Tag Archive for: Schnee

Winterzeit ist Zeit für Experimente! Weite Teile Mitteleuropas versinken dieser Tage im Schnee. In manchen Regionen rund um die Alpen fällt sogar die Schule aus. Das ist _die_ Gelegenheit, die weisse Pracht näher zu erforschen!

Und da können sogar schon die ganz Kleinen mitmachen, denn die folgenden Experimente sind auch schon für Kinder im Kindegartenalter geeignet.

Was passiert, wenn Schnee warm wird?

Los geht es mit der alles bestimmenden Frage: Was passiert, wenn Schnee warm wird? Die Antwort ist einfach: Er schmilzt. Das weiss doch jedes Kind. Schnee ist ja schliesslich gefrorenes Wasser. Und wenn er schmilzt, wird daraus natürlich flüssiges Wasser.

Aber zur Zeit liegt draussen eine ganze Menge Schnee. Wenn der in ein paar Tagen einfach zu Wasser wird, müssten wir ja förmlich in den Wassermassen versinken….oder? Prüfen wir das doch ganz einfach nach.


Experiment 1: Wieviel Wasser steckt in einem Liter Schnee?


Ihr braucht dazu:

  • Einen Messbecher oder ein durchsichtiges Kunststoffgefäss, in das etwa 1 Liter Wasser passt (Glas kann bei plötzlicher Kälte springen, deshalb ist Kunststoff hier sicherer!)
  • genügend weichen, nicht zu nassen Schnee
  • eine kleine Schaufel
  • eventuell einen wasserfesten Filzschreiber

So geht’s:

Füllt den Messbecher bis zur 1-Liter-Marke mit Schnee. Wenn ihr keinen Messbecher habt, füllt euer Gefäss einfach nicht ganz bis zum Rand und markiert die Füllhöhe mit einem Strich. Wenn Kindergartenkinder noch keine Skala lesen können, kann ein farbiger Strich zur Erinnerung auch auf dem Messbecher angebracht werden.

Ein Liter Schnee, locker in den Messbecher geschaufelt

Stellt den Becher mit dem Schnee in einen warmen Raum und wartet etwa 3 bis 4 Stunden. Wenn ihr so viel Geduld nicht aufbringt, könnt ihr den Becher natürlich auch auf die Heizung oder in einem Topf mit heissem Wasser auf die Herdplatte stellen (Kunststoff nie direkt auf den Herd!). Dann geht es schneller. Gebt nur acht, dass ihr den Messbecher von der Wärmequelle nehmt, sobald der Schnee geschmolzen ist. Sonst verdampft zu viel Wasser!

Was geschieht?

Der Schnee schmilzt nach einiger Zeit vollständig. Es bleibt dabei aber sehr viel weniger als ein Liter Wasser übrig – in meinem Versuch gerade einmal 1/8 Liter (also 125ml)!

1 Liter Schnee geschmolzen: 1/8 Liter Wasser!
Der Schnee ist geschmolzen: Es bleibt nur 1/8 Liter Wasser!

Warum ist das so?

Lasst die Kinder zunächst Vermutungen anstellen. Vielleicht kommen sie ja selbst darauf: Der Schnee füllt das Gefäss nicht lückenlos. Das heisst, er muss Luft enthalten!


Bekommt man das Gefäss auch so voll mit Schnee, dass keine luftgefüllten Zwischenräume mehr bleiben?



Experiment 2: Wieviel Schnee kann man in das 1-Liter-Gefäss stopfen?


Ihr braucht dazu:

  • Den Messbecher oder euer 1-Liter-Gefäss
  • noch mehr Schnee
  • die Schaufel
  • eine Küchenwaage (für Kindergartenkinder, die noch keine Zahlen lesen und vergleichen können, ist eine Balkenwaage oder mechanische Anzeige, z.B. mit Zeiger, direkter erlebbar als eine digitale Waage – aber kein Muss)

So geht’s:

Stellt den leeren, trockenen Messbecher oder das Wassergefäss auf die Waage und schreibt euch das Gewicht auf.

Der leere Messbecher wiegt 112g.
Mein leerer Messbecher wiegt 112 Gramm.

Schaufelt dann draussen Schnee in das Gefäss und drückt ihn nach jeder Schaufelladung so fest hinein wie ihr könnt. Tragt dabei Winterhandschuhe oder arbeitet so zügig, dass euch weder der Schnee schmilzt noch die Finger abfrieren.

Trocknet das Gefäss aussen ab und wiegt es gleich noch einmal. Zieht dann das Gewicht des leeren Gefässes von dem des vollen Gefässes ab. Nun wisst ihr, wieviel Schnee ihr in euer Gefäss gestopft habt!

Messbecher mit Schnee auf der Waage
  • Gewicht meines vollen Messbechers: 653g
  • Gewicht meines leeren Messbechers: -112g
  • Gewicht des Schnees im Messbecher : 541g


Wer schon weiss, dass ein Liter Wasser rund 1 Kilogramm wiegt (für die fortgeschrittenen Physiker und Chemiker unter euch: Die Dichte von Wasser beträgt rund 1kg/l, also 1g/ml), der kann nun schon voraussagen, wie viel Wasser übrig bleiben wird, wenn der ganze Schnee geschmolzen ist. In meinem Messbecher sollten das 541ml sein.



Experiment 3: Wieviel Wasser steckt in dem gestopften Schnee?


Ihr braucht dazu:

  • den vollgestopften Becher von Experiment 2
  • noch ein paar Stunden Zeit oder eine Wärmequelle

So geht’s:

Stellt das mit Schnee vollgestopfte Gefäss an die Wärme und wartet – wie in Experiment 1 – bis der Schnee komplett geschmolzen ist. Dann lest die Skala ab. Wenn ihr keinen Messbecher mit Skala habt, markiert die Füllhöhe mit flüssigem Wasser mit einem zweiten Strich und vergleicht sie mit der Höhe des ersten Striches.

Was geschieht?

Der Schnee ist geschmolzen: Es sind etwas weniger als 550ml Wasser übrig – genau so viel wie erwartet!

Tatsächlich: In meinem Messbecher sind am Ende knapp 550ml Wasser! Genauer ist meine Skala nicht, aber die Rechnung scheint zu stimmen.

Aber: Das ist ja nur wenig mehr als die Hälfte von einem Liter, den ich vorher dicht mit Schnee vollgestopft habe! Obwohl ich mir so viel Mühe gegeben habe und es nicht danach aussah, ist immer noch fast das halbe Gefäss voller Luft gewesen!



