Beiträge

Grosse Sommer - Blogparade : Mein Lieblingsexperiment

Ganze vier Jahre ist es nun her, seit Keinsteins Kiste das Licht der Welt erblickt hat! Und diesen Bloggeburtstag möchte ich mit euch allen feiern – mit der grossen Sommer-Blogparade!

Vier Jahre Keinsteins Kiste

Bis in die erste Hälfte 2015 waren “Blogger” in meinen Augen Werbegesichter für Mode, Kosmetik und allerlei Lifestyle-Produkte – kurzum das, was man heute vielleicht eher mit dem Begriff “Influencer” in Verbindung bringt. Und damit so ganz und gar nicht meine Welt.

Erst als ein Neuzugang in einer völlig themenfremden Facebook-Gruppe am Rande ihren Mama-Blog erwähnte, öffnete sich mir die Tür zur ganzen Welt der Blogger – und mir war sofort klar: Davon möchte ich auch ein Teil sein! So habe ich binnen weniger Wochen diesen Blog ins Leben gerufen.

Seitdem hat sich so vieles getan und verändert. Von Anfang an war Keinsteins Kiste als Sammlung naturwissenschaftlicher Inhalte gedacht – zunächst reichlich unspezifisch in Form von “Geschichten aus Natur und Alltag”. Naturwissenschaft besteht nun in grossen Teilen aus Beobachtung…und dazu sind aufmerksame Sinne unabdingbar. So kam ich zu der Umwidmung des Blogs zu “Natur und Wissenschaft für alle Sinne”.

Doch auf Dauer erschien mir auch dies zu ungenau. Zumal ich mit meinem in der deutschsprachigen Blogsphäre nach wie vor exotischen Genre lange nach meinem Platz in deren unendlichen Weiten gesucht habe. Schlussendlich führte diese Suche an den Anfang des Blogs zurück. Mit einem Mama-Blog fing die Geschichte der Kiste an, und mit Familienblogs und ihren Autoren kann ich mich nun wahrhaftig identifizieren. Und das, obwohl ich selbst gar keine Kinder habe.

Wozu Keinsteins Kiste? Um Chemie und anderen Naturwissenschaften ein positives Gesicht zu geben!

Nichts desto trotz arbeite ich mit Kindern, und habe dabei schnell festgestellt, dass es nichts wunderbareres gibt als die kindliche Neugier. Physik (und Chemie und…) ist schliesslich, wo man spielt.

Und diese Neugier ist ein grossartiger Ansatzpunkt, um mein grosses Ziel zu verfolgen: Der Naturwissenschaft im Allgemeinen und der Chemie in Besonderen in euren Köpfen ein besseres Ansehen zu verschaffen!

Die Welt ist nämlich voll von “Fake-News”, Fehlinformationen und teils gefährlichen Irrlehren, die viel zu oft auf fruchtbaren Boden stossen. Und solch “fruchtbarer Boden” entsteht, wenn junge Menschen die Fächer, in welchen sie lernen könne, wie die Welt funktioniert und wie sie selbst diese Funktionsweisen ergründen können, als “zu schwierig”, “abstrakt”, “realitätsfern” oder gar “unwichtig” erleben. Dann nämlich verlassen sie ihre Schulen oft ohne ein grundlegendes Verständnis für die Natur der Dinge – und entsprechend anfällig für jeglichen Unsinn, der darüber verbreitet wird.

Je früher jedoch Neugier und Freude an der Erforschung der Welt geweckt werden, desto grösser sehe ich auch die Chance, dass die Aufmerksamkeit für und die Freude an naturwissenschaftlichen Zusammenhängen erhalten bleibt und Chemie und Co in den Augen einstmaliger Jungforscher ihr gutartiges Gesicht behalten.

Chemie ist nämlich überall und alles ist Chemie. So tut ihr gut daran im Gedächtnis zu behalten, dass sie eben nur manchmal gefährlich, aber immer spannend ist!

Experimente wecken Spass und Neugier – nicht nur bei kleinen Forschern

Die eindrücklichste und zugleich spassigste Art und Weise, Naturwissenschaften zu lernen, ist, selbst zu experimentieren und zu forschen. So habe ich – besonders in den letzten beiden Jahren – mehr und mehr Experimente in Keinsteins Kiste einfliessen lassen, die ihr zu Hause oder in jedem beliebigen Klassenzimmer selbst machen könnt.

Und damit auch naturwissenschaftliche nicht “vorbelastete” Eltern und Lehrer ihren Kindern die unvermeidlichen Fragen junger Forscher beantworten können (allen voran “Wie funktioniert das bloss?”), liefere ich zu jeder Anleitung auch eine ausführliche Erklärung dessen, was hinter den spannenden Beobachtungen steckt.

So können Klein und Gross beim Experimentieren etwas lernen. Aber damit nicht genug: Ihr Grossen könnt euer naturwissenschaftliches Wissen auch direkt in eurem Alltag gebrauchen! Wie? Das könnt ihr in den gesammelten Haushalts- und Alltagstipps in der Alltagskiste lernen.

So ist Keinsteins Kiste nun schon seit einem Jahr offiziell gefüllt mit “Natur und Wissenschaft für die ganze Familie”.

Grosse Sommer-Blogparade zum Geburtstag

Doch nun könnt ihr in der Blogparade selbst mitfeiern und -forschen!

Thema der Blogparade: Mein Lieblings-Experiment!

Experimente mit Aha-Effekt

Denn die Freude an Naturwissenschaft beginnt oft mit einem besonders eindrücklichen Experiment, das einen regelrechten Aha-Effekt auslöst.

