Beiträge

Stärkefolien : Valentinsherzen aus DIY-Bioplastik

‘Plastik’ ist “böse Chemie”, die aus Erdöl hergestellt wird und in der Natur nicht verrottet? Mitnichten! Wie ihr schon im Kunststoff-1×1 hier in Keinsteins Kiste nachlesen könnt, ist die Sorte Moleküle, aus denen ‘Plastik’ besteht, eigentlich eine Erfindung der Natur! Und was die Natur erfindet, kann sie auf kurz oder lang auch wieder abbauen. Das gilt auch für ihre hauseigenen Polymeren – der Stoffgruppe, zu welchen auch die Kunststoffe gehören.

Und diese sogenannten Biopolymere könnt ihr nutzen, um euer eigenes Bioplastik herzustellen – zum Beispiel für ein echt herziges Valentinsgeschenk aus dem eigenen Forscherlabor. Hier erfahrt ihr, wie es geht!

Ihr braucht dazu

Meine Valentins-Herzen bestehen aus Stärkefolie. Wie der Name vermuten lässt, braucht ihr dafür Stärke – und zwar natürliche Stärke, nicht die lösliche Stärke aus dem Laborbedarf oder der Chemiesammlung in der Schule. Natürliche Stärke bekommt ihr auch viel einfacher, nämlich im Supermarkt. In der Schweiz ist “Maizena” praktisch ein Synonym für Maisstärke, in Deutschland kennt man selbige unter dem Markennamen “Mondamin”. Kartoffelstärke soll aber ebenso funktionieren.

Nun aber zur Inhaltsliste für zwei bis fünf untertassengrosse Folienstücke

  • Etwa 5g trockene Stärke (hier in der Schweiz habe ich natürlich Maizena zur Hand)
  • Wasser
  • Glycerin (85%, aus der Drogerie oder Apotheke)
  • Optional: Lebensmittelfarbe
  • 1 Becherglas oder ähnliches Glasgefäss
  • Topf mit Wasserbad, Herd, Topfhandschuh oder/und Grillzange
  • Löffel oder Stab zum Umrühren, Buttermesser
  • Frischhaltedosen aus PE oder PP (Polyethylen bzw. Polypropylen, das übliche Material für “Tupper”-Dosen)
  • Optional: Backblech, Backofen

So geht’s

  • Verdünnt einige Milliliter Glycerin mit der gleichen Menge Wasser und rührt das Gemisch um, bis es klar ist. Diese Glyzerinlösung könnt ihr auch problemlos in einer geschlossenen Flasche für spätere Experimente aufbewahren.
  • Gebt zu 5g Stärke im Glasgefäss etwa 40 ml Wasser und etwa 5 ml der zuvor angefertigten Glycerinlösung und rührt gründlich um. Es entsteht ein milchiges Gemisch, aus dem sich Stärke als weisser Schlamm am Boden absetzt, sobald ihr zu Rühren aufhört. Für farbige Herzen könnt ihr zudem einige Tropfen Lebensmittelfarbe einrühren.
Mischung mit roter Lebensmittelfarbe: Die Stärke setzt sich sichtbar unten ab.
  • Stellt die Frischhaltedosen mit dem Boden nach oben auf das Backblech oder eine andere Unterlage.
  • Stellt den Topf mit dem Wasserbad auf den Herd und erhitzt das Glasgefäss mit dem Gemisch darin, während ihr immer wieder umrührt. Topfhandschuh oder/und Grillzange werden euch beim Festhalten des heissen Glases gute Dienste leisten!
  • Sobald die Flüssigkeit zu einer trüben, gelartigen Masse “bindet” (wie eine Sauce), giesst sie auf die umgekehrten Frischhaltedosen und verstreicht sie mit dem Buttermesser gleichmässig mindestens 2 Millimeter dick. Bei dieser Dicke dauert das Trocknen länger, aber die Gefahr, dass dabei Risse entstehen, ist geringer.
  • Lasst die verstrichene Masse über Nacht an der Luft trocknen. Wenn ihr ungeduldig seid, könnt ihr sie zunächst auch bei 50-80°C (wenn ihr Lebensmittelfarbe verwendet NICHT wärmer, da die Farbstoffe sich sonst zersetzen!) eine Stunde oder länger im Backofen trocknen. Dabei besteht allerdings die Gefahr, dass Risse in den Folien entstehen.
Die dünne Folie links ist stärker gerissen als jene aus gut 2 Millimeter Stärkemasse rechts. Die hellen Stellen sind noch sehr feucht, sodass ich die Folien über Nacht habe trocknen lassen.
  • Wenn die Stärkemasse ausgehärtet ist, könnt ihr die Folie (ggfs. mit Hilfe eines flachen Messers) von den Dosen lösen und nach Wunsch zuschneiden.
Dank des vorne überhängenden Auswuchses lässt sich die Folie einfach von der Dose abziehen.