Wie kann das sein, dass ich den Schnee einfach nicht dicht genug zusammenquetschen kann?


Noch ein Experiment: Schnee unter der Lupe

Um das zu erforschen, werdet ihr ein technisches Hilfsmittel brauchen: Eine starke Lupe, eine Fotokamera mit Makro-Objektiv oder leistungsstarkem Zoom, oder am besten ein einfaches Mikroskop.

Seht euch damit Schneeflocken oder ganz frisch geschneiten Schnee einmal genauer an (wie genau ihr das anstellt, zeige ich euch hier).

Schneeflocken unter meinem billigen USB-Mikroskop: Es handelt sich wunderschöne filigrane Eiskristalle!

Ihr werdet feststellen, dass Schneeflocken tatsächlich wunderschöne, filigrane Sterne sind, mit vielen Zacken und luftgefüllten Lücken dazwischen. Und diese Sterne bestehen aus Eis! Und Eis wiederum ist hart und steif. So ähnlich wie eure Legosteine.

Und wenn ihr die Legosteine alle zusammen in eine Kiste räumt, verkeilen und verhaken sich Fenster, Bäume und Figuren ineinander. So können sie nicht aneinander vorbei gleiten, so sehr ihr auch von oben darauf drückt. Davon gehen sie allerhöchstens kaputt. Aber es bleibt trotzdem noch reichlich Luft zwischen den Bausteinen.

Das gleiche passiert mit den Schneeflocken, wenn ihr darauf drückt: Die schönen Sterne verhaken sich ineinander, und viele Zacken brechen ab. Ganz zermahlen könnt ihr kleinen Eiskristalle mit blossen Händen aber nicht, sodass immer noch reichlich Luft zwischen den Trümmern bleibt. Und die sind – wie die luftgefüllten Räume dazwischen – so klein, dass man sie mit dem blossen Auge nicht sieht.

Und wenn man nun noch stärker drücken würde?

Beobachtungstipp:

Wenn ihr in einer Gegend seid, in der über längere Zeit sehr viel Schnee liegt und nachschneit (zum Beispiel in einem Skigebiet im Gebirge), betrachtet einmal die aufgestapelten Schneeschichten von der Seite. Das könnt ihr sehr gut, wenn der Schnee sich z.B. auf einer Hecke oder Mauer angehäuft hat: Das Gewicht der oberen Schneeschichten drückt die unteren Schichten zusammen. So werden die unteren Schichten immer dünner und fester.

Damit ergibt sich zum Schluss eine Frage für schlaue Forscher: Was passiert wohl mit den Schneeflocken in den unteren Schichten, wenn immer mehr Schnee oben drauf geschichtet wird…?

Hast du die Experimente nachgemacht: 

[poll id=“14″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Wie Streusalz wirkt - Nutzen und Gefahren im Winterdienst

(Titelbild: CC BY-SA3.0 by Heidas)

Willkommen im neuen Jahr – mit viel Schnee bis in die Niederungen und entsprechend viel Streusalz auf den Strassen. Letzten Samstag habe ich zwei Schneepflügen zugesehen, die in aller Eile unseren Busbahnhof geräumt haben. Dabei fiel mir am Heck jedes Fahrzeugs gleich ein Streuteller ins Auge. Dieses runde Gerät dreht sich fortlaufend und verteilt – die Zentrifugalkraft ausnutzend – Streusalz auf die frisch geräumte Fläche.

Tatsächlich wird in der Schweiz im Vergleich zu anderen europäischen Ländern – besonders wenn man ihre Grösse und Bevölkerung berücksichtigt – nach wie vor ziemlich viel Salz gestreut. Aber warum machen die Städte und Gemeinden das? Wie kann Streusalz verhindern, dass es Glatteis gibt? Und wie sorgt es dafür, dass Eis und Schnee schmelzen?

Was ist Streusalz?

Das Salz, welches gegen Schnee- und Eisglätte gestreut wird, ist tatsächlich nichts anderes als gewöhnliches Kochsalz, also Natriumchlorid, NaCl. In Ländern wie Deutschland, die auf geniessbares Kochsalz eine Salzsteuer erheben, wird das Streusalz „vergällt“. Das heisst, es werden Stoffe hinein gemischt, die das Salz ungeniessbar machen. Deshalb ist Streusalz – das in grossen Mengen gebraucht wird – oft wesentlich preiswerter als Tafel- oder hochreines Labor-Salz.

Wenn das Streusalz auch bei sehr hartem Frost funktionieren soll, wird das Natriumchlorid zudem mit anderen Salzen wie Calciumchlorid, CaCl2, oder Magnesiumchlorid, MgCl2, vermischt. Diese Salze haben auch bei niedrigeren Temperaturen eine auftauende Wirkung.

All diese Salze bestehen aus Ionen, also elektrisch geladenen Atomen, die sich zu einem Gitter – einem Ionenkristall – zusammengelagert haben. In Wasser werden die Ionen jedoch voneinander getrennt: Jedes dieser Salze löst sich in Wasser. Aus Natriumchlorid entstehen dabei Natrium- und Chlorid-Ionen:

NaCl –(H2O)–> Na+(aq) + Cl(aq)

Wie kann Streusalz verhindern, dass Wasser gefriert?

Wenn flüssiges Wasser auf 0°C oder darunter abkühlt, lagern sich auch Wassermoleküle zu Eiskristallen zusammen. Allerdings sind Wassermoleküle nicht elektrisch geladen. Stattdessen sind die Elektronen in solchen Molekülen nicht gleichmässig verteilt, sodass ein Ende eines Wassermoleküls negativer, das andere positiver geladen ist.

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Das Sauerstoff-Ende (rot) eines H2O-Moleküls hat einen negativen, das Wasserstoff-Ende (weiss) einen positiven Ladungsüberschuss.

Das lässt sich übrigens mit diesem spannenden Experiment ganz einfach zeigen.

Die negativ geladenen Enden wenden sich im Eiskristall den positiv geladenen Enden der nächsten Moleküle zu und umgekehrt. So bestimmen die Ladungsüberschüsse in den Wassermolekülen die Form des Eiskristallgitters.

Ein Modell eines Eiskristalls: Die schwarzen bzw. silbernen „Eckstücke“ stellen Wassermoleküle dar, die Verbindungsstäbe stehen für Wasserstoffbrücken zwischen den unterschiedlichen Ladungsschwerpunkten benachbarter Moleküle.

