Beiträge

Weichspüler - Fluch oder Segen?

Weichspüler haben einen schlechten Ruf: Ich lese auf Facebook in einigen Haushaltsgruppen mit und schnappe dort auf, was euch Haushaltsbetreibende so bewegt. Dabei lese ich immer wieder Beiträge nach dem Prinzip “Hilfe, meine Waschmaschine stinkt!” und die dazugehörigen Antworten. Die gehen dann meistens in Richtung “Benutzt du Weichspüler? Mach das bloss nicht, die schaden der Maschine und können der Grund für den miesen Geruch sein!”

Obendrauf kam im Sommer 2019 ein wohl ziemlich unsachlicher Beitrag des SWR, der anprangerte, dass eklige Schlachtabfälle als Rohstoffe für Weichspüler verwendet würden und sie damit alles andere als vegan seien.

Wenn diese Waschhilfsmittel so viele schlechte Eigenschaften in sich vereinen, warum werden sie dann in so vielfältiger Ausführung produziert und gekauft?

In diesem Artikel gehe ich den Weichspüler-Mythen auf den Grund: Schaden Weichspüler wirklich der Waschmaschine (oder gar unserer Gesundheit) oder werden sie fälschlicherweise verteufelt?

Was sind eigentlich Weichspüler?

Weichspüler sind in der Regel flüssige Produkte, die kationische Tenside (auch “Invertseifen” genannt) enthalten. Diese besonderen Tenside werden in der Waschmaschine beim letzten Spülgang hinzugefügt und sollen dafür sorgen, dass die Wäsche nach dem Trocknen weicher ist.

Zusätzlich wirken viele Weichspüler gegen elektrische Aufladung (einige der kationischen Tenside sind sogenannte Antistatika), enthalten verschiedene Duftstoffe, optische Aufheller und zuweilen geruchsbindende Moleküle.

Warum wird Wäsche beim Trocknen hart?

Beim Trocknen von Wäsche kann es zur sogenannten “Trockenstarre” der Textilien kommen. Dabei bilden sich Wasserstoffbrücken-Bindungen zwischen Fasern aus Zellulose, die diese Fasern vorübergehend “verkleben”. So wird ein ursprünglich flexibler Stoff hart und steif.

Zellulose ist doch der Pflanzenbestandteil, aus dem man Papier macht? Richtig! Aber ebenso ist er der Hauptbestandteil von Baumwollfasern, aus denen man Textilien macht.

Ganz besonders deutlich erlebe ich die Trockenstarre an meinem Oberteil aus Viskose. Dieses Material ist nämlich nichts anderes als Gewebe aus einem Garn, das aus verflüssigter Zellulose neu gesponnen wurde (eine sogenannte Regeneratfaser). Chemisch unterscheiden sich die Moleküle in diesem Garn nicht von natürlicher Baumwolle. Die Neigung zur Trockenstarre eingeschlossen.

Wenn ich besagtes Kleidungsstück wasche und auf der Leine trockne, fühlt es sich nachher steif wie ein Brett an. Allerdings nicht für lange. Spätestens wenn ich es ein paar Minuten getragen habe, fällt es wieder weich und geschmeidig, als wäre nichts gewesen. Das rührt daher, dass Wasserstoffbrücken im Vergleich zu “richtigen” chemischen Bindungen (d.h. Atombindungen) nicht besonders fest sind. Das macht sie bei ausreichend Bewegung entsprechend kurzlebig.

Was kann ein Weichspüler dabei bewirken?

Die kationischen Tenside im Weichspüler heissen so, weil ihre Moleküle eine positive elektrische Ladung tragen. Damit finden sie dicht mit Elektronen umgebene (und damit leicht negativ geladene) Atome äusserst anziehend und lagern sich an solche gerne an. Doch genau diese elektronenreichen Atome sind auch für die Entstehung von Wasserstoffbrücken notwendig. Wenn jedoch ein kationisches Tensid solch ein Atom besetzt, bleibt dort kein Platz mehr für eine Wasserstoffbrücke. Und ohne Wasserstoffbrücken keine Trockenstarre.

Was genau sind kationische Tenside?