Achtung: Die Stärkefolien sind nicht wasserfest! Sorgt also dafür, dass eure Valentinsherzen stets im Trockenen bleiben. Für die Beschriftung habe ich dementsprechend einen Permanentschreiber mit organischem Lösungsmittel verwendet.

Die Stärkefolie lässt sich problemlos mit der Küchenschere schneiden. Da besonders die dicke Folie noch Restfeuchte enthielt, wurde sie an der Luft mit der Zeit krumm. Ein paar Stunden unter einem schweren Buch auf dem flachen Tisch und sie war wieder schön flach.

Was passiert da?

Was ist Stärkemehl?

Stärke besteht aus grossen Kettenmolekülen, sogenannten Polymeren, die aus Tausenden miteinander verknüpften Glucose- also Traubenzucker-Ringen besteht. Pflanzen stellen diese Polymere her, um ihren Traubenzucker, der ihnen als Energieträger dient, ordentlich “aufgefädelt” zu lagern.

Es gibt zwei verschiedene Sorten Stärkepolymere:

  • Amylose, die aus einfachen Ketten aus wenigen Tausend aneinandergereihten Glucose-Einheiten besteht.
  • Amylopektin, dessen Ketten sich etwa alle 30 Glucose-Ringe verzweigen. So entstehen regelrechte Molekül-Büschel, die gut und gerne Zehntausende oder gar Hunderttausende Glucose-Ringe umfassen können.

Trotzdem sind “Maizena” und andere Stärkemehle weit von den Eigenschaften entfernt, die wir von Kunststoffen, also “Plastik” kennen. Im Stärkemehl sind diese Molekülketten nämlich sorgfältig zu kleinen Körnern zusammengepackt. Dabei besteht jedes Korn aus etlichen Schichten, die säuberlich um seinen Mittelpunkt herum gelagert sind – in etwa wie die Schichten einer Zwiebel. Damit ähnelt ein Stärkekorn sehr einem Kristall, also der am regelmässigsten aufgebauten Sorte Festkörper, die es gibt. Und Kristalle, ob nun die von Salz und Zucker oder von Mineralien wie Bergkristall, haben freilich wenig mit nachgiebigen Kunststoffen gemein.

Stärkekörner bei 800-facher Vergrösserung in polarisiertem Licht unter dem Mikroskop: Das x-förmige Muster auf den Körnern zeugt von einer Wechselwirkung mit polarisiertem Licht, wie sie eine kristallartige Substanz zeigt (die Stärke ist optisch aktiv).

Stärke und Wasser: Eine besondere Beziehung

In einem unterscheiden sich Stärkekörner aber völlig von den üblichen Kristallen: Die Stärkepolymere können zwischen ihren Ketten kleine Moleküle festhalten! Aus der Schule bekannt ist der Stärkenachweis durch darin eingelagerte Jod-Moleküle, die die Ketten dunkel färben (wie ihr den Nachweis mit jodhaltigen Desinfektionsmitteln aus der Hausapotheke daheim durchführen könnt, erfahrt ihr hier).

Doch besonders Amylopektin ist in der Lage, sich auch grosse Mengen Wassermoleküle “einzuverleiben”. Die Wassermoleküle dringend zwischen die Verästelungen der Amylopektinbüschel und beanspruchen reichlich Platz. Die Folge: Die Büschel und damit auch die ganzen Stärkekörner quellen auf. Die vormals fest einsortierten Molekülketten werden so beweglich und können zunehmend aus ihren Positionen verrutschen.

Wenn nun Wärme hinzukommt – die nichts anderes ist als Bewegung von Molekülen und ihren Gliedern – rutschen und wirbeln die Stärkeketten und -zweige durcheinander, bis ein furchtbares Gewirr entsteht, das keine (mir bekannte) Macht der Welt wieder auflösen kann. Aus den vormals festen Stärkekörnern in Wasser ist ein mit Wasser vollgesogenes Molekülwirrwarr geworden, das wir als gelartige Masse wahrnehmen und “Stärkekleister” nennen. Tatsächlich besteht Tapetenkleister aus quellender Stärke oder Zellulose-Varianten!

Lassen wir simplen Stärkekleister ausgestrichen an der Luft liegen, verdunsten die aufgesogenen Wassermoleküle mit der Zeit und das Molekülwirrwarr fällt in sich zusammen. Dabei bleibt es jedoch unverändert verworren, sodass es nun einen einzigen Festkörper bildet – allerdings hart und spröde. Und hier kommt das Glycerin ins Spiel.