So war es zumindest bei mir: In der siebten Klasse bin ich erstmals der Schmelzwärme begegnet – einem Konzept, das mir bis dahin völlig unbekannt war. Und mit dieser einschneidenden Veränderung meines Weltbildes hatte ich mein Herz unrettbar an die Chemie verloren (und das, obwohl sich die Physiker mit den Chemikern um die Einordnung dieses Konzeptes streiten könnten!).

Die ganze Geschichte von diesem Aha-Erlebnis erfahrt ihr hier, und natürlich gibt es auch eine Anleitung für das Experiment zum Nachmachen!

Oder vielleicht kehrt eure Leidenschaft auch immer wieder zu dem einen Experiment zurück?

Experimente, die euch nicht loslassen

Ich habe zum Beispiel bei jeder sich bietenden Gelegenheit Eisensulfid aus den Elementen Eisen und Schwefel hergestellt (das Teufelchen in mir spielt immer wieder gern mit Schwefel herum…). Da das eine ziemlich stinkige Angelegenheit ist, müssen dafür besondere Anforderungen an die Umgebung erfüllt sein, weshalb es das Experiment (noch) nicht in Keinsteins Kiste gibt.

Experimente, bei welchen ihr (bislang?) nur zugeschaut habt

Oder habt ihr euch bislang noch nicht selbst getraut, zu experimentieren, aber andere dabei beobachtet? Sei es der Lehrer in der Schule, der Dozent in der Uni, oder ein Show-Experimentator auf der Bühne? Welches Schau-Experiment hat euch besonders beeindruckt – vielleicht gar so sehr, dass ihr es gerne einmal selbst versuchen würdet – oder eben gerade nicht?

Im Rahmen der Lehrerausbildung hat uns unser Dozent ein wahrhaft beeindruckendes Demonstrations-Experiment gezeigt: Die Thermit-Reaktion!

Thermit-Versuch für die Schule: Die Reaktion findet im Blumentopf statt, glühendes flüssiges Eisen tropft unten heraus!

Hier bei wird Eisen(III)oxid mit Aluminium-Pulver zur Reaktion gebracht, wobei Temperaturen bis gut 2000°C entstehen! Mit grossem Getöse und Leuchtspektakel entsteht dabei flüssiges(!) metallisches Eisen. Folglich nutzen Eisenbahner diese Reaktion, um frisch verlegte Schienen zusammen zu “schweissen”. Der sehr grossen Brandgefahr wegen sollte ein solches Experiment immer ausserhalb des Schulhauses (z.B. auf dem asphaltierten Schulhof) gemacht werden.

Später habe ich dann für einige Zeit an der Berufsschule in Arth-Goldau unterrichtet und dort in der Chemikaliensammlung eine fertige Thermit-Mischung gefunden. Natürlich habe ich die ausprobieren müssen – aber leider habe ich es nicht fertig gebracht, das Ganze zu zünden (das ist nämlich – zum Glück – ohne einen speziellen Thermit-Zünder kaum zu bewerkstelligen). Die Enttäuschung bei mir und den extra auf den Hof geführten Schülern war entsprechend gross.

Aber wenn ich noch einmal die Gelegenheit bekäme, Thermit zu zünden, wäre ich sofort dabei.

Experimente in der Forschung

Oder seid ihr sogar selber Forscher (gewesen)?

In der Forschung müssen Wissenschaftler ihre Experimente immer wieder und wieder durchführen und immer das Gleiche beobachten, bevor sie ein belastbares (weil wiederholt beobachtbares) Ergebnis veröffentlichen können. Auch ich kann ein Lied davon singen.

Besonders aufregend wird das Ganze dann, wenn ein Experiment tatsächlich immer das gleiche Ergebnis liefert – und wenn andere Forscher, die den Versuch nachmachen, dieses Ergebnis ebenfalls beobachten. Dann hat man nämlich etwas gefunden, was den allgemeinen Wissenstand wirklich erweitern könnte!

Habt ihr als Forscher selbst einmal so ein eindrückliches Experiment gemacht?

Was ihr zur Blogparade wissen müsst:

Experimentiert ihr gerne – zu Hause, in der Schule oder sogar an eurem eigenen Forscher-Arbeitsplatz? Schaut ihr euch spannende Experimente lieber an? Oder würdet ihr gerne auch selbst experimentieren?

Mit dieser Blogparade möchte ich euch alle – ganz gleich welchen Bezug ihr zum Experimentieren habt – zum Mitmachen einladen:

Beschreibt in einem Blogartikel euer Lieblings-Experiment!

Erzählt, schreibt, fotografiert, filmt oder wie auch immer ihr euch ausdrückt von eurem Erlebnis beim Experimentieren oder Zusehen: Was beeindruckt euch besonders, und warum ist dies euer Lieblings-Experiment?

Und wenn ihr selbst experimentiert, habt ihr vielleicht auch eine Anleitung dazu? Und wenn ihr ganz versiert seid und die Beobachtung sogar erklären könnt, wäre das natürlich Spitzenklasse – aber nicht notwendig.

Bei Bedarf helfe ich beim Erklären auch gerne aus.

Veröffentlicht den Artikel bis zum 11. September 2019 auf eurem Blog bzw. Kanal, verlinkt darin auf diesen Artikel und postet den Link dazu hier in die Kommentare. So kann ich sie über meine Kanäle teilen und zum Abschluss in einer Zusammenfassung würdigen.

Ihr möchtet gerne ein Experiment vorstellen und habt keinen eigenen Blog? Dann könnt ihr euren Beitrag gerne als Gastbeitrag in Keinsteins Kiste einreichen! Insbesondere zwischen dem 13. Juli und 1. August habe ich drei Plätze, die sich damit wunderbar füllen liessen.

Ganz besonders würde ich mich freuen, wenn ihr anderen von dieser Blogparade “erzählt”, sodass möglichst viele die Chance haben, mit zu forschen!

