Beiträge

Experiment: Recycling selbst gemacht - HDPE

In Deutschland wurden in meinen Kindertagen die “gelbe Tonne” und der “grüne Punkt” auf Kunststoff-Verpackungen eingeführt. Das Ziel: Plastikabfälle sollen vom Restmüll getrennt gesammelt werden, damit man sie recyceln kann. Hier in der Schweiz ist man leider bis heute nicht so weit – wenn wir von dem flächendeckenden Recycling-Kreislauf für PET*-Getränkeflaschen einmal absehen. HDPE und andere landen hierzlande dagegen in der Müllverbrennungsanlage.

*Eine Übersicht über die gängigsten Kunststoff-Arten und der gebräuchlichen Abkürzungen findet ihr hier!

Aber wie funktioniert Kunststoff-Recycling eigentlich? Wie kann man aus alten Plastik-Gegenständen neue herstellen?

Leicht recycelbar: Thermoplaste

Einige Kunststoffe, darunter die im Alltag am weitesten Verbreiteten, haben eine spannende Eigenschaft, die das Wiederverwenden einfach macht: Wenn man sie erhitzt, werden sie formbar – und kühlen sie ab, werden sie erneut fest! Solche Kunststoffe werden von den Fachleuten “Thermoplaste” genannt. Und nicht nur das – einzelne Kunststoffteile lassen sich in ihrem formbaren Zustand sogar mit anderen verschmelzen!

Wenn die Temperatur, ab welcher ein Kunststoff formbar (“plastisch”) wird, ausreichend weit unterhalb jener Temperatur liegt, bei welcher die Riesen-Kettenmoleküle im Kunststoff zerstört werden, lässt sich diese Eigenschaft für das Recycling nutzen. Nicht mehr benötigte Kunststoff-Gegenstände können erhitzt, neu geformt und zu neuen Gegenständen verschmolzen werden.

Experiment: Recycelt euren eigenen Thermoplast

Das könnt ihr sogar selbst ausprobieren! Sehr gut eignet sich dafür Polyethylen (PE), genauer gesagt HDPE, die Polyethylen-Spielart mit Hoher Dichte. Aus diesem Material bestehen die meisten Flaschen für Shampoo und andere Hygieneprodukte. Das Recycling-Dreieck aus drei Pfeilen mit der Ziffer 2 und dem Kürzel “HDPE” oder “PE-HD” verraten euch, dass eine Flasche wirklich aus diesem Material besteht.

Recycling-Symbol für HDPE (via Wikimedia Commons, User : Tomia / CC BY-2.5 )

Ihr könnt also aus leeren Shampoo-Flaschen ganz einfach neue Gegenstände herstellen – zum Beispiel Deko-Anhänger für den Weihnachtsbaum, Osterstrauch oder sonstige Anlässe.

Ihr braucht dazu

  • Leere Flasche(n) aus HDPE (eine Shampoo-Flasche reicht für bis zu vier Anhänger)
  • Ausstechformen für Plätzchen aus Metall (einfache Formen, sonst wird es sehr kniffelig)
  • Alufolie
  • Etwas Pflanzenöl
  • Küchenschere
  • Elektro-Herdplatte (KEIN Induktionsherd! Dunstabzug empfohlen!)
  • Einen Kochtopf
  • Greifzange (vom Grill, Tiegelzange o.Ä.)
Material zum Umschmelzen von HDPE
Die linke, feinstrukturierte Ausstechform habe ich schnell aufgegeben: Die kleinen Nischen lassen sich kaum mit Folie auskleiden, ohne dass diese reisst. Die rechte hat dafür gute Dienste geleistet.