Wenn man nun Kochsalzkristalle („Salzkörner“ sind ganz kleine Kristalle) in flüssiges Wasser mischt, lagern sich die Wassermoleküle mit dem jeweils entgegengesetzt geladenen Ende an die Natrium- und Chlorid-Ionen im Gitter an. Dabei drängen sich die Wassermoleküle derart heftig um die Ionen, dass diese schliesslich aus dem Ionengitter herausgelöst werden! Damit können die einzelnen Ionen vollständig von Wassermolekülen umlagert werden.

Natriumion mit Hydrathülle
Ein Natrium-Ion ist vollständig von Wassermolekülen umgeben, die dem positiv geladenen Ion ihre negativ geladenen Enden zuwenden. An diese innere Hülle lagern sich weitere Wassermoleküle an – das negative Ende wiederum dem Ion zugewandt – an, sodass eine Hydrat-Hülle sehr dick werden kann.

Chemiker sagen, die Ionen sind von einer „Hydrat-Hülle“ umgeben, oder – kurz gesagt – „hydratisiert“ (das „aq“ in der Reaktionsgleichung oben meint genau diesen Zustand: Na+(aq) ist ein Natrium-Ion mit Hydrat-Hülle; „aq“ steht dabei für das lateinische „aqua“ für Wasser).

Wasser ist nicht multitaskingfähig

Damit sind die Wassermoleküle ziemlich schwer beschäftigt. Nicht einmal bei Temperaturen knapp unter 0°C können sie sich von den Ionen losreissen und ihre Plätze in einem Eiskristall einnehmen. Und da die Hydrathülle eines jeden Ions aus weit mehr als einer Molekül-Schicht besteht, ist schnell ein Grossteil aller Wassermoleküle zu beschäftigt, um zu gefrieren. Das Wasser mit den gelösten und hydratisierten Salz-Ionen bleibt also flüssig.

Erst bei Temperaturen unter -21°C (im Labor) bilden sich Mischkristalle, die aus Salz-Ionen und Wassermolekülen bestehen – kurz gesagt: Salzwasser-Eis. Das Kristallgitter von Salzwasser-Eis ist allerdings bei weitem nicht so regelmässig wie das von reinem Wasser-Eis. Das ganze Mischmasch hält einfach weniger gut zusammen. Deshalb ist der Gefrierpunkt von Salzwasser tiefer als der von reinem Wasser. Chemiker und Physiker nennen diesen Umstand „Gefrierpunkterniedrigung“.

Gefrierpunkterniedrigung auf der Strasse

Streut man also Kochsalz auf eine nasse Strasse, so bildet sich auch bei Temperaturen bis zu etwa -10°C kein Eis. Enthält das Streusalz zudem oder stattdessen Calcium- oder Magnesiumchlorid, kann das Wasser auf der Strasse auch bei bis zu -20°C flüssig bleiben. Diese Salze enthalten nämlich Ca2+– bzw. Mg2+-Ionen, die grösser als Na+-Ionen sind. Damit ist das Gitter von Calcium- bzw. Magnesium-Salzwasser-Eis noch unregelmässiger als das von Natrium-Salzwasser-Eis – und hält entsprechend noch weniger gut zusammen.

Und wenn es bereits friert: Wie kann Streusalz Eis schmelzen?

Eiswasser und Le Châtelier: Eine bewegliche Angelegenheit

Erreicht die Temperatur von Wasser (fest oder flüssig) den Gefrierpunkt (bei 0°C) können sich zuvor bewegliche Wassermoleküle zu einem festen Eiskristall zusammenlagern und sich daraus lösen und zu flüssigem Wasser werden. Das heisst: Während an einigen Orten an der Kristalloberfläche neue Moleküle hinzu kommen, werden an anderen Orten andere Moleküle wieder abgelöst. Ob dabei (mehr) Eis entsteht oder schmilzt, hängt davon ab, ob dem Wasser Energie zugeführt oder entzogen wird.

Sobald nämlich flüssiges Wasser und Eis miteinander vorhanden sind, ist das Ganze ein dynamisches (d.h. bewegliches) System, welches dem Gesetz von Le Châtelier gehorcht (das Le Châtelier höchstselbst uns hier am Flughafen erklärt).

Wird dem Eiswasser Energie entzogen (z.B. durch Kühlung), kommen mehr neue Moleküle zum Eis hinzu, als davon abgelöst werden, sodass irgendwann das ganze Wasser zu Eis erstarrt. Wird stattdessen Energie hinzugefügt (z.B. durch Erwärmen), verhält es sich umgekehrt: Es lösen sich mehr Moleküle vom Eis als hinzu kommen, bis das ganze Wasser flüssig ist.

Mit diesem spannenden Experiment könnt ihr feststellen, dass sich die Temperatur des Eiswassers durch Erwärmen tatsächlich nicht ändert, so lange Eis und Wasser miteinander vorhanden sind!

In einer Umgebung ohne sich verändernde äussere Einflüsse (insbesondere ohne Energie-Austausch, was im Alltag ziemlich unrealistisch ist), kann sich sogar ein dynamisches Gleichgewicht einstellen: Wenn stets ebenso viele Wassermoleküle zum Kristall hinzukommen wie sich davon lösen, gefriert und schmilzt das Wasser ständig – aber die Menge des Eises (und des flüssigen Wassers) ändert sich nicht!

Kochsalz übt einen Zwang auf das System aus

Bringt man nun Kochsalz (oder einen anderen Stoff mit „Auftauwirkung“) in ein solches Eiswasser-System, dann wird ein erheblicher Teil Moleküle des flüssigen Wassers mit der Bildung von Hydrat-Hüllen um die Ionen „beschäftigt“. Diese Moleküle „fehlen“ dem Eiswasser-System damit regelrecht. Und gemäss dem Gesetz von Le Châtelier ist das System umgehend darum bemüht, diesen Verlust auszugleichen.

Das Fehlen der flüssigen Wassermoleküle führt also dazu, dass sich mehr Moleküle aus dem Eis lösen, um die Fehlenden zu ersetzen. Das sind mitunter so viel mehr Moleküle, dass insgesamt mehr Wasser flüssig wird als gefriert – obwohl ohne Salz mehr Wasser gefroren wäre! So kann die Gegenwart von Streusalz selbst bei Temperaturen unter 0°C Eis zum Schmelzen bringen.

