Was steckt in unseren Reinigungsmitteln? Welche brauchst du wirklich? Welche Stoffe sind wirklich umweltfreundlich? Was passiert mit den Lebensmitteln in der Küche? Antworten auf diese und viele andere Fragen rund um Chemie und Co im Haushalt findet ihr hier!

Experiment und Haushaltstipp: Kupfer mit Hausmitteln reinigen

Ein verregneter Frühling ist – wohl oder übel – Zeit für Schlechtwetterprogramm. Aber was tun? Experimentieren oder Haushalt? Warum nicht beides miteinander? Ich habe einen genialen Hack für euer Kupfer-Geschirr – mit Experiment für eure Kinder dazu!

Habt ihr einen Kupfertopf? Armaturen oder andere Gegenstände aus Messing? Und die sind mal wieder ziemlich angelaufen und sollten dringend geputzt werden? Dann legt los – und zwar ganz ohne kommerzielle Reinigungspaste. Denn was ihr braucht, findet ihr mit Sicherheit in der Küche.

Kupfer und Messing reinigen: Ihr braucht dazu

  • Angelaufenen Kupfertopf o.Ä.
  • Papiertücher (könnt ihr einfach entsorgen, da ihr sie nicht auswaschen müsst!)
  • Ggfs. Putzhandschuhe
  • Haushaltsessig
  • Kochsalz (Speisesalz, NaCl)

Und für ein simples, aber atemberaubendes Experiment für die Nachwuchs-Forscher das Ganze im Kleinformat…

Experiment: Kupfermünzen reinigen: Ihr braucht dazu

  • Kupfermünzen (nachweislich funktionieren Euro-Cents, britische Pennys und US-Cents, Münzen mit messinggoldener Oberfläche wie das Schweizer Füüferli oder tschechische 20 Kronen bringen kein gutes Ergebnis)
  • Haushaltsessig
  • Kochsalz
  • leeres Glas (z.B. Gewürzglas, praktisch mit gewölbtem Boden)
  • ggfs. Schutzbrille und Kittel für die Nachwuchs-Forscher

Haushaltsessig und andere Säuren wirken ätzend! Essigsäure ist jedoch eine schwache Säure, die unserer Haut dank deren Säureschutz nicht gleich Schaden zufügt. Deshalb trage ich beim Umgang mit solch kleinen Mengen keine Handschuhe.

Wenn ihr Essig auf die Haut bekommt, spült ihn einfach gründlich mit Wasser ab. Sollte euch ein Spritzer in die Augen geraten (die Schutzbrille sollte das verhindern!), spült die Augen sehr gründlich mit fliessendem Wasser aus (10 Minuten lang heisst es im Labor!) und geht bei bleibenden Beschwerden zur Sicherheit zum Augenarzt.

Wenn Spritzer auf die Kleidung kommen, zieht sie aus und wascht sie ebenfalls sofort sehr gründlich aus. Wenn die Säure die Textilien angreift, können sonst später beim Waschen in der Maschine noch Löcher entstehen!

So geht’s

Experiment

Gebt ca. 1 cm hoch Haushaltsessig ins Glas, dann eine angelaufene Kupfermünze hinein. Schliesslich gebt ihr reichlich – etwa einen Teelöffel – Kochsalz hinzu.

Münze im Essig-Kochsalz-Bad: Ein paar Sekunden reichen – ihr könnt zuschauen, wie sie blank wird! Das Kochsalz muss sich übrigens nicht vollständig im Essig lösen. Direkt auf die Münze gegeben wirkt es am besten.

Kupfertopf reinigen

Gebt einen Schuss Essig auf euren Lappen und streut Kochsalz auf den nassen Fleck. Nicht damit sparen! Dann poliert euren Kupfertopf oder Messinggegenstand mit dem Gemisch. Sobald der Topf blank ist, könnt ihr ihn mit einer kleinen Menge Speiseöl einreiben, damit er nicht sogleich wieder anläuft.

Was ihr beobachten könnt

Beim Experimentieren

Die dunkel angelaufene Kupfermünze wird innerhalb von Sekunden hell! Fischt die Münze aus dem Glas, sobald sie hell genug ist (eine Gabel ist dabei sehr hilfreich) und spült sie kurz mit Wasser ab.

Kupfermünze mit Essig und Kochsalz gereinigt: Die linke Münze ist nach wenigen Sekunden im Essig-Salz-Bad blank, die rechte, angelaufene dient als Vergleich
Rechts: Angelaufene 2-Eurocent-Münze; Links: eine vergleichbar angelaufene 2-Eurocent-Münze nach wenigen Sekunden im Essig-Kochsalz-Bad

Beim Reinigen des Kupfertopfes oder Messinggegenstandes

Das Kupfer oder Messing wird sofort blank, wie beim Putzen mit einer kommerziellen Reinigungspaste!

Entsorgung

Kupferionen sind giftig für Wasserorganismen und andere Kleinstlebewesen. Deshalb gehören sie grundsätzlich als Sondermüll entsorgt. Die winzigen Mengen, welche beim Experimentieren mit Münzen entstehen, könnt ihr aber mit dem Essig-und-Salz-Gemisch in den Abfluss entsorgen.

Die Papiertücher, mit welchen ihr Kupfertöpfe und Messing putzt, könnt ihr in den Hausmüll geben oder – wenn ihr die Kupfergeschirr-Komplettausstattung eurer Profi-Küche poliert und so grössere Mengen erzeugt habt 😉 – trocknen lassen und zur Sonderabfall-Sammelstelle bringen.

Was passiert da?