Von der Platte zur Folie dank Weichmacher

Glycerin ist ein Alkohol mit mehren OH-Gruppen an einem Kohlenstoff-Grundgerüst. Dank der OH-Gruppen kann es ähnlich mit der Stärke wechselwirken wie Wasser – und dementsprechend zwischen den Ketten Platz finden – verdunstet von dort aber weniger leicht. Ausserdem kann Glycerin selbst Wassermoleküle besser bei sich behalten als die Stärke. So sorgt das zu unserem Stärkekleister gegebene Glycerin dafür, dass die Stärkefolien nicht ganz und gar austrocknen, sondern flexibel bleiben.

Das Glycerin übernimmt in unserem Biokunststoff also die Rolle des Weichmachers. Für uns ist es dabei allerdings harmlos, selbst wenn es aus der Stärkefolie freigesetzt wird. Als Bestandteil jedes natürlichen Fettes kommt es naturgemäss in unseren Körpern vor, sobald diese Fettmoleküle zerlegen. So ist es auch als Lebensmittelzusatzstoff E 422 als Feuchthaltemittel ohne Höchstmengenbeschränkung zugelassen. (In Reinform trinken solltet ihr Glycerin dennoch nicht, da es auch dem Körper eine Menge Wasser entziehen und damit in rauen Mengen zur Dehydrierung führen kann!)

Polymergewirr auch bei “richtigen” Kunststoffen

Auch in den alltäglichen Kunststoffen, die wir überall um uns herum finden, sind lange Polymer-Ketten zu mehr oder minder dichtem Molekül-Filz verstrickt und zuweilen sogar über chemische Bindungen miteinander vernetzt. Die Dichte eines solchen Filzes bzw. die Engmaschigkeit seiner Vernetzung bestimmen die Härte oder Biegsamkeit des Kunststoffs. Eingelagerte Weichmacher können einen entscheidenden Einfluss auf die Flexibilität des Materials haben.

In elastischen Kunststoffen (“Gummi”) verhalten sich die Ketten zudem ähnlich wie Spiralfedern: Sie können aus ihrer natürlichen verkrümmten Lage hinaus gerade(r) gezogen werden und kehren anschliessend wieder in ihre Ausgangshaltung zurück.

Ihr molekülfilz-artiger Aufbau gibt unseren Kunststoffen ihre enorme Formbarkeit und Robustheit, die wir sonst nur von Biopolymeren kennen (Holz und Pflanzenteile aus Zellulose sind ebenfalls sehr elastisch – beobachtet einmal Bäume bei starkem Wind! – und bedenkt die gleichzeitige Biegsamkeit und Festigkeit von menschlichem Haar, das aus Faserproteinen besteht!).

Entsorgung

Reste von Stärkekleister, Lebensmittelfarbe und Glycerin könnt ihr in den Ausguss bzw. Hausmüll entsorgen. Übrige Glyzerinlösung könnt ihr aber problemlos für spätere Versuche aufbewahren. Der Stärkekleister lässt sich mit Wasser leicht von Gefässen und Besteck entfernen.

Und wem schenkt ihr euer Herz aus selbstgemachtem Biokunststoff?

Hast du das Experiment nachgemacht

Herzen aus Stärkefolie: Hat das Experiment bei dir funktioniert?

View Results

Loading ... Loading ...

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Einkochen und Einwecken mit Mehl - Warum geht das nicht?

Kürzlich hat meine Leserin Pia geäussert, was ich daraufhin vielfach in Foren zum Einkochen wiedergefunden habe:

Beim Einkochen (Einwecken) darf man nichts mit Mehl binden – das säuert. Aber Kuchen mit Mehl kann man einkochen. Auch Brot und Nudeln darf man – überall Mehl drin. Nur die Sauce darf nicht mit Mehl … warum nicht?

Eine spannende Frage – die mich veranlasst hat, mich näher mit der Physik und Chemie des Einkochens zu beschäftigen.

Einkochen: Wieso? Weshalb? Warum?

Durch Einkochen oder Einwecken werden Lebensmittel haltbar gemacht. Die sind nämlich nicht nur für uns äusserst nahrhaft, sondern auch für allerlei Mikroorganismen. Die nisten sich in Lebensmitteln ein, verändern ihr Aussehen und ihren Geschmack in oft nicht gewünschter Weise, und machen uns im schlimmsten Fall auch noch krank.

Eine einfache Methode, diese Störenfriede loszuwerden, ist, sie mitsamt ihrer Umgebung so gründlich zu erhitzen, dass sie selbst gekocht werden und damit absterben. Die meisten Lebewesen bestehen nämlich aus Proteinen, die ab 42°C ihre Form und damit ihre Funktionsfähigkeit verlieren: Sie denaturieren. Und damit ist es dann vorbei mit Leben. Wenn man dann noch dafür sorgen kann, dass es auch so bleibt…

Konservieren durch Erhitzen

Zum Einkochen werden die Lebensmittel in Gläsern erhitzt, die mittels eines Dichtungsringes oder Schraubdeckels luftdicht verschlossen werden können. Dabei dehnen sich Luft und allenfalls entstehender Wasserdampf (dank der Anomalie des Wassers auch flüssiges Wasser ein wenig) aus und können sich notfalls an der Dichtung vorbei nach draussen zwängen.

