Ihr könnt zu Hause selbst zu Forschern werden und die Natur erkunden! Spannende Experimente zur Chemie, Physik und Biologie für kleine und grosse Naturforscher zu Hause oder im Schulzimmer findet ihr hier!

Wetter-Experiment: Regen machen im Glas

Am letzten Freitag spät nachmittags geschah, was zur Zeit am Ende eines sonnigen Tages immer wieder vorkommt: Es wird plötzlich dunkler, die Sonne verschwindet hinter dicken Gewitterwolken. Aufkommender Wind veranlasst mich, Balkontüre und Fenster zu schliessen. Denn bald schon spülen Gewitterschauer mitsamt Blitz und Donner das Land wieder ordentlich durch.

Diesen Freitag, während ich noch unterrichtete, ging es allerdings ganz besonders schnell: Kaum war die Sonne verdunkelt, öffnete der Himmel seine Schleusen. Für den Regen. So richtig viel und mit Wind. Und ehe ich mich versah, hatten sich Wasserlachen in den Wohnzimmereingang, die Küche und das Schlafzimmer ergossen. Da konnte ich nur noch Aufnehmer und Frottee-Handtücher auswerfen, um die nasse Himmelsbotschaft einzudämmen.

Das ganze Malheur brachte mich allerdings auf eine ganz spannende Naturforscher-Frage: Wie kommt es eigentlich, dass es regnet?

Und damit ist auch gleich das Thema für die diesjährigen Sommer-Experimente in Keinsteins Kiste gefunden: Das Wetter! Rund um Wetterphänomene oder die Launen des Himmels gibt es nämlich eine Menge spannender Experimente zum Selbermachen. Und den Anfang mache ich heute mit: Regen.

 

Woher kommt der Regen?

Klar, aus den Wolken, werden viele von euch jetzt sagen. Denn Wolken bestehen schliesslich aus Wasser. Aber wie geht es vor sich, dass die Wolken schweben, während Flüsse, Seen und Meere brav der Schwerkraft folgend auf der Erde bleiben? Und warum fällt das Wasser schliesslich doch wieder runter und macht uns nass?

Um zu beobachten, wie Regen – im ganz einfachen Sinne – entsteht, könnt ihr ganz einfach Regen machen – in einem Glas!

 

Wie ihr Regen machen könnt

 

Ihr braucht dazu

  • Ein grosses Glas, zum Beispiel ein Honig- oder Einmachglas
  • Leitungswasser
  • Eine bis zwei Hände voll Eiswürfel
  • Eine Schale, deren Boden das Glas ganz zudeckt
  • Einen Schnellkocher oder Kochtopf auf dem Herd

Schnellkocher mit Wasser, Glas, Schale mit Eiswürfeln: Mehr brauch ihr nichts fürs Experiment!

 

So macht ihr das Experiment

  1. Erhitzt das Wasser im Schnellkocher oder im Kochtopf auf dem Herd. Giesst das (fast) kochende Wasser in das Glas, bis es darin etwa 2cm hoch steht. Das Glas ist damit nun sehr heiss! Weist die Jungforscher darauf hin, dass sie es jetzt nicht mehr anfassen sollten!
  2. Stellt sogleich die Schale auf die Glasöffnung (die sollte damit so vollständig wie möglich zugedeckt – aber nicht luftdicht verschlossen! – werden) und gebt die Eiswürfel hinein.
  3. Lasst euch Zeit und beobachtet, was im Glas geschieht.
Meine Eiswürfelform aus Aluminium passt genau auf das Becherglas - so habe ich die Eiswürfel gar nicht herausgenommen, sondern die Schale einfach auf das Glas gestellt.

Praktisch: Meine Eiswürfelform aus Aluminium passt genau auf das Becherglas – so habe ich die Eiswürfel gar nicht herausgenommen, sondern die Schale einfach auf das Glas gestellt.

 

Was passiert dabei?

Das beinahe siedende Wasser verdampft bzw. verdunstet. Der so entstehende Wasserdampf bleibt aber im Glas gefangen, wenn die Schale auf der Öffnung steht. Das Eis kühlt dabei den Boden der Schale stark ab. So kondensiert – das heisst verflüssigt sich – das Wasser an der Unterseite der Eis-Schale. Schon bald könnt ihr an der Glaswand winzigkleine Tröpfchen erkennen, die langsam zu immer grösseren Tropfen zusammenwachsen. Irgendwann können die grösseren, schweren Tropfen sich nicht mehr halten und rinnen der Schwerkraft folgend die Glaswand hinunter und zurück in die Wasserschicht am Boden.

Und es kommt noch besser Wenn ihr Geduld habt und 10 bis 20 Minuten wartet (so lange hat es bei mir gedauert), werden auch die Tropfen, die direkt unter dem Boden der Schale heranwachsen, so schwer, dass sie nach unten tropfen: Es regnet im Glas!

Gleich fällt der nächste Regentropfen vom Boden der Eiswürfelschale!

Gleich fällt der nächste Regentropfen vom Boden der Eiswürfelschale!

 

Wie entsteht der Regen im Glas?

In flüssigem Wasser können sich die winzigen Wasserteilchen zwar frei bewegen, kleben dabei aber stets dicht beieinander. So gleiten sie aneinander vorbei ohne sich zu trennen, so wie die vielen Menschen in einem richtig dichten Gewühl. Wenn die Wasserteilchen aber mit genügend Energie ausgestattet werden, zum Beispiel, indem ihr sie mit dem Schnellkocher erwärmt, können sie sich voneinander lösen und jedes für sich frei im Raum herumflitzen: aus flüssigem Wasser wird Wasserdampf, ein Gas aus Wasserteilchen (die zum Verdampfen nötige Energie wird “Verdampfungswärme” genannt und ist vergleichbar mit der Schmelzwärme, die ihr hier erforschen könnt).

Der Wasserdampf vermischt sich mit der Luft im Glas und verteilt sich dabei so weit wie möglich – also bis hinauf zum Boden der Eis-Schale. Der wiederum ist so kalt, dass die Wasserteilchen im Dampf ihre Wärme-Energie an die Schale abgeben. Damit büssen sie aber auch ihre freie Beweglichkeit wieder ein und müssen sich mit anderen Wasserteilchen zusammenrotten: Aus dem gasförmigen Wasserdampf wird wieder flüssiges Wasser!

Winzige, für unsere Augen unsichtbare Macken in der Oberfläche des Schalenbodens oder daran haftende Staubkörnchen machen vermutlich den Anfang, an dem sich erst wenige, dann immer mehr Wasserteilchen ansammeln. So entstehen winzige Tröpfchen, die immer grösser werden, je mehr Wasserdampf verflüssigt wird. Sobald die Tropfen zu schwer werden, um am Schalenboden zu haften, fallen sie wie Regen hinunter ins Glas.

Wo die Wärme aus dem kondensierenden Wasserdampf hingeht, könnt ihr übrigens auch beobachten: Das Eis in der Schale wird nämlich zu schmelzen beginnen!

 

Warum regnet es aus Wolken?

Auch Wolken bestehen aus winzigen Wassertröpfchen oder – wenn es in den hohen Luftschichten richtig kalt ist – aus Eiskristallen. Diese Tröpfchen entstehen aus Wasserdampf, der in die Lufthülle der Erde, die Atmosphäre, gelangt, wenn die Wärme der Sonne das Wasser von der Oberfläche von Meeren, Seen und Flüssen verdunsten lässt.

Damit Wasser gasförmig wird, muss es nämlich nicht kochen – auch bei niedrigerer Temperatur lösen sich immer mal einige Teilchen von der Wasseroberfläche und mischen sich unter die Luft. Das nennt man Verdunsten und nicht Verdampfen, und es dauert wesentlich länger als das Einkochen von Wasser.

So lange die Wasserteilchen sich als Dampf mit der Luft mischen oder die Flüssigkeitströpfchen winzig genug sind, um von Luftströmungen getragen zu werden, bleiben sie in der Luft, sodass wir sie von unten z.B. als Schäfchenwolken oder geschlossene Wolkendecke beobachten können. Wenn sich jedoch zu viel Wasser ansammelt und die Tröpfchen zu sehr wachsen, werden sie irgendwann zu schwer und fallen nach unten, bis sie auf die Erde treffen und uns nass machen.

Wie Regentröpfchen ihren Anfang nehmen

Darüber, wie die Entstehung von Tröpfchen überhaupt ihren Anfang nimmt, sind sich übrigens auch die Wetterforscher noch nicht ganz sicher. Aber sie vermuten, dass auch in den hohen Luftschichten reichlich Staubkörnchen schweben, an die erste Wasserteilchen sich anlagern können, sodass immer neue Teilchen dazustossen und sich anheften können, um ein immer grösseres Tröpfchen zu formen.

Regen an Hindernissen

Vielfach beobachten kann man indessen, dass das Auflaufen von Wasserdampf an Hindernissen zur Entstehung von Wolken beiträgt und so zu Regen führen kann: Wenn der Wind wasserdampfhaltige Luft oder Wolken gegen eine Bergkette schiebt, staut sich das Wasser vor diesem Hindernis. Die Wasserteilchen werden enger zusammen geschoben und so besonders leicht dazu verleitet, sich zu Regentropfen zusammenzurotten. So kommt es, dass es hier in der Schweiz häufig nur auf einer Seite der Alpen regnet: Entweder bei uns im Norden oder im Kanton Tessin im Süden – je nachdem woher der Wind weht.

Ganz extrem zeigt sich die Wirkung von hinderlichen Bergketten im Westen Nordamerikas: Hier schiebt der Wind aus dem Westen das verdunstende Wasser aus dem pazifischen Ozean gegen die Berge der Sierra Nevada, sodass gleich dort reichlich Nebel und Regen entsteht. Davon leben an der Westseite dieses Gebirges richtige Regenwälder und die grössten Bäume der Welt (die dicksten unter ihnen haben wir im Sequoia Nationalpark bestaunen dürfen). Die Luft, die schliesslich über die Berge schwappt, ist nach diesem Regen allerdings arm an Wasserteilchen, dass es daraus so gut wie gar nicht mehr regnen kann. Deshalb gibt es östlich der Sierra Nevada nur karge, trockene Wüsten – darunter das berühmt-berüchtigte Death Valley (auch das ist eine spannende Forscher-Reise wert).

Wenn es kalt ist: Schnee

Wenn es in einer Wolke sehr kalt ist, entstehen aus dem Dampf keine Flüssigkeitströpfchen, sondern feste Kristalle: Schneeflocken! Chemiker und Physiker sagen: Das Wasser resublimiert (das Sublimieren ist das Verdampfen von Feststoffen – resublimieren der umgekehrte Vorgang: Die frei fliegenden Teilchen eines Gases lagern sich zu einem regelmässigen, festen Kristall zusammen, ohne erst eine Flüssigkeit zu bilden).

Damit ein schöner sechseckiger Schneekristall entstehen kann, braucht es – wie zur Entstehung eines Wassertröpfchen – ein Staubkorn oder ähnliches, an das sich die Wasserteilchen anlagern können. Wenn die Umgebung dieses Staubkorns in alle Richtungen gleich ist, wächst der Kristall durch die Anlagerung weiterer Teilchen gleichartig in alle (6) Richtungen. Das könnt ihr euch im Winter übrigens unter einem einfachen USB-Mikroskop ansehen!

Kalt, nass und windig: Hagel

Enthält eine kalte Gewitterwolke dagegen viel Wasser und weht darin ein strammer Wind nach oben, der auch schwerere Tropfen in der Luft hält, können die Tröpfchen schnell zu festen, halbwegs runden Eiskörnern zusammenfrieren und mit jeder neuen drumherum gefrierenden Wasserschicht immer grösser werden. Wenn die dann runterfallen, heisst das für uns Deckung suchen, denn: Es hagelt! Übrigens: Erst ab einem Korndurchmesser von 5mm oder mehr ist Hagel offiziell Hagel…kleinere Körner werden Graupel genannt.

 

Entsorgung

Ihr habt keine gefährlichen Stoffe verwendet, also gibt es nichts besonderes zu beachten: Leitungswasser kann in den Ausguss gegeben oder besser zum Blumengiessen oder anders verwendet werden.

Ich wünsche euch viel Spass beim Regenmachen! Und welches Wetterphänomen beobachtet ihr eigentlich am liebsten?

Experiment: Carotin - Farbstoffe ausschütteln - Von Stoffteilchen und ihren Vorlieben

Zur Zeit geht es wieder hoch her in Keinsteins Kiste, denn nächste Woche ist es wieder soweit: Am Freitag, den 13.4. startet der zweite Experimentier-Workshop in der hiesigen Primarschule! Und wir werden erneut Stoffgemische trennen. Damit ihr anderen auch mitmachen könnt, gibt es heute ein schnelles, einfaches Trenn-Experiment in der Ausführung für zu Hause.

 

Wie man Stoffe trennt

Da Stoffe aus unzähligen kleinen Teilchen bestehen, kann man diese Teilchen verschiedener Stoffe miteinander mischen – und erhält so ein Stoffgemisch, das wie ein Stoff aussehen kann, aber aus mehr als einer Sorte Stoffteilchen besteht. Um ein solches Stoffgemisch wieder in zwei Reinstoffe (die aus je einer einzigen Teilchensorte bestehen) zu trennen, läge es nahe, die Teilchen Stück für Stück in eigene Gefässe zu sortieren, wie Aschenbrödel ihre Körner und Linsen.

Praktisch durchführbar ist das aber nicht – dazu gibt es schlicht und einfach viel zu viele Teilchen zu sortieren. So enthalten allein 18 Milliliter Wasser rund 602’000’000’000’000’000’000’000 – das sind 602 Trilliarden! – Teilchen. So viele Tauben wie ihr bräuchtet, um die in angemessener Zeit zu sortieren, könntet ihr gar nicht aufbieten!