Wie kommt man bei Frost zum dynamischen System?

Wenn ihr gut aufgepasst habt, werdet ihr jetzt vielleicht einwenden, dass das Auftauen nur funktionieren kann, wenn Eis und flüssiges Wasser vorhanden sind. Und letzteres gibt es bei Frost naturgemäss nicht!

Guter Einwand. Aber die Verwender von Streusalz wissen das natürlich auch. Deshalb streuen sie das Salz gleich mit flüssigem Wasser – als pflotschigen Salz-Matsch oder gar als mehr oder weniger flüssige Salzlösung – also als „Sole“ wie die Fachleute so etwas nennen.

Ausprobieren könnt ihr das Ganze hingegen mit trockenem Salz – in eurer warmen Wohnung. Da beginnt Eis nämlich von selbst zu schmelzen und bekommt so eine feuchte Oberfläche. Wie könnt ihr das nutzen? Das zeige ich euch in dieser ganz herzigen Experimentier-Anleitung.

Wie schadet Streusalz der Umwelt?

So nützlich Auftausalz auch ist, bringt es doch eine ganze Reihe von Problemen für die Umwelt, in die es ausgebracht wird, mit sich.

Beeinträchtigung von Gewässern

Die grossen Mengen an Salzen, die auf Strassen und Wege gestreut werden, lösen sich äussert gut in Wasser. Das sollen sie ja auch, denn sonst würde das Ganze nicht funktionieren. Die Salzlösung, die aus Schneematsch und tauendem Eis entsteht, kann jedoch ebenso leicht wie ablaufendes Wasser in umliegende Gewässer geraten. Und Salzwasser hat eine höhere Dichte als das normalerweise dort vorhandene Süsswasser: Ein Volumen an Salzwasser ist schwerer als das gleiche Volumen Süsswasser!

Ein natürliches Gewässer, das aus mehreren Wasserschichten unterschiedlicher Temperatur und Dichte besteht (die Dichteanomalie des Wassers führt dazu, dass reines Wasser bei rund 4°C die grösste Dichte hat), kann durch den Zufluss von Salzwasser von gestreuten Strassen eine oder mehrere neue Schicht/en erhalten. Solche neuen oder veränderten alten Schichten bringen die natürliche, temperaturgesteuerte Umwälzung der Wassermassen im Gewässer durcheinander, was die Verteilung von Sauerstoff und Nährstoffen beeinträchtigt und damit die Lebewesen im Gewässer gefährdet.

Schädigung von Bäumen und anderen Pflanzen

Die Gewächse im Binnenland und in Süssgewässern sind daran angepasst, dass sie Süsswasser „trinken“ und ihre Nährstoffe daraus beziehen können. Das heisst, der Austausch von Wasser und darin gelösten Stoffen zwischen Wurzeln oder Blättern und ihrer Umgebung, der auf Osmose beruht (die ihr hiermit genauer erforschen könnt) ist fein auf einen geringen Salzgehalt abgestimmt.

Kurz gesagt nehmen viele Pflanzen- (und andere) Zellen um so mehr Wasser auf, je mehr Salze sie enthalten – und geben Wasser ab, wenn draussen mehr Salze sind als in ihrem Inneren. Das gilt jedoch nicht für Wurzeln, die Wasser mitsamt der darin enthaltenen Mineralstoffe (die nichts anderes als Salz-Ionen sind) aufnehmen sollen, von welchen die Pflanze sich ernährt.

Geraten diese Pflanzen nun unverhofft an Salzwasser von gestreuten Strassen, „trinken“ sie das Wasser mitsamt dem vielen Salz. Das wiederum wird in die verschiedenen Pflanzenzellen verteilt und zieht weiteres Wasser nach sich: Die Zellen schwellen an und funktionieren nicht mehr richtig. In Folge dessen kränkeln die Pflanzen und gehen im schlimmsten Fall ein.

Tiere bekommen wunde Pfoten

Wer schon einmal mit einem Kratzer in der Haut im Meer gebadet hat, wird es selbst erfahren haben: Salzlösung tut weh! Sie kann die Haut reizen, besonders an empfindlichen vorgeschädigten Stellen. Wie zum Beispiel in den Zehenzwischenräumen von Säugetieren. Wenn es uns Menschen juckt oder zwickt, dann kratzen wir – die Tiere hingegen lecken solche wunden Stellen mit der Zunge. Im Speichel der Tiere wiederum lauern Keime, die so an die wunden Stellen geraten und Infektionen hervorrufen können, welche zu stärkeren Entzündungserscheinungen führen. Und mehr Salz in diesen Wunden tut wiederum weh, sodass mehr geleckt wird…

Mit dem Haushund oder der Katze können wir zum Tierarzt gehen, Salben auftragen und eine Halskrause anlegen, um das Lecken zu unterbinden – begeistert werden die Haustiere davon aber nicht sein. Und Wildtiere wie Füchse können in der Regel nicht einmal auf diese Hilfe zählen.

Korrosion von Metall- und Betonbauteilen

Vielleicht ist euch ja auch schon einmal aufgefallen, dass man in Häfen oder allgemein an der Meeresküste besonders viel Rost antrifft – tatsächlich rostet Eisen, das Kontakt mit Salzwasser hat, deutlich schneller als Eisen fernab vom Meer.

Das rührt daher, dass Wasser mit darin gelösten Salz-Ionen wesentlich besser elektrischen Strom leitet als Süsswasser oder gar reines Wasser. Und elektrische Leitfähigkeit ist für das Rosten und ähnliche Prozesse, die die Chemiker als „Korrosion“ zusammenfassen, unverzichtbar. Korrosion ist nämliche eine Folge chemischer Reaktionen, bei welchen zwischen den Reaktionspartnern Elektronen ausgetauscht werden. Und Elektronen (oder andere geladene Teilchen) auf Wanderschaft sind…elektrischer Strom.

So können durch salzhaltiges Wasser Elektronen vom Eisen direkt zu dessen Reaktionspartnern wandern, was die Korrosion – das Rosten – besonders einfach macht. Was genau dabei geschieht, könnt ihr übrigens hier in meiner Rostparade nachlesen.

Autos, die über gesalzene Strassen fahren, rosten also ebenso schneller wie Brücken und andere Bauwerke aus Eisen, Stahl oder Stahlbeton, die rund um solche Strassen stehen.

Gibt es Alternativen zum Streusalz?