Die dunkle Farbe angelaufenen Kupfers ist ein Belag aus Kupferoxiden, hauptsächlich aus schwarzem Kupfer(II)oxid (CuO). Dieses Salz besteht aus Cu2+– und O2- -Ionen. Cu2+-Ionen können sich in Wasser lösen, wobei sie von Wassermolekülen umgeben werden.

Dabei nehmen sechs Wassermoleküle der innersten Wasserschicht um ein Cu2+-Ion ganz bestimmte, geometrische Positionen ein: Die Ecken eines lang gezogenen Oktaeders.

Hexaaquakupfer(II) - Komplex: Die beiden H2O auf der Längsachse sind etwas weiter vom Kupfer entfernt als die vier übrigen
Der Hexaaquakupfer(II)-Komplex: Die Pfeile deuten die Bindungen durch „geliehene“ Elektronenpaare an. Die Wassermoleküle markieren die Ecken eines Oktaeders (eine viereckige Doppelpyramide), wobei die beiden Moleküle oben und unten etwas weiter weg vom Kupfer sind als die übrigen vier. Die Folge: Der Oktaeder erscheint etwas in die Länge gezogen.

Wie sie dazu kommen? Ein Cu2+-Ion hat relativ wenig Elektronen (immerhin zwei weniger, als zum Ausgleich seiner Kernladung nötig wären). Wassermoleküle hingegen haben – zumindest am Sauerstoff-Ende – ziemlich viele davon, und zwar ganze zwei äussere Elektronenpaare, die für keine chemische Bindung innerhalb des Moleküls gebraucht werden. So können Wassermoleküle eines dieser nichtbindenden Elektronenpaare einem Cu2+-Ion „ausleihen“.

Damit entsteht eine chemische Bindung zwischen Wasser und Kupfer-Ion, die von den Chemikern „koordinative Bindung“ oder „Komplexbindung“ genannt wird. „Komplex“ ist daran allerdings nur, dass ein Bindungspartner dem anderen ein Elekronenpaar ausleiht, anstatt dass wie bei der kovalenten oder Atombindung jeder Partner ein Elektron dazu beisteuert.

Komplexbildungsreaktionen sind Gleichgewichtsreaktionen

Cu2+-Ionen sind nun damit zufrieden, von sechs geliehenen Elektronenpaaren jeweils ein Bisschen zu haben. Allerdings lange nicht so zufrieden wie damit, einen Platz in einem CuO-Kristallgitter zu haben.

Stets kehren Cu2+-Ionen aus der Lösung in das Kristallgitter zurück: Die [Cu(H2O)6]2+ – Komplexe befinden sich stets mit dem Kupfer-Ionen im Kristallgitter in einem chemischem Gleichgewicht (Le Chatelier erklärt euch das Gleichgewicht hier auf dem Flughafen genauer).

Dieses Gleichgewicht liegt in Wasser allerdings ganz weit auf der Seite des Salzkristalls, es sind nur ganz wenige [Cu(H2O)6]2+ -Komplexe in Lösung.

Kochsalz übt einen Zwang aus

Gibt man nun reichlich Kochsalz (NaCl) in das Wasser, löst sich dessen Gitter auf: Na+– und Cl-Ionen gehen einzeln ins Wasser über . Die Cl-Ionen können ebenfalls Komplexe mit Kupfer bilden: Sie können Wassermoleküle im [Cu(H2O)6]2+ ersetzen, sodass Komplexe wie [Cu(H2O)5Cl]+ entstehen:

Die Art Reaktion nennen die Chemiker „Ligandenaustauschreaktion“: Die Teilchen, welche dem Kupfer-Ion (dem „Kern“) im Zentrum des Komplexes die Elektronenpaare leihen, heissen nämlich „Liganden“ (von lateinisch ligare = binden).

Durch solche Reaktionen können bis zu vier Wassermoleküle ausgetauscht werden. Die zwei verbleibenden Wassermoleküle bilden nun die Spitzen des langgezogenen Oktaeders.

Tetrachlorocuprat(II) in wässriger Lösung: Der quadratisch-planare Kupfer-Komplex wird von zwei Wassermolekülen zum langgezogenen Oktaeder ergänzt.
Tetrachlorocuprat(II): So heisst der Komplex, welcher entsteht, wenn die maximal mögliche Anzahl Wassermoleküle gegen Chlorid-Ionen ausgetauscht wird.

All diese Komplexe stehen miteinander im Gleichgewicht. Das schiere Überangebot an Cl-Ionen allein sorgt dafür, dass diese Gleichgewichte jeweils auf die Seite mit mehr Chlorid im Komplex gedrängt werden. So einem Zwang wie dem Cl-Überschuss will das ganze System nämlich ausweichen.

Der Knackpunkt dabei: Durch die Entstehung der Komplexe mit Chlorid wird dem Gleichgewicht zwischen CuO und gelösten Kupferionen das  [Cu(H2O)6]2+ entzogen! Laut dem Prinzip von Le Chatelier strebt das Gleichgewicht danach, auh diesen Verlust auszugleichen: Der Verlust der Kupferionen mit reiner Wasserhülle zieht das Gleichgewicht förmlich auf die Seite des gelösten [Cu(H2O)6]2+. So geht in der Anwesenheit von reichlich Cl mehr Cu2+ aus dem CuO in Lösung.

Und was tut der Essig dabei?

Mit Kochsalz und blossem Wasser funktionieren diese Ligandenaustauschreaktionen kaum: Das Kupferoxid bleibt an der Oberfläche haften – der Kupfertopf bleibt dunkel.

So lautete meine erste Vermutung Die Säure (Haushaltsessig ist nichts anderes als Essigsäure gelöst in Wasser) fördert irgendwie die Entstehung der chloridhaltigen Komplexe. Befriedigend war diese Erklärung aber lange nicht.