Zum Glück gibt es Tricks, mit deren Hilfe ihr die vermischten Teilchen alle miteinander sortieren könnt. Diese Tricks bestehen darin, die Eigenschaften auszunutzen, in denen sich die verschiedenen Teilchensorten unterscheiden: Sind Teilchen unterschiedlich schwer, schwimmt vielleicht eine Sorte auf einer Flüssigkeit, während die andere Sorte auf den Grund sinkt. Andere Teilchen verdampfen bei unterschiedlichen Temperaturen, sodass ihr einen Stoff verkochen könnt und den anderen zurückbehaltet, dringen unterschiedlich schnell durch andere Stoffe (dann könnt ihr sie mittels Papierchromatographie trennen), oder “mögen” sich schlicht und einfach nicht, sodass sie sich von selbst in Gruppen gleichartiger Teilchen zusammenrotten.

Manchmal unterscheiden sich vermischte Teilchensorten aber nicht genug, um auf diese Weise voneinander getrennt zu werden. Dann gibt es einen weiteren Trick: Ihr macht der Teilchensorte, die ihr vom Rest abtrennen möchtet, ein besseres Angebot.

 

Dazu braucht ihr

  • Ein dicht verschliessbares kleines Einmach- oder Gewürzglas
  • Speiseöl (eine möglichst farblose Sorte – meines ist schon ziemlich gelb)
  • ein Tomatenpürree bzw. Tomatenmark oder passierte Tomaten oder Tomatensaft
  • Wasser

 Das braucht ihr: Glas, Tomatenmark, Speiseöl

Wie ihr das Experiment durchführt

  1. Gebt etwas Tomatenpürree in das Glas und mischt es mit wenigen Millilitern Wasser (das Glas sollte allerhöchstens halb voll werden!), bis eine gleichmässig trübe rote Mischung entstanden ist. Die Farbstoff-Teilchen (und die übrigen Teilchen des Tomatenmarks) sind jetzt mit den Wasserteilchen vermischt und werden sich nicht mehr so leicht von ihnen trennen lassen.1.) Tomatenmark gemischt mit Wasser
  2. Gebt vorsichtig Öl in das Glas, bis eine etwa 1 bis  1,5 cm hohe Ölschicht auf dem Wasser schwimmt und schraubt das Glas fest zu. Die Ölschicht ist jetzt annähernd farblos bzw. gelblich.2.) Die gelbliche Ölschicht schwimmt auf dem Tomaten-Wasser
  3. Schüttelt das verschlossene Glas nun kräftig, sodass sich Öl und Tomaten-Wasser bestmöglich mischen. 3.) Gleich nach dem Schütteln: Alles ist vermischtStellt das Glas dann ab und wartet einige Minuten. Das Öl wird sich erneut über dem Wasser in einer eigenen Schicht sammeln – aber jetzt ist es rot!4.) Öl und Wasser haben sich wieder getrennt. Das Öl ist jetzt rot gefärbt!

 

Weitere Varianten zum Ausprobieren

Anstelle von Tomaten könnt ihr auch Produkte aus Karotten oder roten bzw. gelben Peperoni (in Deutschland und Österreich: nicht die kleinen scharfen, sondern ganz gewöhnliche Paprika!) verwenden. Sie alle enthalten Carotinoide – also rote oder gelbe Farbstoffe, die sich auf diese Weise ausschütteln lassen.

Ausserdem könnt ihr diese Farbstoffe auch direkt aus dem Gemüse gewinnen. Zermörsert es dazu mit etwas Wasser und feinem Sand, so wie die Blätter, deren Farbstoffe ihr in diesem Experiment trennen könnt. Dann füllt etwas von dem Gemüsebrei in ein Glas und gebt etwa 1 cm hoch Pflanzenöl dazu. Nach dem Schütteln sieht die Ölschicht farbig aus: Ein Teil der Farbstoffteilchen ist aus dem Gemüsebrei in das Öl gewandert.

Die Experimentier-Profis unter euch können die Teilchen auch zweimal wandern lassen: Gebt dazu zu einer neuen Portion Gemüsebrei zunächst Brennsprit (Spiritus, Ethanol – Achtung! Leichtentzündlich!) und schüttelt gründlich. Ein Teil der Farbstoffe wird sich so mit dem Ethanol mischen. Gebt dann noch etwas Öl dazu und schüttelt wieder. Da die Anziehungskräfte zwischen Ethanol-Teilchen jenen der Wasserteilchen gleichen, ziehen die Carotinoid-Farbstoffe die Gesellschaft des Öls vor und wandern dahin weiter. Die Ethanol-Schicht hat deshalb nach der Trennung Farbe verloren (ausserdem schwimmt sie oben, was euch verrät, dass Brennsprit leichter ist als Öl!).

 

Was geschieht da?

Wasser- und Ölteilchen “mögen” sich überhaupt nicht, weshalb sie mit allen Mitteln versuchen unter sich zu bleiben, wenn man sie zu mischen versucht (tatsächlich sind unterschiedliche Anziehungskräfte zwischen den Teilchensorten für die Uneinigkeit verantwortlich: Wasserteilchen ziehen sich aufgrund permanenter elektrischer Ladung an (ein Experiment dazu findet ihr hier), während die Anziehung zwischen Ölteilchen auf einem anderen Vorgang – der van-der-Waals-Wechselwirkung – beruht.

Carotinoide haben eine Vorliebe für Öl

Tomaten und andere rote oder gelbe Gemüse enthalten Farbstoffe, die man Carotinoide nennt (der Tomatenfarbstoff heisst genau genommen Lycopin). Die Carotinoide lassen sich sehr gut mit Öl mischen, da sich ihre Teilchen auf die gleiche Weise anziehen wie die Ölteilchen. Mit Wasser mischen sie sich dagegen nur schlecht. Das könnt ihr schon daran erkennen, dass beim Mischen des Tomatenpürrees mit Wasser eine trübe Suppe entsteht.

Lieber würden sich die Carotinoid-Teilchen aber mit Öl mischen. Deswegen lassen sie, wenn man ihnen die Möglichkeit bietet – indem man Öl mit dem Wasser in Berührung bringt, das Wasser links liegen und rotten sich stattdessen mit den Ölteilchen zusammen. Die Farbstoffteilchen verlassen also das Wasser, um sich mit dem bevorzugten Öl zu mischen – sodass das Öl schlussendlich rot aussieht. Und nicht nur das: Sobald Öl und Wasser sich getrennt haben, ist das rote Öl wieder durchsichtig (mehr oder weniger jedenfalls)! Die Farbstoff-Teilchen haben sich folglich bestmöglich mit dem Öl gemischt.

Eine grosse Grenzfläche sorgt für eine schnelle Wanderung

Damit möglichst viele Teilchen möglichst schnell vom Wasser ins Öl gelangen können, müssen sich Öl und Wasser auf einer möglichst grossen Fläche berühren. Um das zu erreichen, schüttelt ihr das Glas mit den beiden Flüssigkeiten. So werden die anfänglichen Schichten nämlich in viele kleine Tröpfchen zerlegt, die einander berühren. Und durch alle einander berührenden Tröpchenoberflächen können Farbstoffteilchen schnell ins Öl “auswandern”.

Wenn ihr, nachdem das geschehen ist, das Gefäss abstellt und in Ruhe lasst, rotten sich Öl und Wasser wieder in getrennten Schichten zusammen – das leichtere Öl schwimmt wiederum oben – wobei die Farbstoffteilchen im Öl bleiben.

Dieses Trennverfahren, bei welchem ein Stoff beim Schütteln aus einem Gemisch in ein anderes “auswandert”, nennen die Chemiker “Ausschütteln”. Im Labor ist das sehr nützlich, wenn so man einen Stoff dazu bringen kann, allein in ein Lösungsmittel mit z.B. niedrigem Siedepunkt einzuwandern. Dann kann man nämlich das Lösungsmittel einfach einkochen, ohne dass die Teilchen des anderen Stoffs dabei Schaden nehmen – und erhält so den reinen Stoff.

Wird mit diesem Trick (aber meist ohne Schütteln) ein (oder mehrere) Bestandteil(e) aus einem Feststoffgemisch abgetrennt, sprechen Chemiker zudem von einer Extraktion – der abzutrennende Stoff wird aus dem Gemisch extrahiert. Und das passiert ganz bestimmt auch in eurem Alltag!

 

Extraktion in eurem Alltag

Das Extrahieren ist überaus nützlich, wenn man Gemische von Feststoffen trennen möchte, die sich nicht alle gleich gut in Wasser (oder einem anderen Lösungsmittel) lösen. Solche Gemische können zum Beispiel Teeblätter oder andere Pflanzenteile sein. Die können wir Menschen nicht besonders gut verdauen – aber wir mögen das Aroma und können viele gesunde Bestandteile der Pflanzen brauchen. Glücklicherweise lösen sich viele dieser Stoffe gut ins Wasser.

So geben wir die Teeblätter oder Pflanzenteile in heisses Wasser (heisse Lösungsmittel lösen andere Stoffe gewöhnlich besser als kalte – ausserdem brechen in heissem Wasser die grossen Biomoleküle, die die Pflanzenoberfläche bilden, leichter auf) und warten ein paar Minuten, während die wasserlöslichen Stoffteilchen – darunter sind häufig auch farbige – aus den Blättern in das Wasser wandern. Die unverdaulichen Pflanzenreste können dann ganz einfach mit einem Filter abgetrennt werden.

Und das Ergebnis – den Extrakt – trinken wir als Tee! Genauso funktioniert auch das Kaffeekochen. Hier werden die Kaffeebohnen bloss vorher zu Pulver zermahlen. So kann besonders viel Wasser die Oberflächen der unzähligen Pulverkörner berühren – und die gewünschten Stoffe (Aromen, dunkle Farbe, Koffein) können besonders schnell aus dem Kaffeepulver in das Wasser wandern.

Und wo ist euch in eurem Alltag schon ein Extraktions-Verfahren begegnet?

Oster-Experiment: Wie geht das Ei in die Flasche?

Lang ist es nicht mehr hin: Nächste Woche ist schon Ostern – da ist noch gerade eben Zeit für ein schnelles Freihand-Experiment, bis der Osterhase kommt. Besser gesagt, für ein kleines Rätsel, das ihr eurer Familie oder euren Freunden zum Osterfest aufgeben könnt:

Wie bekommt ihr ein Ei in eine scheinbar zu enge Flasche – ohne es mit der Hand zu quetschen?

Ihr braucht dazu

  • Ein hartgekochtes Ei, ohne Schale
  • Eine Glasflasche, deren Öffnung nur wenig kleiner als das Ei ist
  • Streichhölzer – oder ein Feuerzeug und einen Streifen Papier

Was ihr braucht: Glasflasche mit weiter Öffnung, hartes Ei und Streichhölzer

Wie ihr das Experiment durchführt

Präsentiert euren Zuschauern das gepellte Ei, die Flasche und die Streichhölzer bzw. das Feuerzeug samt Papier. Stellt ihnen die Aufgabe: Bringt das Ei in die Flasche, ohne dass es kaputt geht – also nicht mit der Hand quetschen! Wenn sie die Antwort nicht selbst herausfinden, macht wie folgt weiter:

  1. Entzündet 3 Streichhölzer gleichzeitig und lasst sie sogleich brennend in die Flasche fallen. Alternativ: Steckt das Papier mit dem Feuerzeug in Brand und lasst es ebenfalls brennend in die Flasche fallen.
  2. Sobald das Feuer erlischt, setzt das gepellte Ei mit dem schmalen Ende nach unten auf die Öffnung, sodass es diese dicht schliesst.
Streichhölzer sind aus - das Ei ist auf der Öffnung.
Bis hier hin und nicht weiter: Da brauchte ich dann schwerere Geschütze.
  • Wartet einige Minuten: Das Ei wird wie von selbst in die Flasche gleiten!
  • Das Ei wandert in die Flaschenöffnung.
    Jetzt geht es besser: Das Ei schiebt sich in den Flaschenhals.
  • Sollte das Ei nicht ganz durch den Flaschenhals gleiten, könnt ihr die Flasche auch ein paar Minuten in den Kühlschrank – oder an diesem voraussichtlich kalten Osterfest nach draussen – stellen.
  • Das Ei steckt fast ganz im Flaschenhals!
    Noch ein Bisschen, dann…

    Wenn die Flaschenöffnung zu schmal (oder das Ei zu gross für die Öffnung ist) – da können Millimeter entscheidend sein – kann dabei passieren, was mir passiert ist:

    Die Flasche war zu eng fürs Ei : Jetzt ist nur die Hälfte drin!
    Dumm gelaufen: Die Kräfte der Natur haben das Ei entzwei gerissen.

    Das Ei wird förmlich halbiert! Wenn ihr bei eurer Vorführung Wert auf ein heiles Ei legt, probiert das Ganze vorher aus, bis ihr die passende Flasche zu euren Eiern bzw. die passenden Eier zur Flasche habt.

    Was passiert da?

    Teilchen-Bewegung ist Wärme

    Luft ist ein Gas (genau: ein Gemisch aus mehreren Gasen), das aus unzähligen winzig kleinen Teilchen besteht. Diese Teilchen sausen kreuz und quer durch den Raum und stossen ständig gegeneinander und gegen feste (und flüssige) Stoffe, die ihnen im Weg sind. Mit anderen Worten: Die wuseligen Luft-Teilchen brauchen eine Menge Platz – so wie die Kinder einer Schule, die auf dem Pausenplatz spielen.