Sobald solch ein Glas jedoch abkühlt, zieht sich die Luft darin zusammen (und allfälliger Wasserdampf kondensiert zu flüssigem Wasser). So entsteht im Glas ein Unterdruck, der dafür sorgt, dass die Dichtung fest gezogen wird. Nun kann nichts mehr aus dem Glas hinaus oder hinein. Auch keine Mikroorganismen oder ihre Sporen.

Damit ist sicher gestellt, dass nicht nur alle Bakterien und Pilze im Einkochgut tot sind, sondern auch keine neuen mehr hinein gelangen können. Um dessen wirklich sicher zu gehen, erhitzt man das Einkochgut entsprechend gründlich und lange (in der Regel auf 100°C, die Siedetemperatur von Wasser bei Atmosphärendruck). So soll auch das Innerste eines Einmachglases warm genug werden, um lebensfeindlich zu sein.

Die Industrie gibt dem Ganzen einen Namen

Der deutsche Chemiker Rudolf Rempel hat das Einmachglas Ende des 19. Jahrhunderts erfunden und sich 1892 patentieren lassen – und starb ein Jahr darauf mit nur 34 Jahren. So kam es, dass der Unternehmer Johann Carl Weck das Patent erwarb und zum ersten industriellen Hersteller von Einmachgläsern und Zubehör wurde. Mit dem Namen Weck verbreitete sich bald der Begriff “Einwecken” für die Verwendung der Gläser.

Inzwischen hat das “Einwecken” Eingang in den Duden gefunden und darf damit als allgemeingültiger Teil der deutschen Sprache als Synonym für das Einkochen verwendet werden – ganz gleich welche Gläser man dazu benutzt. Anders verhält es sich jedoch mit dem Wortteil “Einweck-“. Der ist nach wie vor geschützt. Ein Einweckglas oder einen Einweckring gibt es somit bis heute nur von der Firma Weck.

Und wenn sich jetzt die österreichischen Leser fragen, wovon ich eigentlich schreibe: Bei euch war im frühen 20. Jahrhundert die Rex-Konservenglas-Gesellschaft Hersteller Nummer 1 für Einmachgläser. So hat sich in Österreich der Begriff “Einrexen” eingebürgert.

Warum klappt das Einwecken nicht mit Mehl?

Mehl enthält Amylasen: Das sind Enzyme, also Proteine, welche die langen Stärke-Ketten in kürzere Einfach- oder Zweifachzucker spalten können.

Strukturformel Stärke bzw. Amylose
Einfaches Stärkemolekül (“Amylose”) – eine Kette aus Glucose-Molekülen, hier als Sechsringe dargestellt.

Der Name verrät uns das: Die unverzweigte Form der Stärke nennen die Chemiker auch Amylose, wobei die Endung “-ose” auf ein Kohlenhydrat hinweist. Die verzweigte Form dieser Molekülketten nennen sie hingegen Amylopektin. Die Endung “-ase” der Amylase weist hingegen auf ein Enzym hin, das spaltet bzw. zerlegt, was im Namen davor steht.

Wie kommen solche Enzyme in das Mehl?

Die Amylasen sind ein wichtiger Bestandteil von Getreidekörnern. Sie werden von der Mutterpflanze darin eingelagert, damit sie die Stärke im Samenkorn spalten können. Denn der Keimling, der daraus wächst, kann nur mit kleinen Zuckermolekülen etwas anfangen.

So lange die Amylasen funktionsfähig sind (und das bleiben sie beim Mahlen und bei vielen Vorgängen der Lebensmittelzubereitung auch), machen sie ihren Job jedoch auch in Lebensmitteln. Dabei entstehen aus Stärke und Wasser kleinere Zuckermoleküle wie z.B. Maltose (Malzzucker), ein Zweifachzucker aus zwei Glucose-Einheiten.

Ein Maltose-Molekül besteht aus zwei Glucose-Ringen

Zucker sind süss. Warum wird dann das Eingemachte sauer?

Geschmacksveränderungen in verderbenden Lebensmitteln sind in der Regel die Folge von Gärung. Dabei erzeugen wie Bakterien und Hefen aus den Lebensmittelbestandteilen neue Stoffe, die anders schmecken. Die beiden wichtigsten Gärungsprozesse sind die alkoholische (hierbei entsteht der “Trinkalkohol” Ethanol) und die Milchsäuregärung (hierbei entsteht Milchsäure bzw. das Lactat-Anion). Und zwar ganz ohne Sauerstoff-Zufuhr.