Da die Probleme, welche das Streuen mit Salz mit sich bringt, den Winterdiensten wohlbekannt sind, gibt es verschiedene Alternativen, die jedoch alle ihren eigenen Haken haben:

Harnstoff oder Ammoniumsulfat

Diese beiden Verbindungen haben eine ähnliche auftauende Wirkung wie Kochsalz und seine schwereren Verwandten. Allerdings enthalten sie Stickstoff (Harnstoff ist CO(NH2)2,Ammoniumsulfat ist (NH4)2SO4 !) in Verbindungen, die für viele Pflanzen sehr nahrhaft sind. Massenweise auf Strassen ausgebracht und im umliegenden Boden versickert können sie daher zu Überdüngung führen. Ausserdem ist auch Ammoniumsulfat eine Ionenverbindung und bringt die gleichen Probleme mit sich wie alle anderen Salze auch.

Abstumpfendes Streugut: Split, Sand, Blähton und ähnliches

Solche Streugüter sind im Prinzip nichts anderes als zerkleinerte Steine – weitgehend wasserunlöslich und unreaktiv. Damit gefährden sie zwar nicht den Stoffwechsel von Pflanzen und Tieren, müssen nach der Verwendung aber wieder eingesammelt und entsorgt werden. Würde man das nicht tun, würden Sand und Steinsplitter irgendwann Rinnsteine und Abflüsse verstopfen.

Und die Entsorgung oder gar Wiederaufbereitung von Streugut ist alles andere als einfach. Nachdem nämlich unzählige Autos darüber gefahren sind, ist das Streugut von Reifenabrieb und anderem Schmutz verunreinigt. Der müsste erst vom Streugut abgeschwaschen und dann seinerseits umweltschonend entsorgt werden.

Was ihr tun könnt, wenn euer Gehweg überfriert

Wenn ihr in Deutschland oder Österreich wohnt, werdet ihr keine grosse Wahl haben. Hier ist nämlich der Einsatz von Streusalz für Privatpersonen verboten (die Winterdienste der Kommunen streuen hingegen bei extremen Wetterbedingungen Salz auf den Strassen).

In der Schweiz gibt es dagegen kein generelles Verbot, sodass ihr hierzulande selbst entscheiden könnt, ob und womit ihr eure Gehwege streut.

Auf eurem privaten Garten- oder Fussweg, fernab von zahllosen Gummireifen, ist abstumpfendes Streugut eine gute Wahl für Pflanzen und Tiere. Ihr werdet es bloss immer wieder nachstreuen und schliesslich wieder einsammeln müssen, sobald Schnee und Eis geschmolzen sind.

Die beste Massnahme gegen Eisglätte auf Wegen und Strassen ist letztendlich das Schneeschippen. Denn was einmal geräumt ist, kann nicht mehr überfrieren und schmilzt im Frühjahr rückstandslos weg. Einzig bei überfrierendem Regen hilft das Schaufeln auch nicht weiter. Aber meiner Erfahrung nach ist das selbst hier in der Schweiz eine Ausnahme-Wettererscheinung.

Bevor ihr irgendetwas streut, empfehle ich euch, erst einmal zu schaufeln was das Zeug hält. Denn ganz ohne den Einsatz von Streugut wird es im heutigen Strassenverkehr kaum mehr gehen. Aber die Menge des dabei verwendeten Streusalzes kann so gering wie möglich gehalten werden. Und dabei könnt ihr alle mitmachen!

Und wie geht ihr gegen Schnee- und Eisglätte vor?

Eis und heiss: Erforsche die Schmelzwärme

Der Winter ist die perfekte Zeit für Experimente mit Eis und Schnee. Ein ganz einfaches habe ich heute für euch – Aber Achtung! Es besteht die Gefahr, dass es das ein oder andere Weltbild erschüttert!

Wenn man etwas in einen Topf füllt und das Ganze auf dem Herd erhitzt, wird es stetig wärmer. Klar. Wärme ist schliesslich eine Form von Energie, die von einem Objekt auf ein anderes übertragen werden kann, und dabei nicht verloren gehen darf….Wirklich? Habt ihr schon einmal versucht, Eiswasser zu erwärmen?

Ihr braucht dazu

  • einen Herd
  • einen kleinen Kochtopf (der Topf auf dem Artikelbild ist zu gross bzw. enthält zu wenig Eis!)
  • Eis oder Schnee von draussen oder Eiswürfel aus dem Tiefkühlfach (ihr solltet den Topf gut damit füllen können)
  • kaltes Leitungswasser
  • einen Kochlöffel zum Rühren
  • ein Thermometer mit einem Anzeigebereich mindestens von -10°C bis +50°C, besser +100°C
  • etwas zum Schreiben (z.B. Tafel oder Notizblock)
  • ggfs. eine Uhr

Wie ihr das Experiment durchführt

  • Füllt Eis oder Schnee in den Topf und gebt ein wenig kaltes Wasser dazu. Der Boden des Topfes sollte mindestens 1cm hoch mit Wasser bedeckt sein (das Thermometer muss eintauchen können).
  • Messt sofort die Temperatur des Eiswassers und notiert sie
  • Stellt den Topf mit dem Eiswasser auf den Herd und heizt langsam ein. Rührt dabei laufend um.
  • Behaltet das Thermometer dabei im Wasser. Beobachtet während des Rührens die Anzeige. Ihr könnt in regelmässigen Zeitabständen die Temperatur notieren.

Was ihr beobachten könnt

  • Die Temperatur steigt von negativen Werten bis auf 0°C, zunächst aber nicht nennenswert darüber hinaus!
  • Das Eis schmilzt langsam, sobald eine Temperatur von 0°C erreicht ist.
  • Erst nachdem alles Eis geschmolzen ist, steigt die Temperatur des Wassers merklich an.
Nach dem Schmelzen steigt die Temperatur schnell an.

Erst nachdem das Eis geschmolzen ist, steigt die Temperatur schnell an. Damit dieses Phänomen deutlich messbar wird, solltet ihr den anfangs gut mit Eis und mit wenig Wasser gefüllten Topf langsam erwärmen!

Was passiert da?

Die Energie in Form von Wärme, die von der Herdplatte ausgeht, scheint zu verschwinden, anstatt in den Topf und seinen Inhalt über zu gehen! Laut dem ersten Hauptsatz der Thermodynamik ist aber genau das – das Auftauchen oder Verschwinden von Energie aus bzw. in dem Nichts – verboten!