    Wie sehr die Luft-Teilchen wuseln, können wir direkt spüren – wir nehmen ihre Bewegung nämlich als Wärme wahr. Das heisst: Je mehr die Teilchen sich bewegen, desto wärmer ist die Luft. Und das heisst wiederum: Je wärmer die Luft ist, desto mehr Platz braucht sie!

    Teilchen-Bewegung ist Druck

    Indem ihr brennende Streichhölzer oder Papier in die Flasche werft, sorgt ihr dafür, dass das Feuer die Luft ordentlich aufwärmt, sodass die Luft-Teilchen in der Flasche sich schneller bewegen und häufiger gegeneinander und gegen die Flaschenwände rempeln. So brauchen die Teilchen mehr Platz – und diejenigen, die nun nicht mehr in die Flasche passen, werden durch die Öffnung nach draussen gedrängt. Da der Raum draussen – die Erdatmosphäre – praktisch unbegrenzt ist, wird so gewährleistet, dass in der Flasche und draussen letztendlich der gleiche Druck herrscht.

    Sobald ihr das Ei auf die Öffnung setzt, verschliesst es diese vollständig. Wenn danach die Luft in der Flasche langsam wieder abkühlt, bewegen die Teilchen sich weniger und brauchen weniger Platz: Die Luft-Teilchen rempeln weniger gegeneinander, gegen die Flaschenwände und gegen das Ei. Da die Flasche nun verschlossen ist, können die zuvor hinausgedrängten Teilchen jedoch nicht wieder hinein. So entsteht im Inneren der Flasche ein Unterdruck.

    Wie die Luft-Teilchen das Ei bewegen

    Draussen bleibt der Druck dagegen stets gleich – und damit höher als drinnen. So drückt die Luft draussen die Umhüllung der Luft drinnen zusammen. Der Glasflasche macht das jedoch nichts – die ist hart und steif. Das Ei hingegen ist bis zu einem gewissen Grad formbar und überdies nicht fest mit der Flasche verbunden. Im Gegenteil: Es ist ziemlich glatt, sodass es an der Glaswand entlanggleiten kann.

    So können die Luft-Teilchen, die von aussen gegen das Ei rempeln – also Druck machen – das Ei damit in den Flaschenhals hinein schieben, sobald die Luft-Teilchen innen mangels Wärme nicht mehr dagegen halten können! Wenn durch das Abkühlen der Temperatur- und damit der Druckunterschied zwischen drinnen und draussen gross genug wird, kann das Ei vollständig in die Flasche hinein geschoben – oder, wenn die Öffnung zu eng ist, im schlimmsten Fall entzwei gequetscht werden.


    Wie ihr das Ei wieder aus der Flasche bekommt

    Es ist dazu nicht nötig, die Flasche zu zerschlagen! Geht stattdessen einfach wie folgt vor:

    1. Dreht die Flasche um, sodass das Ei von innen auf die Öffnung fällt und den Flaschenhals vollständig verschliesst.
    2. Lasst heisses fliessendes Wasser über den Flaschenbauch laufen (passt dabei auf eure Finger auf!) oder erwärmt die Flasche mit einem Haarföhn. So wie sich die Luft in der Flasche wieder ausdehnt, gleitet das Ei genauso wieder nach draussen, wie es in die Flasche hinein gekommen ist. Das hat sogar mit meinem halben Ei funktioniert!

    Ihr könnt das Ei natürlich auch mit Hilfe des Haarföhns oder heissen Wassers in die Flasche hinein bekommen, wenn ihr kein offenes Feuer verwenden möchtet. Dann benutzt allerdings besser einen Kochhandschuh um die Flasche festzuhalten, während ihr sie gründlich erwärmt.

    Entsorgung

    Gibt es keine! Das hartgekochte Ei (oder seine beiden Hälften) könnt ihr nach dem Experiment einfach aufessen. Sollte Russ daran gekommen sein, könnt ihr ihn vorher leicht abwaschen. Die Flasche könnt ihr sauber machen und für das nächste Osterfest und weitere Experimente aufheben!

    Mehr Experimente mit Eiern findet ihr übrigens hier – und hier könnt ihr mehr über die Farbstoffe erfahren, mit denen wir unsere Ostereier färben.

    Damit wünsche ich euch viel Spass beim Experimentieren und schöne Ostern!

    Und wie sehen eure Naturforscher-Ostern aus?

    Deko im Frühling mit Superabsorber

    Es ist die Zeit der Hasen, Küken Blumen…. Wie wäre es mit einer Osterdeko im Forscher-Stil – die gleich noch ein Experiment beinhaltet? Und (nicht nur) im Frühling jedes Heim-Labor verschönert? Ich habe ein tolles Gadget gefunden, das nicht nur eine besondere Sicht auf das Leben von Pflanzen gewährt, sondern auch eine verblüffende Eigenschaft von bestimmten Riesenmolekülen offenbart: Superabsorber!

    Ich habe das Material für das Experiment aus eigenem Antrieb beschafft. Für die Idee dazu danke ich Marion Rotter vom Luxury Lifestyle Magazine, in welchem diese spannende Frühlingsdekoration auch einen Platz finden wird.

    Superabsorber statt Pflanzenerde für Zwiebelblumen

    Hydroperlen aus Superabsorbern sind ganz besondere Kunststoffgebilde, die unglaubliche Mengen Wasser speichern und wieder abgeben können. Dabei sind sie durchsichtig und nach Wunsch bunt. So geben sie nicht nur einen praktischen Ersatz für Pflanzenerde ab (das kann z.B. Blähton für die Hydrokultur auch), sondern gewähren, wenn man sie in gläsernen Blumentöpfen verwendet, einen spannenden Blick auf das Wurzelwerk der Pflanzen.

    Und da Zwiebelblumen sich besonders leicht ein- und umsetzen lassen, bietet der Frühling die ideale Gelegenheit zum Experimentieren mit Superabsorbern!

    Ihr braucht dazu

    • Glasgefässe mit weiter Öffnung: Für den Labor-Stil können das zweckentfremdete Behälter sein, wie mein Honigglas, mein Einmachglas oder der Glaszylinder aus meinem Windlicht. Auch ein Labor-Becherglas eignet sich natürlich.
    • Zwiebelblumen, die idealerweise schon ein wenig ausgetrieben haben
    • Superabsorber: Die gibt es als “Hydrokristalle” oder “Hydroperlen” für kleines Geld in verschiedenen Shops für Krimskrams, Gadgets oder Geschenkartikel (meine Bezugsquelle hat mich letztlich nicht zu einer Erwähnung überzeugt, da sie stark verspätet und erst nach meiner Nachfrage geliefert und mich überdies trotz meiner Nicht-Zustimmung mit einer ganzen Flut von Newslettern zugeschüttet haben).
    • Leitungswasser, ein Lavabo bzw. Spülbecken zum Reinigen von Pflanzenwurzeln
    • Ein paar Stunden Zeit für viele Tage Freude
    Material : Zwiebelpflanzen, Hydroperlen, leere Gläser

    Wie ihr eure gläsernen Topfpflanzen setzt

    Zunächst müsst ihr die Superabsorber in Wasser ziehen lassen, damit sie sich ordentlich voll saugen. Das dauert ein paar Stunden, sodass es sich anbietet, sie über Nacht ziehen zu lassen. Eine Anleitung dazu liegt normalerweise der Verpackung der Hydrokristalle oder Hydroperlen bei. So bin ich mit meinen vorgegangen:

    • Schätzt ab, wieviele (Milli)Liter Wasser in die Gefässe passen würden, die ihr bepflanzen wollt. Entnehmt der Verpackung so viele Perlen bzw. Kristalle, wie ihr laut Angaben auf der Packung für dieses Volumen braucht. Achtung! Das sieht nach verdammt wenig aus, aber das passt schon: Ihr habt die grosse Überraschung ja noch vor euch!
    Hydroperlen bzw. Hydrokristalle für etwa 600ml Wasser
    Das sind genug Hydroperlen für die zwei Gläser oder insgesamt 600 Milliliter Wasser!
    • Verteilt die Hydroperlen bzw. Hydrokristalle auf die leeren Gefässe entsprechend ihrer Grösse. Dann füllt die Gefässe mit Wasser auf.
    Hydroperlen bzw. Hydrokristalle in Wasser
    Die Hydroperlen in den Gläsern, gleich nach dem Auffüllen mit Wasser. Und wirklich: Das genügt!
    • Stellt die Gefässe dorthin, wo sie nicht stören und deckt sie ggfs. gegen Staub ab (z.B. Deckel lose auflegen). Schaut in den nächsten Minuten bzw. Stunden immer mal wieder nach den Gläsern: Schon in den ersten Minuten werden die Perlen/Kristalle merklich wachsen und dabei zunehmend durchsichtiger erscheinen.
    Superabsorber in Aktion: Hydroperlen trocken und nach einer Nacht im Wasser
    Nach einer Nacht: So gross sind die Perlen geworden!
    • Nach einer Nacht sind meine Perlen von ursprünglich rund 2 mm im Durchmesser auf sage und schreibe 12 mm angewachsen und füllen die Gläser fast vollständig! Wenn es bei euch so weit ist, giesst das übrige Wasser ab.
    Superabsorber: Hydroperlen bzw. Hydrokristalle nach einer Nacht in Wasser
    Am nächsten Morgen: Die Hydroperlen sind über Nacht gewachsen und haben fast alles Wasser aufgesogen!

    Jetzt könnt ihr mit dem Bepflanzen beginnen.

    • Wenn ihr bereits ausgetriebene Blumenzwiebeln umsetzt: Nehmt die Zwiebeln aus dem Topf und befreit die Wurzeln vorsichtig von der Erde (die könnt ihr zum Gärtnern aufheben). Spült die Wurzeln dann gründlich unter fliessendem Wasser, bis sie blitzsauber sind.
    • Nehmt einen Teil der Hydroperlen bzw. Hydrokristalle aus eurem Pflanzgefäss, legt sie in einem anderen Behälter beiseite (die Perlen sind jetzt elastisch wie Gummibälle – passt auf, dass sie euch nicht davonspringen!).
    • Platziert die Zwiebel mit den Wurzeln nach unten im Gefäss und füllt die Zwischenräume zwischen den Wurzeln behutsam mit den beiseite gelegten Perlen bzw. Kristallen auf (die Superabsorber gehen nicht so leicht kaputt, die Pflanzenwurzeln können dagegen recht empfindlich sein).
    Zwiebelblumen in Hydroperlen: Frühlings-Deko im Labor-Style
    Fertig! Jetzt heisst es geduldig warten!
    • Wenn die Zwiebel stabil untergebracht ist, platziert das Gefäss an einem hellen, nicht zu warmen Ort (wenn es nicht mehr friert auch draussen). Zwiebelblumen wie Krokusse, Narzissen und andere Frühlingsblüher sind für kühles Frühlingswetter geschaffen und welken bei zu hoher Raumtemperatur schnell.
    • Freut euch die nächsten Wochen an eurer Forscher-Frühlingsdeko und beobachtet die Pflanze und ihre Wurzeln beim Wachsen! Die Hydroperlen oder -kristalle werden mit der Zeit wieder schrumpfen, wenn das Wasser verdunstet oder die Pflanze davon trinkt. Insgesamt sollten die Pflanzen aber bis zu zwei Wochen ohne Giessen auskommen! Danach giesst einfach etwas Wasser nach, und die Superabsorber sollten wieder aufgehen.

    Was passiert da?

    Was genau sind eigentlich Superabsorber?

    Superabsorber sind riesige Moleküle, sogenannte Polymere. Das sind lange Ketten aus sich immer wiederholenden kleinen Atomgruppen, die bei der Herstellung der Polymere miteinander verbunden werden. Was wir als “Plastik” oder “Kunststoff” bezeichnen, besteht aus solchen Riesen-Kettenmolekülen. Doch auch die Natur hält verschiedenste Polymere bereit, wie Proteine, Stärke, Zellulose oder unsere DNA.

    Die Superabsorber unter den Polymeren haben zwei besondere Eigenschaften:

    1. Die langen Kettenmoleküle sind über Querstreben aus weiteren Atomgruppen miteinander vernetzt. Das Ergebnis ist ein regelrechter Molekül-Schwamm, dessen Poren in der Grössenordnung von einigen Atomdurchmessern liegen. Das bedeutet, eine Hydroperle bzw. ein Hydrokristall ist im Grunde genommen ein einziges gigantisches Molekül – so gross, dass wir es sehen und anfassen können!
    2. Die Atomgruppen, aus welchen die Superabsorber-Polymere bestehen, sind so gestaltet, dass sie und Wassermoleküle einander anziehen: Chemiker sagen, die Atomgruppen sind “hydrophil” – sie mögen Wasser. Wie Atomgruppen aussehen müssen, die Wasser mögen, und wie die gegenseitige Anziehung funktioniert, habe ich im Artikel über Tenside genauer beschrieben.

    Kurz gesagt: Zu den wasserfreundlichsten Kohlenstoffverbindungen (zu diesen zählen die meisten Kunststoffe) gehören solche, die elektrische Ladungen tragen, also Ionen sind. Deshalb tragen die riesigen Superabsorber-Moleküle eine Unzahl an negativen Ladungen auf ihrem Netz aus Atomketten. Die wiederum ziehen nicht nur Wasser an, sondern auch positiv geladene Metall-Ionen. Mit solchen gehen die negativ geladenen Atomgruppen des Molekül-Schwamms Ionen-Bindungen ein – wie die Natrium- und Chlorid-Ionen in einem Kochsalzkristall!