Nun wünsche ich euch viel Spass beim Forschen, Experimentieren und Verbloggen,

Eure Kathi Keinstein

Dank Maike “Miss Declare” und Instagram habe ich eine ungewöhnliche Blogparade entdeckt, die um so besser in Keinsteins Kiste passt. Denn es geht bei Meike auf Mathsparks um Mathematik – und ohne Mathematik wäre die Chemie wohl kaum halb so spannend, wie sie ist.

Deshalb geht es heute um Mathematik in der Chemie. Und wer nun abgehobenes Zeug wie die Quantenmechanik fürchtet, kann beruhigt sein: Die Mathematik, die ich meine, erfordert einzig Grundschul- bzw. Primarschul-Kenntnisse und kann euch beim Experimentieren sehr nützlich sein. Denn ich spreche…ähm schreibe… von der Stöchiometrie.

Mit der Stöchiometrie können Chemiker nämlich berechnen, in welchem Verhältnis sie Stoffe einsetzen müssen, damit diese möglichst vollständig miteinander reagieren können.  Und weil sie dabei von der jeweiligen Reaktionsgleichung ausgehen, erkläre ich euch heute

  • Wie man Reaktionsgleichungen richtig liest und versteht
  • Wie die Chemiker sich unvertretbar grosser Zahlen entledigen
  • Wie man von einer Reaktionsgleichung auf abmessbare Stoffportionen kommt

Und damit es auch wirklich Spass macht zeige ich euch, wie ihr damit und mit ein paar Dingen aus dem Haushalt eure eigene Rakete starten lasst!

Wie du Reaktionsgleichungen liest und verstehst

Atome und Moleküle reagieren nicht irgendwie miteinander, sondern in festgelegten Verhältnissen. Diese Verhältnisse werden in einer Reaktionsgleichung zum Ausdruck gebracht. Und obwohl darin anstelle eines Gleichheitszeichens ein Pfeil von links nach rechts auftaucht, handelt es sich dabei um eine richtige mathematische Gleichung. Denn es gilt stets das Gesetz der Massen- bzw. Stoffmengenerhaltung:

Bei einer chemischen Reaktion geht kein Teilchen verloren!

Das bedeutet, links und rechts des Reaktionspfeils steht immer die gleiche Anzahl Atome:

Dabei werden einzelne Atome der jeweiligen Sorten durch Elementsymbole dargestellt. So steht ein “H” in Gleichung (1) für ein Wasserstoff-Atom. Wenn in einem Molekül bzw. Teilchen mehrere Atome der gleichen Sorte vorkommen, verwendet man das Elementsymbol einmal und gibt die Anzahl der Atome als Index an: H2 steht also für ein Molekül, das aus zwei Wasserstoffatomen besteht!

Wenn mehrere einzelne Atome einer Sorte vorkommen, verwendet man das Elementsymbol einmal und schreibt die Anzahl der Atome als Faktor davor:

Gleichung (2) meint das gleiche wie Gleichung (1): Zwei mal ein Wasserstoffatom bzw. zwei Wasserstoffatome reagieren zu einem Wasserstoffmolekül, das aus zwei Wasserstoffatomen besteht.

Auch ganze Moleküle können durch einen Faktor vervielfacht werden:

Gleichung (3) meint also: Vier Wasserstoffatome reagieren zu zwei Wasserstoffmolekülen aus je zwei Wasserstoffatomen. Dabei stehen auf jeder Seite des Pfeils insgesamt 4 Wasserstoffatome – die beiden Seiten der Gleichung sind damit “gleich”, wie es sich für eine richtige Gleichung gehört.

Verschiedene Teilchen werden schliesslich durch “+”-Zeichen verbunden aufgelistet:

Gleichung (4) meint also: Zwei Wasserstoffmoleküle und ein Sauerstoffmolekül (Chemiker sind ebenso bequem wie Mathematiker und sparen sich den Faktor “1”) reagieren zu zwei Wasser-Molekülen. Zur Kontrolle: Links wie rechts stehen insgesamt 4 Wasserstoff- und 2 Sauerstoff-Atome – die Gleichung stimmt soweit.

Das Mol als Chemikerdutzend

Beim Experimentieren geht man allerdings nicht mit einzelnen, sondern mit sehr, sehr, sehr vielen Atomen um. Ein Gramm Wasserstoff besteht aus rund 602’000’000’000’000’000’000’000 (6,02•1023) Atomen! Um die vielen Nullen bzw. die Gleitkommazahlen mit unvorstellbaren Exponenten zu vermeiden, haben die Chemiker festgelegt:

6,02*1023 Atome sind ein Mol Atome.

Dieser Trick ist auch in jedermanns Alltag verbreitet: Wem 12 Eier als eine schwer zu begreifende Menge erscheinen, der  bestellt ein Dutzend Eier und kann mit Hilfe des kleinen 1×1 der 12 auch den Output eines produktiven Hühnerstalls spielend bewältigend (zwei Dutzend sind 24, drei Dutzend 36,…).

Jetzt können Stoffmengen bequem in der Einheit “mol” (ein Mol = 1 mol) angegeben und verwendet werden. Die Gleichung (2) kann man damit auch so lesen: Zwei Mol Wasserstoffatome reagieren zu einem Mol Wasserstoffmolekülen.

Damit gibt die Reaktionsgleichung auch Auskunft über anfassbare Mengen!

Da das Abzählen von Atomen in Zahlen mit 23 Nullen aber mehr als mühsam ist, misst man Stoffmengen in der Praxis mit praktischeren Grössen – wie der Masse, die man wiegen kann. Die Masse/das Gewicht eines Mols Atome eines jeden Elements findet man in fast jedem Periodensystem. Die klugen Chemiker haben die Einheit der dort angegebenen Masse eines Atoms so gewählt, dass der Betrag des Atomgewichts dem Betrag der Masse eines Mols Atome in Gramm entspricht!