So geht’s

  • Säubert die leere Flasche sorgfältig. Schneidet das obere und unter Ende – am besten über einem Waschbecken – ab. Wenn sich dabei weitere Reste des Inhalts zeigen, reinigt die Teile noch einmal gründlich.
  • Schneidet die Flasche in möglichst feine Schnitzel. Ich habe dazu die Seitenwände in grössere Stücke zerteilt und diese zunächst streifenartig eingeschnitten. Dann habe ich senkrecht zu den Einschnitten schmale “Streifen” abgetrennt (wie ein Coiffeur beim Haareschneiden). Das Ergebnis: HDPE-Flocken von etwa 2x2mm Grösse.
Schritt für Schritt von der HDPE-Flasche zu kleinen Flocken
Von der leeren Shampoo-Flasche zu kleinen Flocken
  • Kleidet eine Ausstechform mit Alufolie aus. Achtet darauf, dass die Folie die Form innen vollständig und bis zum Boden bedeckt. So kann euer Werkstück die Form des Ausstechers ganz übernehmen. Achtet aber darauf, dass keine Risse oder Löcher entstehen! (Dieser Schritt kann bei zu filigranen Ausstechformen sehr kniffelig werden.)
Ausstechform mit Alufolie von oben und unten
  • Bestreicht die Innenseite dieser selbstgemachten Aluschale mit etwas Öl, so als wolltet ihr darin einen Kuchen backen.
  • Füllt eine dichte Schicht eurer PE-Flocken in die Form. Achtet darauf, dass die Flocken jeden Winkel der Form dicht ausfüllen.
Ausstechform als Aluschale, gefüllt mit HDPE-Flocken
So ist die Form gut gefüllt: Der Boden ist nicht mehr zu sehen, die Flockenschicht ca. 3mm dick.
  • Stellt die Form in den leeren Kochtopf und stellt diesen leer (bis auf die Alu-Form(en)) auf den Herd.
  • Schaltet die Herdplatte für 8 bis 10 Minuten auf niedrige bis mittlere Stufe. Behaltet das Experiment unbedingt im Auge und schaltet wenn möglich den Dunstabzug ein! Sollte sich Geruch nach schmorendem Plastik oder gar Rauch zeigen, nehmt den Topf sofort vom Herd!
  • Nach gegebener Zeit, bzw. wenn die Flocken aneinanderbacken, nehmt den Topf vom Herd und lasst die Formen abkühlen. Vorsicht, heiss: Wenn ihr sie dazu aus dem Topf nehmen wollt, benutzt dazu die Zange!
  • Nehmt das abgekühle Werkstück samit Aluminium aus der Form. Die Folie sollte sich ganz leicht abschälen lassen. Dann könnt ihr mit Wasser und Seife das Öl abwaschen.
Fertige HDPE-Blume noch in der Alu-Form
Oops! Die braune Färbung zeigt: Das ist wohl etwas zu heiss geworden. Ausserdem ist bei diesem ersten Versuch Rauch entstanden und Reto hat sich über den Geruch nach schmorendem Plastik beschwert. Die Notkühlung mit Wasser hat dieses Stück aber noch retten können.

Notfall-Tipp: Wenn das Experiment zu stinken oder gar zu rauchen beginnt, droht der Kunststoff zu verschmoren. Um das Schlimmste zu verhindern, könnt ihr die Temperatur der Werkstücke sehr schnell senken, indem ihr kaltes Wasser einige Millimeter hoch in den Topf laufen lasst. Zischen und Dampfen ist dabei ein Zeichen für Energieverbrauch – und damit für die sinkende Temperatur.

Rückseite der gebräunten HDPE-Blume mit Alu-Resten
Die Rückseite des überhitzten Stücks, nachdem ich die Aluminiumfolie (ohne Öl!) mühsam mit einem Küchenmesser abgekratzt habe: Trotz Überhitzung hält der Kunststoff so fest zusammen, dass diese Blume nicht einmal bei der Kratzerei kaputt ging!

Was ihr beobachten könnt

Beim Erhitzen werden die Kunststofffocken dicker, beginnen zu glänzen und ihre Kanten werden weicher. Sie sehen aus wie Käse, der im Begriff ist zu schmelzen. Die dicht übereinander geschichteten Flocken verschmelzen dabei sogar miteinander. Wenn ihr die Flocken nun mit der Greifzange antippt, könnt ihr feststellen: Sie sind weich und nachgiebig – ganz wie schmelzender Käse.

Nachdem das Werkstück abgekühlt ist, ist der Kunststoff so hart wie zuvor, aber: Die Flocken haben sich zu einem einzigen Werkstück verbunden. Und zwar so fest, dass dieses sich problemlos mit einer Bürste reinigen lässt!

HDPE-Blume ohne Bräunung
Es geht auch ohne Bräunung! An der geölten Alufolie beim zweiten Versuch hat nichts mehr geklebt – nur ein paar Flocken mehr hätten es sein dürfen – für einen saubereren Rand.

Wenn euch das Ganze jetzt bekannt vorkommt: Genau, Bügelperlen funktionieren auf die gleiche Weise!  Die bestehen in der Regel auch aus Polyethylen, wenn auch aus LDPE.


Was passiert da?

Wie sind Thermoplaste aufgebaut?

Was wir im Alltag allgemein “Kunststoff” oder “Plastik” nennen, sind in aller Regel Stoffe, die aus langen Molekülketten aus sich wiederholenden Gliedern bestehen. Die Chemiker nennen diese Stoffe deshalb “Polymere”. Die Moleküle von thermoplastischen Kunststoffen sind tatsächlich ganz einfache Ketten oder “Fäden” ohne Verzweigungen, die mehr oder weniger wirr miteinander verknäuelt sind.

Ausschnitt aus einer Polyethylen-Kette als Kalottenmodell: Dieser Molekül-“Faden” besteht aus Kohlenstoff- (schwarz) und Wasserstoff- (weiss) Atomen.

Amorphe Thermoplaste

Ähnlich wie ein Haufen verworrene Wolle bildet dieses Gewirr einen einzigen Körper, den wir sehen und anfassen können. Denn so wie die rauhen Oberflächen der Wollfäden diese aneinander haften lassen, wirken auch zwischen den Molekülfäden schwache Kräfte, die für Haftung aneinander sorgen.

Wie ein Haufen wirrer Wolle sind auch solche Kunststoffe selbst bei Raumtemperatur sehr biegsam. Dazu gehört zum Beispiel Polyethylen “geringer Dichte” (Low Density – oder LDPE). Die Chemiker nennen solche Kunststoffe auch “amorph” – eben “ohne geordneten Aufbau”.