    Woraus meine (und höchstwahrscheinlich auch eure) Hydroperlen bestehen

    Superabsorber sind also riesige Molekül-Netze, die aus zahllosen kleinen Carbonsäure-Gruppen (sehr häufige Monomere sind Acrylsäure bzw. ihre stickstoffhaltige Variante Acrylamid*, aus denen auch meine Hydroperlen bestehen) zusammengesetzt sind. In trockenem Zustand werden die Ladungen durch in den Maschen gebundene Natrium (Na+)-Ionen ausgeglichen, sodass das Netz sich auf sehr engem Raum dicht zusammenpacken lässt. So fühlen sich die trockenen, winzigen Hydroperlen hart und massiv an. Tatsächlich kann man sagen: Ein (trockener) Superabsorber ist sowohl ein Polymer als auch ein Salz!

    *Wenn der Begriff “Acrylamid” bei euch die Alarmglocken klingeln lässt: In verketteter Form, also als Polyacrylamid bzw. “Polyamid” ist diese Verbindung absolut nicht giftig!

    Wie funktionieren Superabsorber?

    Wenn ihr trockene Hydroperlen oder Hydrokristalle in Wasser legt, passiert mit ihnen das selbe, was auch mit meinem nackten Ei (ein weiteres spannendes Oster-Experiment!) passiert ist: Die Ionen im Inneren des Molekül-Schwamms streben danach, sich mit Wassermolekülen zu mischen und mit ihnen zu wechselwirken. Dabei sind zunächst im Schwamm viele Ionen zwischen wenigen bis gar keinen Wassermolekülen, während das Wasser draussen nur wenige Ionen enthält – und die Natur verlang danach, diesen Unterschied auszugleichen: Physiker nennen dieses Verlangen “osmotischer Druck”.

    Mit Osmose zum Gel

    Dem osmotischen Druck folgend dringen die Wassermoleküle rasch in den Molekül-Schwamm ein. Dort umlagern sie die Natrium-Ionen, welche sich daraufhin vom Molekül-Netz lösen, und die Anionengruppen. Letztere bleiben allerdings fest mit den Kohlenstoff-Maschen des Polymers verbunden, sodass der Schwamm selbst sich nicht auflöst. Dabei stossen sich die negativen Ladungen, die nicht länger von Natriumionen aufgehoben werden, gegenseitig ab und treiben das anfangs eng gepackte Netz immer weiter auseinander.

    Das Ergebnis ist ein riesiges Schwamm-Molekül, in dessen wachsenden Poren Wassermoleküle regelrecht kleben, während es immer mehr Raum einnimmt. Solch ein Gebilde, das weder wirklich ein Feststoff noch wirklich in Wasser gelöst ist, nennen die Physiker ein Hydrogel. Damit die Hydroperlen für eure Topfpflanzen bei all dem aber nicht völlig aus dem Leim gehen, ist ihre Oberfläche von einem zusätzlichen Polymer-Netz umgeben, das sich nur begrenzt ausdehnt und so dafür sorgt, dass die Perlen ihre Form behalten und so lustig herumspringen können.

    Wo finden Superabsorber sonst noch Verwendung?

    Ihrer Supersaugkraft wegen werden Superabsorber auch in Babywindeln eingebaut, damit Babys Popo auch die ganze Nacht trocken bleibt (ebenso saugen sie wirksam die Folgen einer Blasenschwäche auf). Dabei wird auf die formgebende Aussenhülle verzichtet, denn die Windel selbst hält ja alles an Ort und Stelle. Was passiert, wenn man Superabsorber ohne begrenzende Hülle mit Wasser tränkt, zeigen die Simple Chemics hier sehr eindrücklich:


    Da kann man bestimmt auch Pflanzen hinein setzen, aber man sieht dabei auch nicht mehr als in richtiger Erde. Ausserdem haben die springenden Gelbällchen es mir wirklich angetan. Man kann damit wunderbar herumspielen!

    Indem man kleine Superabsorber-Körner mit Erde mischt, wird zudem Blumenerde hergestellt, die auch ohne den “Labor-Look” besonders viel Wasser speichern kann.


    Entsorgung

    Polyacrylsäure und Polyamid sind nicht giftig. Polyacrylsäure wird sogar als Grundstoff für Medikamente und Kosmetik wie Gels zum Auftragen oder Augentropfen als Tränenersatz verwendet. Deshalb machen sie auch bei der Entsorgung keine Umstände.

    Die Hydroperlen oder Hydrokristalle können immer wiederverwendet werden – es ist nicht nötig, sie nach einmaliger Benutzung wegzuwerfen! Falls ihr sie doch irgendwann nicht mehr braucht, können sie in den Restmüll gegeben werden. Blumenzwiebeln könnt ihr bis im Herbst in den Garten oder auf den Balkon auspflanzen. Welke Pflanzenteile können ganz normal auf den Kompost oder in den Bioabfall.

    Und wir sieht eure – vielleicht auch ungewöhnliche – Frühlings- oder Osterdekoration aus?

    Experiment im Frühling: Blumen färben

    Endlich macht sich der Frühling bemerkbar, und bis Ostern ist es auch nicht mehr lange hin. Die ersten Blumen zeigen sich draussen, und in den Auslagen der Pflanzenhändler reihen sich Primeln, Zwiebelblumen und andere Frühlingsblüher aneinander. Das ist die Gelegenheit für ein blumiges Experiment, das auch dem Osterfest eine besondere Note geben kann! Bringen wir Farbe in die Blumen!

    Blogparade: Kinder sind Forscher!

    Anne von X-mal anders hat in ihrer Blogparade dazu aufgerufen, darüber erzählen, wie unsere Kinder ihre Welt erforschen. Denn unsere Kinder sind die Forscher von morgen, die in ein paar Jahren ihre Neugier verwenden, um seltene (und weniger seltene) Krankheiten und Heilungsmöglichkeiten dafür zu erforschen. Schon heute werden immer wieder atemberaubende Möglichkeiten gefunden, mit den verschiedensten Erkrankungen fertig zu werden. Damit das auch in Zukunft so bleibt lohnt es sich allemal, unseren Kindern die Welt der Naturwissenschaften, die hinter solchen Behandlungsmöglichkeiten steht, als spannend zu präsentieren und ihre Neugier darauf zu befeuern.

    Da ich Keinsteins Kiste genau dazu geschaffen habe, führt für mich kein Weg an dieser Blogparade vorbei!

    Nun, ich habe wohl keine Kinder, aber ich bin auch mal eins gewesen – und ich hatte (und habe noch!) einen richtig echten Physiker-Forscher zum Papa. Da wurde natürlich immer wieder gemeinsam experimentiert.

    So ist auch dieses Experiment alles andere als neu. Ich glaube mich daran zu erinnern, dass es vor rund 30 Jahren etwa so bei uns Einzug hielt:

    Beim Einkauf im Gartencenter durfte ich mich an der Pflanzenauswahl für den Garten beteiligen. Blaue Hortensien hatten mir es besonders angetan.

    Papa daraufhin: “Aber wir haben doch schon Hortensien im Garten…”

    Klein-Kathi: “Aber die sind rosa!” (Und meine Lieblingsfarbe war -und ist- eben blau.)

    Papa: “Dann machen wir unsere eben blau – dazu müssen wir keine neuen kaufen.”

    Er dachte daran, die Hortensien mit der gewünschten Farbe zu giessen, sodass die Pflanzen den Farbstoff selbst aufnehmen und in ihrem Innern verteilen sollten. Nur ist Papa eben Physiker, und kein Botaniker. Letzterer hätte vermutlich voraussagen können, dass der Plan nicht funktioniert – so wie mein Plan heute, das Ganze frühlingsgerecht mit einer weissen Primel im Topf zu wiederholen, auch nicht funktioniert hat.

    Dafür zeige ich euch jetzt, wie ihr tatsächlich Blumen umfärben und dabei beobachten könnt, wie Pflanzen trinken! Denn dank den Angelones habe ich einen passenden Plan B.

    Experiment: Wir färben Blumen um

    Für die Hortensien vor dem Haus ist es jetzt noch etwas früh. Deshalb habe ich passend zum Frühling einen Strauss weisser Tulpen erstanden: Die gibt es zur Zeit sehr preisgünstig in jedem Gartencenter oder Supermarkt mit Blumenabteilung. Und da Blau nach wie vor zu meinen Lieblingsfarben zählt, sollen auch meine Tulpen blau werden. Und ihr könnt natürlich mitexperimentieren!

    Ihr braucht dazu

    • weisse Schnittblumen (Tulpen, Rosen oder auch Gerbera sollen gut funktionieren)
    • Wasserlösliche Tinte (in eurem Lieblings-Farbton), zum Beispiel in Patronen für den Fülli
    • Ggfs. Gummi- bzw. Einmalhandschuhe
    • Eine kleine Vase oder anderes Glasgefäss
    • Ein paar Stunden, ggfs. einen Tag Zeit
    Alles zum Blumen färben : weisse Tulpen, Tinte, Gewürzgläser

    Die leeren Gewürzgläser geben passende Blumenvasen ab. Die Tulpen habe ich weiss gekauft – am Morgen danach waren sie rosa angehaucht. Das bescherte mir am Ende zweifarbige Blüten!

    Wie ihr das Experiment durchführt

    • Kürzt die Schnittblumen auf eine zu eurer Vase passende Länge (falls sie schon passend lang sind, schneidet in jedem Fall die Stiele frisch an!), entfernt überflüssige Blätter und stellt sie in die Vase
    • Löst die Tinte in etwas Wasser auf (wer keine blauen Finger mag, sollte dabei Handschuhe tragen). Die Lösung sollte kräftig gefärbt sein, da sie sich später in der ganzen Pflanze verteilen wird.
    Tinte zum Blumen färben: Taucht die Patrone kopfüber ins Wasser und erlebt ein faszinierendes Extra

    Schneidet den schmalen Teil der Tintenpatronen ganz oben ab und taucht die Patrone kopfunter in euer Wasserglas. Dann könnt ihr beobachten, wie die Tinte – sie ist dichter als Wasser – von selbst hinausläuft und faszinierende Schlieren formt!

    • Füllt das farbige Wasser in die Vase mit den Blumen.

    Vorher : Die Blumen zum Färben stehen in Vasen mit Tinte in Wasser

    • Wartet ein paar Stunden bzw. bis zum nächsten Tag – schaut währenddessen immer mal wieder nach den Blumen. Mit der Zeit wird die Farbe in die Blüten und Blätter übergehen!

    Was passiert da?

    Ihr könnt an diesem Experiment wunderbar beobachten, wie Pflanzen trinken! Anlässlich weiterer Experimente zur wunderbaren Welt der Pflanzen habe ich ausführlich erklärt, wie das von statten geht: Pflanzenstiele, Blätter und Blütenblätter sind von feinen “Rohrleitungen” durchzogen, ähnlich unseren Blutgefässen. Durch diese Gefässe können sie Wasser von den Wurzeln bis in jeden beliebigen Pflanzenteil transportieren.

    Die Adern in den Blütenblättern sind deutlich blau gefärbt

    Einen Tag später : Die Wasserleitungen in den Blütenblättern sind deutlich blau gefärbt!

    Und was ist der “Antrieb” dieser Wasserversorgung?

    Pflanzen sind in der Lage zu “schwitzen”: Über Poren in ihren Blattoberflächen geben sie Wasser (-dampf) an ihre Umgebung ab. Dadurch entsteht im Innern der Blätter ein Wassermangel, der neues Wasser von unten – also gegen die Schwerkraft! – durch die Leitungen nachströmen lässt. Dass die Wasserteilchen regelrecht an den Leitungswänden kleben, hilft ihnen entscheidend beim Emporklettern (Physiker nennen das den Kapillareffekt).

    Normalerweise sind Wasserteilchen farblos, sodass man sie in den Pflanzen nicht sieht. Wenn aber ein Farbstoff im Wasser gelöst ist, werden die Farbstoffteilchen mit den kletternden Wasserteilchen in die Pflanzen hinauf geschwemmt und sammeln sich vornehmlich am Ende der Leitungen – also ganz oben. Erst durch Rückstau bzw. durch die Ansammlung einzelner Farbstoffteilchen, die früher hängen bleiben, werden die Gefässe auf der ganzen Länge farbig.

    Warum funktioniert das nicht mit Topfpflanzen?

    Bei frisch angeschnittenen Schnittblumen tauchen die offenen Leitungen in den Stängeln direkt in das farbige Wasser. Wasser- und Farbstoffteilchen können also ungehindert in die Gefässe eindringen.

    Topfpflanzen haben dagegen Wurzeln, die in Erde stecken. Die Wurzeln sind Gewebe aus Zellen, die eine Oberfläche bilden, durch die Wasser und Nährstoffe geschleust werden müssen. Ob durch Poren, Kanäle oder einfach durch Zellzwischenräume – die sehr kleinen Wasserteilchen müssen sich dabei durch Engpässe kämpfen, durch welche grössere Farbstoffteilchen nicht unbedingt hindurch passen.

    Dazu kommt, dass sich Wasser und Farbstoffteilchen auch in der Pflanzenerde verteilen und darin hängenbleiben. So ist, selbst wenn ein Farbstoff durch die Wurzeln in die Pflanze gelangt, eine wesentlich grössere Menge Farbstoffteilchen nötig, um eine Topfpflanze sichtbar einzufärben, als für das Färben von Schnittblumen. Ganz extrem ist das im Garten, wo der “Topf” geradezu unendlich gross ist.

    Mein Physiker-Papa dachte damals freilich nicht an Zellen und Gewebe. Nachdem ich einst selbst in der Zellbiologie geforscht habe, war ich gespannt, ob Lebensmittel- oder Tintenfarbstoffteilchen in Pflanzenwurzeln eindringen würden. Taten sie nicht – jedenfalls nicht in sichtbarem Umfang.

    Woraus besteht Tinte? Eignen sich alle Tinten zum Blumen färben?

    Wasserlösliche Tintenfarbstoffe gehören meist der gleichen Molekül-Familie an wie viele Lebensmittelfarbstoffe: Es handelt sich um sogenannte Triphenylmethan-Farbstoffe, wie zum Beispiel “Wasserblau”.