Deshalb habe ich meine Chemiker-Gedanken weiter gesponnen und bin zu folgender Erklärung gelangt:

Wenn Cu2+-Ionen aus dem CuO in Lösung gehen, müssen die O2--Ionen aus dem Gitter auch irgendwo hin. Allerdings können die nicht einfach von Wassermolekülen umgeben existieren. Stattdessen reagieren sie mit dem Wasser zu OH-Ionen:

Auch zwischen diesen Reaktionspartnern besteht ein Gleichgewicht, das nicht all zu weit auf der Seite der OH-Ionen liegen mag. Ist im Wasser allerdings eine Säure (ein Stoff, der mit Wasser H3O+-Ionen erzeugen kann) vorhanden, reagieren die OH-Ionen allerdings gleich wieder zu Wasser:

Diese Gleichgewichtsreaktion nennen die Chemiker „Neutralisation“! Es liegt nämlich recht weit auf der Wasser-Seite, sodass eine Säure wie H3O+ und eine Base wie OH ganz von selbst miteinander reagieren. Durch den „Verbrauch“ von OH-Ionen durch die Neutralisation wird wiederum das Gleichgewicht zwischen O2- im CuO-Gitter und den OH-Ionen in Lösung auf die OH-Seite gezogen.

Zum besseren Überblick habe ich die wichtigsten Gleichgewichte und ihre Abhängigkeiten voneinander noch einmal zusammengefasst:

Überblick über die Gleichgewichtsreaktionen: So löst sich Kupfer in Essig mit Kochsalz
Die roten Pfeile deuten die Verlagerung der Gleichgewichte an: Die Reaktionen ganz rechts „ziehen“ die Gleichgewichte weiter links auf die Seite der Lösung: Das Kupferoxid an der Kupferoberfläche wird aufgelöst!

Wenn meine Erklärung zutrifft, müsste das Ganze auch mit Kochsalz in anderen Säuren funktionieren. Ich habe es ausprobiert: Kochsalz in Zitronensäure zeigt beim Polieren die gleiche Wirkung.

Aber Kupfer(II)-Komplexe sind doch farbig?

Die Chemie-Erfahreneren unter euch wissen vielleicht, dass die Komplexe mit Cu2+-Ionen eigentlich sehr farbig sind: [Cu(H2O)6]2+ ist zum Beispiel cyanblau, während die chloridhaltigen Komplexe zunehmend grün sind. Warum sieht man dann beim Reinigen der Münzen die Farben nicht?

Ich gehe davon aus, dass diese Komplexe insgesamt in so kleiner Menge entstehen, dass uns die äusserst blasse blau-grüne Färbung schlichtweg nicht auffällt.


Wie verträglich ist die Reinigung mit Essig und Kochsalz für die Kupfer-oberfläche?

Durch die Ligandenaustauschreaktionen wird das Kupfer-Metall nicht wieder hergestellt. Stattdessen wird bereits oxidiertes Kupfer in Wasser gelöst, sodass es abgewaschen werden kann. Wie bei allen anderen mir bekannten Mitteln zur Entfernung von Korrosionsspuren würde auch dieses bei wiederholtem Putzen irgendwann das Metall „aufbrauchen“.

Im praktischen Gebrauch bei der Reinigung von Kupfertöpfen und ähnlichen Gegenständen fällt diese Verlust jedoch nicht ins Gewicht. Zudem gehe ich davon aus, dass kommerzielle Reinigungspasten nach dem gleichen Prinzip funktionieren. Ihr könnt also getrost eure Kupfertöpfe mit Essig und Kochsalz polieren.

Und Messingoberflächen?

Messing ist eine Legierung – also ein Gemisch – aus den Metallen Kupfer und Zink. Auch in Messing sind also Kupferatome enthalten, die, wenn sie zu CuO oxidiert werden, dem Metall ein dunkles, stumpfes Aussehen geben. Damit sollte sich dieses Problem mit Hilfe der selben Reaktionen beheben lassen.

Tatsächlich habe ich auch den Messinggriff meines Kupfertopfes problemlos mit Essig und Kochsalz polieren können. Lasst dabei jedoch die Mischung nicht unnötig lange einwirken, sondern spült sie gleich nach dem Putzen ab!

Beim Experimentieren mit Messingmünzen habe ich nämlich festgestellt, dass die Mischung Zink oder/und andere Bestandteile der Legierung aus der Oberfläche herauslösen kann. Die Folge: Die ehemals messinggoldene Oberfläche wird zwar blank, aber rot wie Kupfer!

Zink ist nämlich ein ziemlich unedles Metall, sodass es von der Säure angegriffen werden könnte. Die Säurekorrosion habe ich hier zur Rostparade oder zum Anhören in der neuen Folge des Proton-Podcasts (erscheint in Kürze) erklärt.

Bild: Tschechische 20-Kronen-Münze rot verfärbt

Was euch die Verwendung dieses Hausmittels bringt

Wie bereits erwähnt vermute ich, dass im Handel erhältliche Reinigungspaste für Kupfer und Messing auf die gleiche Weise funktioniert wie das Gemisch aus Säure und Kochsalz – nämlich mit Chemie. Welchen Vorteil habt ihr dann aber von diesem Hausmittel?

Wie ihr seht: Ohne Chemie geht nichts im Haushalt. Anders als bei einer Reinigungspaste aus dem Handel wisst ihr beim Einsatz eines solchen Hausmittels oder Chemie-Hacks ganz genau, welche Chemie bzw. Chemikalien darin enthalten sind. Nämlich garantiert nichts, was euch gefährlich werden könnte (so lange ihr das Kochsalz nicht löffelweise esst oder euch die Säure in die Augen spritzt – aber das versteht sich ja von selbst). Das ist doch ein beruhigender Gedanke, oder?