Teilkristalline Thermoplaste wie HDPE

Das HDPE, Polyethylen “hoher Dichte” ist dagegen hart und nur wenig flexibel. Das rührt daher, dass in dieser Variante des Kunststoff ein Teil der Ketten oder “Fäden” sorgfältig parallel zueinander aufgereiht sind. Als enthielte der Haufen verworrener Wolle zwischendurch Abschnitte, die sorgfältig zu kleinen Knäueln aufgewickelt sind. Und ein streng gewickeltes Wollknäuel ist bekannt ziemlich fest.

Beim realen Wollknäuel ist die straffe Wicklung dafür verantwortlich. In einem Polymerknäuel können sich zwischen ordentlich parallel laufenden Ketten wesentlich stärkere zwischenmolekulare Kräfte ausbilden, die die Ketten fester beieinander halten.

Weil ein so geordneter Aufbau Chemiker leicht an Kristalle erinnert, nennen die solche Kunststoffe “kristallin” bzw., wenn durch Teile des Gewirrs geordnet sind, “teilkristallin”.

Was beim Erhitzen passiert

Je wärmer ein Stoff ist, desto mehr Bewegungsdrang haben seine Moleküle. Im festen Kunststoff schwingen die Atome der Ketten hin und her. Mit steigender Temperatur führen sie einen immer wilderen Tanz auf. Irgendwann wird dieses Treiben so toll, dass die zwischenmolekularen Kräfte das Gezappel nicht mehr aufwiegen können. Die Moleküle lösen sich voneinander – und können nun aneinander vorbei gleiten.

Wären die rauhen Wollfäden mit einem Mal völlig glatt und geölt, könnte man den wirren Haufen auch ganz einfach entwirren oder umformen.

Das Gleiche wird nun mit dem Kunststoff möglich: Die voneinander gelösten Ketten lassen sich durcheinander schieben – und Kettenenden aus verschiedenen Haufen können sich sogar miteinander mischen! Der wärmebedingte wilde Tanz der Atome sorgt für die dazu nötige spontane Bewegung. So kann aus zwei wirren Molekülhaufen (oder Kunststoff-Flocken) schliesslich ein einziges Gewirr werden, ohne dass wir sie verrühren oder drücken müssten.

Nach dem Abkühlen ist der Spuk vorbei – vorerst

Sobald die Temperatur wieder sinkt, werden die Atome wieder ruhiger und die zwischenmolekularen Kräfte – jetzt mitunter zwischen neuen Nachbarn – gewinnen wieder die Oberhand. Der Kunststoff wird erneut hart.

Das Geniale daran: Das Spiel lässt sich praktisch beliebig oft wiederholen – so lange man den Kunststoff nicht zu heiss werden lässt und die Kettenmoleküle selbst zerstört werden.

Warum ich kein Wasserbad verwende, um das zu verhindern

Da viele organische Verbindungen kaputt gehen, wenn sie zu heiss werden, erhitzen Chemiker ihre Stoffe gerne in einem Wasserbad (oder einem aus Silikonöl, wenn die Temperatur noch etwas höher sein soll). So können sie sicherstellen, dass der Versuch nicht heisser als 100°C wird (denn da verdampft das Wasser, bevor es heisser wird).

HDPE wird allerdings erst ab 135°C richtig weich, sodass ein Wasserbad bei Atmosphärendruck einfach nicht heiss genug werden kann, um die PE-Flocken miteinander zu verschmelzen. Speiseöl kann dagegen so heiss werden (das nutzen wir ja beim Braten). Aber viele Pflanzenöle rauchen in diesem Bereich schon beträchtlich, was die Sicht auf den eigentlichen Versuch trüben und nachher zu viel Reinigungsarbeit führen kann.

Deshalb habe ich nur ein wenig Öl zum Einfetten der Form verwendet, da sonst der wieder erkaltete Kunststoff an der Aluminiumfolie kleben bleibt (und das Abkratzen ist überaus mühsam).


Entsorgung

Der Kunststoff als solcher verändert sich durch das Erhitzen nicht. Er kann also ganz normal in den Hausmüll entsorgt werden. Aber viel schöner ist doch, eure Versuchsergebnisse als Deko zu verwenden, oder?

Unverbrauchte Reste der Shampoo-Flaschen könnt ihr auch in die gelbe Tonne/den gelben Sack (Deutschland, Österreich) geben. Aluminium gehört in Deutschland ebenfalls in die gelbe Tonne. In der Schweiz gibt es dafür eigene Sammelbehälter an den Entsorgungsstellen.

Die Ausstechformen könnt ihr nach dem Experiment getrost weiter zum Backen verwenden.

Fazit

Leere PE-Flaschen lassen sich mit einfacher Küchenausrüstung leicht zu neuen Gegenständen umarbeiten. Durch das Zerschneiden des kalten Kunststoffs in kleine Flocken könnt ihr die neue Form dabei sehr frei vorherbestimmen (Recyclingprofis machen das übrigens auch so und zerkleinern die Kunststoffabfälle, bevor sie sie erhitzen und neu verarbeiten).