Tenside im Allgemeinen sind Moleküle, deren eines Ende gut wasserlöslich ist, während das andere Ende überhaupt nichts von Wasser hält. Die Wasserlöslichkeit eines Moleküls geht mit einer elektrischen Ladung oder ungleicher Elektronenverteilung zwischen den Atomen einher. Die alltäglichsten Tenside sind Seifen. Sie tragen eine negative elektrische Ladung (“anionische Tenside”) und sind für ihre Superwaschkraft hoch geschätzt (mehr dazu erfahrt ihr hier).

Ein Tensid (hier ein Anionisches) ähnelt im Prinzip einem Streichholz: Der “Kopf” ist wasserlöslich, der “Schaft” ist wasserabweisend und fettlöslich. So kann dieses Molekül mit zwei miteinander unverträglichen Stoffen gleichzeitig wechselwirken.

Kationische Tenside tragen dagegen eine positive elektrische Ladung. Sie enthalten in der Regel ein Stickstoffatom, das vier Bindungen statt seiner üblichen drei eingegangen ist. Damit teilt das Stickstoffatom ein Elektron mehr als üblich mit seinen Nachbarn, weshalb seine Kernladung um +1 überwiegt.

Vom Ammonium zum Tensid

Das einfachste Molekül dieser Art ist das Ammoniumion NH4+, in dem vier Wasserstoffatome an den Stickstoff gebunden sind. Klein und geladen ist dieses Molekül sehr gut wasserlöslich. In einem kationischen Tensid sind die vier Wasserstoffatome jedoch durch Kohlenwasserstoffreste ersetzt. Wenn mindestens einer davon so lang ist, dass seine Unlöslichkeit in Wasser sich bemerkbar macht, ist das Molekül ein Tensid.

Strukturformel für DSDMAC, ein typisches kationisches Tensid für Weichspüler
“DSDMAC”, ein typisches kationisches Tensid: Der “Kopf” (rot) mit dem Stickstoffion ist wasserlöslich, der “Schaft” (blau), bestehend aus zwei langen Kohlenwasserstoffketten, nicht. Da positiv geladene Teilchen nicht allein vorkommen, wird die Verbindung als Salz aus DSDMAC- und Chlorid-Ionen verwendet.

Weil sie sich vom Ammonium ableiten und alle vier H-Atome durch Kohlenwasserstoffreste ersetzt sind, werden Moleküle dieser Sorte “quartäre Amine” oder kurz “Quats” genannt.

Quats sind im Alltag weit verbreitet

Vielleicht kennt ihr das ein oder andere schon als Antistatika zum Aufsprühen oder für seine Wirksamkeit gegen Bakterien und Pilze (Benzalkoniumchlorid, ein bekanntes Konservierungsmittel, gehört auch zu dieser Familie!). Oder als “Weichmacher” der anderen Art: Polyquaternium-Verbindungen sind, als Alternative zu Silikonöl, Bestandteile z.B. von Haarspülungen. Darin sind die positiv geladenen Stickstoffatome zu längeren Ketten verknüpft, die sich um die Haare legen und ihnen eine glatte Oberfläche und damit leichte Kämmbarkeit verleihen.

Wie gut sind Weichspüler biologisch abbaubar?

In den 1990ern kamen in Weichspülern meist simple “Quats” wie das oben gezeigte DSDMAC zum Einsatz. Die haben jedoch einen entscheidenden Nachteil: Es gibt sie in der Nahrung von Lebewesen, insbesondere Kleinstlebewesen, nicht, was bedeutet, dass sie nur schwerlich bis gar nicht biologisch abbaubar sind.

Da eine vernünftige biologische Abbaubarkeit von Tensiden wie in Weichspülern aber seit 2006 von der EU vorgeschrieben ist, kommen heutzutage angepasste Moleküle zum Einsatz. Anstatt einfacher Kohlenwasserstoffreste sind darin Alkohol-Gruppen an den Stickstoff gebunden, die mit Fettsäuren verestert sind. Diese Verbindungen, kurz “Esterquats” genannt, ähneln damit den Fetten bzw. Triglyceriden, die wir alle als Nahrung kennen. Somit ist die Natur gut für die Spaltung und Verwendung solcher Verbindungen gerüstet. Das heisst, die Esterquats sind gut biologisch abbaubar.

Strukturformel eines Esterquats
Ein Esterquat mit drei Alkohol-, d.h. OH-Gruppen: Zwei davon sind mit Fettsäuren verestert, die dritte links nicht. Dieses Molekül kann von Lebewesen an den Estergruppen (-O-CO-) leicht gespalten werden.