Das heisst, sie haben festgelegt, dass das aus 12 Kernteilchen bestehende Kohlenstoffatom 12 atomare Masseneinheiten (“u”) bzw. ein Mol Kohlenstoffatome 12 Gramm wiegt. Damit wiegt ein Kernteilchen rund 1 u, bzw. ein Mol Wasserstoffatome, deren Kerne aus jeweils nur einem Proton bestehen, rund 1 Gramm. Kurz gesagt: Die molare Masse des Wasserstoffatoms beträgt rund ein Gramm pro Mol (1 g/mol).

Die molare Masse eines Moleküls erhält man, indem man die molaren Massen seiner Atome einfach zusammenzählt. Ein Mol Wasserstoffmoleküle H2 wiegt also 1 + 1 = 2 Gramm, d.h. die molare Masse des Wasserstoffmoleküls beträgt 2 g/mol.

Von der molaren Masse zur fertigen Stöchiometrie

Wer also eine Reaktionsgleichung kennt, die über verwendete Stoffmengen Auskunft gibt, kann die Zutaten für eine Reaktion entsprechend abwiegen:

Gleichung (4) bedeutet: 2 Mol Wasserstoff-Moleküle und 1 Mol Sauerstoff-Moleküle reagieren zu 1 Mol Wassermolekülen.

1 Mol Wasserstoff-Moleküle wiegen 2g, 1 Mol Sauerstoff-Moleküle wiegen 32g (das Periodensystem verrät: 1 Mol O-Atome wiegt rund 16g), 1 Mol Wassermoleküle wiegen 1 + 1 + 16 = 18g.

Man kann also auch lesen:  2 * 2 = 4 Gramm Wasserstoff und 32 Gramm Sauerstoff reagieren zu 2 * 18 = 36 Gramm Wasser (der Massenerhaltung ist damit wiederum Genüge getan!).

Wenn ich also 36 Gramm Wasser (z.B. in einer Brennstoffzelle) herstellen möchte, brauche ich dazu 4 Gramm Wasserstoff und 32 Gramm Sauerstoff. Benötige ich mehr Wasser, kann ich diese Zahlen einfach vervielfältigen (für 360g Wasser brauche ich 40g Wasserstoff und 320g Sauerstoff), benötige ich weniger, kann ich mit Bruchteilen arbeiten (für 3,6g Wasser brauche ich 0,4g Wasserstoff und 3,2g Sauerstoff).

Wer sich nun fragt, wie er Gase wiegen soll: Da 1 Mol jedes beliebigen Gases aus kleinen Molekülen bei gegebener Temperatur und gegebenem Druck das gleiche Volumen einnimmt (22,4 l bei 0°C und 1bar), können die Stoffmengen ebenso gut in Volumina, die sich leichter messen lassen, umgerechnet werden. Aber das ist eine andere Geschichte.

Wie Essig und Natron eine Rakete zum Fliegen bringen

Für den Praxistest eurer Stöchiometrie-Kenntnisse eignen sich vielmehr feste und flüssige Reaktionspartner. Die kann man nämlich wesentlich einfacher abmessen. Zum Beispiel für den Start einer Rakete. Und den könnt ihr mit ein paar einfachen Zutaten aus dem Haushalt verwirklichen: Natron und Haushaltsessig!

Im Artikel zu den 3 Party- und Fasnachtsspektakeln mit CO2 könnt ihr nachlesen, wie ihr aus diesen beiden Stoffen reichlich Kohlenstoffdioxid-Gas gewinnen und damit zum Beispiel einen Leuchtvulkan zum Ausbruch bringen könnt. In Reaktionsgleichungen lässt sich das Ganze so darstellen:

Essigsäure (CH3COOH) ist – wie der Name sagt – eine Säure und wird von Natriumcarbonat (Natron, Na2CO3), das eine Base ist, neutralisiert, wobei Kohlensäure (H2CO3) und Natriumacetat (CH3COOH) entstehen. Für den Antrieb entscheiden ist jedoch, was danach passiert:

Kohlensäure ist instabil und zerfällt in Wasser und gasförmiges Kohlenstoffdioxid (CO2)! Und Gase haben die Eigenschaft, dass sie sehr viel Platz einnehmen – wenn sie können. So kann das Kohlenstoffdioxid, wenn es aus einer Düse ausströmt, als Rückstossantrieb für eine Modell-Rakete herhalten. Dazu lässt man die Reaktionen (5) und (6) zwischen Essig und Natron in einem geschlossenen Behälter ablaufen, dessen einziger Ausgang die Antriebsdüse am hinteren Ende der Rakete ist, sodass das Gas dort ausströmen muss, sobald es im Behälter zu eng wird.

Das Problem dabei: Bei den Reaktionen bleibt eine ganze Menge gewichtiger “Abfall” in der Rakete zurück, der mitfliegen muss, zum Beispiel das Natriumacetat aus Reaktion (5) und eine grosse Menge Wasser, die schon im Haushaltsessig enthalten ist und als Lösungsmittel dient. Damit die Rakete bestmöglich fliegen kann, ist es daher wichtig,  dass sie nicht unnötig mit überflüssigem, aber schwerem Material beladen wird (das gilt übrigens für alle Raketentreibstoffe, auch für jene von “richtigen” Weltraum-Raketen).

Mit anderen Worten: Die Reaktionsteilnehmer, mit denen die Rakete beladen wird, sollten so vollständig wie möglich miteinander reagieren, sodass möglichst wenig davon übrig bleibt. Und ihr könnt die Stöchiometrie nutzen, um das zu erreichen!

