hier genauer erklärt).

    Ich wünsche euch viel Spass beim Erkunden eures Modell-Himmels! Und verratet uns doch: Welche farbigen Himmelsphänomene habt ihr schon „in echt“ beobachten können?

    Hast du das Experiment nachgemacht:

    [poll id=“24″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

    Experimente Zauber mit Oberflächenspannung

    In der Schweizer Fasnacht sind Hexen zentrale Figuren, aber bestimmt sind auch Zauberer, Feen und andere magische Wesen bei der Kostümwahl beliebt. Mache dein magisches Kostüm wirklich einzigartig: Ich verrate dir, wie du wirklich zaubern und deine Freunde und (Mit-)Gäste verblüffen kannst! Die Physik bzw. Chemie machts möglich!

     

    1. Die schwimmende Büroklammer

    Du brauchst dazu

    • ein sauberes Glas mit Leitungswasser
    • ein wenig Flüssigseife
    • eine Büroklammer
    • eine Pinzette
    • deinen Zauberstab

     Material für Büroklammer vs. Oberflächenspannung

    Wie du den Zauber durchführst

    • präpariere den Zauberstab, bevor die Zuschauer dabei sind: Gib ein wenig Flüssigseife auf die Spitze, sodass das nicht auffällt
    • In Gegenwart der Zuschauer: Lege die Büroklammer mit Hilfe der Pinzette vorsichtig auf die Oberfläche des Wassers im Glas. Die Klammer wird schwimmen.
    • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor
    • Führe den Zauberstab dabei nahe an die WasseroberflächeAlles bereit: Jetzt dein Zauberspruch!
    • Tippe, während du deinen Zauberspruch sagst, mit der seifigen Spitze des Stabes 1 – 2 cm von der Büroklammer entfernt auf die Wasseroberfläche. Klammer wird sofort auf den Grund des Glases sinken.Keine Oberflächenspannung mehr: Die Klammer ist versunken!

     

    Was passiert da?

    Wenn du schon das letzte Experiment rund um die Dichte und die Anomalie des Wassers gelesen hast, wirst du wissen: Nur Dinge, deren Dichte kleiner ist als die von flüssigem Wasser, können darauf schwimmen. So sollte es jedenfalls sein. Trotzdem schwimmt die Büroklammer aus Metall (zum Beispiel Eisen), dessen Dichte um ein Vielfaches höher als die flüssigen Wassers ist!

    Die Oberflächenspannung machts möglich

    Das rührt daher, dass Wasserteilchen ausserordentlich fest zusammenhalten. Zwischen den Wasserteilchen bzw. -molekülen wirken auch im flüssigen Zustand stark anziehende Kräfte, die sogenannten Wasserstoffbrücken, welche auch einen weiteren Zaubertrick – Harry Potter und der krumme Wasserstrahl – möglich machen. Dank dieser Wasserstoffbrücken halten die Wasserteilchen so dicht zusammen, dass sie an der Luft (mit welcher Wasserteilchen so gar nicht wechselwirken mögen) eine relativ schwer zu durchdringende Oberfläche bilden.

    Diese Oberfläche ist so stabil, dass sie sogar der Erdanziehung standhalten kann: Wassertropfen zerlaufen auf einer Unterlage nicht, um der Schwerkraft folgend möglichst flach zu werden. Stattdessen erscheinen sie gewölbt (dazu findet ihr ein Experiment bei Forschen für Kinder)! Wie die Haut eines aufgeblasenen Luftballons steht die Wasseroberfläche dabei unter Spannung. Deshalb wird diese fesselnde Eigenschaft des Wassers (und anderer Stoffe) „Oberflächenspannung“ genannt.

    Dank der grossen Oberflächenspannung des Wassers können auch kleine Eisenteile schwimmen, obwohl sie eigentlich zu dicht dafür sind – wenn ihr Gewicht, wie bei der Büroklammer, auf genügend Auflagefläche verteilt wird. So ist nämlich an keiner Stelle die Last gross genug, um die film-artige Wasseroberfläche zu durchbrechen.