Zumindest in der Theorie ist das eine tolle Sache. Beim Herumstöbern im Netz nach den Inhaltsstoffen von Weichspülern bin ich allerdings auf ein Sicherheitsdatenblatt eines Produkts einer aus der Werbung gut bekannten Firma gestossen – und siehe da: Der wirksame Bestandteil ist kein Esterquat, sondern unter anderem das (un)gute alte DSDMAC. Immerhin habe ich diese Angabe des betreffenden Herstellers gefunden, während sich andere gar nicht in die Karten schauen lassen.

So halte ich die Aussage auf Wikipedia, dass DSDMAC und Co. Heutzutage durch Esterquats ersetzt sind, für höchst fraglich.

Schlachtabfälle?! – Wie man quartäre Amine herstellt

Der anfangs erwähnte Beitrag des SWR wurde nicht zuletzt dafür kritisiert, dass er den Eindruck erweckte, in Weichspülern ‘seien eklige Schlachtabfälle drin’ (was von der Boulevardpresse nur zu gern aufgegriffen wurde).

Tatsächlich sind die Rohstoffe, aus denen man “Quats” für Weichspüler herstellt, Fette, die von Pflanzen oder Tieren stammen können. Da diese Fette keinen besonderen Qualitätsansprüchen genügen müssen, sind Schlachtabfälle letztlich eine wirtschaftliche und nachhaltige Quelle dafür. Dass die auch rege genutzt wird, ist auch seit langem hinlänglich bekannt.

Die Fette werden jedoch in einer ganzen Reihe von Schritten verarbeitet:

  1. Die Fette werden zunächst wie bei der Seifenherstellung gespalten (“verseift”), um freie Fettsäuren zu gewinnen. Das ebenfalls entstehende Glycerin wird davon abgetrennt.
  2. Anschliessend lässt man die Fettsäuren bei hoher Temperatur und einem Metallkatalysator (ein Hilfsstoff, der die Reaktion erleichtert) mit Ammoniak (NH3) reagieren, um das Stickstoffatom einzuführen. Es entstehen sogenannte Fettsäurenitrile.
  3. Nach weiterer Reinigung werden die Fettsäurenitrile mit Wasserstoff (H2) umgesetzt. Auch für diese Hydrierung genannte Reaktion ist ein Metall als Katalysator nötig. Dabei können “Fettamine” mit einem (wenn dabei Ammoniak anwesend ist), zwei oder drei gebundenen Kohlenwasserstoffresten entstehen.
  4. In einer Reaktion, die Alkylierung genannt wird, kann ein Fettamin mit drei Kohlenwasserstoffresten (d.h. ein tertiäres Amin) schliesslich mit einem vierten solchen Rest versehen werden.

Nach einem letzten Aufreinigungsschritt ist das quartäre Amin bzw. kationische Tensid dann fertig. Insgesamt braucht es also vier chemische Reaktionen und mindestens fünf Reinigungsschritte, um vom natürlichen Rohstoff zum Inhaltsstoff für Weichspüler zu kommen. Nach so viel Aufwand und chemischen Umbau-Aktionen bleibt vom Charakter des ursprünglichen Rohstoffs, ob nun tierisch oder pflanzlich, im Endprodukt nichts mehr übrig.

Weichspüler und vegan? Eine Frage der Definition!

Weichspüler mögen also nicht vegan sein (wenn man “vegan” denn streng als “ohne Tierprodukte” definiert). Aber dafür müssen keine Tiere sterben! (Denn die werden für Steak und Hamburger geschlachtet.) So lange ein erheblicher Teil der Menschheit also Fleisch isst, ist es (nicht nur) in meinen Augen wesentlich nachhaltiger, Chemikalien aus dem zu produzieren, was soundso anfällt, als unnötig Ressourcen und Energie aufzuwenden sowie Pestizid- und ähnliche Belastung zu riskieren, um extra pflanzliche Rohstoffe zu produzieren.

Wenn man “vegan” mit Hintergedanken an Umwelt, Tierschutz und Nachhaltigkeit als “dafür müssen keine Tiere sterben” bzw. “verbraucht minimale Ressourcen” definiert, könnte man selbst die Produkte aus tierischen Rohstoffen guten Gewissens als ‘vegan’ bezeichnen.