Und wie reinigt ihr Kupfer und Messing in eurem Haushalt?

Hast du das Experiment nachgemacht: 

[poll id=“9″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Klimawandel - Worum geht es da eigentlich?

Jeden Freitag gehen wieder Tausende Jugendliche auf die Strasse, fordern Engagement für den Klimaschutz. Alex von livelifegreen hat deshalb zur Blogparade #bloggersforfuture aus Solidarität zu unseren Kindern aufgerufen. Die setzen sich nämlich für ihre Zukunft ein, die wir heute Erwachsenen ziemlich leichtfertig aufs Spiel gesetzt haben und noch aufs Spiel setzen. Indem wir den Klimawandel zugelassen haben.

Aber worum geht es da eigentlich?

Was ist eigentlich Klima? Was passiert mit dem Klima auf der Erde: Warum wird es wärmer? Können wir überhaupt etwas dagegen tun? Was können Politiker und die Wirtschaft tun? Was kann jeder von uns beitragen?

Mit den Antworten auf diese Fragen könnte ich ein ganzes Buch füllen – oder zumindest eine ganze Beitragsserie. Deshalb bleibe ich in Teilen dieses Artikels bewusst oberflächlich, enthalte euch aber spannende und verlässliche Links zum Weiterlesen nicht vor.

Woher ich meine Daten habe

Verlässlich ist ein gutes Stichwort: Nicht zuletzt im Netz findet man eine ganze Menge mehr oder weniger dem aktuellen Wissensstand entsprechenden Informationen und Behauptungen rund um das Klima und seine Veränderung.

Umso froher war ich, dass ein Student der ETH Zürich die Aufgabe, eine verlässliche Übersicht über diesen Wissensstand zusammen zu tragen, im Rahmen einer mentorierten Arbeit bereits erledigt hat. Der Autor verwendet dazu hauptsächlich Daten des „Intergovernmental Panel on Climate Change (IPCC)“, das 1988 vom Umweltprogramm der Vereinten Nationen und der Weltorganisation für Meteorologie (WMO) eingerichtet worden ist. Dessen Zusammenfassungen der weltweiten Forschungsergebnisse könnt ihr hier in offiziellen deutschen Übersetzungen in allen Einzelheiten nachlesen.

Aus Zeitgründen bezieht sich mein Artikel vornehmlich auf die 2012 entstandene mentorierte Arbeit. Ich gehe jedoch guten Gewissens davon aus, dass auch die jüngeren Berichte des IPCC von den grundlegenden Aussagen nicht gross abweichen werden.

Nun aber zum Wesentlichen.

Was ist eigentlich Klima?

Letzten Donnerstag hatten wir Schneefall bis in tiefe Lagen – im April. Von Klimaerwärmung kann da keine Rede sein, mögen manche tönen. Die vergessen nur eins: Wetter und Klima sind zwei ganz unterschiedliche Dinge!

Wetter ist nämlich ein kurfristiges Geschehen in der Atmosphäre an einem bestimmten Ort (über) der Erdoberfläche.

Ein Beispiel: Am Donnerstag (4.April 2019) betrug die Lufttemperatur zur wärmsten Tageszeit hier in Pfäffikon SZ laut Accuweather.com 4°C.

Das Klima ist dagegen das „Durchschnittswetter“ über grössere Teile der Erde oder gar den ganzen Planeten und über einen langen Zeitraum verteilt.

Um das Klima in einer bestimmten Region oder auf der ganzen Erde zu bestimmen, werden also viele Daten an vielen Orten und/oder über grössere Zeiträume hinweg gesammelt, Durchschnittswerte berechnet und die Bandbreite von Abweichungen davon bestimmt.

Durchschnittlich ist es hier in Pfäffikon Anfang April zur wärmsten Tageszeit 13°C warm (Accuweather gibt leider nicht preis, über welchen Zeitraum die Temperaturen erfasst worden sind). Das Wetter am Donnerstag war also ein Ausreisser im Vergleich zum hiesigen Klima. Wie häufig solche Ausreisser sind oder ob unser April regelrecht aus Ausreissern nach oben und unten besteht (wie man ihm ja gerne nachsagt), geben die Daten von Accuweather allerdings nicht her.

Es geht noch komplexer: Das Klimasystem

Der Begriff „Klima“ ist eigentlich viel zu einfach für das vielschichtige System, das hinter dieser Datensammlung steckt. Das Klimasystem der Erde setzt sich nämlich aus einer ganzen Reihe verschiedener Systeme zusammen:

Der Atmosphäre (also der Lufthülle der Erde), der Gesamtheit aller Meere und Gewässer (Hydrosphäre), der Gesamtheit von Eis und Schnee auf der Erde (Kryosphäre), der steinernen Erdkruste (Lithosphäre), der Gesamtheit des Erdbodens (Pedosphäre) und schliesslich der Gesamtheit der Lebewesen (Biosphäre), welche all diese Systeme bevölkern.

Und all diese System stehen in ständigem Austausch untereinander: In verschiedenen, aber zusammenhängenden Kreisläufen werden immerzu Energie und Stoffe zwischen den verschiedenen Bereichen ausgetauscht. Wichtige Beispiele für solche Stoffkreisläufe habe ich im Artikel über die Hermetosphären näher erklärt. Dort findet ihr auch eine Anleitung, wie ihr euer eigenes Mini-Klimasystem im Wohnzimmer selbst anlegen und beobachten könnt!

Ein solches Netzwerk aus miteinander verbundenen Systemen bedeutet: Wenn irgendwo an einer Stelle etwas daran verändert wird, kann diese Veränderung Folgen für weite Teile des Netzwerks, wenn nicht gar für das ganze Klimasystem haben! Und dass sich von den letzten Jahrzehnten an in auffälliger Weise etwas ändert, ist laut der Beobachtungen der Klimawissenschaftler unbestreitbar.