    Die Zauberkraft der Tenside

    Seife – nicht nur flüssige – besteht aus Tensiden. Das sind ganz besondere Teilchen: Sie haben nämlich zwei unterschiedliche Enden, die mit unterschiedlichen wechselwirken! Das macht die Tenside zu kleinen Diplomaten. Während nämlich das eine Ende Wasserteilchen anzieht und von ihnen angezogen wird, pflegt das andere Ende anziehende Wechselwirkungen mit solchen Teilchen, die sich nicht gern mit Wasser mischen.

    Das verleiht den Tensiden nicht nur ihre Super-Waschraft, die darauf beruht, dass sie zwischen Wasser und Fett „vermitteln“ und dem Fett ermöglichen, sich mit Wasser zu mischen. Tenside vermitteln nämlich ebenso zwischen Wasser und Luft – die sich in Bezug auf Wechselwirkungen wie Fett verhält, nämlich wasserabweisend.

    Was dein Zauber bewirkt

    Wenn du mit der Seife am Zauberstab auf die Wasseroberfläche tippst oder kurz hinein tauchst, lösen sich die Tenside vom Stab und ordnen sich an der Wasseroberfläche an: (wasserliebendes) Köpfchen in das Wasser, (fett- bzw. luftliebendes) Schwänzchen in die Höh!

    Streichholzmodell: Tenside an der Wasseroberfläche

    Dadurch wird der Zusammenhalt zwischen den einzelnen Wasermolekülen minimiert, wenn nicht gar aufgehoben, sodass die Oberflächenspannung zusammenbricht. Ohne den festen Oberflächenfilm ist nichts mehr da, was die Büroklammer tragen könnte, sodass sie wie ein Stein auf den Grund sinkt, wie ihre Dichte es vorschreibt.

    2. Der furchtsame Pfeffer

    Du brauchst dazu

    • ein sauberes Glas mit Leitungswasser
    • gemahlenen Pfeffer oder ein anderes wasserunlösliches Pulver
    • Flüssigseife
    • deinen Zauberstab

    Material für den Zauber mit Pfeffer

    Wie du den Zauber durchführst

    • Bringe wie im 1. Versuch vorab ein wenig Flüssigseife auf die Spitze deines Zauberstabs.
    • Wenn die Zuschauer da sind, bestreue die Wasseroberfläche auf dem Glas dicht mit gemahlenem Pfeffer. Das Pulver wird auf der Wasseroberfläche schwimmen.Pfeffer schwimmt auf der Wasseroberfläche
    • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor. Bringe dabei den Zauberstab in die Nähe der Wasseroberfläche.
    • Wenn du deinen Zauberspruch sagst, tippe die Stabspitze kurz – für höchstens ein bis zwei Sekunden – auf die Wasseroberfläche. Die Pulverkörner auf der Wasserfläche werden sofort vor der Stabspitze Reissaus nehmen und in Richtung der Glasränder drängen!Der Pfeffer flieht vor dem Zauberstab!

    Was passiert da?

    Es sind einmal mehr die Tenside, welche die Pfefferkörnchen zur Flucht bewegen. Wie eine Schar, die auseinanderstrebt, breiten sich die Seifenteilchen vom Zauberstab fort auf der Wasseroberfläche aus. Dabei schieben sie die schwimmenden Pulverkörner kurzerhand zur Seite.

    Da wir die winzigen Seifenteilchen nicht sehen können, erscheint dies so, als würden die sichtbaren Pulverkörner vor dem Stab zurückweichen!

    Damit dir und allen anderen Lesern ein fröhliches Ohhh Häx!, Helau!, Alaaf!, Narri! Narro! und was man durch die Länder sonst noch alles ruft!

    Hast du das Experiment nachgemacht: 

    [poll id=“25″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

    gefrorenes Wasser : Das Glas wird voller

    Warum ist es eigentlich keine gute Idee, eine geschlossene Glasflasche mit Wasser ins Tiefkühlfach zu legen? Dieses Experiment zeigt euch eine ungewöhnliche, verblüffende Eigenschaft des Wassers – seine Dichteanomalie!