Die Bewegung der Kunststoff-Moleküle (bzw. ihrer Atome) bei hohen Temperaturen hebelt zwischenmolekulare Anziehungskräfte aus, sodass die Moleküle bei genügend hoher Temperatur (bei HDPE rund 135°C) gegeneinander beweglich werden und ihr sie in neue Form(en) bringen könnt.

Beim Ausprobieren wünsche ich euch viel Spass und freue mich über Berichte von euren Ergebnissen in den Kommentaren. Was habt ihr bei eurem Recycling-Experiment hergestellt?

Mehr zum Thema Kunststoffe in Keinsteins Kiste

Hast du das Experiment nachgemacht: 

PE-Recycling selbst gemacht: Hat das Experiment bei dir funktioniert?

View Results

Loading ... Loading ...

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Plastik überall! Ein Kunststoff - 1x1

Kein Plastik-Spielzeug für mein Kind! Kunststoff-Verpackungen gehören reduziert! Gemüse mit Plastik-Umhüllung ist ein Unding! Die Meere sind voller Plastikmüll! Mikroplastik umgibt uns überall!

Solche Aussagen, die mir immer wieder begegnen, zeigen, dass der Begriff “Plastik”, oder auch etwas ‘netter’ gesagt “Kunststoff” mehr denn je negativ besetzt ist. Aber sind Kunststoffe wirklich so schlecht für uns und die Welt, wie ihr Image es vermuten lässt?

Sicher ist: Ohne sie geht gar nichts mehr in unserer Alltagswelt. Wo wir auch hinschauen, sind wir von den verschiedenartigsten Kunststoffen umgeben. Allein das ist schon Grund genug, sie hier in Keinsteins Kiste zum Thema zu machen. Und da ein einzelner Artikel diesen allgegenwärtigen Stoffen nicht gerecht werden könnte, habe ich mich entschlossen, in den nächsten Wochen eine ganze Serie rund um Plastik zu bringen. Einschliesslich Experimenten zur Welt der Kunststoffe.

Und die beginnt heute mit einer Übersicht: Was ist eigentlich “Kunststoff”? Welchen Nutzen und welche Schwierigkeiten bringen Kunststoffe mit sich? Welches sind die wichtigsten Kunststoffe unserer Alltagswelt?

Was ist ein Kunststoff?

Ein Kunststoff, auch “Plastik” oder “Plaste” genannt, ist ein Festkörper aus synthetischen oder halbsynthetischen Polymeren mit organischen Gruppen…. Moment, langsam!

“Festkörper” ist ja noch einfach…solch ein Stoff ist eben nicht flüssig oder gasförmig, sondern (bei alltäglichen Temperaturen) fest. Aber:

Was ist ein Polymer?

Ein Polymer ist ein riesenlanges, kettenartiges Molekül (oder eben ein Stoff aus solchen Molekülen). Die Glieder solch eines Kettenmoleküls sind kleine, sich immer wiederholende Atomgruppen. Wie eine Kette aus einzelnen Gliedern zusammen geschmiedet wird, wird auch ein Polymer mittels chemischer Reaktionen aus seinen Einzelgliedern zusammengesetzt.

Ein mögliches solches Einzelglied ist das Molekül Ethen (C2H4), auch Ethylen genannt:

In einer Art Kettenreaktion verbinden sich viele Ethylen-Moleküle zu einer Polymer-Kette. Dieses Polymer heisst deshalb “Polyethylen”.

Jeweils eine der beiden C-C-Bindungen in den Ethylen-Molekülen wird aufgetrennt und die beiden “losen Enden” für die Verknüpfung der Moleküle untereinander verwendet. So entsteht eine beliebig lange Kette aus C2H4-Einheiten mit Einfachbindungen.

Wer hat die Polymere erfunden?

Viele Polymere in der Alltagswelt sind “synthetisch”. Das heisst, sie sind von Chemikern entworfen und in einem Labor bzw. im industriellen Massstab in einer Chemiefabrik hergestellt worden. Auch das Polyethylen gehört zu dieser Sorte.

Polymere erfunden hat hingegen die Natur. Pflanzen bestehen aus grossen Teilen aus Zellulose und speichern ihre Energie in Stärke. Beide Stoffe bestehen aus langen Ketten, die in Pflanzenzellen aus Zucker-Molekülen zusammengebaut werden. Die “Erbsubstanz” DNA besteht aus langen Ketten sogenannter Nukleotide, die sich nur in ihren Seitengruppen, den berühmten DNA-Basen, unterscheiden. Die Abfolge dieser Basen entlang der Kette bildet den Bauplan für Proteine, die ebenfalls Polymere sind: Sie sind lange Ketten aus bis zu 20 verschiedenen Aminosäuren, die zu komplexen Strukturen zusammengefaltet sind.

Es sind also Polymere, die Lebewesen erst zu solchen machen. Und diese “natürlichen” Polymere nennen die Chemiker und Biologen deshalb auch “Biopolymere”.