    Wie diese Stoffe zu ihrem Namen kommen und was sie farbig macht, habe ich im Artikel über Ostereier-Farbstoffe – unter denen findet man ebenfalls Triphenylmethan-Farbstoffe – genau beschrieben.

    Andere Tinten bzw. Tuschen enthalten wasserunlösliche Farbkörner, die sehr viel grösser als Moleküle sind – sogenannte Pigmente. Die Pigmentkörner setzen sich mitunter auf dem Boden eines Tintenfasses ab, sodass man es vor der Benutzung schütteln sollte. Ihrer Grösse wegen eignen sich solche Pigmente weniger zum Pflanzen färben.

    Viele (vor allem wasserfeste) Schreiber enthalten zudem Tinten, die sich nur in organischen Lösungsmitteln wie Alkoholen oder Aceton lösen. Die erkennt ihr an dem typischen Geruch nach “Chemie”. Auch solche Tinten sind zum Pflanzenfärben nicht geeignet, weil die meisten organischen Lösungsmittel giftig für Zellen sind – sie bekämen den Blumen also gar nicht gut!

    Entsorgung

    Wasserlösliche Schreibtinten können im Restmüll entsorgt werden. Ungeöffnete Tintenpatronen oder ein angebrochenes Tintenfass verwendet aber besser noch zum Schreiben oder für weitere Experimente. Kleine Mengen Tintenlösung aus den Blumenvasen könnt ihr auch in den Abfluss geben (vorsichtig, damit keine farbigen Flecken im Spülbecken bleiben) oder für spätere Versuche abfüllen und aufheben.

    Wenn die gefärbten Schnittblumen verblüht sind, könnt ihr sie ebenfalls in den Restmüll geben. Wo der Bioabfall verbrannt wird wie in der Schweiz könnt ihr die gefärbten Pflanzen auch in die Biotonne geben.

    Ich wünsche euch viel Spass beim Experimentieren! Und verratet uns doch, welche Experimente ihr mit euren Kindern am liebsten macht!

    DIY Taschenwärmer mit Natriumacetat

    Aus gegebenem Anlass habe ich auch an diesem Montag ein Experiment für euch: Denn es ist arktisch kalt draussen. Da kommen euch Taschenwärmer mit Sicherheit sehr gelegen. Und die könnt ihr aus ganz einfachen Zutaten aus dem Haushalt selbst machen – und euch mit einem ganz ungefährlichen Chemie-Trick warm halten! Und so macht ihr euch eure eigenen DIY – Taschenwärmer :

    Ihr braucht dazu

    • Soda (Natriumcarbonat, zum Beispiel Waschsoda oder Backpulver)
    • Haushaltsessig (bzw. Essigessenz)
    • Einen wasserdichten Plastikbeutel (zum Beispiel einen “Ziplock”-Beutel)
    • Die Aluminiumhülse eines Teelichts
    • Ein Gefäss mit hohem Rand
    • Kochtopf, Herd, Backofen, Rührstab
    • Ein ganz sauberes Glasgefäss
    • Evtl. Trichter und Filterpapier (z.B. einen Kaffeefilter)
    • eine Schutzbrille (das ist sicherer, damit nichts in eure Augen spritzt)

     

    Das braucht ihr für einen DIY Taschenwärmer

    Wie ihr einen Taschenwärmer herstellt

    Zuerst müsst ihr Natriumacetat herstellen

    Das ist das spezielle Salz, das ihr später in den Taschenwärmer füllt. Ihr könnt es auch in der Apotheke oder Drogerie kaufen – dann könnt ihr diesen Abschnitt überspringen. Aber das wäre dann ja nur ein halbes DIY.

    Gebt für einen kleinen Handwärmer etwa 250 ml Haushaltsessig (das sind ca. 10% Essigsäure gelöst in Wasser) in das Gefäss mit dem hohen Rand.

    Essig und Soda für den Handwärmer

    Essig und Soda: Wenn ihr sie abmessen möchtet, helfen Messbecher und Waage. Diesen Messbecher benutze ich übrigens nur fürs Experimentieren! Für die Küche habe ich einen eigenen – das ist sicherer.

    Gebt langsam(!) etwa 25 g Soda dazu. Das Gemisch wird stark aufschäumen! Wenn ihr die Soda langsam hinzugebt, schäumt es nicht über. Wenn sich die Soda vollständig unter Schäumen gelöst hat, gebt langsam noch etwas mehr dazu, bis das Aufschäumen nachlässt (Ihr könnt die passende Menge auch genau ausrechnen, wie ich es beim Start meiner Essig-Carbonat-Rakete gezeigt habe). Rührt dabei immer gut um!

    Wenn ihr ganz sicher gehen wollt, könnt ihr den pH-Wert der Mischung mit einem pH-Streifen überprüfen: Essig ist eine Säure, die einen Universalindikatorstreifen rot färbt (pH < 7). Wenn die Säure durch die Soda neutralisiert ist, färbt sich der Streifen grün (pH = 7). Dann ist euer Mischungsverhältnis genau richtig. Wenn ihr zu viel Soda – eine Base – hinzu gebt, wird der Streifen blau (pH > 7). Falls das passiert, gebt einfach noch ein paar Tropfen Essig dazu, bis der pH-Wert stimmt.

    Ihr habt nun eine Lösung des Salzes Natriumacetat in Wasser. Gebt diese in ein Gefäss, das ihr erhitzen könnt, und lasst das Wasser auf dem Herd einkochen. In meinem relativ grossen Kochtopf ist die Flüssigkeit breit auf der Herdplatte verteilt – so verdampft sie schneller als in einem engen Gefäss.

    Natriumacetat-Lösung auf dem Herd

    Den ausrangierten Kochtopf benutze ich zum Kochen nicht mehr. Zum Experimentieren taugt er aber noch: Es bilden sich bereits Dampfbläschen in der Lösung.

    Der zurückbleibende weisse Feststoff darf nicht heisser als 324°C werden – ab dieser Temperatur zerfällt das Natriumacetat! Passt daher gut auf und nehmt den Topf von der Platte, sobald kein Wasser mehr sichtbar ist (wenn ihr meinen Beitrag über Schmelz- bzw. Verdampfungswärme gelesen habt, wisst ihr, dass siedendes Wasser nicht heisser als 100°C werden kann).

    Natriumacetat nach dem Abdampfen

    Das Wasser ist verdampft – jetzt kratze ich das feuchte Salz aus dem Topf.

    Stellt das noch feuchte Natriumacetat anschliessend ca. 45 Minuten bei 150°C in den Backofen, um es ganz zu trocknen.

    Natriumacetat im Ofen

    Umgefüllt in ein handliches Gefäss (nicht zwingend nötig) kann das Natriumacetat nun trocknen.

     

    Bereitet jetzt die Füllung für den Taschenwärmer vor

    Während das Natriumacetat trocknet, schneidet ihr ein handliches Plättchen aus dem Boden der Aluminium – Teelichthülse. Das Metall ist so dünn, dass es sich problemlos mit einer Küchenschere schneiden lässt. Legt den Plastikbeutel und das Plättchen bereit. Bringt schliesslich noch etwas Wasser zum Kochen.

    Das mittlere Teil kommt in den Taschenwärmer.

    Das mittlere Teil kommt in den Taschenwärmer.

    Stellt das Natriumacetat auf der Herdplatte bereit (ich habe es der Handlichkeit wegen vor dem Trocknen und jetzt noch einmal umgefüllt – das ist aber nicht zwingend nötig). Gebt ein wenig kochendes Wasser dazu (je 1 ml Wasser auf 9 g Natriumacetat!) und schaltet sofort die Herdplatte ein, sodass das Gemisch weiterhin beinahe kocht. Wenn ihr gut umrührt, löst sich das Salz vollständig im heissen Wasser. Falls nicht, gebt tropfenweise mehr Wasser hinzu.

    Natriumacetat löst sich in heissem Wasser.

    Links: Hier muss ich noch etwas rühren. Rechts: Das Salz hat sich vollständig aufgelöst. Jetzt noch schnell filtrieren, dann ist die Füllung für den Taschenwärmer fertig!

    Jetzt wird es ein wenig kniffelig: Wärmt euren Trichter am besten vor, indem ihr ihn unter fliessendes heisses Wasser haltet (verbrüht euch eure Finger aber nicht!). Legt das Filterpapier ein und filtriert die heisse Lösung schnell in das sehr saubere Gefäss. Ich habe das saubere Gefäss dazu auf die noch heisse Herdplatte gestellt, denn die Lösung darf bei diesem Schritt nicht abkühlen!

    Ihr habt nun eine heisse, klare Natriumacetat-Lösung, die keinerlei sichtbaren Partikel mehr enthält. Bewegt diese Lösung möglichst nicht mehr und lasst sie an der Raumluft abkühlen. Dabei sollte die Flüssigkeit klar und – natürlich – flüssig bleiben. Falls beim Abkühlen Kristalle entstehen, erwärmt den Behälter noch einmal auf der Herdplatte, bis die Kristalle verschwunden sind und lasst ihn wieder abkühlen.

    Jetzt könnt ihr euren Taschenwärmer füllen und benutzen

    Giesst die abgekühlte Natriumacetat-Lösung vorsichtig in den Plastikbeutel. Fügt das ausgeschnittene Aluminium-Plättchen hinzu und verschliesst den Beutel fest.

    Wenn euch kalt ist, knickt das Plättchen (es muss dabei in der Flüssigkeit liegen), bis der Inhalt des Beutels fest zu werden beginnt. Ihr werdet merken: Sobald das Natriumacetat fest wird, wird es ziemlich warm!

    Handwärmer in Aktion

    Zugegeben: Mein Ziplock-Beutel ist etwas zu gross für das Bisschen Natriumacetat. Aber das macht nichts: Warm wird es trotzdem – das Thermometer beweist es!

    Haltet den Beutel in den Händen oder steckt ihn in eine Tasche und geniesst die Wärme!

    Ihr könnt diesen Taschenwärmer ausserdem beliebig wiederverwenden:

    Legt den Beutel mitsamt Inhalt in kochendes Wasser und die Natriumacetat-Kristalle werden sich wieder auflösen. Lasst den Beutel langsam abkühlen. Wenn euch wieder kalt ist, knickt das Metallplättchen erneut, sodass wiederum Kristalle entstehen und dabei Wärme freisetzen!

    Was passiert da?

    …Bei der Herstellung von Natriumacetat

    Der Taschenwärmer-Trick funktioniert mit einem ganz besonderen Salz, das ihr aus Essigsäure (CH3COOH) und Natriumcarbonat (Na2CO3, Soda) herstellen könnt. Essig ist eine Säure, Natriumcarbonat hingegen eine Base. Beide reagieren miteinander, indem sie sich neutralisieren. Das heisst, aus einer relativ starken Säure und Base entstehen sehr viel schwächer saure und basische Stoffe:

    Kohlensäure (H2CO3) ist nicht nur eine sehr schwache Säure, sondern zerfällt zudem leicht in Kohlenstoffdioxid und Wasser:

    Das Gas Kohlenstoffdioxid steigt aus der Lösung auf (Deswegen schäumt das Ganze so. Ausserdem ist dieses Gas ein prima Treibstoff für viele andere spektakuläre Experimente!). So erhaltet ihr eine Lösung, die ausschliesslich Natrium (Na+)- und Acetat (CH3COO)-Ionen enthält. Wenn ihr nun das Wasser einkocht und trocknet, bleibt das feste Salz Natriumacetat übrig:

    Warum Natriumacetat “auf Kommando” fest wird

    In warmem Wasser löst sich mehr von einem Stoff als in kaltem Wasser. Das gilt auch für Natriumacetat. Deswegen macht ihr das Wasser so heiss wie möglich, um möglichst viel Natriumacetat in sehr wenig Wasser aufzulösen.

    Wenn solch eine heisse Lösung abkühlt, “vergisst” das Natriumacetat leicht, dass es fest werden sollte. So bleibt auch in kaltem Wasser mehr gelöst, als “erlaubt” ist. Die Chemiker nennen so etwas eine übersättigte Lösung. Und diese spezielle übersättigte Lösung kann man auch als unterkühlte Schmelze ansehen – denn wenn ihr euren Taschenwärmer genau anseht, nachdem er seine Wärme angegeben hat, werdet ihr feststellen, dass von dem Wasser darin nicht mehr viel zu sehen ist: Nahezu der ganze Inhalt ist zu Kristallen erstarrt!

    Ob übersättigte Natriumacetat-Lösung  oder unterkühlte Natriumacetat-Schmelze: Das Ganz ist sehr empfindlich. Ein “Tritt in den Hintern” durch das Knicken des Plättchens oder in der Lösung herumwirbelnde Schwebstoffe oder ein winzigkleiner Natriumacetat-Kristall genügen, um das Salz daran “zu erinnern”, dass es fest zu werden hat. Deshalb muss das Gefäss, indem die Natriumacetat-Lösung abkühlt, so vollkommen sauber sein.

    Ansonsten – oder wenn ihr den Prozess durch das Knicken des Metallplättchens gezielt auslöst – geschieht folgendes:

     

    Das heisst, das Wasser, das euch anfangs als Lösungsmittel gedient hat, wird grösstenteils in die Natriumacetat-Kristalle eingebaut. Die Kristalle enthalten also Kristallwasser! Der Stoff rechts vom Reaktionspfeil heisst deshalb korrekterweise “Natriumacetat-Trihydrat”.

    Und nun der Trick: Woher die Wärme kommt

    Der Umstand, dass es sich bei der Natriumacetat-Lösung in eurem Taschenwärmer eigentlich um eine Schmelze handelt, macht den Trick mit der Wärme möglich: Wie ihr auch an Wasser überprüfen könnt, wird zum Schmelzen Energie – die sogenannte Schmelzwärme – benötigt, die anschliessend der Schmelze innewohnt.