Aber keine Sorge – ich habe die Physik nicht aus den Angeln gehoben. Der Vorgang des Schmelzens als solcher erfordert Energie, die während des Schmelzvorgangs in dem verflüssigten Stoff „gespeichert“ wird. Was Energie eigentlich ist und in welcher Weise sie umgewandelt und weitergegeben werden kann, hat sie uns in diesem Artikel übrigens selbst verraten.

Warum nun ein Schmelzvorgang Energie erfordert, und in welcher Weise sie in geschmolzenen Stoffen Eingang findet, erkläre ich anlässlich meines persönlichen AHA-Erlebnisses mit diesem Experiment hier genauer. Kurzum: Wärme ist eigentlich nichts anderes als Bewegung – und alle Stoffe bestehen aus mehr oder minder bewegten kleinen Teilchen. Beim Schmelzen gewinnen diese Teilchen ein neues „Level“ der Bewegung, das wir nicht als Wärme wahrnehmen – sondern als veränderte Beweglichkeit des ganzen Stoffes: Was vorher fest und greifbar war, ist nach dem Schmelzen flüssig und rinnt uns durch die Finger!

Wie ihr noch weiter forschen könnt

Die Schmelzwärme lässt sich wieder freisetzen

Natürlich könnt ihr die in Beweglichkeit verwandelte Energie wieder zurück verwandeln. Stellt einen Behälter mit dem eben geschmolzenen Wasser einfach ins Tiefkühlfach – oder, wenn es draussen friert, auf die Terrasse oder den Balkon. Mit der Zeit wird das Wasser wieder erstarren, und die zum Schmelzen aufgewandte Energie geht dabei in Form von Wärme in die Umgebung über. Auf dem Balkon oder der Terrasse verliert sich diese Wärme schnell.

Wenn ihr aber einen freistehenden Tiefkühlschrank verwendet, fühlt einmal an dessen Rückseite. Die ist ganz warm! Sollte sie auch – der Tiefkühlschrank ist schliesslich eine Maschine, die ihrem Innenraum Wärme entzieht – auch die Schmelzwärme aus den Dingen, die wir darin „einfrieren“. Und laut den Gesetzen der Thermodynamik muss diese Wärme irgendwo hin  – vorzugsweise nach draussen. Genau da befördert die Tiefkühlschrank die Energie aus seinem Inhalt über verschiedene Stationen und Umwandlungen hin.

Verdampfungswärme: Das Gleiche „in Grün“

Wenn ihr ein Thermometer habt, das auch bei über 100°C noch funktioniert, könnt ihr das Experiment auf dem Herd einfach weiter laufen lassen. Nach dem Schmelzen der Eiswürfel wird die Temperatur des Wassers stetig ansteigen – bis sie rund 100°C erreicht. Das Wasser wird sieden und die Temperatur wird wieder weitgehend gleich bleiben – bis das Wasser vollständig verdampf ist. Erst der Wasserdampf kann theoretisch eine Temperatur über 100°C erreichen.

Auch das Verdampfen – der Vorgang, bei welchem eine Flüssigkeit zu einem Gas wird, verleiht dem Stoff ein neues Beweglichkeits-Level, das zu erreichen Energie erfordert.

Diesen Umstand habt ihr sicher schon einmal am eigenen Leib erlebt: Wenn ihr aus der warmen Dusche oder Badewanne steigt, verlangt es euch sicher ganz schnell nach einem Handtuch. Das warme, flüssige Wasser auf eurer Haut neigt nämlich dazu, recht rasch zu verdunsten – d.h. vor Erreichen des Siedepunkts zu Wasserdampf zu werden. Die dazu nötige Verdampfungswärme bezieht das Wasser dabei aus seiner Umgebung – und bedient sich dabei fleissig an eurer Körperwärme. Der Körper quittiert das dementsprechend ungehalten: Er signalisiert „es ist kalt!“ – und ihr friert im eigentlich warmen Badezimmer!

Wenn es im Sommer richtig heiss ist, nutze ich diesen Effekt übrigens gerne aus: Ich tränke einen Sonnenhut aus Stoff mit Wasser – das nicht unbedingt kalt sein muss – und setze ihn triefnass auf. Sonne und Umgebungswärme lassen das Wasser im Hut rasch verdunsten, wobei es einen guten Anteil der nötigen Verdampfungswärme aus meinem Kopf bezieht – der so überschüssige Körperwärme einfach los wird. So bewahre ich auch bei Hitze buchstäblich „einen kühlen Kopf“ – zumindest so lange, bis alles Wasser aus dem Hut verdunstet ist.

Habt ihr schon mit Schmelz- oder Verdampfungswärme experimentiert? Wenn nicht, probiert es unbedingt aus. Ich wünsche euch viel Spass dabei!

Hast du das Experiment nachgemacht: 

[poll id=“28″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Der Winter ist da – und mit ihm eine spannende Gelegenheit für Naturforscher: Was ist eigentlich Schnee? Finde es selbst heraus – ein USB-Mikroskop am Laptop liefert die Antwort!

Dieser Artikel enthält Links aus dem Amazon-Partnerprogramm (gekennzeichnet mit (*)-(*) ) – euch kosten sie nichts, mir bringen sie vielleicht etwas für meine Arbeit ein. Das verwendete Mikroskop und der Molekülbaukasten sind Privatanschaffungen und gehören zu meinem persönlichen Inventar.

„Die Inuit kennen 40 verschiedene Wörter für ‚Schnee'“, erklärt Smilla Jaspersen in dem Film „Fräulein Smillas Gespür für Schnee“. Diese Aussage hat einen Mythos geschaffen, welcher darin wurzelt, dass in den Inuit-Sprachen eine Unzahl verschiedener Vor- und Nachsilben an gerade einmal zwei Grundwörter gehängt werden können, um die verschiedenen Erscheinungsformen von Schnee zu beschreiben. Im Deutschen verwenden wir dafür zusammengesetzte Wörter: Papp- und Pulverschnee, Schneematsch – und schliesslich Schneeflocken.

All diese Wörter, ob Inuit oder Deutsch, beschreiben den weissen Stoff, der im Winter vom Himmel fällt und uns ebenso pulvrig weich wie eishart begegnen kann. Aber woraus besteht Schnee eigentlich? Klar – aus gefrorenem Wasser. Aber warum erscheint uns dieses gefrorene Wasser so anders als das massive, harte Eis, das beim Erstarren eines Gewässers entsteht?