Wie du den perfekten Treibstoff für deine Rakete berechnest

Zunächst sehen wir uns die Reaktionsgleichungen für die Antriebs-Reaktion an: Wenn ihr Gleichung (6) als Folge von Gleichung (5) betrachtet, erkennt ihr, dass zwei Moleküle Essigsäure und ein Äquivalent* Natron nötig sind, um ein Molekül Kohlenstoffdioxid zu erzeugen. Kurz ausgedrückt kann man dies auch so schreiben:

*Natron ist ein Salz, d.h. es ist nicht aus Molekülen aufgebaut, sondern ein beliebig grosser Ionenkristall (bzw. ein Pulver aus solchen Kristallen). Die Formel gibt das Verhältnis an, in welchem die Ionen im Kristall vorkommen und wird in Reaktionsgleichungen und beim Rechnen genauso (also äquivalent) verwendet wie die Summenformel eines Moleküls.

Optimal ist demnach ein Treibstoffgemisch, das zwei Mol Essigsäure-Moleküle und 1 Mol Natron Äquivalente enthält. (Für die Schlaumeier unter euch: Ich lasse hier die besonderen Regeln für chemische Gleichgewichte, zu welchen diese Reaktionen zählen, ausser Acht (Mit Le Châtelier erkläre ich auf dem Flughafen genauer, was es damit auf sich hat). Für den Nachbau der Modell-Rakete genügt jedoch auch die Stöchiometrie allein!)

Um zu erfahren, wieviel der Stoffe ihr verwenden müsst, benötigt ihr nun die molaren Massen der Moleküle bzw. Äquivalente, die ihr aus den molaren Massen ihrer Atome zusammensetzen könnt. Das Periodensystem verrät dazu:

Wasserstoff (H) wiegt rund 1 g/mol, Kohlenstoff ( C) rund 12 g/mol, Sauerstoff (O) rund 16 g/mol, Natrium (Na) rund 23 g/mol.

Daraus ergibt sich für

  • Essigsäure (CH3COOH bzw. C2H4O2): 2*12 + 4*1 + 2*16 = 60 g/mol
  • Natron (Na2CO3): 2*23 + 1*12 + 3*16 = 106 g/mol

Zwei Mol Essigsäure sind demnach 120 Gramm, die mit 106 Gramm Natron reagieren können. Bevor ihr ans Wiegen geht, gibt es aber noch ein Problem: Haushaltsessig besteht nur zu einem Bruchteil aus Essigsäure – der Rest ist Wasser. Der Haushaltsessig aus dem Supermarkt hier in der Schweiz enthält so nur rund 10 (Volumen-)% Essigsäure.

Glücklicherweise haben sowohl Essigsäure als auch Wasser eine Dichte von rund 1 g/cm3 (bzw. 1g/ml), sodass ihr auch für die Dichte des Gemischs aus beiden eine Dichte von rund 1g/ml annehmen könnt. Das bedeutet, dass ihr die Masse der Flüssigkeiten in Gramm 1:1 in das Volumen in Kubikzentimetern bzw. Millilitern umrechnen könnt.

Damit enthalten 10g bzw. 10ml Schweizer Haushaltsessig nur 1g Essigsäure und 9g Wasser. Für zwei Mol Essigsäure benötigt ihr also 1200g oder 1,2 Liter Essig – und eine ziemlich grosse Rakete. Deshalb macht es Sinn, die Menge der eingesetzten Stoffe auf ein Zehntel (oder noch weiter) herunter zu rechnen:

0,2 Mol Essigsäure sind 12g – das entspricht 120g bzw. 120ml Schweizer Haushaltsessig – und 0,1 Mol Natron sind 10,6g. Diese Mengen finden problemlos in einer 0,5l PET-Flasche Platz.

Tipp: Wer noch mehr Gewicht sparen möchte, verwendet “Essigessenz”, die in Deutschland im Supermarkt erhältlich ist und 25% Essigsäure enthält. So muss nicht das Zehnfache, sondern nur das Vierfache der berechneten Menge Essigsäure eingesetzt werden!

Nun steht eurem Raketenstart nichts mehr im Wege!

EXPERIMENT: RAKETENSTART MIT ESSIG UND NATRON

Ihr benötigt

  • Eine 0,5l PET-Flasche
  • Etwas Pappe zum Basteln, eine Untertasse oder einen Zirkel, eine Schere, Klebeband
  • Haushaltsessig oder Essigessenz (aus der Reinigungsabteilung im Supermarkt)
  • Waage und ggfs. Messbecher mit 10ml- oder 20ml-Teilstrichen
  • Frischhaltefolie
  • Natron-Pulver (als Backtriebmittel bei den Backzutaten im Supermarkt)
  • Eine Luftballon-Hülle
  • Eine Ahle oder einen spitzen Schraubenzieher
  • 3 kleine Blumentöpfe oder andere gleich hohe Gegenstände
  • Eine spitze Nadel
  • Schutzbrille, Laborkittel oder entbehrliche Kleidung, ggfs. eine grosse Giesskanne oder einen Eimer voll Wasser
  • Platz für die Startrampe und trockenes Wetter 😉

Durchführung

Die PET-Flasche wird eure Rakete sein. Der Schraubverschluss wird dabei zur Antriebsdüse, der Boden der Flasche zur Raketenspitze. Damit das Ganze auch nach einer Rakete aussieht, könnt ihr eurer Flasche eine spitze Kappe und ein Leitwerk aus Pappe basteln:

  • Zeichnet mit Hilfe der Untertasse oder des Zirkels einen Kreis auf die Pappe und schneidet ihn aus. Schneidet anschliessend ein “Tortenstück” (etwa ein Sechstel des Kreisumfangs) aus dem Kreis heraus und schiebt die geraden Kanten übereinander, sodass ein Kegel entsteht, der genau über den Boden eurer PET-Flasche passt. Fixiert den Kegel mit Klebeband (Flüssig- oder Heisskleber eignen sich dazu auch, allerdings benötigen sie geraume Zeit zum Trocknen. Eine Büroklammer hält den Kegel währenddessen zusammen. Klebeband hält hingegen sofort!).
  • Klebt den fixierten (und trockenen) Kegel auf den Boden eurer Flasche, indem ihr einen Streifen Klebeband halb um den Flaschenkörper, halb um den Kegel legt und vorsichtig andrückt.
  • Fertigt für das Leitwerk mindestens drei Finnen (“Flügel”) aus Pappe an.
Vorlage für das Leitwerk der Rakete
  • Das Bild zeigt eine Vorlage für meine Leitwerk-Finnen: Zeichnet diese dreimal auf die Pappe oder klebt Schablonen aus Papier darauf und schneidet sie aus. Faltet jede Finne entlang der mittleren gestrichelten Linie nach “innen”. Dann faltet die beiden Seitenflügel in die andere Richtung, also nach “aussen”.Befestigt die Seitenflügel mit Klebeband so am Flaschenkörper, dass die Spitzen der Finnen ein wenig über den aufgeschraubten Deckel hinausragen. Der Abstand zwischen den Finnen beträgt bei 3 Finnen einen Drittelkreis (120°), bei 4 Finnen einen Viertelkreis (90°) etc (Ich möchte Gewicht sparen, weshalb ich nur 3 Finnen verwende).

Da die Öffnung der Flasche zu weit ist, um den Ausstoss ausreichend zu bündeln, verengt ihr ihn als nächstes zu einer Antriebsdüse.

  • Durchbohrt den (abgeschraubten) Deckel der Flasche in der Mitte mit der Ahle bzw. dem Schraubenzieher, sodass ein wenige Millimeter durchmessendes Loch entsteht. Schneidet zudem ein Stück aus der Ballonhülle, das sich bequem über die Flaschenöffnung legen lässt (Durchmesser ca. 4 bis 5 cm) und legt dieses zum Start bereit.

Jetzt ist es an der Zeit, den Raketentreibstoff vorzubereiten.

  • Legt ein Stück Frischhaltefolie auf die Waage, tariert sie und wiegt 10,6g (auf der Haushaltswaage rund 11g) Natron darauf ab. Rollt anschliessend das Pulver so in die Folie ein, dass ein Päckchen entsteht, welches durch die Öffnung der PET-Flasche passt.
Einwaage und Verpackung von Natron
links: Natronpulver auf der Waage; rechts: das fertige Natron-Päckchen
  • Messt 120 Milliliter Haushaltsessig ab (wenn ihr keinen ausreichend genauen Messbecher habt, könnt ihr auch 120g Haushaltsessig in einem Gefäss (tarieren!) abwiegen) und stellt ihn zum Start bereit.

Und nun zu den Startvorbereitungen:

  • Stellt die Blumentöpfe so auf dem Startplatz auf, dass ihr die Rakete auf den Finnen darauf stellen könnt. Klebt die Töpfe mit etwas Klebeband fest, damit sie nicht verrutschen können.
  • Nun solltet ihr folgendes am Startplatz griffbereit haben: Die Flaschen-Rakete, den durchbohrten Deckel, das Stück Luftballonhaut, das Gefäss mit dem Essig, das Natron-Päckchen und die spitze Nadel.
  • Dreht die Rakete mit der Spitze nach unten und füllt vorsichtig den Essig durch die Flaschenöffnung ein (ein Trichter kann dabei hilfreich sein).
  • Schiebt das Natron-Päckchen fast vollständig in die Öffnung, sodass es zunächst mit dem hinteren Ende darin hängenbleibt. Legt die Luftballonhaut über die Öffnung und das Ende – erst dann drückt das Päckchen vollständig in die Flasche!

Jetzt muss es zügig gehen – denn die Reaktion zur CO2-Erzeugung ist nicht mehr aufzuhalten: Achtung! Von jetzt an steht die Rakete zunehmend unter Druck! Der Essig wird langsam in das Folienpäckchen eindringen und mit dem Natron zu reagieren beginnen. Das entstehende CO2 treibt das Päckchen zunehmend auseinander, sodass die Reaktion sich beschleunigt. Wenn ihr ungeduldig seid, schüttelt die Flasche etwas, sodass das Päckchen schneller auseinanderfällt.

  • Schraubt den Deckel sorgfältig über der Ballonhaut fest und stellt die Rakete wieder aufrecht auf ihre Sockel.
  • Wartet, bis die Gasentwicklung in der Rakete (das Sprudeln und Brausen) weitgehend zum Stillstand gekommen ist. Nehmt dann grösstmöglichen Abstand zur Rakete hinein und stecht mit gestrecktem Arm die Nadel durch das Loch im Deckel in die Ballonhaut (Wer wirklich sicher leben möchte, montiert die Nadel auf eine Stange und übt vorher, bis er die Spitze damit aus grösserem Abstand durch das Loch befördern kann!).

Die Rakete wird sich sofort mit lautem Zischen in die Luft erheben – verliert nicht die Nadel vor Schreck 😉 und geht sofort nach dem Stich auf Abstand! Mit dem CO2 strömt nämlich unweigerlich auch essighaltige Flüssigkeit aus der Düse!

Sicherheitshinweise

Essigsäure ist eine schwache Säure, die – besonders auf 10% verdünnt – auf menschlicher Haut kaum ätzend wirkt. Wenn ihr Essigspritzer abbekommt, genügt es daher, sie mit viel Wasser abzuwaschen.

Auf Basen wie Natron reagiert der Körper wesentlich empfindlicher – gebt Acht, dass ihr das Natronpulver nicht in die Augen bekommt oder einatmet!