Weitere Nachteile von Weichspülern

  • In manchen Textilien können Weichspüler ähnliche Probleme machen wie ihre Verwandten in den Haar-Conditionern: Sie lagern sich auf den Geweben ab (das ist ja ihre Funktion!) und “verkleben” bzw. “verschliessen” sie so, dass ihre Durchlässigkeit für andere Stoffe beeinträchtigt wird. Das ist vor allem bei Funktionstextilien (“atmungsaktive” Sportkleidung) oder Daunen ein Problem.
  • Tatsächlich können Weichspüler sich auch in ähnlicher Weise auf den Oberflächen in der Waschmaschine ablagern und zu einem behaglichen Zuhause für Bakterien und Pilze werden (von denen dann der unangenehme Geruch der Maschine herrührt).
  • Unterschiedliche Ladungen ziehen sich an: So bilden kationische Tenside mit den herkömmlichen anionischen Waschmittel-Tensiden schwer wasserlösliche Aggregate. So ist bei der nächsten Wäsche nach dem Weichspülereinsatz mehr Waschmittel nötig als ohne.
  • Duftstoffe (und weitere Zusätze) können Allergien auslösen (müssen aber nicht). Grundsätzlich sind Allergien bzw. die Neigung dazu von Mensch zu Mensch sehr verschieden, sodass kaum vorauszusagen ist, wer auf was empfindlich reagiert.

Was (oder wem) nutzen Weichspüler dann überhaupt?

Mangelnde biologische Abbaubarkeit, unliebsame Rohstoffe, Probleme bei Funktionstextilien, Keime in der Waschmaschine und allergenes Potential… das ist eine lange Liste von Nachteilen, wenn die Wirkung von Weichspülern sich bloss auf das Verhindern der zeitlich begrenzten Trockenstarre, Duft und etwas Antistatik beläuft.

Ich habe allerdings von Menschen gelesen, die womöglich nicht darauf warten können/mögen, dass eine Trockenstarre von selbst verfliegt: Nämlich solche, die an Neurodermitis oder anderen Erkrankungen mit leicht reizbarer Haut leiden. Solchen sollen Hautärzte tatsächlich den Einsatz von Weichspülern empfehlen, wenn damit Reizungen durch “kratzige” Textilien zuvorgekommen werden kann.

Aus dem eigenen Familienkreis kenne ich Neurodermitis nur mit allergischem Ursprung, wenngleich wohl Nahrungsmittelproteine (Milch, Ei) die Ursache waren. Nichts desto trotz erscheint es mir hier sinnvoll, von Person zu Person abzuwägen, inwieweit der Nutzen eines Weichspülers mögliche Reaktionen auf seine Inhaltsstoffe überwiegt.

Gibt es denn (Hausmittel-)Alternativen zu industriellem Weichspüler?

In den Haushaltsgruppen und auf zahllosen Websites werden immer wieder vor allem Essig, Natron/Soda (oder gleich beide miteinander) und/oder ätherische Öle als Weichspüler-Ersatz empfohlen. Doch was taugen diese Alternativen?

Aus Chemikersicht gar nichts:

  • Essig: Enthält Essigsäure – die reagiert mit dem schwach basischen Kalk in (hartem) Waschwasser. Essig trägt also zur Wasserenthärtung bei und kann allenfalls dazu beitragen, den Verbrauch von Waschmittel durch die Entstehung von Kalkseifen oder Kalkablagerungen auf den Textilien zu verhindern. Heute Waschmittel enthalten allerdings bereits Enthärter (vor allem Zeolith A), die das übernehmen. Und zu viel Essigsäure in der Maschine kann um ungünstigsten Fall ihre Bauteile angreifen.
  • Natron und Soda (Natriumhydrogencarbonat, NaHCO3 bzw. Natriumcarbonat Na2CO3): Sind basisch und und fluoreszieren in UV-Licht. Letztere Eigenschaft macht sie zu optischen Aufhellern: Sie lassen die Wäsche weisser erscheinen (zumindest theoretisch: Die Stiftung Warentest hat 2013 keinen solchen Effekt nachweisen können) – machen sie aber nicht weicher. Ausserdem sind Basen ähnlich wie Säuren aggressiv: Nicht alle Fasern vertragen sie so ohne weiteres.
  • Essig und Natron oder Soda: Reagieren miteinander. Die dabei freigesetzte Kohlensäure zerfällt in CO2-Gas und Wasser. So gehen sowohl die enthärtende Wirkung des Essigs als auch die Fluoreszenz verloren.
  • Ätherische Öle: Werden gerne als “natürlicher” Ersatz für die Duftstoffe in Weichspülern genannt. Dabei geht jedoch gerne vergessen, dass auch und gerade die Bestandteile ätherischer Öle Allergien auslösen können (viele der fraglichen Duftstoffe in industriellen Produkten kommen sogar auch in ätherischen Ölen vor oder leiten sich davon ab!). Dazu kommt: Die Zusammensetzung von Naturprodukten wie ätherischen Ölen ist weder vollständig bekannt noch garantiert immer gleich – anders als bei “chemischen” Zubereitungen, die stets bis ins Detail bekannt sind. Daher solltet ihr beim Einsatz fortwährend genau und von Person zu Person beobachten, wer was verträgt und was nicht.  