Nachdem die Natur die Polymere schon erfunden hat, machen sich Polymerchemiker diese Erfindungen zuweilen zu Nutze. Dazu nehmen sie ein Biopolymer und verändern es so, dass seine Eigenschaften schliesslich ihren Wünschen entsprechen. Zellulose reagiert zum Beispiel mit Salpetersäure zu Zellulosenitrat, auch als Schiessbaumwolle bekannt. Mit Campher als Weichmacher wird daraus Zelluloid, das vor allem als Material für Filmstreifen bekannt ist.

Aus Zellulose (links) wird Zellulosenitrat (rechts). In der Praxis wird dazu “Nitriersäure” verwendet, die neben Salpetersäure auch Schwefelsäure enthält.

Da Schiessbaumwolle aber aus gutem Grund so heisst – unbehandelt ist sie explosiv und auch Zelluloid brennt lebhaft – hat man bald Ersatz gefunden – zum Beispiel in Form von Zelluloseacetat, das durch Reaktion von Zellulose mit Essigsäure entsteht.

Diese Art von Polymeren heisst aufgrund ihrer Herstellung “halbsynthetisch”: Den ersten Teil der Arbeit erledigt die Natur, erst der zweite Teil geschieht im Labor bzw. der Chemiefabrik.

Was macht Polymere bzw. Kunststoffe so nützlich?


  • Alltags-Kunststoffe gelten als chemisch und biologisch weitestgehend inert: Das heisst, sie reagieren weder von selbst mit alltäglichen Chemikalien, noch sind solche Reaktionen im Stoffwechsel von Lebewesen möglich. Damit sind diese Polymere als solche sehr gesundheitsverträgliche Materialien für Lebensmittelbehälter und Anwendungen am und im menschlichen Körper (z.B. als Textilien, Kinderspielzeug, Medizinprodukte). Kunststoffe wie Polyethylen fallen zudem kaum der Korrosion zum Opfer, sodass man fast alle anderen Stoffe darin aufbewahren kann.

  • Alltags-Kunststoffe haben eine wesentlich geringere Dichte als Glas oder Keramik, die chemisch ähnlich unangreifbar sind: Kunststoff-Behälter sind sehr leicht. Das gilt auch für Kunststoffbauteile in Fahr- und Flugzeugen: Der Ersatz von Metallteilen durch Kunststoffe verringert den nötigen Treibstoff erheblich!

  • Viele Alltagskunststoffe sind bruchsicher: Fällt eine Kunststoffflasche zu Boden, zerbricht sie gewöhnlich nicht. Es entstehen keine gefährlichen Scherben, der Inhalt bleibt sicher darin. Das macht Kunststoffe nicht nur im Haushalt praktisch, sondern auch zu einem hervorragenden Material für sicheres Kinderspielzeug.

  • Polymere sind während der Kunststoff-Herstellung nahezu beliebig formbar: Man kann praktisch alles daraus herstellen! Bis vor wenigen Jahren bot das Spritzgussverfahren die grösste Vielfalt (weicher bzw. flüssiger Kunststoff wird in eine vorbereitete Form gespritzt – ein “Nabel” verrät bei solchen Teilen oft die Lage der Einspritzstelle). Heute verbreiten sich zunehmend 3D-Drucker, die lange Kunststofffasern zu computergenerierten Formen zusammenschmelzen. Damit sind wesentlich präzisere und feinere Strukturen möglich als mit dem Spritzgussverfahren.

  • Die Herstellung von Kunststoffen ist kostengünstig: Bislang zumindest, denn die meisten Alltagskunststoffe sind Erdölprodukte. Wenn das Erdöl erst einmal knapp wird, werden auch diese Kunststoffe nicht mehr so günstig zu haben sein. Deshalb wird seit Jahrzehnten Recycling betrieben und Wissenschaftler suchen eifrig nach neuen Kunststoffen aus erneuerbaren Rohstoffen oder ebenso erneuerbaren Rohstoffquellen für die gängigen Polymere.

Welche Schwierigkeiten verursachen Kunststoffe?


  • Die für uns so vorteilhafte chemische und biologische Inertheit bedeutet leider auch: Unsere Alltags-Kunststoffe sind so gut wie gar nicht biologisch abbaubar. Die Geister, die wir riefen, werden wir nun also nicht mehr los: Wo immer unsere Kunststoff-Abfälle hingeraten, bleiben sie über lange Zeiträume, vermüllen unsere Umwelt und gefährden ihre Bewohner. Auch das ist ein Grund, weshalb Wissenschaftler fleissig an neuen, besser abbaubaren Kunststoffen forschen und solche zunehmend auf den Markt gebracht werden.

  • Viele ihrer nützlichen Eigenschaften erhalten die Polymere erst durch Zusätze (die Polymerchemiker nennen sie “Additive”). Und diese Zusatzstoffe sind – im Gegensatz zu den eigentlichen Polymeren – oft weniger inert. Zudem bestehen sie aus relativ kleinen Molekülen, sodass sie leicht beweglich sind. Im Zweifelsfall bewegen sie sich aus dem Kunststoff hinaus und in dessen Umgebung – zum Beispiel den Inhalt von Kunststoffbehältern – hinein. Und da wollen wir die reaktionswilligen, im schlimmsten Fall gesundheitsschädlichen Additive absolut nicht haben. Zu den besonders berüchtigten Zusatzstoffen zählen Weichmacher, wie sie in Weich-PVC zu finden sind.