Was passiert mit dem Klima auf der Erde?

Seit gut 100 Jahren wird die Klimaentwicklung wissenschaftlich beobachtet, vermessen und festgehalten. Ältere Daten können in historischen Quellen gesucht oder aus erdgeschichtlichen Spuren (Baum-Jahresringe, Bohrkerne aus Eis oder Gestein, Fossilien,…) gewonnen werden.

Was die Wissenschaftler direkt beobachten konnten

  • Von 1906 bis 2005 ist die Durchschnittstemperatur auf der Erde um 0,74°C angestiegen.
  • Der Meeresspiegel ist im Laufe des 20. Jahrhunderts um ca. 0,17m angestiegen.
  • Die im Mittel von Schnee und Gletschern bedeckte Fläche (Eiskappen an den Polen nicht mit eingerechnet) wird kleiner.
  • Einige Gebiete der Erde (Nord- und Südamerika, Nordeuropa, Nord- und Zentralasien) erfahren mehr Niederschläge (Regen, Schnee,…), andere Gebiete (Sahel, Mittelmeerraum, Südafrika, Teile Südasiens) werden hingegen trockener.

Was die Klima-Geschichtsforscher ihren Spuren entnehmen können

  • Die Durchschnittstemperatur war während der letzten 1300 Jahre nie hoch wie heute.
  • Der Meeresspiegel war vor 125’000 Jahren – lange bevor es nennenswert Menschen auf der Erde gab – rund 4 bis 6 Meter höher als im 20. Jahrhundert (Grund dafür war eine Zwischeneiszeit, in der es zum Abschmelzen grosser Mengen Eis und Schnee kam).

Einige der jüngst beobachteten Entwicklungen werden also von den geschichtlichen Daten als unnatürlich bestätigt, andere weniger.

Warum geschieht nun die Klimaerwärmung?

Dass es auf der Erde überhaupt lebensfreundlich warm ist, haben wir der Sonne zu verdanken. Die versorgt uns nämlich mit einem bunten Mix von Energie in Form elektromagnetischer Strahlung: Licht Wärme, UV-Strahlung,… Die jährliche Leistung unseres Sonnenofens beträgt dabei über den ganzen Planeten gemittelt 342 Watt pro Quadratmeter.

Knapp ein Drittel dieser Strahlung bewirkt allerdings überhaupt nichts: Eine Strahlungsleistung von 107 Watt pro Quadratmeter und Jahr wird ins Weltall zurückreflektiert (von Wolken, der Erdoberfläche und Aerosolen, also Partikeln in der Luft) ohne mit den Bestandteilen des Planeten Energie auszutauschen.

Unsere globale Energiebilanz

Die übrigen Strahlen mit einer Leistung von 235 Watt geben ihre Energie an die Erdoberfläche und die Atmosphäre ab. Mit dieser Energie kann nun beispielsweise Wasser verdunsten (es entstehen Wolken, die ihre Energie wiederum abgeben können, wenn sie abregnen), energiereiche Moleküle in Lebewesen entstehen oder es wird schlichtweg warm. Schlussendlich wird die gesamte Energie aber wieder in den Weltraum abgestrahlt.

Nach den zahlreichen Umwandlungen kommt die Energie jedoch nicht als breit gefächerter Strahlenmix wieder heraus, sondern vornehmlich in Form von langwelliger Wärmestrahlung. Die Gesamtleistung der abgegebenen Strahlung ist aber die selbe wie die jener Sonnenstrahlung, die zuvor von der Erde aufgenommen worden ist: 235 Watt pro Quadratmeter und Jahr.

Genau so hat eine ordentliche Bilanz auszusehen: Was reinkommt, geht auch irgendwo wieder raus und die Bilanz ist 0.


Abschätzung der jährlich und global gemittelten Energiebilanz der Erde. Langfristig wird die Menge an einfallender Sonnenstrahlung, die von der Erde und der Atmosphäre absorbiert wird, dadurch ausgeglichen, dass Erde und Atmosphäre die gleiche Menge langwelliger Strahlung wieder freisetzen. Ungefähr die Hälfte der einfallenden Sonnenstrahlung wird von der Erdoberfläche absorbiert. Die Energie gelangt in die Atmosphäre, wenn sich die Luft im Kontakt mit der Oberfläche erwärmt („Thermik“), sowie durch Verdunstung von Wasser („Evapotranspiration“ genannt) und durch langwellige Strahlung, die durch Wolken und Treibhausgase absorbiert wird. Die Atmosphäre wiederum strahlt langwellige Energie sowohl auf die Erde zurück, wie auch in den Weltraum hinaus. Bildquelle: Kiel und Trenberth (1997).

Die Erde: Ein gar nicht idealer schwarzer Körper

Wenn die Erde nun ein idealer schwarzer Körper wäre, könnte man mit einer physikalischen Gleichung, dem Stefan-Boltzmann-Gesetz, anhand der abgegebenen Strahlungsleistung berechnen, welche Temperatur ihre Oberfläche haben sollte.

Solch ein schwarzer Körper ist die Erde zwar nicht, aber dem doch immerhin so ähnlich, dass man die erwartete Oberflächentemperatur anhand dieses Gesetztes abschätzen kann. Und die Schätzungen der Wissenschaftler belaufen sich auf -19°C. Also im Mittel auf ständigen sibirischen Winter auf dem ganzen Planeten. Irgendwie passt das Stefan-Boltzmann-Gesetz also doch nicht so gut zu unserer Erde.