Wie ich als Chemikerin vorgehe

Da in meinem Haushalt niemand unter Neurodermitis oder ähnlichem leidet, ist mir die Liste der Nachteile von Weichspülern gegenüber ihrem Nutzen viel zu lang.

Ich wasche daher meine Wäsche nur mit einem Vollwaschmittel in Pulverform und verzichte auf Weichspüler. Frottee-Handtücher (die ich nur trocknergeeignet kaufe) trockne ich im Wäschetrockner, denn durch dessen Gebläse wird die Trockenstarre von vorneherein verhindert. Von meiner Bluse aus Viskose (und anderer betroffener Kleidung) weiss ich überdies inzwischen, dass die Trockenstarre von selbst so vollständig vergeht, dass ich die Bluse nicht einmal bügeln muss.

Und wie wascht ihr eure Wäsche? Verwendet ihr Weichspüler? Habt ihr einen besonderen Nutzen davon? Oder warum verwendet ihr sie gerade nicht?

Zeolithe: Wo die nützlichen Steine uns im Haushalt helfen

Zeolithe sind nicht nur im Haushalt äusserst nützlich. Auch als Nahrungsergänzungsmittel für Entgiftungskuren ist “Zeolith” überaus populär. Da diese Anwendung dieser vielseitigen Stoffgruppe hier aber den Rahmen sprengen würde, kommt ein zweiter Artikel zu Zeolithen und Detox nächste Woche!

Was ist eigentlich in unserem Waschpulver drin? Diese Frage kam neulich beim Nachtessen mit der Schwiegermutter auf. Na klar: Seife. Oder in der Chemiker-Sprache: Tenside. Und über deren Super-Waschkraft habe ich hier ja schon geschrieben. Aber nachsehen schadet ja nichts, dachte ich. Und siehe da: Mein Universal-Waschpulver vom orangen M enthält nur 5-20% Tenside – und 15%-30% Zeolithe. Was ist das denn nun schon wieder?

Was sind Zeolithe?

Laut Definition im Chemiebuch oder auf Wikipedia sind Zeolithe eine Gruppe von “kristallinen Alumosilikaten”… mit anderen Worten: Steine. Und zwar Steine, welche die chemischen Elemente Silizium und Aluminium enthalten. Das ist an sich nichts besonders, sind Silizium und Aluminium doch das zweit- und dritthäufigste Element in der Erdkruste.

So hübsch sind Zeolithe selten: Natrolith aus meiner Mineraliensammlung – ein natürlicher Zeolith auf Basalt. Dieses Grundgestein hat Naturzeolithen auch die Bezeichnung als “natürliches Vulkangestein” eingebracht.

Das Ionengitter der Zeolith-Kristalle, aus welchen diese Steine bestehen, ist allerdings ein ganz besonderes: Es enthält grosse Lücken, die den ganzen Kristall zu einem porösen Schwamm machen!

Wie sind Zeolith-Kristalle aufgebaut?

Die allgemeine Verhältnisformel der Zeolithe lautet:

Mn+x/n [(AlO2)x (SiO2)y. z H2O

Ein Schweizer Käse aus Si- und Al-Atomen

Der Inhalt der eckigen Klammer beschreibt das eigentliche Kristallgitter: Es besteht aus Silizium (Si)-, Aluminium (Al)- und Sauerstoff (O)-Atomen, wobei auf x Silizium-Atome stets y Aluminium-Atome kommen. Jedes dieser Atome ist mit vier Sauerstoffatomen verbunden (die wiederum werden dazu je zweimal verwendet, weshalb die Formel nur 2 Sauerstoff-Atome je Metallatom enthält). Anders eingeteilt besteht das Zeolith-Gitter somit einander überlappenden Sauerstoff-Tetraedern mit je einem Silizium- oder Aluminiumatom im Zentrum.