Wie die alkoholische Gärung genau funktioniert, könnt ihr hier nachlesen und im Experiment gleich selbst beobachten. Dabei zeigt sich, dass als Nebenprodukt des Gärprozesses das Gas Kohlenstoffdioxid, CO2, entsteht. Und mit der Entstehung von Gas erhöht sich der Druck im Einmachglas – bis der Verschluss undicht wird.

Um das zu bewerkstelligen, brauchen die Mikroben Zucker aus kleinen Molekülen. Ergo solche Zucker, wie die Amylasen ihn aus der Stärke freisetzen. Nicht inaktivierte Amylasen können also nicht nur Pflanzenkeimlinge, sondern auch Mikroorganismen wie Bakterien und Hefen ernähren.

Bakterien und Hefen im Einmachglas?!

Nun sollte man annehmen, dass Amylasen im Einmachglas kein Problem darstellen sollten. Schliesslich werden beim Einkochen die Mikroben im Einmachgut totgekocht. Und an diesem Punkt sind alle meine bisherigen Recherchen ins Leere gelaufen.

So bleibt mir als Erklärung letztendlich nur der Umstand, dass auch der Einkochvorgang keine perfekte Konservierung ermöglicht. Irgendwo wird da immer die ein oder andere Zelle überleben. Oder zumindest ihre Enzyme für die Gärung werden nicht vollständig unbrauchbar gemacht (sind die richtigen Enzyme beisammen, funktioniert Gärung nämlich auch ohne Zellen).

Wenn diese letzten Überlebenden nichts zu futtern haben, können sie jedoch nichts – oder nur sehr, sehr langsam etwas – ausrichten. Mit einer Zuckerquelle aus Stärke samt Amylasen können diese Mikroben jedoch mit der Gärung beginnen und sich womöglich sogar etwas vermehren. Dabei muss nicht all zu viel CO2 entstehen, um den Unterdruck im Einmachglas aufzuheben. Und schon können weitere Mikroorganismen durch den undichten Verschluss eindringen, sich vermehren und im Einmachgut eine grosse Biochemie-Party schmeissen. Dabei entstehen dann noch mehr Stoffe, darunter noch mehr Gas, was den Verschluss um so undichter werden lässt…

Kurzum: Stärke mit Amylasen ist demnach nicht Voraussetzung für eine Gärung im Einmachglas, sondern beschleunigt sie “bloss” um ein Vielfaches.

Wie kann man das Stärke- Desaster verhindern?

  • Stärke ohne Amylasen verwenden: Stärke ohne Enzyme gibt es sicher für den Laborbedarf, (bio-)synthetisch hergestellt oder entsprechend gereinigt. Für den Hausgebrauch in der Küche aber viel zu teuer.
  • Saucen und anderes erst nach dem Einkochen mit Mehl binden: Dem Einmachglas ist die Konsistenz der Speisen egal. Die können daher auch erst beim Wiederaufwärmen kurz vor dem Verzehr angedickt werden.
  • Mehl und Mehlspeisen so stark erhitzen, dass die Amylasen sicher denaturiert werden: Dazu sind Temperaturen von deutlich mehr als 100°C nötig! Gebackenes Brot oder Kuchen sind daher durch und durch amylasefrei – die werden im Ofen heiss genug. Auch bei der Herstellung von trockenen Teigwaren (Nudeln, Pasta) scheinen die Amylasen beseitigt zu werden. Und wer nicht auf eine Mehlschwitze zum Andicken verzichten will, kann diese in Pflanzenöl ansetzen. Öl wird in der Pfanne nämlich heisser als wasserhaltige Butter und kann so die nötigen Temperaturen erreichen.
  • Wirklich lange und gründlich einkochen: Die in der Literatur empfohlenen Kochzeiten mindestens einhalten! Dabei steigt nicht nur die Wahrscheinlichkeit, möglichst viele Amylasen auszuschalten, sondern auch die Mikroben sterben zu einem grösseren Anteil ab. Der Nachteil: Je zerkochter die Mikroben werden, desto zerkochter wird auch das restliche Einmachgut.
  • Einen Dampfdrucktopf zum Einkochen verwenden: Unter steigendem Druck steigt auch der Siedepunkt von Wasser. Das Gargut wird damit heisser als im offenen Kochtopf. So gart es nicht nur schneller, sondern auch gründlicher: Die zur Denaturierung von Amylasen notwendige Temperatur kann so womöglich erreicht werden.

Wirklich sicher (und praktikabel) ist jedoch nur der zweite Vorschlag – auf Mehl, welches nicht gebacken wurde, beim Einkochen ganz zu verzichten.