    Der Januar war hier in den niedrigen Regionen der Schweiz viel zu warm, aber der Februar grüsst heute Morgen mit einer feinen Puderzucker-Schneeschicht. So könnt ihr in diesem Winter vielleicht doch noch Beobachtungen machen, die spannende Fragen aufwerfen: Warum friert bei einem Teich zuerst die Oberfläche zu, während das Wasser darunter flüssig bleibt? Und warum sieht ein Wasserkübel voller aus, wenn das Wasser darin zu Eis erstarrt?

    Dass der Kübel tatsächlich voller ist, könnt ihr mit diesem einfachen Experiment nachweisen!

    Ihr braucht dazu

    • Ein – möglichst schmales – Trinkglas, das in euer Tiefkühlfach passt
    • Ein Tiefkühlfach (wenn es draussen friert, genügt auch Platz auf Balkon oder Terrasse)
    • Kaltes Leitungswassser
    • Einen wasserfesten Filzstift
    • Ein Lineal
    • Optional: Gefäss mit Skala und eine Küchen- oder Laborwaage
    Material für das Experiment
    Das ist alles was ihr braucht, um Wasser wachsen zu lassen!

    Wie ihr das Experiment durchführt

    • Füllt das Glas etwa zwei Drittel hoch mit Leitungswasser und stellt es auf eine waagerechte Fläche.
    • Markiert die Höhe des Wasserspiegels mit einem Filzstift-Strich. Mit dem Lineal könnt ihr die Füllhöhe zudem auch in Zentimetern messen.
    • Stellt das Glas mit dem Wasser in euer Tiefkühlfach oder bei Frost nach draussen und wartet einige Stunden.
    • Wenn das Wasser vollständig gefroren ist, nehmt das Glas wieder aus dem Tiefkühlfach bzw. nach drinnen und wartet wenige Minuten, bis die Luftfeuchtigkeit nicht mehr sofort einen weissen Schleier auf der Glasoberfläche bildet. Wischt eventuelle Reste dieses Schleiers ab (gebt dabei acht, dass der Filzstift-Strich erhalten bleibt!).
    • Vergleicht die Höhe der Eissäule im Glas mit eurer Markierung. Mit dem Lineal könnt ihr den Höhenunterschied in Millimetern messen!

    Wenn ihr eine Waage und ein Gefäss mit unterteilter Skala, zum Beispiel einen Messzylinder, habt, könnt ihr auch die Veränderung der Dichte des Wassers messen:

    • Wiegt das Glasgefäss vor und nach dem Einfüllen des Wassers. Der Gewichtsunterschied entspricht der Masse des eingefüllten Wassers. Lest dann das Volumen des eingefüllten Wassers (in Millilitern oder Kubikzentimetern cm3) von der Skala des Gefässes ab. Notiert beide Werte.
    • Um die Dichte des Wassers zu erhalten, teilt die Masse des Wassers durch sein Volumen (die Zahlen werden sich sehr ähneln, sodass das Ergebnis in der Nähe von 1 g/cm3 liegen wird).
    • Nachdem das Wasser gefroren ist, lest das Volumen noch einmal ab (wenn die Oberfläche der Eissäule sich gewölbt hat, versucht den Wert zu schätzen!) und rechnet die Dichte des Eises wie in 2. aus (ein zweites Mal wiegen müsst ihr dazu nicht – die Masse des Wassers ändert sich nicht!).

     

    Was ihr beobachten könnt

    Nach dem Gefrieren reicht die Oberfläche der Eissäule deutlich über den ursprünglichen Wasserspiegel hinaus: Eis nimmt mehr Platz ein als das flüssige Wasser, aus dem es entsteht – das Wasser ist beim Einfrieren gewachsen! In meinem Glas ist die Eissäule ganze 8 Millimeter (wenn ich zudem die Wölbung berücksichtige, mindestens 1 Zentimeter) höher als das Wasser, das ich eingefüllt hatte!

    Dichteanomalie sichtbar gemacht: Das Wasser ist gewachsen!

    Wenn ihr die Dichte von Wasser und Eis bestimmt, werdet ihr feststellen, dass der Wert für das Eis etwas kleiner ist als der für das Wasser (die Masse bleibt dabei unverändert: Vor und nach dem Gefrieren ist (annähernd) gleich viel Wasser im Glas).