Treibhauseffekt…

Das liegt daran, dass dieses Gesetz nicht berücksichtigt, dass ein erheblicher Teil der wieder abgegebenen Wärmestrahlung von der Erdatmosphäre gleich wieder zur Erdoberfläche zurückgeworfen wird. Dort wird die Strahlung erneut von Wasser, Lebewesen und anderen Bestandteilen der Oberfläche aufgenommen und umgewandelt, ehe sie in einem zweiten Anlauf erneut abgegeben wird. Und auch davon wirft die Atmosphäre einen Teil gleich wieder zurück.

Statt eines ungehinderten Energieaustauschs gibt es also einen Rückstau: An der Erdoberfläche unter ihrer Atmosphärenhülle wird ein Teil der Sonnenenergie „zwischengelagert“. So ist es möglich, dass die Erdoberfläche in einem Jahr mehr Energie abstrahlt (mit 390 Watt pro Quadratmeter) als sie direkt von der Sonne erhält (235 Watt pro Quadratmeter).

Das „Mehr“ resultiert aus jener Strahlung, die gleich wieder aus der Atmosphäre zurückkommt und noch einmal abgestrahlt werden kann. Die zwischengelagerte Energie können wir überdies direkt wahrnehmen: Dank ihr war es 1997 an der Erdoberfläche im Mittel nicht -19°C, sondern +14°C warm (Kiehl und Trenberth, 1997)!

Dieser wärmende Effekt kann auch ganz einfach in einem gläsernen Gewächshaus beobachtet werden: Hier übernehmen Glasdach und -wände die Rolle der Atmosphäre und werfen ursprünglich von der Sonne stammende Energie wieder zurück, bevor sie aus dem Glashaus entweichen kann. So wird es im Gewächshaus wesentlich schneller warm als draussen. Deshalb wird der ganze Vorgang auch „Treibhauseffekt“ genannt.

…durch Treibhausgase

Besonders gut im Zurückwerfen von Wärmestrahlung ist das Gas Kohlenstoffdioxid, CO2. Das ist erst einmal ein natürlicher Bestandteil der Erdatmosphäre, der zum Beispiel durch Vulkanausbrüche oder die Ausscheidungen sauerstoffatmender Lebewesen da hinein gelangt.

Methan, CH4, ist ein weiteres solches Treibhausgas. Auch das kommt in der Natur vor: In Erdgas oder gebunden in Methanhydrat tief unter dem Permafrost Sibiriens oder am Meeresgrund, als Ausscheidung von Mikroorganismen als Faul- oder Sumpfgas oder Darm-Abgas von höheren Säugetieren (man denke an die furzenden Kühe).

Wie kann der Energiehaushalt der Erde verändert werden?

  1. Der Energiehaushalt des Planeten – insbesondere die Menge der „zwischengelagerten“ Energie und damit die Temperatur an der Oberfläche – könnte vor allem durch Änderungen an drei Stellen beeinflusst werden.
  2. Durch Änderung des Einfalls von Sonnenstrahlen, zum Beispiel durch Veränderung der Erdumlaufbahn oder/und Achsenneigung
  3. Änderungen des Anteils reflektierter Sonnenstrahlen, zum Beispiel durch Veränderung der Landschaft bzw. der Schnee- und Eisdecken auf der Erdoberfläche
  4. Änderung der Menge von der Erde abgegebener langwelliger Strahlung – mit anderen Worten durch Änderung der Energiemenge, die von der Atmosphäre gleich wieder zurückgeworfen wird!

Wie entsteht natürlicher Klimawandel?

  1. Durch zyklische Änderung der Sonneneinstrahlung: Tatsächlich „eiert“ die Erde ein wenig, d.h. ihre Drehachse schwankt wie die eines Spielzeugkreisels, der nicht perfekt senkrecht auf einer glatten Oberfläche kreiselt. Auch die Umlaufbahn der Erde um die Sonne selbst ist nicht unveränderlich: Sie verändert sowohl ihre Form als auch ihre Orientierung. Das alles geschieht jedoch in wiederkehrender Weise, und zwar in Zyklen von etwa 20’000 bis 100’000 Jahren. Also zu langsam, um für die drastischen Veränderungen in den letzten 100 Jahren verantwortliche zu sein.
  2. Durch Prozesse wie die tektonische Verschiebung von Kontinentalplatten. Die kann ganze Kontinente in eine andere Klimazone verschieben, sodass nicht nur das dortige Klima sondern als Konsequenz auch die Landschaft und damit die Reflektion der einfallenden Strahlen sich verändern. Durch die mit der Kontinentaldrift einhergehende Veränderung der Form und Grösse von Meeren werden zudem Meeresströme erzeugt, in ihrem Verlauf verändert und zum Versiegen gebracht. Das alles geschieht jedoch noch um ein Vieles langsamer als die Milankovic-Zyklen (s.1.)!
  3. Durch schwerwiegende Ereignisse wie Vulkanausbrüche oder Asteroideneinschläge: Wenn dabei grosse Mengen Treibhausgase wie CO2 freigesetzt und Russ- und Staubpartikel in die Luft befördert werden, kann das sowohl die Sonneneinstrahlung (mehr wird reflektiert: es wird dunkler und kälter auf der Erde) als auch den Treibhauseffekt (mehr Treibhausgase machen ihn grösser) beeinflussen.

Alles in allem reicht das sehr wahrscheinlich nicht als Erklärung für die bedeutsamen Veränderungen in den letzten 100 Jahren und diejenigen, die uns gemäss Berechnungen der Wissenschaftler noch bevorstehen können.

Wie entsteht von Menschen gemachter (anthropogener) Klimawandel?

Sehr wahrscheinlich ist die steigende Menge der von Menschen erzeugten Treibhausgase, allen voran CO2, die Haupttriebkraft für die menschengemachte Klimaerwärmung.