Die Augen schützt ihr deshalb mit der Schutzbrille – falls trotzdem etwas ins Auge geht, spült es gründlich (mindestens 10 Minuten!) mit Wasser aus und lasst im Zweifelsfall einen Augenarzt darauf schauen. Zuschauer sollten vorsorglich einige Meter Abstand zur Startrampe einhalten!

Viele Materialien werden dennoch von Essigsäure angegriffen: Wenn Spritzer auf eure Kleidung kommen, wascht diese sofort gründlich aus (und tragt zur Sicherheit entbehrliche Kleidung oder/und einen Kittel – Säurelöcher zeigen sich manchmal erst nach der nächsten Maschinenwäsche!). Marmor und Kalkstein eignen sich zudem nicht als Startrampe, da auch sie von Essigsäure angegriffen werden (sie bestehen aus Calciumcarbonat, einem chemischen Verwandten des Natrons!). Wenn ihr eure Rakete auf dem Rasen startet, verwendet einen Tisch oder eine Kiste als Startrampe und legt eine Plane darunter, denn auch Pflanzen mögen Essigsäure nicht (tatsächlich wird Haushaltsessig hierzulande im Baumarkt auch als glyphosatfreier Unkrautvernichter verkauft).

Und sollte aller Vorsicht zum Trotz der Raketentreibstoff irgendwo landen, wo er nicht hin soll und ihr ihn nicht aufnehmen könnt, giesst am besten reichlich Wasser darüber (dafür stehen Giesskanne oder Eimer bereit). Denn da weder Essigsäure noch Natron noch die Produkte ihrer Reaktion giftig sind, sind sie in grosser Verdünnung für Mensch und Umwelt harmlos.

Entsorgung

Dementsprechend können die Treibstoffreste auch (am besten miteinander) mit viel Wasser in den Ausguss entsorgt werden.


Ich habe meine “Aceto”-Rakete draussen auf dem Land gestartet, weit entfernt vom nächsten Supermarkt. Und nachdem ich einige Versuche brauchte, um Anpassungen an der Antriebsdüse zu machen, ist “Aceto-3” mit meiner letzten Natron-Portion dann endlich abgehoben – zumindest für einen Augenblick! Und dass ich dabei noch eines Rechenfehlers wegen doppelt so viel Flüssigkeit wie nötig geladen hatte, gibt Anlass zur Annahme, dass ohne Fehler noch wesentlich mehr geht:

Dies ist nur ein Beispiel dafür, was für spannende Dinge ihr mit ein paar einfachen Rechenkenntnissen anstellen könnt. Wenn eure Kinder einmal wieder fragen, warum bitteschön sie unbedingt das “Plusrechnen” oder das Einmaleins (oder ähnliches) üben müssen, antwortet doch: “Damit ihr damit eine Rakete starten könnt”. Ich bin sicher, das tönt auch und gerade in Kinderohren spannend!

Und wenn ihr selbst eine Rakete starten lasst, erzählt uns doch nachher, wie weit sie geflogen ist!

Viel Spass wünscht

Eure Kathi Keinstein

Anlässlich des ersten Geburtstags von Keinsteins Kiste waren erstmals alle Schreibfreudigen eingeladen über die Wunder der Natur zu staunen und ihre Eindrücke, Erklärungen und vieles mehr in der Kiste zu sammeln.

„Das fand ich ganz furchtbar!“ „Das ist doch total schwer!“ „Das Fach habe ich nie verstanden…“ „Habe ich bei der ersten Möglichkeit abgewählt!“

So oder so ähnlich lauten gefühlte neun von zehn Reaktionen, wenn ich erzähle, dass ich Chemie studiert habe. Und ich kann mir vorstellen, dass es den anderen Disziplinen der Naturwissenschaft nicht sehr viel anders ergeht.

Dabei hält die Natur so viel Spannendes bereit, das wir alle mit all unseren Sinnen ergründen oder mit dem wir schlichtweg spielen können. Und solche Naturphänomene sind gar nicht so schwer zu verstehen, wie manch unglücklich verlaufener Chemie-, Physik- oder Biologieunterricht uns glauben machen mag.

Meine Sinne und ihre Wahrnehmungen liefern die Inspiration für Keinsteins Kiste, die zum Entdecken, Forschen, Experimentieren, Beobachten, Wahrnehmen und Spielen mit Hilfe unserer – oder besser eurer – Sinne einladen sollt. Natur und Wissenschaft für alle Sinne eben. Ob es nun Licht und Farben wahrzunehmen, den Schwefelduft auf den Geysirfeldern des Yellowstone zu riechen, beim Bingo-Spiel nach den Rufen wilder Tiere zu lauschen, bei einer Grillparty den Geschmack der Produkte der Maillard-Reaktion  zu geniessen oder die geheimnisvolle Kraft der Magnete zu erfühlen gilt – die Natur – ob in eurem Alltag oder auf Reisen, hält endlos viele Sinnenfreuden und Spannendes zu lernen bereit.