Die Antwort findest du, wenn du dir Schnee einmal ganz aus der Nähe ansiehst – durch ein Mikroskop.

Dies ist ein Versuch für draussen – im Garten oder auf dem Balkon oder unterwegs während eines Winterspaziergangs, wenn du jemanden hast, der dein Equipment trägt!

Wetter- und andere notwendige Rahmenbedingungen

Schnee lässt sich nur im Winter mikroskopieren – wenn es welchen hat. Wer das Glück hat im Hochgebirge zu sein, findet dort auch in den Herbst und Frühling hinein mitunter Schnee.

Für die einfache Untersuchung von Schnee unter dem USB-Mikroskop ist Schneefall bei einer Lufttemperatur von 0°C oder besser etwas darunter optimal. Ein offener Unterstand (zum Beispiel der Balkon der Nachbarn oben, ein Vordach oder eine Schutzhütte für Wanderer) schützt die Elektronik und dich vor dem Eingeschneitwerden.

Geräte/Hilfsmittel

  • Kamera-Mikroskop mit USB-Kabel zum Anschluss an einen Computer ((*)eine grosse Auswahl gibt es zum Beispiel hier(*) )
  • Laptop mit USB-Port, Treibern zum Mikroskop sowie Software zur Bild- und optional Video-Erfassung
  • Petrischale oder Uhrglas
  • Dunkle Unterlage (wenn du ein Handmikroskop ohne eigene Auflagefläche für Objektträger benutzt)
  • Evtl. Spatel, flacher Löffelstiel oder/und Pinzette
  • Gefrierfach
  • Warme Kleidung, optional heisser Tee

Warum kein optisches Mikroskop?

Um Schneeflocken betrachten zu können, ohne dass sie sofort schmelzen, muss das Mikroskop auf den Gefrierpunkt (0°C) oder besser noch weiter abgekühlt werden. Glas, aus welchem die Linsen optischer Mikroskope bestehen, gerät durch starke Temperaturänderungen schnell unter Spannung und kann Risse bekommen oder brechen. Deshalb besteht die Gefahr, dass beim Abkühlen und Wiederaufwärmen eines optischen Mikroskops die Linsen beschädigt werden – das ist besonders dann ärgerlich, wenn es sich um ein teures Gerät handelt!

Wer dennoch mit einem optischen Mikroskop im Warmen arbeiten möchte, kann vorgekühlte Objektträger mit einem durchsichtigen, in der Kälte härtenden Lack bestreichen und Schneeflocken darauf fallen lassen. Nach dem Aushärten des Lacks kann der Abdruck der Flocken im Lack im Warmen mikroskopiert und dauerhaft aufbewahrt werden.

Anleitung (für das Vorgehen mit dem USB-Mikroskop)

Dieses Experiment muss gut vorbereitet werden. Wenn im Wetterbericht Kälte und Schneefall angekündigt werden, stelle das Mikroskop einige Stunden vor dem Experimentieren nach draussen unter einen Unterstand. Ich habe hierbei einen Baumwollbeutel über das Gerät gestülpt, um es vor Schneeverwehungen und all zu neugierigen Vögeln zu schützen. Lege die Petrischale, Spatel oder/und Pinzette in einer geschlossenen Gefrierdose zeitgleich ins Gefrierfach (ein gutes Gefrierfach kühlt auf bis zu -20°C, also in der Regel deutlich weiter als die Luft draussen, was sehr nützlich sein wird).

Wenn es dann schneit (oder ganz frischer Schnee gefallen ist), ziehe dich warm und baue den Laptop unter dem Unterstand auf. Hole die Dose mit den Werkzeugen aus dem Gefrierfach (öffne sie erst draussen in der Kälte, damit die Petrischale nicht beschlägt!).

Schalte das Mikroskop ein und starte die Software zur (Live-)Bild- oder/und Videoerfassung.

Ab jetzt sollte alles möglichst zügig gehen.

Halte die Petrischale mit zwei Fingern an den Rändern in den fallenden Schnee und fange ein paar Flocken. Wenn es nicht mehr schneit, kannst du mit dem Spatel oder der Pinzette vorsichtig ein paar frisch gefallene Flocken von der Umgebung (Boden, Pflanzen,…) in die Schale befördern.

Platziere die Schale unter dem Kameraobjektiv, wähle eine passende Vergrösserungsrate und stelle das Bild scharf. Mache nun zügig Aufnahmen von allen Ansichten, die dir gefallen. Dazu kannst du die Schale vorsichtig hin- und herschieben, drehen, oder zwischendurch neue Flocken fangen. Wenn du die Schale dabei mit der Pinzette greifst, wird sie weniger schnell warm, als wenn du sie mit der Hand berührst.

Petrischale mit Schneeflocken unter dem USB-Mikroskop

Petrischale mit Schneeflocken unter dem USB-Mikroskop

Die regelmässige Struktur der Schneekristalle ist am Rand einzelner Flocken, wo sich die Kristalle möglichst nicht überlappen, am klarsten sichtbar!

Unter dem Mikroskop: Schneeflocken bestehen aus sternförmigen Kristallen: Zu dicht beieinander erscheinen sie noch nicht ganz klar

Schneeflocken bestehen aus sternförmigen Kristallen: Zu dicht beieinander erscheinen sie noch nicht ganz klar

Mein Mikroskop hat einen drehbaren Objekt-Teller mit Motor und Beleuchtungsmöglichkeit von unten. Beides habe ich nicht genutzt und dennoch festgestellt, dass das Gerät im Betrieb genug Wärme abgibt, um die Schneeflocken nach wenigen Minuten zu schmelzen. Wenn du wie ich eine Software zur Videoerfassung hast, kannst du dies nutzen, um den Schmelzvorgang aufzuzeichnen.

Wissenswertes: Geheimnisse der Schneeflocken

Für die Jüngeren: Warum Schnee unter den Schuhen knirscht

Das Mikroskop enthüllt: Schneeflocken sind wunderschöne Sterne mit sechs Zacken – aus hartem, kaltem Eis! Und bis sich eine dicke Schneeschicht gebildet hat, sammeln sich sehr sehr viele dieser Sterne am Boden an. Dabei landen sie kreuz und quer aufeinander, wie sie gerade fallen, und werden von ihrem eigenen Gewicht ineinander geschoben.