    Das gilt auch für eine Natriumacetat-Schmelze, die auf Umwegen, nämlich durch das Auflösen von Natriumacetat in wenig Wasser, entsteht: Die Wärme wird dabei aus der Herdplatte bzw. dem kochenden Wasser in der Lösung “entnommen” und in der Schmelze gespeichert (d.h. ohne Herdplatte würde das Wasser durch das Auflösen des Natriumacetats abkühlen!). Das heisst, diese Energie verbleibt in der Schmelze auch dann verborgen, wenn sie abkühlt. Erst wenn die unterkühlte Schmelze wieder “auf Kommando” fest wird, wird diese Energie wieder abgegeben – und eure Hände werden warm!

    Ich wünsche euch damit einen warmen Start in die kälteste Woche dieses Winters! Und verratet uns doch: Was tut ihr, um euch warm zu halten?

    Experiment: Abendrot im Milchglas

    Zur Zeit bekommen wir ihn hier am Zürichsee selten zu sehen: Den klaren, blauen Himmel. Im Winter hängt nämlich meistens dicker, grauer Hochnebel über dem See. Wenn der sich aber doch einmal verzieht, ist die Farbe des Tageshimmels um so auffälliger blau – mit einer weissen Sonne darin. Und wenn die Bewölkung bis zum Abend locker bleibt, ist Romantik pur angesagt: Die lockeren Wolken oder dünnen Schleier glühen bei Sonnenuntergang (und ebenso bei Sonnenaufgang) rosa oder sogar leuchtend rot, während die Sonne darin rotgolden strahlt.

    Aber wie entsteht eigentlich das wechselnde Farbenspiel an unserem Tageshimmel? Mit diesem einfachen Experiment könnt ihr selbst erforschen, wie die Farben an den Himmel kommen!

     

    Warum der Himmel blau ist

    Wenn wir draussen nach oben schauen, blicken wir durch die Atmosphäre unserer Erde. Die besteht hauptsächlich aus Stickstoff und Sauerstoff – zwei Gasen, die eigentlich farblos, d.h. durchsichtig sind. Das zeigt sich uns nachts, denn dann sieht man die Atmosphäre tatsächlich nicht, sondern den dunklen Weltraum dahinter mitsamt der Sterne darin.

    Bei Tag ist es allerdings vorbei mit der Durchsichtigkeit – sobald Licht auf unsere Atmosphäre fällt, erscheint der Himmel farbig, und die Sterne dahinter sieht man nicht mehr. Das liegt daran, dass Sonnenstrahlen, die auf die Atmosphäre treffen, von einigen Teilchen darin in verschiedene Richtungen abgelenkt – die Physiker sagen gestreut – werden. Ein Teil des geordneten Strahlenbündels, das von der Sonne kommt, erreicht uns am Ende des Weges durch die Atmosphäre somit als wildes Strahlendurcheinander, ohne dass wir den Ursprung der einzelnen Strahlen feststellen könnten.  So sehen wir den Himmel als helle Fläche aus unzähligen Einzel-Lichtstrahlen.

    Und weil Himmel und Sonne zu gross und sperrig sind, um damit herum zu probieren, könnt ihr euch solch einen Himmel mit ein paar simplen Zutaten aus der Küche als handliches Modell nachbauen!

     

    Ihr braucht dazu

    • Einen grossen Glasbehälter
    • Leitungswasser
    • Ein wenig Milch
    • Eine weiss leuchtende Taschenlampe
    • Einen dunklen Raum

     

    Wie ihr das Experiment durchführt

    • Füllt das Glas mit Leitungswasser.
    • Gebt einen Schuss Milch dazu und rührt ggfs. um, bis sich die Milch gleichmässig im Wasser verteilt hat.
    • Nehmt das Glas und die Taschenlampe mit in den dunklen Raum.
    • Haltet die Taschenlampe direkt an das Glas und leuchtet so hindurch (ein dunkler Schal kann ggfs. Ritzen zwischen Glas und Lampe abdichten, sodass kein Streulicht hindurch dringt).
    • Leuchtet zunächst von der Seite durch das Glas und schaut von vorne bzw. oben, dann leuchtet von hinten bzw. unten und schaut durch das Glas hindurch direkt in das Licht. Ihr könnt natürlich auch andere Winkel ausprobieren!

     

    Was passiert da?

    Ein Glas mit sauberem Wasser ist durchsichtig, wie der Himmel in der Nacht: Ihr könnt sehen, was sich dahinter befindet. In Wasser wird das Licht praktisch nicht gestreut. Wenn ihr etwas Milch dazu gebt, mischt ihr Teilchen in das Wasser, die das Licht stark streuen (Milch enthält relativ grosse Teilchen, wie Fettmoleküle und Proteine, die sich zudem nicht gut mit Wasserteilchen mischen lassen). So erscheint das Wasser-Milch-Gemisch bei (unsortiertem) Tageslicht undurchsichtig weiss.

    Die Taschenlampe ist in diesem Modell die Sonne: Sie sendet kegelförmig geordnete Strahlen aus – in unserem Experiment direkt durch das durchsichtige Glas in das Milchwasser. Die Strahlen werden von den Milchteilchen abgelenkt, sodass selbst dann einige selbst dann in eure Augen fallen, wenn ihr das Glas von der Seite anleuchtet: Das ganze Milchwasser leuchtet – wie der Himmel am Tag!

    Die Milch bringt Farbe ins Modell

    Wenn ihr ganz genau hinschaut, werdet ihr feststellen: Das Milchwasser strahlt bläulich, wenn ihr mit der Taschenlampe von der Seite leuchtet und von vorn schaut. Wenn ihr direkt durch das Milchwasser ins Licht schaut, erscheint dagegen rötlich-golden!

    Wie das kommt?

    Weisses Licht ist ein Strahlengemisch aus Strahlen mit allen möglichen Wellenlängen – das bedeutet mit allen möglichen Farben (diese Farben könnt ihr zum Beispiel mit einem DIY-Spektroskop sichtbar machen, das auf Lichtbrechung und nicht auf Lichtstreuung beruht). Diese Farben werden aber nicht alle in gleicher Weise gestreut. Wie die streuenden Teilchen in der Luft streuen auch die Milchteilchen die blauen Strahlen (mit kurzen Wellenlängen) stärker als die roten (mit langen Wellenlängen).

    Mittag im Modell

    Wenn das weisse Licht nun von der Seite oder von oben kommt, werden die blauen Strahlen besonders weit (etwa im rechten Winkel) abgelenkt, sodass vornehmlich solche unsere Augen erreichen. So erscheint das Milchwasser blau, wenn die Taschenlampe von der Seite, von oben oder von unten strahlt, und der Himmel erscheint ebenfalls blau, wenn die Sonne hoch oben steht.

    Experiment : Im Milch - Modell ist der Mittagshimmel blau

    Morgen und Abend im Modell

    Schaut ihr dagegen durch das Milchwasser in die Lampe, werden vornehmlich die blauen Strahlen zu den Seiten abgelenkt, sodass vornehmlich rotes Licht eure Augen erreicht: Das Milchwasser erscheint rötlich – wie auch der Himmel beim Sonnenuntergang oder -aufgang. Wenn ihr einen solchen beobachtet, werdet ihr tatsächlich feststellen, dass der Himmel nur in Richtung der Sonne rot leuchtet – je weiter ihr nach Norden, Süden oder sogar in die entgegengesetzte Richtung schaut, desto weniger rot werdet ihr finden.

    Experiment: Im Milch-Modell ist der Sonnenuntergang rot

    Mit der Taschenlampe könnt ihr so den Lauf der Sonne nachstellen und die Farbänderung beobachten: Leuchtet zunächst von rechts nach links und bewegt die Lampe dann hinten um das Glas herum (Licht nach vorn!), bis sie schliesslich von links nach rechts leuchtet.

    Und wie kommt es nach Sonnenuntergang zur “blauen Stunde”?

    Wenn die Sonne erst einmal hinter dem Horizont verschwunden ist und kein direktes Licht mehr zum Streuen schickt, zeigt sich, dass ein Bestandteil der Atmosphäre tatsächlich blau ist: Das Ozon, welches in der Stratosphäre – also weit oben – die schützende Ozonschicht bildet, schluckt nämlich den roten Anteil der letzten Strahlen-Irrläufer, die auch nach Sonnenuntergang (und vor Sonnenaufgang) um die Erdkugel herum finden. So kommt vornehmlich der blaue Anteil dieses letzten Lichtes bei uns an und beschert uns eine “blaue Stunde”, ehe es wirklich dunkel und die Atmosphäre damit durchsichtig wird.

    Die Ozonschicht ist natürlich auch bei Tag vorhanden – dann aber wird weitaus mehr blaues Licht auf die Erde gestreut, als das Ozon schlucken kann (wie Stoffe Licht schlucken und warum so “dezimiertes” Licht uns farbig erscheint, habe ich übrigens hier genauer erklärt).

    Ich wünsche euch viel Spass beim Erkunden eures Modell-Himmels! Und verratet uns doch: Welche farbigen Himmelsphänomene habt ihr schon “in echt” beobachten können?

    Experimente Zauber mit Oberflächenspannung

    In der Schweizer Fasnacht sind Hexen zentrale Figuren, aber bestimmt sind auch Zauberer, Feen und andere magische Wesen bei der Kostümwahl beliebt. Mache dein magisches Kostüm wirklich einzigartig: Ich verrate dir, wie du wirklich zaubern und deine Freunde und (Mit-)Gäste verblüffen kannst! Die Physik bzw. Chemie machts möglich!

     

    1. Die schwimmende Büroklammer

    Du brauchst dazu

    • ein sauberes Glas mit Leitungswasser
    • ein wenig Flüssigseife
    • eine Büroklammer
    • eine Pinzette
    • deinen Zauberstab

     Material für Büroklammer vs. Oberflächenspannung

    Wie du den Zauber durchführst

    • präpariere den Zauberstab, bevor die Zuschauer dabei sind: Gib ein wenig Flüssigseife auf die Spitze, sodass das nicht auffällt
    • In Gegenwart der Zuschauer: Lege die Büroklammer mit Hilfe der Pinzette vorsichtig auf die Oberfläche des Wassers im Glas. Die Klammer wird schwimmen.
    • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor
    • Führe den Zauberstab dabei nahe an die WasseroberflächeAlles bereit: Jetzt dein Zauberspruch!
    • Tippe, während du deinen Zauberspruch sagst, mit der seifigen Spitze des Stabes 1 – 2 cm von der Büroklammer entfernt auf die Wasseroberfläche. Klammer wird sofort auf den Grund des Glases sinken.Keine Oberflächenspannung mehr: Die Klammer ist versunken!

     

    Was passiert da?

    Wenn du schon das letzte Experiment rund um die Dichte und die Anomalie des Wassers gelesen hast, wirst du wissen: Nur Dinge, deren Dichte kleiner ist als die von flüssigem Wasser, können darauf schwimmen. So sollte es jedenfalls sein. Trotzdem schwimmt die Büroklammer aus Metall (zum Beispiel Eisen), dessen Dichte um ein Vielfaches höher als die flüssigen Wassers ist!

    Die Oberflächenspannung machts möglich

    Das rührt daher, dass Wasserteilchen ausserordentlich fest zusammenhalten. Zwischen den Wasserteilchen bzw. -molekülen wirken auch im flüssigen Zustand stark anziehende Kräfte, die sogenannten Wasserstoffbrücken, welche auch einen weiteren Zaubertrick – Harry Potter und der krumme Wasserstrahl – möglich machen. Dank dieser Wasserstoffbrücken halten die Wasserteilchen so dicht zusammen, dass sie an der Luft (mit welcher Wasserteilchen so gar nicht wechselwirken mögen) eine relativ schwer zu durchdringende Oberfläche bilden.

    Diese Oberfläche ist so stabil, dass sie sogar der Erdanziehung standhalten kann: Wassertropfen zerlaufen auf einer Unterlage nicht, um der Schwerkraft folgend möglichst flach zu werden. Stattdessen erscheinen sie gewölbt (dazu findet ihr ein Experiment bei Forschen für Kinder)! Wie die Haut eines aufgeblasenen Luftballons steht die Wasseroberfläche dabei unter Spannung. Deshalb wird diese fesselnde Eigenschaft des Wassers (und anderer Stoffe) “Oberflächenspannung” genannt.

    Dank der grossen Oberflächenspannung des Wassers können auch kleine Eisenteile schwimmen, obwohl sie eigentlich zu dicht dafür sind – wenn ihr Gewicht, wie bei der Büroklammer, auf genügend Auflagefläche verteilt wird. So ist nämlich an keiner Stelle die Last gross genug, um die film-artige Wasseroberfläche zu durchbrechen.

    Die Zauberkraft der Tenside

    Seife – nicht nur flüssige – besteht aus Tensiden. Das sind ganz besondere Teilchen: Sie haben nämlich zwei unterschiedliche Enden, die mit unterschiedlichen wechselwirken! Das macht die Tenside zu kleinen Diplomaten. Während nämlich das eine Ende Wasserteilchen anzieht und von ihnen angezogen wird, pflegt das andere Ende anziehende Wechselwirkungen mit solchen Teilchen, die sich nicht gern mit Wasser mischen.

    Das verleiht den Tensiden nicht nur ihre Super-Waschraft, die darauf beruht, dass sie zwischen Wasser und Fett “vermitteln” und dem Fett ermöglichen, sich mit Wasser zu mischen. Tenside vermitteln nämlich ebenso zwischen Wasser und Luft – die sich in Bezug auf Wechselwirkungen wie Fett verhält, nämlich wasserabweisend.