    Wie kann Wasser wachsen, wenn es friert?

    Nur ganz wenige Stoffe können das. Normalerweise werden Stoffe grösser, je wärmer sie werden. Das rührt daher, dass die Teilchen in warmen Stoffen sich heftiger bewegen als die gleichen Teilchen in kalten Stoffen. Und was ständig herumzappelt oder gar -wuselt, braucht einfach mehr Platz. Das heisst auch, dass diese Stoffe kleiner werden, wenn man sie abkühlt – also auch, wenn sie gefrieren.

    Wasser und einige wenige Stoffe, wie die Elemente Bismut, Gallium, Germanium, Plutonium, Silicium und Tellur , fallen da allerdings aus dem Rahmen: Sie werden mitunter grösser, wenn sie abkühlen.

    Wasser verhält sich nicht „ganz normal“

    Flüssiges Wasser verhält sich genaugenommen ganz normal, so lange seine Temperatur über rund 4°C liegt. Dann gilt auch hier: Je wärmer das Wasser ist, desto wuseliger sind die Teilchen, aus denen es besteht, und desto mehr Platz nimmt es ein. Oder umgekehrt: Je kälter das Wasser ist, desto weniger wuseln die Teilchen und desto weniger Platz nehmen sie ein.

    Bei rund 4°C passiert dann etwas neues: Wenn das Wasser noch kälter wird, bereiten die Wasserteilchen sich darauf vor, Eiskristalle zu bilden: Sie rotten sich zusammen und bewegen sich nurmehr in der Nähe der Plätze, die sie in einem Eiskristall-Gitter einnehmen würden. So wie Kinder, die „die Reise nach Jerusalem“ spielen und – wenn sie erwarten, dass die Musik abbricht – darauf aus sind, in der Nähe der freien Stühle zu sein.

    Und das Eiskristall-Gitter hat es in sich: Das Muster , in dem die Wasserteilchen darin angeordnet werden, ist nämlich ziemlich grobmaschig. Die anziehenden Wechselwirkungen, „Wasserstoffbrücken“ genannt, welche die Wasserteilchen im Gitter zusammenhalten, halten sie nämlich gleichzeitig ziemlich auf Abstand voneinander.

    Ein Modell des Eiskristall-Gitters : Jeder schwarze Knoten ist ein Wasserteilchen. Die Wasserstoffbrücken – dargestellt als grüne Streben – halten die Teilchen auf Abstand!

    So kommt es, dass die Wasserteilchen schon beim Zusammenrotten vor dem Gefrieren auf Abstand gehen – so wie es die spielenden Kinder wohl täten, wenn man die freien Stühle voneinander entfernt aufstellen würde. Deshalb braucht flüssiges Wasser zunehmend mehr Platz, wenn es kälter als 4°C wird.

    Unmittelbar vor dem Gefrieren sind die Wasserteilchen am weitesten – also entsprechend der Maschen im Eiskristallgitter – verteilt und nehmen schliesslich ihre festen Plätze im Gitter ein: Wenn Wasser einmal erstarrt ist, wächst das Eis nicht mehr weiter!

    Weil das „Wachsen“ eines abkühlenden Stoffes im Vergleich zu den meisten anderen Stoffen nicht ganz normal ist, nennen Chemiker und Physiker diese ungewöhnliche Eigenschaft eine Dichteanomalie.

    Dichte – und warum Teiche stets von oben zufrieren

    Der eingefrorene Wasserkübel sieht also nicht nur voller aus – er ist tatsächlich voller! Man kann das Ganze jedoch auch aus einem anderen Blickwinkel betrachten:

    Würde die Wasserteilchen in einem Milliliter kaltem Wasser zählen und ihn dann einfrieren, dann wäre der entstehende Eisklumpen grösser. Um einen ordentlichen Vergleich anzustellen, könnte man aus diesem Eisklumpen einen Eiswürfel herausschneiden, der einen Milliliter fasst (das Volumen des Eiswürfels beträgt einen Milliliter). Würde man die Teilchen in diesem Eiswürfel zählen, wäre das Ergebnis eine kleinere Zahl als für einen Milliliter flüssiges Wasser – denn die Wasserteilchen, die nach dem Wachsen keinen Platz mehr im Würfel fanden, hat man schliesslich vorher weggeschnitten.