Kohlenstoffdioxid, CO2, gelangt durch Verbrennung von Kohlenstoffverbindungen in die Luft: Durch das Verheizen von Kohle in Kraftwerken zur Stromerzeugung, die Verbrennung von Kraftstoffen aus Erdöl und -gas in Autos, Flugzeugen und Schiffen, durch das Abbrennen von Wäldern zur Gewinnung von Ackerflächen.

Strom wird wiederum produziert, weil er gebraucht wird: Zur Herstellung von Waren, um diese Waren von der Fabrik zu uns – die wir die Waren kaufen wollen – zu bringen und um sie benutzen (wenn es sich dabei um Elektrogeräte handelt). Deshalb wird heute für viele Dinge ein „CO2-Ausstoss“ angegeben, obwohl sie selbst gar keinen Kohlenstoff verbrennen.

Methan, CH4, kommt aus unverbrannt freigesetztem Erdgas, den Darmgasen („Furzen“) von Nutztieren und aus aufgrund der Erwärmung durch die anderen Ursachen auftauendem Methanhydrat.

Diese zusätzlichen Mengen Treibhausgase in der Atmosphäre werfen mehr langwellige Strahlung auf die Erde zurück – mehr Energie wird an der Oberfläche zwischengelagert: Es wird wärmer.

Wir Menschen tun auch Dinge, die der Erwärmung entgegen wirken

Winzige Staub- und Flüssigkeitspartikel (sogenannte Aerosole), die mit unseren Abgasen in die Atmosphäre gelangen, reflektieren mehr Sonnenstrahlen, bevor sie ihre Energie an die Erdoberfläche abgeben können. Die Veränderung von Landschaften – zum Beispiel durch das Abholzen von Wäldern – führen ausserdem dazu, dass die Erdoberfläche mehr Strahlen reflektiert, anstatt ihre Energie aufzunehmen.

Das Problem dabei: Wälder gehören zu den effektivsten CO2-Beseitigern unserer Erde. Die Pflanzen nehmen das Gas auf, verwenden den Kohlenstoff daraus für ihr eigenes Wachstum und scheiden den Sauerstoff wieder aus.

Alles in allem – so zeigen es die Beobachtungen der Klimawissenschaftler – überwiegt der wachsende Treibhauseffekt die anderen Auswirkungen unseres Treibens: Es wird schliesslich wärmer auf der Erde.


Wie wird sich das Klima weiter entwickeln?

Um diese Frage genau zu beantworten, müssten die Klimawissenschaftler alle Einzelheiten des ganzen komplexen Klimasystems in ihre Computer füttern und den bisherigen Verlauf der Klimaentwicklung für die Zukunft weiterrechnen lassen. Bevor sie aber so zu einem Ergebnis kämen, würde aber jeder Computer unweigerlich heiss laufen. Denn die ganze Wirklichkeit lässt sich unmöglich in all ihren Einzelheiten in einem unserer heutigen Computer abbilden.

Deshalb erschaffen die Wissenschaftler sogenannte Klimamodelle. Ein solches Klimamodell ist eine vereinfachte Version der Wirklichkeit, die genau genug ist, um wirkliche Verhältnisse passend zu beschreiben, aber einfach genug, um die Computer der Wissenschaftler nicht zu überfordern. Das kann erreicht werden, indem das Modell so geschaffen wird, dass es die Einzelheiten, die man damit zeigen will, besonders genau beschrieben werden – während weniger wichtige Details mitunter sehr ungenau gehalten werden.

Modelle fürs Klima sind wie Modelle in der Chemie

Wir Chemiker gehen auf die gleiche Weise vor, wenn wir Atommodelle verwenden: Wenn ich euch zeigen möchte, wie zwei Wasserstoffatome und ein Sauerstoffatom in einem Wassermolekül angeordnet sind, genügt es, sich die Atome als massive Kugeln vorzustellen, die miteinander verbunden sind. Wie genau diese Atome aussehen, ist dabei erst einmal uninteressant.

Möchte ich euch dagegen erklären, was Ionen sind, brauche ich dazu zumindest ein Modell, das Atomkern und Elektronenhülle kennt, und wenn ihr wissen möchtet, warum das Natrium-Ion im Kochsalz genau eine positive Ladung trägt, werde ich um das Schalenmodell für die Elektronenhülle nicht herum kommen.

Jedes dieser Modelle eignet sich dafür, einen Teil der chemischen Wirklichkeit zu beschreiben, auch wenn alle Modelle irgendwo ihre Grenzen haben. Deshalb haben die Chemiker ihre Modelle im Laufe der Geschichte auch immer wieder verfeinert.

Berechnung verschiedener Szenarien

Das Gleiche gilt für die Klimamodelle der Klimawissenschaftler. Die füttern ihre immer wieder verfeinerten Modelle mit zusätzlichen Annahmen wie der Entwicklung der Weltbevölkerung und dem mehr oder weniger klimafreundlichen Verhalten dieser Menschen. Dann lassen sie ihre Computer das Ganze durchrechnen.

Dabei heraus kommen Entwicklungen, die mit grosser Wahrscheinlichkeit so zu erwarten sind.