  • Viele Kunststoffe sind nicht besonders lichtbeständig: Intensiver Sonneneinstrahlung ausgesetzt verändern sich viele Kunststoffe früher oder später. Sie verlieren nicht nur ihre Farbe, sondern werden vor allem brüchig. Zugesetzte Lichtschutzmittel sollen diese Entwicklung verlangsamen.

  • Kunststoffe sind mehr oder weniger empfindlich gegenüber Wärme: Die meisten Alltagskunststoffe sind sogenannte Thermoplaste, d.h. sie werden bei höheren Temperaturen weich und verformen sich, ehe sie sich bei noch höheren Temperaturen zersetzen. Bei der Zersetzung können je nach Kunststoff giftige Kleinmoleküle freigesetzt werden. Zugesetzte Wärmestabilisatoren können jedoch dafür sorgen, dass z.B. Küchenbehälter der Temperatur von Gargut (also um die 100°C ) standhalten.

  • Kunststoffe sind brennbar: Wie die allermeisten organischen Verbindungen brennen auch Kunststoffe, wobei nur im besten Fall CO2 entsteht. Viel häufiger sind andere, teils giftige Zersetzungsprodukte, die auch den typischen Gestank eines Kunststoffbrandes mit sich bringen. Zugesetzte Flammschutzmittel sollen insbesondere in Gebäuden und Fahrzeugen verhindern, dass verbaute Kunststoffe in Flammen aufgehen und zum Niederbrennen des Gebäudes führen.

  • Die meisten Kunststoffe werden aus Erdöl, also aus einer endlichen Rohstoffquelle, gewonnen.

Welche Kunststoffe begegnen uns im Alltag?

Polyethylen und Polypropylen (PE bzw. PP)

Diese beiden Polymere bestehen aus chemisch eng miteinander verwandten Kettengliedern. So sind ihre Eigenschaften und damit auch ihre Einsatzgebiete ähnlich. Beide Kunststoffe sind sehr reaktionsträge. Polypropylen bleibt allerdings bis zu höheren Temperaturen fest als Polyethylen. Deshalb sind Küchengefässe meistens aus Polypropylen, während z.B. Medikamentendosen und Laborbehälter, die nicht erhitzt werden sollen, oft aus Polyethylen (“HDPE” – high density PE mit geringfügig höherer Dichte). Auch die durchsichtigen Folienbeutel mit Clip-Verschluss bestehen entweder aus Polypropylen oder Polyethylen (“LDPE” – low density PE mit geringfügig niedrigerer Dichte).

Medikamentendosen, Kosmetikverpackung, Gefrierdose und Folienbeutel aus Polyethylen
Medikamenten- und Kosmetikbehälter sowie der Gefrierdosen-Deckel und die Folienbeutel sind aus Polyethylen. Die Recycling-Symbol mit “04” und “PE-LD” bzw. “02” und “PE-HD” verraten uns das Material.
DVD-Hülle, Gefrierdose und Mehrfachsteckdosengehäuse aus Polypropylen
In die Gefrierdose können nicht nur kalte, sondern auch heisse Speisen gefüllt werden: Sie ist aus hitzebeständigerem Polypropylen. Daraus bestehen auch DVD-Hüllen und das Gehäuse der Mehrfachsteckdose. Das Recyclings-Symbol dafür zeigt “05” und “PP”.

Polyvinylchlorid (PVC)

Wie der Name vermuten lässt, enthält jedes Kettenglied dieses Polymers ein Chlor-Atom. Dadurch ist dieser Kunststoff schwerer entflammbar als viele andere. Wenn er aber einmal brennt, entstehen daraus Chlorwasserstoff (“Salzsäure”) und andere giftige Stoffe. Reines PVC ist hart und spröde und wird für die Herstellung von Fensterrahmen, Rohre und Schallplatten (daher die Bezeichnung “Vinyl-Platten”) verwendet. Durch die Zugabe von Weichmachern kann es elastisch gemacht werden. Dann kommt es z.B. als Kabelumhüllung, Bodenbelag oder in Spielzeugen wie Kunststoffpuppen zum Einsatz. Einige dieser Weichmacher gelten jedoch als gesundheitsschädlich, was PVC gerade im Spielzeugbereich in Verruf gebracht hat.

Kabelummantelungen und Badeente aus PVC
Kabelummantellungen und die Badeente sind aus Weich-PVC. Das Recycling-Symbol für Polyvinylchlorid zeigt “03” und “PVC”.

Polyethylenterephthalat (PET)

Das bekannte Material für Einweg-Getränkeflaschen (“PET-Flaschen”) gehört zur Gruppe der Polyester. Es ist sehr reaktionsträge und bruchsicher, sodass es sich nicht nur für Getränkeflaschen, sondern auch für Textilfasern (zum Beispiel für schnelltrocknende Sportbekleidung) wunderbar eignet. PET lässt sich zudem sehr wirtschaftlich recyceln. Die Schweiz hat ein eigenes Recycling-System dafür: Die blau-gelben Container mit dem PET-Dino sind speziell für die PET-Flaschen gedacht (alle anderen Kunststoffe landen hierzulande nämlich oft über den Restmüll in der Müllverbrennung).