    Da man mit dem Zählen von Stoffteilchen aber eine schiere Ewigkeit beschäftigt wäre, ist es wesentlich praktischer, die Teilchen alle zusammen zu wiegen. Denn jedes Teilchen hat seine Masse, die es zur Gesamtmasse eines Milliliters beisteuert. Da in einem Milliliter Eis weniger Teilchen sind, als in einem Milliliter flüssigen Wassers, wiegt ein Milliliter Eis entsprechend weniger.

    Um diese veränderliche Eigenschaft von Stoffen zu beschreiben, verwenden Physiker die „Dichte“: Sie geben die Masse für ein bestimmtes Volumen des jeweiligen Stoffes an: rho = m/V . Damit lassen sich verschiedene Gesetzmässigkeit einfach ausdrücken: Aus „die meisten (flüssigen) Stoffe werden um so kleiner, je kälter sie werden“ wird so „die Dichte der meisten (flüssigen) Stoffe nimmt zu (d.h. mehr Teilchen drängen sich in einem festgelegten Volumen zusammen – das Volumen wird schwerer), wenn sie kälter werden“.

    Warum Eis schwimmt

    Die wenigen Stoffe, für die das nicht uneingeschränkt gilt, weisen damit eine Dichteanomalie auf. Dieser Anomalie wegen hat Eis eine geringere Dichte als Wasser.

    Und damit kommen wir zu einer weiteren Gesetzmässigkeit über die Dichte von Stoffen: Füllt man zwei Stoffe (davon ist mindestens einer flüssig und keiner ein Gas) mit unterschiedlicher Dichte, die sich nicht vollständig mischen, in ein Gefäss, dann schwimmt der Stoff mit der geringeren Dichte oben.*

    *Tatsächlich gilt dies nur unter Vernachlässigung einiger äusserer Umstände, zu denen ihr bald hier mehr erfahren könnt.

    Das gilt natürlich auch für Eis und Wasser – deshalb schwimmen die Eiswürfel im gekühlten Drink stets obenauf!

    Warum Teiche von oben einfrieren

    Darüber hinaus gilt das Gesetz auch innerhalb ein und desselben flüssigen Stoffs, wenn dieser in verschiedenen Bereichen eine unterschiedliche Dichte hat (weil diese Bereiche unterschiedlich warm sind). Wenn ein anfangs warmer Teich abkühlt, ordnet sich das kalte Wasser (das die höhere Dichte hat) unterhalb des wärmeren Wassers (mit niedrigerer Dichte) an. Da Wasser bei rund 4°C die höchste Dichte hat, landet das 4°C kalte Wasser somit ganz unten – darüber sind die Schichten wärmer.

    Wenn es nun im Winter richtig kalt wird, kühlen die oberen Wasserschichten unter 4°C ab. Der Dichteanomalie wegen nimmt ihre Dichte dabei jedoch ab – und die kalten Schichten bleiben oben. Mehr noch: Die kälteste Sicht – mit der geringsten Dichte – ordnet sich ganz oben an, und erstarrt dort schliesslich als erstes zu Eis.

    Wasser im Teich nach Dichte sortiert
    Dichteverteilung im Teich: Links wenn es warm ist: unten – bei 4° ist das Wasser am dichtesten. Rechts wenn es kalt ist: Das dichteste Wasser ist unten – kälteres Wasser ist weniger dicht! By Klaus-Dieter Keller, details from KnowItSome, Tango! Desktop Project, Julo, Spax89 [CC BY-SA 3.0], via Wikimedia Commons

    So freuen wir uns, wenn wir auf der Teichoberfläche Schlittschuh laufen können, während die Fische darunter sicher sein können, flüssiges Wasser zum Schwimmen und Atmen zu finden, wenn sie nur nach ganz unten tauchen (so lange der Teich nicht komplett durchfriert).

    Dank der Dichteanomalie des Wassers können nicht nur Fische den Winter überleben – womöglich hat auch das Leben auf der Erde dank dieser ungewöhnlichen Eigenschaft mehrere Eiszeiten überdauern können – sodass wir die Anomalie heute in einem Glas im Tiefkühlfach beobachten können. Spannend, nicht?