Molekülmodell: Tetraeder

Molekülmodell in Form eines Tetraeders: Die vier weissen Kugeln befinden sich in den vier Ecken dieses geometrischen Körpers, die pinke Kugel liegt in dessen Zentrum.

Wer sich ein etwas mit organischer Chemie auskennt (da sind es Kohlenstoff-Atome, die mit ihren Nachbarn Tetraeder bilden), weiss, dass man aus Tetraedern die vielfältigsten Gerüste bauen kann. Deshalb gibt es ein wahres Sammelsurium von Zeolithen:

60 natürlich vorkommende Mineralien gehören zu dieser Gruppe, über 150 weitere sind von Chemikern entworfen und künstlich hergestellt worden!

Sie alle haben eines gemeinsam: Ihre Gitter umfassen mehr oder weniger grosse Hohlräume – ein richtiger molekularer Schweizer Käse. In Waschmitteln findet man vor allem der synthetische Zeolith A, dessen Kristallgitter so aussieht:

Kristallgitter von Zeolith A

Jede Ecke in der Skizze steht für ein Silizium- oder Aluminium-Atom. Die Sauerstoff-Atome sind dazwischen entlang der Verbindungslinien angeordnet.

Grundbaustein der Zeolithe: Sodalith-Käfig mit Si-, Al- und O-Atomen
Ein Element des Zeolith-A-Gitters mit eingezeichneten Atomen

In der Mitte zwischen acht dieser Einheiten bleibt ein relativ grosses Loch, dessen Wände die Chemiker als alpha-Käfig” bezeichnen.

Gitter des Zeolith A mit markiertem alpha-Käfig
Die Wände des Alpha-Käfigs in diesem Ausschnitt aus dem Zeolith-A-Gitter sind dunkel eingefärbt.

Im Zeolith A sind ebenso viele Silizium- wie Aluminium-Atome enthalten – die Verhältnisformel für diesen Zeolith lautet damit:

Na12((AlO2)12(SiO2)12) · 27 H2O

Zeolith-Kristalle sind Riesen-Anionen

Wenn ihr euch die allgemeine Verhältnisformel der Zeolithe oder die für Zeolith A genauer angesehen habt, ist euch vielleicht das “-” an der Aluminium-Einheit aufgefallen. Richtig: Jeder Aluminium-Tetraeder im Gitter trägt eine negative elektrische Ladung. Damit ist das ganze Kristallgitter eines Zeoliths ein einziges riesiges und tausendfach geladenes Anion!

So etwas lässt die Natur aber nicht einfach frei und einsam existieren…entgegengesetze Ladungen müssen für den Ausgleich her. Hier kommen die positiven Metall-Ionen Mn+, die ganz links in der Verhältnisformel stehen, ins Spiel. Für jede negativ geladene Aluminium-Einheit muss ein einfach positiv geladenes (n = 1) Metall-Ion her. Wenn mehrfach positiv geladene (n > 1) Metall-Ionen zur Hand sind, ist die Anzahl x der Aluminium-Einheiten durch die Ladungszahl der Metall-Kationen zu teilen (x/n).

Zeolith A enthält einfach geladene Na+-Ionen – 12 davon für 12 Aluminium-Einheiten, die in den Lücken im Gitter Platz finden und sich locker um das negativ geladene Gerüst herum anordnen.

Zeolithe sind molekulare Schwämme

Ausserdem ist in den Lücken noch reichlich Platz für Wassermoleküle. Die finden sich ganz rechts in der Verhältnisformel wieder. Die Wassermoleküle umhüllen sowohl die Metall-Kationen als auch das Gitter selbst, was den Metallionen den Aufenthalt im Gitter erst richtig gemütlich macht (eine Wasserhülle (in Chemikersprache: “Hydrathülle”) um ein wasserlösliches Ion enthält weniger Energie als das Ion ohne Hülle, was den umhüllten Zustand erstrebenswerter macht).

Durch Erhitzen können diese Wassermoleküle jedoch zum Verdampfen gebracht werden und den Kristall verlassen. Das ist eine charakteristische Eigenschaft von sogenanntem “Kristallwasser”, das einer chemischen Formel mit einem “*” bzw. Multiplikations-Punkt angehängt wird.