Und welche Erfahrungen habt ihr beim Einkochen mit oder ohne Mehl schon gemacht? Wisst ihr bezüglich der Folgen des Vorhandenseins von Amylasen im Einmachgut mehr als ich?

Experiment DIY Kinetischer Sand - und wie er funktioniert

Die grossen Ferien sind auch in den spätesten Kantonen und Bundesländern vorbei und der Sommer geht zu Ende. Wer denkt da nicht manchmal wehmütig an die Strandferien zurück? An das Gefühl von Sand zwischen Zehen und Fingern, an Sandburgen und andere Küsten-Kunstwerke?

Das alles muss aber nicht bis zum nächsten Jahr warten. Für Sehnsuchtsvolle gibt es nämlich ein Spielzeug, mit dem es sich auch an Schlechtwettertagen herrlich “sändelen” lässt: Kinetischer Sand. Den kann man entweder im Kaufhaus kaufen, online bestellen (Kinetic Sand® und ähnliche) – oder selber machen.

Ich habe meinen kinetischen Sand selbst gemacht und zeige euch, wie ich das hinbekommen habe. Und natürlich auch die Chemie, die dahinter steckt (und ganz und gar ungefährlich ist!). Denn wenn man versteht, was man da zusammenrührt, funktioniert es am besten und macht auch noch am meisten Spass.

 

Wie aus Sand Burgen werden

Jedes Kind, das gerne Sandburgen baut, weiss eines: Dazu braucht man nassen Sand. Wenn man trockenen Sand auftürmen oder gar formen will, fliesst der nämlich sofort auseinander und verteilt sich überall.

Nasser Sand dagegen pappt zusammen. Aber wieso eigentlich? Der gewöhnliche Strandsand besteht zu grössten Teilen aus Quarz, also aus Siliciumdioxid, SiO2. Das sind Kristalle, in denen Sauerstoff-Atome abwechslungsweise mit Silicium-Atomen verbunden sind. Darin ähnelt Quarz in gewisser Weise dem Wasser (und noch mehr einem Eiskristall): Darin wechseln sich nämlich Sauerstoffatome mit Wasserstoffatomen ab.

Aus diesem Grund finden sich Quarz und Wasser überaus anziehend – sie werden von “zwischenmolekularen Kräften” zusammen gehalten. Diese Kräfte wirken auch zwischen verschiedenen Wassermolekülen (wie das genau funktioniert, erkläre ich beim Experiment mit dem krummen Wasserstrahl). So können Wassermoleküle untereinander zusammenhalten und zwischen den Oberflächen von Sandkörnern regelrechte Wasserbrücken formen – sodass feuchte Sandkörner unwillkürlich zusammen pappen. Das Wasser wirkt also wie ein formbarer “Zement” zwischen den Sandkörnern!

Dort wo sich die Oberflächen der runden Sandkörner nicht so nahe kommen, bleiben Zwischenräume, die mit ein Bisschen Luft gefüllt sind.

Die Kräfte zwischen den Molekülen sind dabei eben so stark, dass die Sandkörner aneinander haften, aber so schwach, dass Kinderhände das Netzwerk aus Wasserbrücken zwischen Sandkörnern spielend leicht verformen können.

Dabei gibt es allerdings ein Problem: Wasser verdunstet relativ schnell – besonders an trockener Luft oder gar an der Sonne. Und dann beginnt die schöne Sandburg rasch wieder zu bröseln und zu Sandlawinen zu zerfallen.

 

Was ist kinetischer Sand?

Was wäre aber, wenn man einen “Zement” hätte, der nicht so leicht verdunstet? Das haben sich wohl die Erfinder von “Kinetic Sand®” gedacht – und ihren trockenen Sand mit Silikonöl (genauer gesagt “Polydimethylsiloxan”, PDMS) gemischt.

Silikon: Ein ganz besonderer Kunststoff

Silikone sind Kunststoffe aus langen Molekülketten, sogenannte Polymere. Anders als die meisten anderen Kunststoffe aus Kohlenstoff bestehen die Ketten der Silikone jedoch aus Silicium-Atomen, die sich mit Sauerstoff-Atomen abwechseln (Silicium ist Kohlenstoff in vielen chemischen Dingen sehr ähnlich). Das hatten wir doch schon….genau: Quarz. Tatsächlich sind sich die Silikon-Ketten und Quarz so ähnlich, dass auch zwischen ihnen anziehende zwischenmolekulare Kräfte wirken können.

Beim PDMS trägt übrigens jedes Siliciumatom noch zwei “Methylgruppen” aus Kohlenstoff- und Wasserstoffatomen, daher der Name:

Kinetischer Sand braucht "Zement" - Hier das Original: Polydimethylsiloxan

Ein Glied einer PDMS-Kette: Der Buchstabe n steht für eine beliebige Zahl solcher Glieder, die eine Kette bilden.