PET-Flaschen, PET-Rohling und Butterdose aus PET
Nicht nur Getränke, sondern auch Reinigungschemikalien und Butter werden in PET-Flaschen verkauft. Aus dem PET-Rohling rechts vorne kann durch Aufblasen des erwärmten Kunststoffs eine PET-Flasche produziert werden. Das Recyclings-Symbol zeigt “01” und “PET”.

Polystyrol (PS), auch bekannt als Styropor

Dieser Kunststoff lässt sich zu extrem leichtem Material aufschäumen (“Quietschpapier”), das wir vor allem als Verpackungsmaterial oder Wärmedämmung kennen. Es gilt als biologisch inert, sodass es auch als Lebensmittelverpackung (z.B. Fleischschalen) zum Einsatz kommt. Polystyrol wird jedoch auch in massiver Form verarbeitet: Dann ist es glasklar und begegnet uns z.B. als Plastikbesteck, CD-Hüllen oder Spielzeug.

Styropor, CD-Hülle, Joghurtbecher und Plastikbesteck aus Polystyrol
Polystyrol begegnet uns nicht nur als Styropor, sondern auch in Form von CD-Hüllen, Plastikbesteck und Joghurtbechern. Das Recyclings-Symbol zeigt “06” und “PS”.

Polyurethane (PU, PUR)

Diese Kunststoffe lassen sich aufschäumen, sodass wir ihn hauptsächlich als “Schaumstoff” in Polstern, Wärmedämmung oder Putzschwämmen kennen. Auch der gelbe Hartschaum, den man in manchen Gebäuden um Rohrleitungen oder in Fugen findet, ist ein Polyurethan-Kunststoff. In massiverer Form begegnen uns Polyurethane zudem Lacke, Kunstharze oder “Kunstleder” – zum Beispiel als Material für Schläuche oder Fussbälle.

Schaumstoffe und Schwamm aus Polyurethan
Schwämme und andere Schaumstoffteile bestehen aus Polyurethanen.

Polyamid (PA)

Diese Bezeichnung kennen wir vor allem von Kleidungsetiketten. Tatsächlich begegnen uns Polyamide (auch das ist eine ganze Kunststoff-Gruppe) meistens als Textilfasern. Berühmte Handelsnahmen solcher Kunstfasern sind “Nylon” und “Perlon”. Auch Zahnbürsten-Borsten, Instrumentensaiten, Kunststoffseile und Angelschnur bestehen aus Polyamiden. In der Schweizer Mundart wird solche Nylonschnur auch als “Silch” bezeichnet.

Sporthose, Küchenbesteck und Zahnbürste aus Polyamid
Nicht nur meine Sporthose, sondern auch das Küchenbesteck und die Borsten der Zahnbürste bestehen aus Polyamiden. Kürzel wie “PA 6” oder “PA 6.6” auf dem Besteck verraten dieses Material.

Polyester

Diese Bezeichnung auf Kleideretiketten ist im Grunde genommen eine recht ungenaue Bezeichnung für eine sehr grosse Familie von chemisch ähnlich hergestellten Kunststoffen. Besonders wichtige Vertreter sind das schon genannte PET, aber auch die Polycarbonate und die Polymilchsäure / Polylactid PLA. Die Polyesterfaserstoffe in Textilien oder Mikrofasern werden kurz als PES bezeichnet. Weitere Familienmitglieder sind Polyesterharze, die im Gegensatz zu den Fasermaterialien nach dem Aushärten stets hart und fest bleiben.

Polycarbonate (PC)

Diese Vertreter der Polyesterfamilie sind besonders hart, schlag- und kratzsicher – und überdies glasklar. Zudem sind sie zwar entflammbar, brennen aber nicht ohne Flamme von aussen weiter. Ihre Herstellung ist allerdings teurer als die anderer Kunststoffe, sodass sie nur dort zum Einsatz kommen, wo andere Kunststoffe nicht hart genug sind: Für CDs, Brillengläser, als Ersatz für Glas, Koffer oder medizinische Einmalprodukte.

CD, DVD und Brillengläser aus Polycarbonat
Aus Polycarbonaten sind vor allem Gegenstände, die kratzfest sein müssen: Zum Beispiel Brillengläser und CDs bzw. DVDs.

Polymilchsäuren oder Polylactide (PLA)

Dieser Vertreter der Polyester besteht aus Kettengliedern, die in jedem Lebewesen vorkommen: Aus Milchsäure bzw. deren Anion “Lactat”. Der Rohstoff für diese Kunststoffe wächst also nach – zum Beispiel in Mikrobenkulturen! Dementsprechend haben Lebewesen auch Enzyme entwickelt, die mit Milchsäureestern umzugehen wissen: PLA ist deshalb biologisch abbaubar. ABER: Dazu sind besondere Umweltbedingungen (u.A. eine erhöhte Temperatur) nötig, die nur in industriellen Kompostieranlagen gegeben sind! Trotzdem verbreiten sich PLA zunehmend, zum Beispiel als Material für Einweggeschirr oder für den 3D-Druck. Auch in “physiologischer Umgebung” in lebenden Körpern werden PLA mit der Zeit abgebaut, sodass sie auch als selbstauflösendes chirurgisches Garn zum Einsatz kommen. Mehr über PLA könnt ihr hier in Keinsteins Kiste nachlesen.