Auf eine Grundeinheit des Zeolith-A-Gitters kommen so normalerweise 27 Wassermoleküle.

Was hat die grosse Menge Zeolith A in Waschmitteln zu suchen?

Zeolithe können Wasser enthärten!

Die Hohlräume der Kristalle der Zeolithe enthalten von Wasser umhüllte Natrium-Ionen. Diese Ionen sind damit regelrecht im Kristallwasser gelöst. Das macht sie leicht darin beweglich. Tatsächlich können sie sich durch den ganzen Kristall und hinaus bewegen. Wenn sich nun andere Metall-Ionen finden, die es in einem Zeolith-Kristall noch behaglicher finden, können die Natrium-Ionen deshalb ganz leicht gegen solche ausgetauscht werden.

Und in unserem Leitungswasser, mit welchem wir unsere Wäsche waschen, finden sich solche Ionen zuhauf. Es ist schliesslich mehr oder weniger “hart” – es enthält Kalk: Calciumcarbonat, genauer gesagt Calcium- (Ca2+) und Carbonat- (CO32-) Ionen.

[Für die Chemiker unter euch: Carbonat CO32- ist natürlich eine Base und reagiert mit Wasser zu Hydrogencarbonat- (HCO3) und Hydroxid-Ionen (OH) weiter, anstatt einfach gelöst zu werden. Aber das ist hier für einmal nicht von Bedeutung.]

Zusammen bilden diese beiden die gefürchteten Kalkbeläge, welche die Leitungen in unseren Waschmaschinen verstopfen und die Wäsche steif machen können. So etwas will keiner haben.

Wenn Zeolithe im Waschwasser sind, machen es sich die Calcium-Ionen jedoch lieber in den Hohlräumen des Zeolith-Gitters gemütlich und verdrängen dabei die Natrium-Ionen aus dem Zeolith A. Einen vollständigen Austausch von Natrium- gegen Calcium-Ionen könnte man so beschreiben:

Na12((AlO2)12(SiO2)12) · 27 H2O + 6 Ca2+(aq) –> Ca6((AlO2)12(SiO2)12) · 27 H2O + 12 Na+(aq)

Nachdem die Calciumionen sich im Zeolith eingerichtet haben, bleiben im Wasser Natrium- und Carbonat-Ionen zurück. Und Natriumcarbonat (auch als “Soda” bekannt) ist sehr gut wasserlöslich. So lagert es sich weder in der Maschine noch in der Wäsche ab und kann einfach fortgespült werden.

Das Gleiche geschieht mit dem Zeolith-Pulver. Das ist zwar nicht wasserlöslich, aber so fein gemahlen, dass es einfach mit weggeschwemmt wird.

Womit hat man früher Wasser enthärtet?

Künstliche Zeolithe wie Zeolith A kommen erst seit den späten 1970er Jahren in Waschmitteln zum Einsatz. Davor haben Gerüste aus Phosphor und Sauerstoff – also Phosphate – diese Aufgabe übernommen. Die Phosphat-Gerüste neigen allerdings dazu zu zerfallen, was sie zu ergiebigen Nährstoffen für Pflanzen macht.

Als solche Phosphate vermehrt mit Abwässern in die Umwelt gelangten, wurde das rasch zum Problem: Die Nährstoff-Schwemme führte zu Überdüngung und brachte viele ökologische Systeme aus dem Gleichgewicht. So wurden die Phosphate zunehmend durch Zeolithe ersetzt. Denn letztere sind schliesslich Steine – die taugen nicht als (unnötiger) Dünger.

Einen Haken haben Steine aber dennoch: Sie sind wasserunlöslich. Damit gelangt das ganze Zeolith-Pulver unverändert mit dem Abwasser in die Kläranlagen…und was gibt pulverisiertes Gestein in Wasser? Richtig: Schlamm. Und der sammelt sich in den Klärbecken. Seit Zeolithe in Waschmitteln zum Einsatz kommen, müssen Klärwerke deshalb mit merklich mehr Klärschlamm fertig werden – Grund genug, auch phosphatfreie (und zeolithhaltige) Waschmittel nicht in übertriebenen Mengen einzusetzen.

Zeolithe als Helferlein im Katzenklo

Habt ihr Katzen daheim? Dann kennt ihr Zeolithe wahrscheinlich auch von anderswo. Nämlich aus dem Zoohandel. Da wird nämlich gerne ein Naturzeolith (also ein natürlich vorkommendes Mineral) namens Klinoptilolith als Katzenstreu angeboten.