    Was dein Zauber bewirkt

    Wenn du mit der Seife am Zauberstab auf die Wasseroberfläche tippst oder kurz hinein tauchst, lösen sich die Tenside vom Stab und ordnen sich an der Wasseroberfläche an: (wasserliebendes) Köpfchen in das Wasser, (fett- bzw. luftliebendes) Schwänzchen in die Höh!

    Streichholzmodell: Tenside an der Wasseroberfläche

    Dadurch wird der Zusammenhalt zwischen den einzelnen Wasermolekülen minimiert, wenn nicht gar aufgehoben, sodass die Oberflächenspannung zusammenbricht. Ohne den festen Oberflächenfilm ist nichts mehr da, was die Büroklammer tragen könnte, sodass sie wie ein Stein auf den Grund sinkt, wie ihre Dichte es vorschreibt.

    2. Der furchtsame Pfeffer

    Du brauchst dazu

    • ein sauberes Glas mit Leitungswasser
    • gemahlenen Pfeffer oder ein anderes wasserunlösliches Pulver
    • Flüssigseife
    • deinen Zauberstab

    Material für den Zauber mit Pfeffer

    Wie du den Zauber durchführst

    • Bringe wie im 1. Versuch vorab ein wenig Flüssigseife auf die Spitze deines Zauberstabs.
    • Wenn die Zuschauer da sind, bestreue die Wasseroberfläche auf dem Glas dicht mit gemahlenem Pfeffer. Das Pulver wird auf der Wasseroberfläche schwimmen.Pfeffer schwimmt auf der Wasseroberfläche
    • Bereite dich mit dem nötigen Brimborium aufs Zaubern vor. Bringe dabei den Zauberstab in die Nähe der Wasseroberfläche.
    • Wenn du deinen Zauberspruch sagst, tippe die Stabspitze kurz – für höchstens ein bis zwei Sekunden – auf die Wasseroberfläche. Die Pulverkörner auf der Wasserfläche werden sofort vor der Stabspitze Reissaus nehmen und in Richtung der Glasränder drängen!Der Pfeffer flieht vor dem Zauberstab!

     

    Was passiert da?

    Es sind einmal mehr die Tenside, welche die Pfefferkörnchen zur Flucht bewegen. Wie eine Schar, die auseinanderstrebt, breiten sich die Seifenteilchen vom Zauberstab fort auf der Wasseroberfläche aus. Dabei schieben sie die schwimmenden Pulverkörner kurzerhand zur Seite.

    Da wir die winzigen Seifenteilchen nicht sehen können, erscheint dies so, als würden die sichtbaren Pulverkörner vor dem Stab zurückweichen!

     

    Damit dir und allen anderen Lesern ein fröhliches Ohhh Häx!, Helau!, Alaaf!, Narri! Narro! und was man durch die Länder sonst noch alles ruft!

    gefrorenes Wasser : Das Glas wird voller

    Warum ist es eigentlich keine gute Idee, eine geschlossene Glasflasche mit Wasser ins Tiefkühlfach zu legen? Dieses Experiment zeigt euch eine ungewöhnliche, verblüffende Eigenschaft des Wassers – seine Dichteanomalie!

    Der Januar war hier in den niedrigen Regionen der Schweiz viel zu warm, aber der Februar grüsst heute Morgen mit einer feinen Puderzucker-Schneeschicht. So könnt ihr in diesem Winter vielleicht doch noch Beobachtungen machen, die spannende Fragen aufwerfen: Warum friert bei einem Teich zuerst die Oberfläche zu, während das Wasser darunter flüssig bleibt? Und warum sieht ein Wasserkübel voller aus, wenn das Wasser darin zu Eis erstarrt?

    Dass der Kübel tatsächlich voller ist, könnt ihr mit diesem einfachen Experiment nachweisen!

    Ihr braucht dazu

    • Ein – möglichst schmales – Trinkglas, das in euer Tiefkühlfach passt
    • Ein Tiefkühlfach (wenn es draussen friert, genügt auch Platz auf Balkon oder Terrasse)
    • Kaltes Leitungswassser
    • Einen wasserfesten Filzstift
    • Ein Lineal
    • Optional: Gefäss mit Skala und eine Küchen- oder Laborwaage
    Material für das Experiment
    Das ist alles was ihr braucht, um Wasser wachsen zu lassen!

    Wie ihr das Experiment durchführt

    • Füllt das Glas etwa zwei Drittel hoch mit Leitungswasser und stellt es auf eine waagerechte Fläche.
    • Markiert die Höhe des Wasserspiegels mit einem Filzstift-Strich. Mit dem Lineal könnt ihr die Füllhöhe zudem auch in Zentimetern messen.
    • Stellt das Glas mit dem Wasser in euer Tiefkühlfach oder bei Frost nach draussen und wartet einige Stunden.
    • Wenn das Wasser vollständig gefroren ist, nehmt das Glas wieder aus dem Tiefkühlfach bzw. nach drinnen und wartet wenige Minuten, bis die Luftfeuchtigkeit nicht mehr sofort einen weissen Schleier auf der Glasoberfläche bildet. Wischt eventuelle Reste dieses Schleiers ab (gebt dabei acht, dass der Filzstift-Strich erhalten bleibt!).
    • Vergleicht die Höhe der Eissäule im Glas mit eurer Markierung. Mit dem Lineal könnt ihr den Höhenunterschied in Millimetern messen!

    Wenn ihr eine Waage und ein Gefäss mit unterteilter Skala, zum Beispiel einen Messzylinder, habt, könnt ihr auch die Veränderung der Dichte des Wassers messen:

    • Wiegt das Glasgefäss vor und nach dem Einfüllen des Wassers. Der Gewichtsunterschied entspricht der Masse des eingefüllten Wassers. Lest dann das Volumen des eingefüllten Wassers (in Millilitern oder Kubikzentimetern cm3) von der Skala des Gefässes ab. Notiert beide Werte.
    • Um die Dichte des Wassers zu erhalten, teilt die Masse des Wassers durch sein Volumen (die Zahlen werden sich sehr ähneln, sodass das Ergebnis in der Nähe von 1 g/cm3 liegen wird).
    • Nachdem das Wasser gefroren ist, lest das Volumen noch einmal ab (wenn die Oberfläche der Eissäule sich gewölbt hat, versucht den Wert zu schätzen!) und rechnet die Dichte des Eises wie in 2. aus (ein zweites Mal wiegen müsst ihr dazu nicht – die Masse des Wassers ändert sich nicht!).

     

    Was ihr beobachten könnt

    Nach dem Gefrieren reicht die Oberfläche der Eissäule deutlich über den ursprünglichen Wasserspiegel hinaus: Eis nimmt mehr Platz ein als das flüssige Wasser, aus dem es entsteht – das Wasser ist beim Einfrieren gewachsen! In meinem Glas ist die Eissäule ganze 8 Millimeter (wenn ich zudem die Wölbung berücksichtige, mindestens 1 Zentimeter) höher als das Wasser, das ich eingefüllt hatte!

    Dichteanomalie sichtbar gemacht: Das Wasser ist gewachsen!

    Wenn ihr die Dichte von Wasser und Eis bestimmt, werdet ihr feststellen, dass der Wert für das Eis etwas kleiner ist als der für das Wasser (die Masse bleibt dabei unverändert: Vor und nach dem Gefrieren ist (annähernd) gleich viel Wasser im Glas).

    Wie kann Wasser wachsen, wenn es friert?

    Nur ganz wenige Stoffe können das. Normalerweise werden Stoffe grösser, je wärmer sie werden. Das rührt daher, dass die Teilchen in warmen Stoffen sich heftiger bewegen als die gleichen Teilchen in kalten Stoffen. Und was ständig herumzappelt oder gar -wuselt, braucht einfach mehr Platz. Das heisst auch, dass diese Stoffe kleiner werden, wenn man sie abkühlt – also auch, wenn sie gefrieren.

    Wasser und einige wenige Stoffe, wie die Elemente Bismut, Gallium, Germanium, Plutonium, Silicium und Tellur , fallen da allerdings aus dem Rahmen: Sie werden mitunter grösser, wenn sie abkühlen.

    Wasser verhält sich nicht “ganz normal”

    Flüssiges Wasser verhält sich genaugenommen ganz normal, so lange seine Temperatur über rund 4°C liegt. Dann gilt auch hier: Je wärmer das Wasser ist, desto wuseliger sind die Teilchen, aus denen es besteht, und desto mehr Platz nimmt es ein. Oder umgekehrt: Je kälter das Wasser ist, desto weniger wuseln die Teilchen und desto weniger Platz nehmen sie ein.

    Bei rund 4°C passiert dann etwas neues: Wenn das Wasser noch kälter wird, bereiten die Wasserteilchen sich darauf vor, Eiskristalle zu bilden: Sie rotten sich zusammen und bewegen sich nurmehr in der Nähe der Plätze, die sie in einem Eiskristall-Gitter einnehmen würden. So wie Kinder, die “die Reise nach Jerusalem” spielen und – wenn sie erwarten, dass die Musik abbricht – darauf aus sind, in der Nähe der freien Stühle zu sein.

    Und das Eiskristall-Gitter hat es in sich: Das Muster , in dem die Wasserteilchen darin angeordnet werden, ist nämlich ziemlich grobmaschig. Die anziehenden Wechselwirkungen, “Wasserstoffbrücken” genannt, welche die Wasserteilchen im Gitter zusammenhalten, halten sie nämlich gleichzeitig ziemlich auf Abstand voneinander.

    Ein Modell des Eiskristall-Gitters : Jeder schwarze Knoten ist ein Wasserteilchen. Die Wasserstoffbrücken – dargestellt als grüne Streben – halten die Teilchen auf Abstand!

    So kommt es, dass die Wasserteilchen schon beim Zusammenrotten vor dem Gefrieren auf Abstand gehen – so wie es die spielenden Kinder wohl täten, wenn man die freien Stühle voneinander entfernt aufstellen würde. Deshalb braucht flüssiges Wasser zunehmend mehr Platz, wenn es kälter als 4°C wird.

    Unmittelbar vor dem Gefrieren sind die Wasserteilchen am weitesten – also entsprechend der Maschen im Eiskristallgitter – verteilt und nehmen schliesslich ihre festen Plätze im Gitter ein: Wenn Wasser einmal erstarrt ist, wächst das Eis nicht mehr weiter!

    Weil das “Wachsen” eines abkühlenden Stoffes im Vergleich zu den meisten anderen Stoffen nicht ganz normal ist, nennen Chemiker und Physiker diese ungewöhnliche Eigenschaft eine Dichteanomalie.

    Dichte – und warum Teiche stets von oben zufrieren

    Der eingefrorene Wasserkübel sieht also nicht nur voller aus – er ist tatsächlich voller! Man kann das Ganze jedoch auch aus einem anderen Blickwinkel betrachten:

    Würde die Wasserteilchen in einem Milliliter kaltem Wasser zählen und ihn dann einfrieren, dann wäre der entstehende Eisklumpen grösser. Um einen ordentlichen Vergleich anzustellen, könnte man aus diesem Eisklumpen einen Eiswürfel herausschneiden, der einen Milliliter fasst (das Volumen des Eiswürfels beträgt einen Milliliter). Würde man die Teilchen in diesem Eiswürfel zählen, wäre das Ergebnis eine kleinere Zahl als für einen Milliliter flüssiges Wasser – denn die Wasserteilchen, die nach dem Wachsen keinen Platz mehr im Würfel fanden, hat man schliesslich vorher weggeschnitten.

    Da man mit dem Zählen von Stoffteilchen aber eine schiere Ewigkeit beschäftigt wäre, ist es wesentlich praktischer, die Teilchen alle zusammen zu wiegen. Denn jedes Teilchen hat seine Masse, die es zur Gesamtmasse eines Milliliters beisteuert. Da in einem Milliliter Eis weniger Teilchen sind, als in einem Milliliter flüssigen Wassers, wiegt ein Milliliter Eis entsprechend weniger.

    Um diese veränderliche Eigenschaft von Stoffen zu beschreiben, verwenden Physiker die “Dichte”: Sie geben die Masse für ein bestimmtes Volumen des jeweiligen Stoffes an: rho = m/V . Damit lassen sich verschiedene Gesetzmässigkeit einfach ausdrücken: Aus “die meisten (flüssigen) Stoffe werden um so kleiner, je kälter sie werden” wird so “die Dichte der meisten (flüssigen) Stoffe nimmt zu (d.h. mehr Teilchen drängen sich in einem festgelegten Volumen zusammen – das Volumen wird schwerer), wenn sie kälter werden”.

    Warum Eis schwimmt

    Die wenigen Stoffe, für die das nicht uneingeschränkt gilt, weisen damit eine Dichteanomalie auf. Dieser Anomalie wegen hat Eis eine geringere Dichte als Wasser.

    Und damit kommen wir zu einer weiteren Gesetzmässigkeit über die Dichte von Stoffen: Füllt man zwei Stoffe (davon ist mindestens einer flüssig und keiner ein Gas) mit unterschiedlicher Dichte, die sich nicht vollständig mischen, in ein Gefäss, dann schwimmt der Stoff mit der geringeren Dichte oben.*

    *Tatsächlich gilt dies nur unter Vernachlässigung einiger äusserer Umstände, zu denen ihr bald hier mehr erfahren könnt.

    Das gilt natürlich auch für Eis und Wasser – deshalb schwimmen die Eiswürfel im gekühlten Drink stets obenauf!