Und dazu kommt noch etwas: Silikone sind bei “lebendigen” Bedingungen, also in und um Körper von Lebewesen, sehr reaktionsträge, was sie unter den Kunststoffen besonders ungiftig macht. So sind Silikone als Material für Brustimplantate berühmt geworden und finden in der Medizin noch viele andere Anwendungen. Im Haushalt kennt ihr sie vielleicht als Material für elastische Backformen und -pinsel oder als Fugenmasse im Badezimmer.

Je nach der Länge und Vernetzung ihrer Moleküle können Silikone unterschiedliche Eigenschaften haben. Sind die Moleküle kurz genug und wenig bis gar nicht vernetzt, bilden sie bei Raumtemperatur mehr oder weniger zähe Flüssigkeiten: Silikonfette oder -öle. Die sind ihrer Reaktionsträgheit wegen bei Labor-Chemikern als Schmiere für ihre Glasapparaturen oder als Wärmeüberträger (Silikonöle verdunsten kaum und können viel heisser als Wasser werden, bevor sie zu kochen beginnen!) sehr beliebt.

Silikon als perfekter “Zement” für Sandburgen?

Eine ölig-zähe Flüssigkeit, die chemisch inert ist und schwer verdunstet – und zu den passenden Wechselwirkungen zu Sandkörnern fähig ist… die wäre doch ein perfekter “Zement” für Spielsand für kleine Kinder! Leider bekommt man Silikonöl nicht einfach so im Supermarkt. Deshalb haben schon viele DIY-begeisterte Mütter und BloggerInnen nach passenden Ersatzstoffen für PDMS gesucht. Mit mehr oder weniger grossem Erfolg.

Ich habe mitgesucht und zeige euch meinen persönlichen Favoriten: Der besteht ausschliesslich aus Quarzsand und Lebensmittelzutaten, lässt sich prima formen und kneten. Damit eignet sich dieser kinetische Sand auch für die ganz Kleinen, die schonmal etwas davon in den Mund nehmen.

 

Rezept: Kinetischer Sand selbstgemacht

Ihr braucht dazu

2 Tassen feinen Sand (Dekorsand oder gesiebten Vogelsand)
1 Tasse Maisstärke (Stärkemehl, z.B. Maizena)
Etwas Wasser
Etwas Speiseöl
Eine runde Schüssel, Schneebesen, Löffel

Was ihr braucht: Sand, Stärkemehl,Wasser,Schüssel,Schneebesen - dazu kommen: Löffel,Öl

Wenn ihr mehr Sand zum Spielen möchtet, nehmt einfach mehr von den Zutaten. Auf ein beliebiges Volumen Sand kommt dabei immer die Hälfte dieses Volumens an Stärkemehl!

So geht es

Gebt den Sand und Stärke trocken in die Schüssel und vermischt sie mit dem Schneebesen sehr gründlich. Es sollten am Ende keine Stärkeklumpen mehr zu sehen sein.

Kinetischer Sand gut gemischt: Sand und Stärke lassen sich fast nicht mehr auseinander halten

So sind Sand und Stärke gründlich vermischt.

Gebt dann langsam etwas Wasser hinzu. Für zwei Honigglas-Deckel Sand und einen Deckel Stärkemehl habe ich etwa 30ml Wasser gebraucht.

Mischt und knetet mit dem Löffel weiter, bis eine formbare Masse entsteht. Wenn ihr die Masse mit einer Hand aus der Schüssel heben könnt, knetet sie auf dem Tisch weiter und formt eine Mulde.

Sandmasse mit Mulde: Darin befinden sich 1-2ml Speiseöl.

Meine Probier-Portion: Die Mulde ist so gross wie ein Eidotter: Darin befinden sich 1-2ml Speiseöl. Jetzt verkneten!

Gebt etwas Speiseöl hinein und verknetet das Ganze. Wiederholt diesen Schritt allenfalls, bis euer Sand die gewünschte Geschmeidigkeit und Textur hat. Ich habe in die Hälfte meiner urpsrünglichen Mischung etwa 2ml Speiseöl eingeknetet.

Die richtige Mischung: Dieser Sandball hält zusammen!

So ist die Mischung gut: Der Sandball hält zusammen!

Dies ist ein Zeichen für eine gute Mischung: Kinetischer Sand lässt sich zu einem Ball formen, welcher nicht auseinander fällt! Dann hält der Sand nämlich so fest zusammen, dass der Ritter vom Titelbild darauf reiten kann!

Ein Pferd aus kinetischem Sand trägt den Spielzeug-Ritter

Inzwischen bin ich mit dem Bloggen fertig – drei Stunden sind vergangen: Das Pferd (wie auf dem Titelbild) steht immer noch unversehrt auf dem Küchentisch!