Schnee-Kristall-Sterne unter dem Mikroskop zu einer Flocke verworren

Schneekristall-Sterne zu einer Flocke verworren

Hast du schon einmal genau zugehört, was passiert, wenn du viele Legosteine – oder die Schmucksterne vom Weihnachtsbaum – zusammen in eine flache Schachtel legst und mit der Hand hindurchstreichst? Es raschelt und klappert! Und wenn du ein wenig von oben darauf drückst (vorsichtig – du willst die Legos oder den Christbaumschmuck ja nicht kaputt machen!) – dann knirscht es, wenn die Teile aneinander reiben.

Schneeflocken zwar sehr viel kleiner, aber genauso fest wie Legosteine. So reiben auch sie aneinander, wenn man sie zusammendrückt. Ausserdem gehen sie – weil sie so klein sind – noch viel schneller als Legosteine kaputt, wenn man darauf tritt.

Die aneinander reibenden und zerbrechenden winzigen Schneekristalle unter unseren Schuhen sind also die Ursache für das herrliche Knirschen, wenn wir durch frischen Schnee laufen!

Für die Älteren: Kristallstruktur von Wasser

Die wunderschönen Schneekristalle, die das Mikroskop uns enthüllt, sind erstaunlich symmetrisch. Tatsächlich lassen sich durch einen perfekt geformte Schneestern drei Achsen legen, die den Kristall in sechs praktisch identische Teile zerlegen. Und jedes dieser Teile passt genau in einen Winkel von 60°! Dieser Winkel, oder auch sein Doppel, 120°, wiederholt sich ausserdem in der filigranen Struktur dieser Teile immer und immer wieder.

Schnee-Kristalle unter dem Mikroskop

Aber wie können aus flüssigem Wasser so unglaublich regelmässige Strukturen entstehen?

Von Molekülen zum Kristall

Schneekristalle bestehen aus Wassermolekülen: Zwei Wasserstoff-Atome sind in einem festgelegten Winkel zueinander an ein Sauerstoff-Atom gebunden. Alle drei Atome bilden ein Wassermolekül. Jedes Wasserstoff-Atom eines Wassermoleküls kann zudem eine weniger feste Bindung, eine „Wasserstoff-Brückenbindung“ zu einem Sauerstoff-Atom eines anderen Wassermoleküls eingehen. Diese Wasserstoff-Brücken führen dazu, dass die Wassermoleküle in einem Eiskristall ganz bestimmte Plätze einnehmen und sich zu einem regelmässigen, sechseckigen Muster anordnen.

Wenn du einen (*)Molekülbaukasten(*) hast, kannst du dieses Muster – das Kristallgitter – nachbauen:

Jeder dieser Bausteine mit vier Enden (für Mathematik-Fans: die Enden sind weitestmöglich voneinander entfernt und weisen auf die Ecken eines Tetraeders) steht dabei für ein Wassermolekül mit dem Sauerstoff-Atom in der Mitte des Bausteins sowie zwei Wasserstoff-Atomen und zwei Ansatzstellen für Wasserstoff-Brücken, für welche die vier Enden stehen.

Wassermolekül-Baustein und Verbindungsstücke aus dem Molekülbaukasten

Wassermolekül-Baustein und Verbindungsstücke aus dem Molekülbaukasten

Jetzt brauchst du noch jede Menge Verbindungsstücke. Ihre Länge ist egal, doch sollten sie alle gleich lang sein. Mit den Verbindungsstücken kannst du nun die Wassermoleküle zu einem Eis-Kristallgitter zusammenfügen.

Molekülbaukasten: Modell eines Schnee-Kristalls aus 92 "Wassermolekülen" und 120 Verbindungsstücken

Dieses Modell besteht aus 92 „Wassermolekülen“ und 120 Verbindungsstücken

Dieses Modell eines Eiskristalls ist ein Ausschnitt aus dem sehr viel grösseren Kristallgitter. An seiner Oberfläche sind überall freie Enden, an die du weitere Wassermoleküle anfügen könntest, so lange du Bausteine hast. Das symmetrische, sechseckige Muster mit seinen 60°- und 120°-Winkeln ist hier schon gut erkennbar.

Die Entstehung von Schneeflocken

In der Luft gibt es nicht nur Wasserdampf und feine Wassertröpfchen, die mitunter Wolken bilden, sondern auch sehr feine Staubkörnchen. Wird es in höheren, wasserhaltigen Luftschichten sehr kalt – mindestens -12°C – schlagen sich Wassermoleküle an der Oberfläche solcher Staubkörnchen nieder und fügen sich zu einem Eis-Kristallgitter wie im Modell oben zusammen.

So kommen viele Wassermoleküle auf engem Raum zusammen: Der noch kleine Eiskristall wird für seine Grösse schwer („er hat eine hohe Dichte“) und beginnt in Richtung Erde zu fallen. Währenddessen werden an die freien „Enden“ der Moleküle an der Kristalloberfläche laufend weitere Wassermoleküle angebaut. In welche Richtungen der Anbau verläuft,  hängt von den Eigenschaften der direkten Umgebung des Kristalls ab: Temperatur, Luftströmungen, die Menge vorhandener Wassermoleküle und viele mehr. Und die sind auf allen Seiten eines bestimmten vereisten Staubkorns gleich – für jede Schneeflocke im wilden Durcheinander der Luft jedoch ein wenig anders.

Schneeflocken wachsen also ausgehend von einem Staubkorn von innen nach aussen. Hier findest du faszinierende Videoaufnahmen vom Wachstum von Schneekristallen.

So wächst jede Schneeflocke von „ihrem“ Staubkorn aus in jede Richtung in der gleichen Weise. Dafür ist es praktisch unmöglich, zwei Schnee-Kristalle zu finden, die sich vollkommen gleichen. Nur die durch das Kristallgitter vorgegebenen Winkel von 60° und 120° finden sich in jeder Schneeflocke wieder. Wenn dann noch mehrere Kristalle ineinander und zusammen wachsen, können schöne Flocken entstehen, die mehrere Zentimeter gross sind.

Die klarsten Bilder einzelner Schnee-Kristalle lassen sich jedoch von kleineren, möglichst wenig verwachsenen Flocken gewinnen.

Und hast du schon einmal Schnee unter dem Mikroskop betrachtet? Oder hast du vor, es zu probieren? Welche Erfahrungen hast du gemacht?

Hast du das Experiment nachgemacht: 

[poll id=“42″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!