    Warum Teiche von oben einfrieren

    Darüber hinaus gilt das Gesetz auch innerhalb ein und desselben flüssigen Stoffs, wenn dieser in verschiedenen Bereichen eine unterschiedliche Dichte hat (weil diese Bereiche unterschiedlich warm sind). Wenn ein anfangs warmer Teich abkühlt, ordnet sich das kalte Wasser (das die höhere Dichte hat) unterhalb des wärmeren Wassers (mit niedrigerer Dichte) an. Da Wasser bei rund 4°C die höchste Dichte hat, landet das 4°C kalte Wasser somit ganz unten – darüber sind die Schichten wärmer.

    Wenn es nun im Winter richtig kalt wird, kühlen die oberen Wasserschichten unter 4°C ab. Der Dichteanomalie wegen nimmt ihre Dichte dabei jedoch ab – und die kalten Schichten bleiben oben. Mehr noch: Die kälteste Sicht – mit der geringsten Dichte – ordnet sich ganz oben an, und erstarrt dort schliesslich als erstes zu Eis.

    Wasser im Teich nach Dichte sortiert
    Dichteverteilung im Teich: Links wenn es warm ist: unten – bei 4° ist das Wasser am dichtesten. Rechts wenn es kalt ist: Das dichteste Wasser ist unten – kälteres Wasser ist weniger dicht! By Klaus-Dieter Keller, details from KnowItSome, Tango! Desktop Project, Julo, Spax89 [CC BY-SA 3.0], via Wikimedia Commons

    So freuen wir uns, wenn wir auf der Teichoberfläche Schlittschuh laufen können, während die Fische darunter sicher sein können, flüssiges Wasser zum Schwimmen und Atmen zu finden, wenn sie nur nach ganz unten tauchen (so lange der Teich nicht komplett durchfriert).

    Dank der Dichteanomalie des Wassers können nicht nur Fische den Winter überleben – womöglich hat auch das Leben auf der Erde dank dieser ungewöhnlichen Eigenschaft mehrere Eiszeiten überdauern können – sodass wir die Anomalie heute in einem Glas im Tiefkühlfach beobachten können. Spannend, nicht?


    Und nun zum Abschluss eine Quizfrage: Welche “äusseren Umstände” führen dazu, dass das Gesetz “der Stoff mit der geringeren Dichte schwimmt oben” in Wirklichkeit mehr eine Faustregel ist, die oftmals nicht streng zu gelten scheint?

    Die Auflösung samt einem spannenden Experiment gibt es nächste Woche hier in Keinsteins Kiste!

    Ein Herz aus Eis

    Bald ist Valentinstag, und wieder einmal sind viele darauf aus, die Herzen ihrer liebsten schmelzen zu lassen. Ich habe zu diesem Zweck bei einer englischsprachigen Kollegin ein wunderbar farbenfrohes Experiment aufgestöbert. Damit könnt ihr nicht nur jedes Herz aus Eis zum Schmelzen bringen, sondern gleich erforschen, wie das Schmelzen eigentlich abläuft!

    Du brauchst dazu

    • Eine wasserdichte Herzform (zum Beispiel eine Silikon-Kuchenform oder eine gut schliessende Springform
    • Wenn du eine Springform verwendest: etwas Frischhaltefolie
    • Lebensmittel- oder/und wasserlösliche Acrylfarbe
    • Ein grosses Tablett mit Rand, eine flache Wanne oder ein Backblech
    • Platz im Tiefkühlfach für die Herzform
    • Ein Gefäss zum Ausgiessen
    • Leitungswasser
    • Speise- oder Streusalz
    • Etwas zum Umrühren (z.B. einen Rührstab oder Löffel)

    Wie du das Herz zum Schmelzen bringst

    Dazu muss das Herz erst einmal richtig eiskalt werden! Das schaffst du wie folgt:

    1. Fülle deine Herzform maximal zu drei Vierteln hoch mit Wasser (Mache sie nicht ganz voll! Wasser dehnt sich aus, wenn es gefriert und braucht daher mehr Platz als wenn es flüssig ist!). Wenn du ein rosarotes oder andersfarbiges Herz haben möchtest, rühre etwas Lebensmittelfarbe in das Wasser. Falls du eine Springform verwendest: Probiere vorher mit etwas ungefärbtem Wasser aus, ob sie dicht hält. Falls nicht: Lege die Springform vor dem Einfüllen des gefärbten Wasser mit einem (!) Stück Frischhaltefolie aus.
    2. Stelle die Form mit dem gefärbten Wasser vorsichtig ins Tiefkühlfach und warte etwa einen halben Tag.

    Wenn das Herz vollständig gefroren ist, geht es weiter:

    1. Nimm das Herz aus dem Tiefkühlfach, löse das Eis aus der Form (falls es festgefroren ist: spüle die Form kurz mit warmem Wasser ab und drücke das Eis sofort heraus). Falls du Frischhaltefolie zum Abdichten verwendet hast, löse sie so vollständig wie möglich vom Eis.
    2. Lege das Herz auf das Tablett mit Rand. Ich habe weisse Küchentücher untergelegt, damit auf meinem schwarzen Backblech die Farben besser sichtbar bleiben.
    3. Streue Salz auf das Eis-Herz (sei dabei nicht sparsam). Das Eis wird um das Salz herum besonders schnell zu schmelzen beginnen.
      Streue Salz auf das Herz
    4. Verdünne die Acrylfarbe mit etwas Wasser bzw. rühre Lebensmittelfarbe in Wasser ein.
    5. Giesse die farbige Flüssigkeit vorsichtig über das Herz und beobachte.
      Giese Farbe über das gesalzene Herz

    Was du beobachten kannst

    • Wenn du das gefrorene Herz aus dem Tiefkühlfach nimmst, wird es bei Raumtemperatur sehr langsam zu schmelzen beginnen.
    • Dort, wo du Salz darauf streust, wird das Eis sehr viel schneller tauen. Mit der Zeit fressen sich regelrecht Ritzen und Spalten in das Eis.
    • Wenn du farbige Flüssigkeit über das schmelzende Eis-Herz giesst, wird sie in und durch die Spalten laufen und die feinen Verästelungen deutlich sichtbar machen.
    im schmelzenden Eis - Herz bilden sich Furchen
    Hier ist schon einiges weggeschmolzen. Der Boden der Springform hatte eine karierte Struktur, die zu einer sehr regelmässigen Verteilung der Spalten beigetragen hat.
    • Nimm dir Zeit und beobachte das faszinierende Farbenspiel und die filigranen Strukturen, die das schmelzende Eis bildet! Wenn du eine Kamera hast, kannst du auch herrlich surreale Bilder davon machen!
    Acrylfarbe auf schmelzendem Eis
    Die stark verdünnte Farbe verläuft sich schnell. Mit reiner Acrylfarbe werden die Aushöhlungen und Schluchten noch besser sichtbar!

    Wie geht das Schmelzen vor sich?

    Alle Stoffe bestehen aus winzigkleinen Teilchen. Die Art und Weise, wie wir die Stoffe wahrnehmen, hängt vom Verhalten dieser Teilchen – und vor allem von den Wechselwirkungen zwischen ihnen – ab.

    Feststoff oder Flüssigkeit: Eine Frage der Bewegung

    (Wasser-)Eis und Wasser sind ein und derselbe Stoff. Je nach herrschender Temperatur erscheint uns dieser Stoff fest oder flüssig (oder – bei ausreichend hoher Temperatur – sogar gasförmig: als Wasserdampf). Diese Erscheinungsformen – welche Chemiker und Physiker “Aggregatzustände” nennen – sind das Ergebnis unterschiedlicher Beweglichkeit der winzigen Stoffteilchen.

    Im Feststoff sitzt längst nicht alles fest

    In einem Eisblock, das heisst bei Temperaturen unter 0°C, sind die Wasserteilchen auf festgelegten Positionen angeordnet. Die Teilchen wechselwirken dabei mit ihren Nachbarn: Anziehung zwischen den Teilchen sorgt dafür, dass sie auf ihrem Platz bleiben, und die Ausrichtung dieser anziehenden Wechselwirkungen (im Fall von Wasserteilchen sind das vornehmlich sogenannte “Wasserstoffbrücken”) bestimmt das Muster der Anordnung. Die Teilchen sind also zu einem sich immer wiederholenden “Gitter” angeordnet, das wir – wenn es gross genug ist – als Festkörper wahrnehmen: Zum Beispiel als gefrorenes Herz.

    Die Stoffteilchen sind allerdings ziemlich unruhige Gesellen. Ständig zittern und zappeln sie auf ihren Plätzen im Gitter herum – je höher die Temperatur des Ganzen ist, desto heftiger. Erst wenn man die Temperatur des Festkörpers auf den absoluten Nullpunkt (also 0 Kelvin oder -273,15°C) senken würde, wären die Teilchen im Gitter vollkommen ruhig.

    Flüssigkeiten: Ein lebhaftes Gedränge

    In einer Flüssigkeit gibt es keine festen Plätze mehr. Die Wasserteilchen in flüssigem Wasser bewegen sich weitestgehend frei gegeneinander, werden aber durch die anziehenden Wechselwirkungen nah beieinander gehalten. So geht es in der Flüssigkeit zu und her wie in einer bewegten Menschenmenge: Es strömt und fliesst und drängt hierhin und dorthin, und ununterbrochen ist man mit anderen auf Tuchfühlung. Wer schon einmal auf einer Grossveranstaltung wie der Street Parade in Zürich war, weiss, wovon ich schreibe.

    Wie eine grosse Menschenmenge werden auch die Teilchen einer Flüssigkeit jeden Behälter, in welchen man sie gibt, bis zur letzten Ecke ausfüllen und sich dabei der Schwerkraft folgend von unten nach oben aufschichten.

    Drei Aggregatzustände im Modell
    Stoffteilchen in drei Aggregatzuständen, wie du sie im Alltag beobachten kannst: Fest, flüssig, gasförmig

    Aus fest wird flüssig: Der Schmelzvorgang

    Unser gefrorenes Herz wird im Tiefkühlfach höchstens bis auf schlappe -18°C abgekühlt. Und bei Raumtemperatur wird es dann allenfalls noch wärmer. “Wärme” ist dabei nichts anderes als die Bewegung der Stoffteilchen: Je wärmer ein Stoff ist, desto grösser ist das Gezappel. Dabei können die herumzappelnden oder -flitzenden Teilchen eines Stoffes ihre Nachbarn anrempeln und ebenfalls in Bewegung versetzen.

    Das tun zum Beispiel die Luft-Teilchen, die – wie in einem Gas üblich – völlig ungebunden im Raum herumsausen. Wenn sie auf ihrem Weg gegen die Oberfläche des Eisherzens rempeln, versetzen sie die Wasserteilchen im Gitter in Schwingung: Die Eis-Oberfläche wird wärmer.

    Und wenn die Temperatur des Eises dabei 0°C erreicht, kann die Wärme-Energie auf noch andere Weise verwendet werden: Um die Wasser-Teilchen an der Eis-Oberfläche aus dem Gitter zu lösen. Die dafür aufgewendete Energie wird Schmelzwärme genannt – ich habe sie kürzlich hier näher erklärt.

    Die aus dem Gitter gelösten Teilchen bleiben zunächst dicht beieinander, bewegen sich dabei aber weitgehend frei: Sie bilden eine Flüssigkeit – flüssiges Wasser.

    Ein Festkörper schmilzt also von aussen nach innen, denn von aussen kommt die Wärme und nach aussen können die Flüssigkeits-Teilchen davonfliessen. Dabei ist ein Teilchen im Gitter umso mehr Rempeleien ausgesetzt, je mehr “Seiten” es hat, die nach aussen weisen. Vorspringende Ecken und Kanten schmelzen also schneller als ein massiver Block, der eine kleine Oberfläche hat, die mit warmer Luft in Berührung kommen kann!

    Was das Salz dazu tut

    Kochsalz-Teilchen mischen sich sehr gut mit flüssigem Wasser. Das führt dazu, dass die Wasserteilchen aus dem Eis nicht erst bei 0°C, sondern schon bei niedrigeren Temperaturen (bis -17°C !) aus dem Gitter gelöst werden. Wie das vor sich geht, habe ich hier erklärt.

    Wenn wir Salz auf unser Herz streuen, lösen sich die Wasserteilchen in der direkten Umgebung der Salzkörner demnach schneller aus dem Gitter. So entstehen zunächst Mulden, dann regelrechte Ritzen und Spalten in der Eis-Oberfläche, an deren Wänden nun viel mehr Wasserteilchen den Rempeleien der wärmeren Luft bzw. des flüssigen Wassers ausgesetzt sind. So wachsen die Ritzen und Spalten schnell weiter.

    Wenn wir nun farbige Teilchen (zum Beispiel Acryl- oder Lebensmittelfarbe) mit den Wasserteilchen mischen, werden die Ritzen, durch die das farbige Wasser-Farbstoffgemisch fliesst, sehr gut sichtbar.


    Entsorgung

    Wasser mit Lebensmittelfarben und Resten von wasserlöslichen Acrylfarben zum Basteln kann in den Ausguss entsorgt werden! Grössere Mengen Acrylfarbe solltest du eintrocknen lassen (oder besser zum Malen verwenden!) und in den Hausmüll geben.

    Ideen zum Weiterexperimentieren

    • Du kannst das Experiment natürlich auch zu jedem anderen Anlass bringen: Anstelle der Herzform funktionieren weihnachtliche, Oster- und andere Formen ebenso gut.
    • Du kannst zudem mit verschiedenen Farbtönen experimentieren und (leider recht vergängliche) Eiskunst kreieren und fotografieren.
    • Was ich noch nicht ausprobiert habe: Was geschieht, wenn man das Herz mitsamt Ritzen und Spalten wieder einfriert und später eine andere Farbe zum Giessen verwendet?

    Ich wünsche dir viel Spass beim Herzen schmelzen – sowohl derer aus dem Tiefkühlfach als auch derer deines/r Liebsten!