Mit dieser Blogparade möchte ich euch alle – und zwar jede/n, ganz gleich, welchen Bezug ihr bislang zu den Naturwissenschaften habt, dazu einladen, eure eigenen Sinne zu gebrauchen und die Natur zu beobachten, zu ergründen oder auch einfach nur zu geniessen.. Verfasst einen Beitrag auf eurem Blog (falls ihr keinen habt: auf eurer Facebook-Seite oder eurer jeweiligen Lieblings-Plattform) und erzählt von eurer sinnlichen Begegnung mit einem Phänomen aus Natur oder Wissenschaft:

  • Bei welcher Gelegenheit hast du ein Naturphänomen besonders eindrücklich wahrgenommen bzw. nimmst du es besonders wahr (Das kann ebenso draussen und unterwegs wie auch im Alltag oder im Labor geschehen…)?
  • Welche Empfindungen löst/e diese Begegnung in dir aus?
  • Welche Bedeutung haben Sinneseindrücke von Natur- oder Alltagsphänomenen wie diesem in deinem Leben bzw. Alltag? Warst du schon immer auf deine Sinneseindrücke bedacht, oder bist du vielleicht erst durch diese Blogparade ans Erkunden gekommen?
  • Wie lässt sich das wahrgenommene Phänomen erklären? (Dieser Vorschlag ist noch weniger ein Muss als alle anderen, aber auf Wunsch helfe ich hierbei gerne!)

Diese Fragen können euch als Hilfe zur Gestaltung eures Beitrags dienen, sind aber keine Vorschrift. Schreibt, zeichnet, malt, fotografiert oder filmt, was euch in die Sinne kommt – im wahrsten Sinne des Wortes ;). Postet einen Link zu eurem Beitrag in den Kommentaren. Da erfahrungsgemäss die Sommerferien vielen unter euch Gelegenheit bieten, eure Umgebung zu erforschen oder eure Sinne im Urlaub zu erproben, habt ihr dazu Zeit bis zum 11. September 2017 ! Ihr dürft das Bild zu diesem Beitrag gerne als Artikelbild verwenden oder in euer Artikelbild einfliessen lassen!

Anschliessend wird es eine Zusammenfassung der Blogparade mit allen Links hier auf Keinsteins Kiste geben. Ich freue mich schon auf eine Menge bunter Beträge: Also auf, schärft eure Sinne und teilt eure Eindrücke mit uns!

Viel Spass wünscht Eure Kathi Keinstein

Blogparade : Augen auf! Wo mich die Natur zum Staunen bringt

Bald ist es soweit: Am 14. Juni 2016 wird Keinsteins Kiste 1 Jahr alt! Und damit ist es nun an der Zeit für eure Geschichten: Erzählt vom 23.05. bis 04.09. 2016 in unserer Geburtstags-Blogparade, wo oder wann euch die Natur so richtig zum Staunen gebracht hat – oder euch immer wieder zum Staunen bringt!

Ja, richtig! Auf mehrfachen Wunsch und Anregung meiner Leser verlängere ich die Laufzeit dieser Blogparade bis zum 4. September 2016! Denn mancherorts beginnt schon die Ferienzeit – und Ferienzeit ist Zeit zum Entdecken und Staunen!

“Das fand ich ganz furchtbar!” “Das ist doch total schwer!” “Das Fach habe ich nie verstanden…” “Habe ich bei der ersten Möglichkeit abgewählt!”

So oder so ähnlich lauten gefühlte neun von zehn Reaktionen, wenn ich erzähle, dass ich Chemie studiert habe. Und ich kann mir vorstellen, dass es den anderen Disziplinen der Naturwissenschaft nicht sehr viel anders ergeht.

Dabei hält die Natur so viel Spannendes bereit, das es – für uns alle! – zu bestaunen gibt, das wir ergründen oder mit dem wir schlichtweg spielen können. Und solche Naturphänomene sind gar nicht so schwer zu verstehen, wie manch unglücklich verlaufener Chemie-, Physik- oder Biologieunterricht uns glauben machen mag.

Ob wir uns an buntem Licht oder dem Glanz von Gold erfreuen, in der Küche unerwarteten Energieformen wie der Schmelzwärme begegnen, ob wir Pflanzen beim Wachsen zusehen, am Nachthimmel Sterne zählen, ob wir an ferne Orte reisen und funkelnde Geysire beobachten oder atemberaubende Steinformationen finden, ob wir Strom aus Licht gewinnen, oder ob wir im Labor spannende Experimente machen – praktisch immer und überall können wir etwas zum Staunen finden.

Mit dieser Blogparade möchte ich euch alle zum gemeinsamen Staunen einladen – und zwar jede/n, ganz gleich, welchen Bezug ihr bislang zu den Naturwissenschaften habt. Verfasst einen Beitrag auf eurem Blog (falls ihr keinen habt: auf eurer Facebook-Seite oder eurer jeweiligen Lieblings-Plattform) und erzählt von eurer Begegnung mit einem spannenden Naturphänomen:

  • Wo hat mich die Natur zum Staunen gebracht oder bringt mich immer wieder zum Staunen? (Das kann ebenso draussen und unterwegs wie auch im Alltag oder im Labor geschehen…)
  • Welche Empfindungen löst/e diese Begegnung in mir aus?
  • Welche Bedeutung haben Beobachtungen von Naturphänomenen wie diesem in meinem Leben bzw. Alltag? Haben mich Naturwissenschaften schon immer interessiert, oder bin ich vielleicht erst durch diese Blogparade ans Staunen gekommen?
  • Wie lässt sich das bestaunte Phänomen erklären? (Dieser Vorschlag ist noch weniger ein Muss als alle anderen, aber auf Wunsch helfe ich hierbei gerne!)

 

Diese Fragen können euch als Hilfe zur Gestaltung eures Beitrags dienen, sind aber keine Vorschrift. Schreibt, zeichnet, malt, fotografiert oder filmt, was euch zum Staunen in den Sinn kommt, und postet einen Link zu eurem Beitrag bis zum 23.6.2016 in den Kommentaren. Ihr dürft das Bild zu diesem Beitrag gerne als Artikelbild verwenden oder in euer Artikelbild einfliessen lassen!

Anschliessend wird es eine Zusammenfassung der Blogparade mit allen Links hier auf Keinsteins Kiste geben. Ich freue mich schon auf eine Menge bunter Beträge: Also los, auf zum Staunen!

Eure Kathi Keinstein