Kautschuke (“Gummi”)

Der Naturkautschuk, der aus Kautschukpflanzen gewonnen wird, ist ein echter Naturstoff, kein Kunststoff. Das gilt auch für das daraus gewonnene Naturlatex – ein Kautschukprodukt (deshalb kann Latex Allerdien auslösen: Es kann – wie viele Naturprodukte – Spuren von allergenen Proteinen enthalten). Haupteinsatzgebiet von Kautschuk ist die Herstellung von Autoreifen. Während der Weltkriege haben Wissenschaftler anhand des natürlichen Vorbilds synthetische Kautschuke – also Kunststoffe – entwickelt, um von den Kautschukplantagen in tropischen Gebieten unabhängig zu sein. Doch in jüngerer Zeit wird ein zunehmender Anteil des Gummibedarfs durch Naturkautschuk gedeckt – mit allen Umweltproblemen, die der Anbau in grossem Massstab mit sich bringt. So sind LKW- und Flugzeugreifen meist aus Naturkautschuk, während PKW-Reifen meist aus Synthesekautschuken bestehen. Spezielle Synthesekautschuke sind überdies das Neopren, aus dem Taucheranzüge bestehen, und der Nitrilkautschuk, aus dem die besonders undurchlässigen blauen Einmalhandschuhe in Labor und Arztpraxis gefertigt sind.

Silikone

Diese Polymere sind Exoten unter den Kunststoffen. Denn ihre Ketten bestehen nicht wie bei den übrigen Kunststoffen aus Kohlenstoff, sondern aus Silizium- und Sauerstoffatomen. Diese besondere Struktur verleiht Silikonen eine besonders gute Verträglichkeit mit unseren Körpergeweben, was sie als Material für Implantate (z.B. “Silikon-Brüste”) und andere Medizinprodukte beliebt macht. Die meisten Silikone im Alltag erscheinen elastisch wie “Gummi”. Deshalb sprechen Fachleute auch von “Silikonkautschuk”. Auch Küchengeräte sowie Schnuller (“Nuggi” in der Schweiz) aus Silikonkautschuk sind weit verbreitet, ebenso wie Fugendichtungsmasse in Badezimmer und Küche.

ABS-Kunststoffe (Acrylnitril-Butadien-Styrol-Copolymere)

Als Copolymere bezeichnet man Polymere, deren Ketten sich aus verschiedenartigen Gliedern zusammensetzen. Damit sind auch DNA und Proteine Copolymere: Erstere bestehen aus 4, zweitere aus 20 verschiedenen Gliedersorten. Die ABS-Kunststoffe bestehen aus 3 grundlegenden Gliedersorten. Sie zeichnen sich durch besondere Schlagzähigkeit aus und lassen sich gut mit Metallen oder anderen Polymeren beschichten. Legosteine und Playmobil bestehen aus ABS-Kunststoffen, und diese Spielzeuge sind ja bekanntlich nahezu “unkaputtbar”. Ausserdem sind ABS-Kunststoffe als Material für Gehäuse von elektronischen Geräten, auch in Autos oder für robuste Teile von Musikinstrumenten und Sportgeräten begehrt.

Legosteine und Blutdruckmessgerät aus ABS-Kunststoff
Legosteine und das Gehäuse des Blutdruckmessgeräts bestehen aus robusten ABS-Kunststoffen. Auf der Innenseite der Batterieklappe des Blutdruckmessgeräts habe ich das Kürzel “ABS” entdeckt, welches auf das Material hinweist.

Fazit

Kunststoffe bestehen aus sogenannten Polymeren – langen Molekülketten aus sich wiederholenden Gliedern – die vollständig oder teilweise im Labor bzw. industriell hergestellt werden. Der Ausgangsstoff für die Herstellung der meisten Kunststoffe ist Erdöl, doch kommen zunehmend Kunststoffe aus anderen, bestenfalls erneuerbaren Rohstoffquellen zum Einsatz.

Die Materialeigenschaften von Kunststoffen lassen sich nahezu nach Wunsch gestalten. Allerdings sind dazu oft Zusatzstoffe (Additive) nötig, die den Kunststoffen einen grossen Teil ihres schlechten Rufs eingebracht haben. Dennoch ist die Welt der Kunststoffe äusserst vielfältig und “Plastik” längst nicht gleich “Plastik”. Es lohnt sich, nicht alle Kunststoffe über einen Kamm zu scheren. Insbesondere, da wir heutzutage kaummehr ohne sie auskommen.

Zu meinen Lieblingskunststoffen zählen wohl Polyethylen (darin kann man wirklich fast alles aufbewahren), die Polylactide (Biokunststoffe sind irgendwie cool) und die ABS-Kunststoffe (fast unkaputtbar…und ich liebe Lego… 😉 ). Welcher ist denn euer Lieblingskunststoff?