    Und nun zum Abschluss eine Quizfrage: Welche „äusseren Umstände“ führen dazu, dass das Gesetz „der Stoff mit der geringeren Dichte schwimmt oben“ in Wirklichkeit mehr eine Faustregel ist, die oftmals nicht streng zu gelten scheint?

    Die Auflösung samt einem spannenden Experiment gibt es nächste Woche hier in Keinsteins Kiste!

    Hast du das Experiment nachgemacht: 

    [poll id=“26″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

    Ein Herz aus Eis

    Bald ist Valentinstag, und wieder einmal sind viele darauf aus, die Herzen ihrer liebsten schmelzen zu lassen. Ich habe zu diesem Zweck bei einer englischsprachigen Kollegin ein wunderbar farbenfrohes Experiment aufgestöbert. Damit könnt ihr nicht nur jedes Herz aus Eis zum Schmelzen bringen, sondern gleich erforschen, wie das Schmelzen eigentlich abläuft!

    Du brauchst dazu

    • Eine wasserdichte Herzform (zum Beispiel eine Silikon-Kuchenform oder eine gut schliessende Springform
    • Wenn du eine Springform verwendest: etwas Frischhaltefolie
    • Lebensmittel- oder/und wasserlösliche Acrylfarbe
    • Ein grosses Tablett mit Rand, eine flache Wanne oder ein Backblech
    • Platz im Tiefkühlfach für die Herzform
    • Ein Gefäss zum Ausgiessen
    • Leitungswasser
    • Speise- oder Streusalz
    • Etwas zum Umrühren (z.B. einen Rührstab oder Löffel)

    Wie du das Herz zum Schmelzen bringst

    Dazu muss das Herz erst einmal richtig eiskalt werden! Das schaffst du wie folgt:

    1. Fülle deine Herzform maximal zu drei Vierteln hoch mit Wasser (Mache sie nicht ganz voll! Wasser dehnt sich aus, wenn es gefriert und braucht daher mehr Platz als wenn es flüssig ist!). Wenn du ein rosarotes oder andersfarbiges Herz haben möchtest, rühre etwas Lebensmittelfarbe in das Wasser. Falls du eine Springform verwendest: Probiere vorher mit etwas ungefärbtem Wasser aus, ob sie dicht hält. Falls nicht: Lege die Springform vor dem Einfüllen des gefärbten Wasser mit einem (!) Stück Frischhaltefolie aus.
    2. Stelle die Form mit dem gefärbten Wasser vorsichtig ins Tiefkühlfach und warte etwa einen halben Tag.

    Wenn das Herz vollständig gefroren ist, geht es weiter:

    1. Nimm das Herz aus dem Tiefkühlfach, löse das Eis aus der Form (falls es festgefroren ist: spüle die Form kurz mit warmem Wasser ab und drücke das Eis sofort heraus). Falls du Frischhaltefolie zum Abdichten verwendet hast, löse sie so vollständig wie möglich vom Eis.
    2. Lege das Herz auf das Tablett mit Rand. Ich habe weisse Küchentücher untergelegt, damit auf meinem schwarzen Backblech die Farben besser sichtbar bleiben.
    3. Streue Salz auf das Eis-Herz (sei dabei nicht sparsam). Das Eis wird um das Salz herum besonders schnell zu schmelzen beginnen.
      Streue Salz auf das Herz
    4. Verdünne die Acrylfarbe mit etwas Wasser bzw. rühre Lebensmittelfarbe in Wasser ein.
    5. Giesse die farbige Flüssigkeit vorsichtig über das Herz und beobachte.
      Giese Farbe über das gesalzene Herz