Die porösen Kristallgitter lassen sich nämlich nicht nur als Ionenaustauscher nutzen, sondern auch wie ein richtiger Schwamm! Das geht dann besonders gut, wenn der Zeolith etwa ebenso viele Silizium- wie Aluminiumatome enthält. Das synthetische Zeolith A ist ein gutes Beispiel dafür: Hier ist das Verhältnis zwischen Silizium und Aluminium 1:1. Aber auch Klinoptilolith mit 5:1 ist noch ein wunderbarer Schwamm.

Diese Zeolithe sind nämlich wahnsinnig heiss darauf, ihre Poren mit zusätzlichem Wasser aus ihrer Umgebung zu füllen (buchstäblich: Da es das Wasser in den Poren so bequem hat, wird eine Menge Energie, genannt “Adsorptionswärme”, dabei frei.

Doch damit nicht genug: Mit dem Wasser saugen sie auch vieles auf, was darin gelöst ist. Zum Beispiel Geruchsstoffe im Katzenurin. So werden die Nasen der menschlichen Dosenöffner geschont, während die Katze ihr Geschäft in natürlichem Gesteinsschutt verscharren kann.

Von Zeolith-Katzenstreu zu Pflanzenerde

Natürlicher Gesteinsschutt, der Wasser und überdies noch Nährstoffe (Urin, auch von Katzen, enthält naturgemäss Stickstoffverbindungen) speichert, kann zudem als Bestandteil von Pflanzenerde nützlich sein (andere formstabile Wasserspeicher sind “Superabsorber” aus organischen Polymeren (“Kunststoffen”), die ich in diesem Experiment als Ersatz für Pflanzenerde verwendet habe). Deshalb gilt Katzenstreu aus Naturzeolithen als geeignet für den Kompost.

Eigentlich sollte für synthetische Zeolithe dasselbe gelten – es handelt sich dabei schliesslich um Designer-Steine. Aber “natürlich” hat nunmal die weitaus grössere Werbewirkung – und ist in diesem Fall überdies billiger. Naturzeolithe kommen nämlich nahe der Erdoberfläche vor und können im Tagebau gewonnen werden (mit allen Konsequenzen für die Landschaft). Das künstliche Nachstellen der Entstehung von Steinen – so werden synthetische Zeolithe gemacht – ist hingegen ziemlich aufwändig. Mehr zum Vergleich von natürlichen und synthetischen Zeolithen findet ihr hier.

Zeolith im Geschirrspüler

Die “Saugfähigkeit” von Zeolithen wird seit einigen Jahren auch in der Küche genutzt. Hier kommt eine fest eingebaute Schale mit Zeolith-Pellets in der Spülmaschine zum Einsatz. Und zwar zur energiesparenden Trocknung.

Die Idee dahinter: Nach dem Spülgang ist das Maschineninnere samt Geschirr und Luft noch nass. Ein Ventilator bläst diese feuchte Luft durch den Behälter mit dem Zeolith, welcher das Wasser “aufsaugt” und dabei eine grosse Menge (Adsorptions-)Wärme abgibt. Die Luft kommt also trocken und warm in den Geschirrspüler zurück und bringt dort weiteres Wasser zum Verdampfen, das anschliessend vom Zeolith aufgenommen werden kann.

Beim nächsten Spülgang wird dagegen der Zeolith geheizt, sodass das Wasser aus den Poren im Kristallgitter verdampft und in den Geschirrspüler zurückgeführt werden kann. So wird der Zeolith für die nächste Trocknung wieder einsatzbereit gemacht.

Das Ganze gilt als sehr energieeffizient – allerdings liest man im Netzt viele Berichte über Geschirrspüler Zeolith-Trocknung (zum Beispiel hier und hier), die bereits nach drei bis fünf Jahren reif für eine unwirtschaftlich teure Reparatur sind. Ob diese Berichte repräsentativ sind, kann ich natürlich nicht sagen – aber es scheint, als wäre diese Technologie noch ausbaufähig.

Schaden oder nützen Zeolithe der Gesundheit?

Mehr dazu gibt es nächste Woche im zweiten Teil über Zeolith für Detox-Kuren!

Und wo sind euch Zeolith bzw. Zeolithe bislang begegnet?