Wer es bunt mag, kann den Sand auch mit Lebensmittelfarbe einfärben (rührt dazu die Farbe ins Wasser ein, bevor ihr es zu Sand und Stärke gebt). Ich gebe aber keine Garantie, dass dann beim Spielen die Finger nicht auch bunt werden!

Wie funktioniert das?

Auch Stärke besteht aus Molekülketten – die einzelnen Kettenglieder sind Zucker-Ringe aus Kohlenstoff-, Sauerstoff- und Wasserstoffatomen. Wieder sind Sauerstoff-Atome im Spiel, die sich mit passenden anderen Atomen abwechseln. So können auch zwischen Stärke und Wasser und Sand anziehende zwischenmolekulare Kräfte wirken.

Kinetischer Sand braucht "Zement": Ausschnitt aus einem Stärkemolekül mit Verzweigung (Amylopektin)

Ein Ausschnitt aus einem Stärkemolekül mit Verzweigung (unverzweigte gibt es auch): Zu sehen sind vier Zucker-Einheiten, an den gestrichelten Linien folgen weitere. An jeder Ecke ohne Buchstaben befindet sich ein Kohlenstoff-Atom (C). Zwischen Wasserstoff- und Sauerstoff-Atomen gibt es sogenannte polare Bindungen, die für die anziehenden Kräfte zwischen Stärke und Wasser notwendig sind.

Die knäulen sich zu porösen Körnern zusammen, welche sich mit Wassermolekülen vollsaugen können (wie die Hydroperlen in diesem Experiment, nur sind Stärkekörner sehr, sehr viel kleiner!). So quellen die Körner und pappen dank den zwischenmolekularen Kräften mit dem Wasser zusammen. Vom Kuchenbacken kennt ihr das: Mehl und Wasser ergeben miteinander eine klebrige Pampe.

Wenn man Stärke erwärmt, können sogar richtige chemische Bindungen zwischen den Ketten entstehen: Das Ganze verkleistert – deshalb werden Kuchen fest. So weit wollen wir aber nicht gehen, denn der kinetische Sand soll ja “kinetisch”, also beweglich, sprich formbar bleiben.

Damit die Stärkepampe nicht an den Händen klebt, gebe ich – analog zum Einfetten einer Backform – noch einen Schuss Speiseöl dazu. Das Öl ist nicht mit Wasser mischbar, denn zwischen seinen Molekülen wirk eine andere Sorte Kräfte. So nimmt durch die Zugabe des Öls die pappende Wirkung der Stärke ein wenig ab. Ingesamt wird der Sand aber sehr geschmeidig und hält nach wie vor so gut, dass selbst mein Pferdekopf der Schwerkraft trotzt. Und: Das Speiseöl verdunstet nicht mal eben!

 

Was zu beachten ist/Entsorgung

Zu empfehlen: Indoor-Sandkasten

Vollkommen sauber ist wohl kein selbstgemachter kinetischer Sand. Ein paar Körner lösen sich immer davon und bleiben an Händen oder Umgebung haften. Deshalb empfehle ich, eine Kunststoff-Wanne oder ein Tablett zum Indoor-Sandkasten zu erklären, um den Sand etwas zu bändigen. Wenn dann doch mal was daneben geht, kann es einfach aufgefegt und in den Abfall entsorgt oder mit dem Staubsauger aufgesaugt werden.

Wascht eure Hände nach dem Spielen am besten mit Seife – dank der Superwaschkraft der Tenside darin bekommt ihr das Öl so ganz einfach wieder von den Fingern.

Haltbarkeit dieses kinetischen Sandes

Stärkemehl und Öl sind Lebensmittel – also nicht-sterile, biologische Produkte. Solche halten natürlich nicht ewig, zumal ich beim Anrühren ganz bewusst auf Konservierungsmittel verzichtet habe. Bewahrt den kinetischen Sand nach dem Spielen am besten in einer geschlossenen Tupper-Dose im Kühlschrank auf. Lasst ihn nach dem Herausnehmen ggfs. erst auf Raumtemperatur warm werden. Speiseöl wird nämlich in der Kälte fester, sodass der kalte Sand steif sein kann.

Dann sollte er einige Wochen oder gar Monate halten. Achtet einfach auf die Äusserlichkeiten: Wenn der Sand ranzig riecht oder schimmelt, macht besser neuen. Der alte Sand kann in den Restmüll entsorgt werden.

Jetzt wünsche ich euch aber erstmal viel Spass beim “Sändelen”! – Wie spielt ihr denn am liebsten mit Sand? Kennt ihr noch andere Rezepte für Indoor-Sand?

Hast du das Experiment nachgemacht:

Kinetischer Sand: Hat das Experiment bei dir funktioniert?

View Results

Loading ... Loading ...

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!