    Was du beobachten kannst

    • Wenn du das gefrorene Herz aus dem Tiefkühlfach nimmst, wird es bei Raumtemperatur sehr langsam zu schmelzen beginnen.
    • Dort, wo du Salz darauf streust, wird das Eis sehr viel schneller tauen. Mit der Zeit fressen sich regelrecht Ritzen und Spalten in das Eis.
    • Wenn du farbige Flüssigkeit über das schmelzende Eis-Herz giesst, wird sie in und durch die Spalten laufen und die feinen Verästelungen deutlich sichtbar machen.
    im schmelzenden Eis - Herz bilden sich Furchen
    Hier ist schon einiges weggeschmolzen. Der Boden der Springform hatte eine karierte Struktur, die zu einer sehr regelmässigen Verteilung der Spalten beigetragen hat.
    • Nimm dir Zeit und beobachte das faszinierende Farbenspiel und die filigranen Strukturen, die das schmelzende Eis bildet! Wenn du eine Kamera hast, kannst du auch herrlich surreale Bilder davon machen!
    Acrylfarbe auf schmelzendem Eis
    Die stark verdünnte Farbe verläuft sich schnell. Mit reiner Acrylfarbe werden die Aushöhlungen und Schluchten noch besser sichtbar!

    Wie geht das Schmelzen vor sich?

    Alle Stoffe bestehen aus winzigkleinen Teilchen. Die Art und Weise, wie wir die Stoffe wahrnehmen, hängt vom Verhalten dieser Teilchen – und vor allem von den Wechselwirkungen zwischen ihnen – ab.

    Feststoff oder Flüssigkeit: Eine Frage der Bewegung

    (Wasser-)Eis und Wasser sind ein und derselbe Stoff. Je nach herrschender Temperatur erscheint uns dieser Stoff fest oder flüssig (oder – bei ausreichend hoher Temperatur – sogar gasförmig: als Wasserdampf). Diese Erscheinungsformen – welche Chemiker und Physiker „Aggregatzustände“ nennen – sind das Ergebnis unterschiedlicher Beweglichkeit der winzigen Stoffteilchen.

    Im Feststoff sitzt längst nicht alles fest

    In einem Eisblock, das heisst bei Temperaturen unter 0°C, sind die Wasserteilchen auf festgelegten Positionen angeordnet. Die Teilchen wechselwirken dabei mit ihren Nachbarn: Anziehung zwischen den Teilchen sorgt dafür, dass sie auf ihrem Platz bleiben, und die Ausrichtung dieser anziehenden Wechselwirkungen (im Fall von Wasserteilchen sind das vornehmlich sogenannte „Wasserstoffbrücken“) bestimmt das Muster der Anordnung. Die Teilchen sind also zu einem sich immer wiederholenden „Gitter“ angeordnet, das wir – wenn es gross genug ist – als Festkörper wahrnehmen: Zum Beispiel als gefrorenes Herz.

    Die Stoffteilchen sind allerdings ziemlich unruhige Gesellen. Ständig zittern und zappeln sie auf ihren Plätzen im Gitter herum – je höher die Temperatur des Ganzen ist, desto heftiger. Erst wenn man die Temperatur des Festkörpers auf den absoluten Nullpunkt (also 0 Kelvin oder -273,15°C) senken würde, wären die Teilchen im Gitter vollkommen ruhig.

    Flüssigkeiten: Ein lebhaftes Gedränge

    In einer Flüssigkeit gibt es keine festen Plätze mehr. Die Wasserteilchen in flüssigem Wasser bewegen sich weitestgehend frei gegeneinander, werden aber durch die anziehenden Wechselwirkungen nah beieinander gehalten. So geht es in der Flüssigkeit zu und her wie in einer bewegten Menschenmenge: Es strömt und fliesst und drängt hierhin und dorthin, und ununterbrochen ist man mit anderen auf Tuchfühlung. Wer schon einmal auf einer Grossveranstaltung wie der Street Parade in Zürich war, weiss, wovon ich schreibe.

    Wie eine grosse Menschenmenge werden auch die Teilchen einer Flüssigkeit jeden Behälter, in welchen man sie gibt, bis zur letzten Ecke ausfüllen und sich dabei der Schwerkraft folgend von unten nach oben aufschichten.

    Drei Aggregatzustände im Modell
    Stoffteilchen in drei Aggregatzuständen, wie du sie im Alltag beobachten kannst: Fest, flüssig, gasförmig

    Aus fest wird flüssig: Der Schmelzvorgang

    Unser gefrorenes Herz wird im Tiefkühlfach höchstens bis auf schlappe -18°C abgekühlt. Und bei Raumtemperatur wird es dann allenfalls noch wärmer. „Wärme“ ist dabei nichts anderes als die Bewegung der Stoffteilchen: Je wärmer ein Stoff ist, desto grösser ist das Gezappel. Dabei können die herumzappelnden oder -flitzenden Teilchen eines Stoffes ihre Nachbarn anrempeln und ebenfalls in Bewegung versetzen.

    Das tun zum Beispiel die Luft-Teilchen, die – wie in einem Gas üblich – völlig ungebunden im Raum herumsausen. Wenn sie auf ihrem Weg gegen die Oberfläche des Eisherzens rempeln, versetzen sie die Wasserteilchen im Gitter in Schwingung: Die Eis-Oberfläche wird wärmer.

    Und wenn die Temperatur des Eises dabei 0°C erreicht, kann die Wärme-Energie auf noch andere Weise verwendet werden: Um die Wasser-Teilchen an der Eis-Oberfläche aus dem Gitter zu lösen. Die dafür aufgewendete Energie wird Schmelzwärme genannt – ich habe sie kürzlich hier näher erklärt.

    Die aus dem Gitter gelösten Teilchen bleiben zunächst dicht beieinander, bewegen sich dabei aber weitgehend frei: Sie bilden eine Flüssigkeit – flüssiges Wasser.

    Ein Festkörper schmilzt also von aussen nach innen, denn von aussen kommt die Wärme und nach aussen können die Flüssigkeits-Teilchen davonfliessen. Dabei ist ein Teilchen im Gitter umso mehr Rempeleien ausgesetzt, je mehr „Seiten“ es hat, die nach aussen weisen. Vorspringende Ecken und Kanten schmelzen also schneller als ein massiver Block, der eine kleine Oberfläche hat, die mit warmer Luft in Berührung kommen kann!

    Was das Salz dazu tut

    Kochsalz-Teilchen mischen sich sehr gut mit flüssigem Wasser. Das führt dazu, dass die Wasserteilchen aus dem Eis nicht erst bei 0°C, sondern schon bei niedrigeren Temperaturen (bis -17°C !) aus dem Gitter gelöst werden. Wie das vor sich geht, habe ich hier erklärt.

    Wenn wir Salz auf unser Herz streuen, lösen sich die Wasserteilchen in der direkten Umgebung der Salzkörner demnach schneller aus dem Gitter. So entstehen zunächst Mulden, dann regelrechte Ritzen und Spalten in der Eis-Oberfläche, an deren Wänden nun viel mehr Wasserteilchen den Rempeleien der wärmeren Luft bzw. des flüssigen Wassers ausgesetzt sind. So wachsen die Ritzen und Spalten schnell weiter.

    Wenn wir nun farbige Teilchen (zum Beispiel Acryl- oder Lebensmittelfarbe) mit den Wasserteilchen mischen, werden die Ritzen, durch die das farbige Wasser-Farbstoffgemisch fliesst, sehr gut sichtbar.


    Entsorgung

    Wasser mit Lebensmittelfarben und Resten von wasserlöslichen Acrylfarben zum Basteln kann in den Ausguss entsorgt werden! Grössere Mengen Acrylfarbe solltest du eintrocknen lassen (oder besser zum Malen verwenden!) und in den Hausmüll geben.

    Ideen zum Weiterexperimentieren

    • Du kannst das Experiment natürlich auch zu jedem anderen Anlass bringen: Anstelle der Herzform funktionieren weihnachtliche, Oster- und andere Formen ebenso gut.
    • Du kannst zudem mit verschiedenen Farbtönen experimentieren und (leider recht vergängliche) Eiskunst kreieren und fotografieren.
    • Was ich noch nicht ausprobiert habe: Was geschieht, wenn man das Herz mitsamt Ritzen und Spalten wieder einfriert und später eine andere Farbe zum Giessen verwendet?

    Ich wünsche dir viel Spass beim Herzen schmelzen – sowohl derer aus dem Tiefkühlfach als auch derer deines/r Liebsten!

    Hast du das Experiment nachgemacht: 

    [poll id=“27″]

    Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!