Klimawandel im Modell
Die durchgezogenen Linien sind globale Multimodell-Mittel der Erwärmung an der Erdoberfläche (relativ zu 1980–99) für die Szenarien A2, A1B und B1, dargestellt als Verlängerungen der Simulationen für das 20. Jahrhundert. Die Schattierung kennzeichnet die Bandbreite von plus/minus einer Standardabweichung der einzelnen Modell-Jahresmittel. Die orange Linie stellt das Resultat des Experiments dar, bei dem die Konzentrationen auf Jahr-2000-Werten konstant gehalten wurden. Die grauen Balken auf der rechten Seite zeigen die beste Schätzung (durchgezogene Linie innerhalb des Balkens) und die abgeschätzte wahrscheinliche Bandbreite für die sechs SRES-Musterszenarien. (Quelle: Vierter Sachstandsbericht des IPCC, 2007, AG1: Wissenschaftliche Grundlagen)

Besonders bemerkenswert ist, dass selbst wenn die Einflüsse auf den Strahlungsaustausch auf den Werten des Jahres 2010 festgehalten würde (was längst eine völlig utopische Annahme ist – dazu müssten wir per sofort komplett aufhören, CO2 zu produzieren (blaue Kurve)), die Erwärmung nicht mehr rückgängig zu machen wäre (graue Kurve).

Und selbst unter den günstigsten Voraussetzungen (Szenario B1: Weltbevölkerung nimmt „nur“ bis 2050 zu und unsere Entwicklung und Nutzung von Technik entwickelt stark in eine klimafreundliche Richtung) lässt sich die globale Erwärmung allenfalls verringern – aber nicht mehr verhindern.

Welche Folgen hat der Klimawandel?

  • Durch die veränderte Verteilung von Niederschlägen verändert sich in den betroffenen Gebieten die Süsswasser- und damit die Trinkwasserversorgung. Zunehmend feuchte Gebiete mögen mehr, zunehmend trockene Gebiete weniger Trinkwasser für ihre Einwohner zu bieten haben.
  • Die lebenden Bewohner der Erde sind bis zu einem gewissen Grad in der Lage, sich Veränderungen ihrer Umwelt oder Naturereignissen anzupassen: Sie sind gegenüber solchen Unwägbarkeiten widerstandsfähig. Durch die relativ schnellen Veränderungen im Klimasystems wird diese Widerstandsfähigkeit aber hart auf die Probe gestellt. Die Gefahr, dass einzelne Lebewesen oder ganze Ökosysteme diese Probe nicht bestehen und aussterben, nimmt zu.
  • Durch das veränderte Klima verändert sich auch die Menge der Feldfrüchte, die in den betroffenen Regionen geerntet werden kann. Besonders in armen Regionen der Welt werden die Ernteerträge sinken und die geernteten Nahrungsmittel teurer werden. Was sich auf den Schweizer Äckern und Gärten verändern kann, könnt ihr bis Ende Mai 2019 im „Klimagarten2085“ in der Hochschule Rapperswil mitverfolgen: Hier werden eine Klimaerwärmung um +3°C bzw. um +6,5°C und veränderte Niederschlagsmengen in öffentlich zugänglichen Gewächshäusern mit verschiedenen Nutz- und Gartenpflanzen simuliert.
  • Besonders gravierend verändern sich Küstenregionen: Durch einen steigenden Meeresspiegel werden Küsten abgetragen, für Landpflanzen unverträgliches Salzwasser in Küstenlandschaften gedrückt oder Gebiete gänzlich überflutet. Und viele bedeutende Städte, die direkt an der Meeresküste liegen, wären davon betroffen!
  • Der Gesundheitszuständ der Menschheit wird beeinträchtigt: Unterernährung und Wetterextreme tragen dazu bei, dass sich Krankheiten leichter verbreiten können.
  • Die zuvor genannten Folgen fallen auch der Wirtschaft zur Last: Land- und Forstwirtschaft müssen sich mit veränderter Wasserversorgung und Ertragsveränderungen auseinandersetzen, der Tourismus mit der Veränderung von Landstrichen, insbesondere von Küsten, das Gesundheitswesen mit Unterernährung und Krankheiten, Energieversorger, Verkehrs- und Bauwesen mit Wetterextremen und vielen weiteren Veränderungen. Gemäss des „Stern Review“ könnten künftig weltweit 5-20% der Wirtschaftsleistung für die Bewältigung von „Klimaschäden“ aufgewendet werden – wenn nichts getan wird, um ihnen vorzubeugen. Und die Wissenschaftler sind sich einig: Vorbeugen käme da in jedem Fall günstiger.

Was können wir dagegen tun?

Die Klimaveränderungen einzig verhindern oder auch nur bremsen zu wollen, wird nicht mehr genügen. Wir werden uns den unaufhaltsamen Veränderungen unweigerlich anpassen müssen. Nur gut, dass der Mensch grundsätzlich ein äusserst anpassungsfähiges Wesen ist!

Und den Klimawandel sowohl bremsen als auch sich anpassen können wir alle, jeder einzelne von uns: Indem wir unseren oftmals leichtfertigen Verbrauch von Energie und Gütern verringern und sparsame, klimafreundliche technische Neuentwicklungen und sogenannte erneuerbare Energien nutzen.

Wenn wir das tun, wird die Wirtschaft sich schliesslich uns anpassen: Die Wirtschaft stellt nämlich das her, was wir „auf dem Markt“ suchen und kaufen. Dabei zu beachten ist allerdings, dass viele raffinierte Werbemenschen uns einzureden versuchen was wir suchen, damit wir kaufen, was sie herstellen! Sich klimafreundlich verhalten kann also auch heissen, darauf zu achten, sich nichts unnötiges einreden zu lassen.

Und wenn ihr zufällig raffinierte Werbemenschen seid, dann redet den Leuten doch ein, dass die klimafreundliche Dinge brauchen – damit wäre dann allen geholfen.

Denn der Wirtschaft wird ja gerne nachgesagt, dass sie die Politik bestimmt. Und wenn die Wirtschaft klimafreundliche Dinge tut und produziert, weil wir die haben wollen, werden sich die Politiker spätestens dann auch danach richten.

Was könnt ihr konkret machen, um das Klima zu schützen?

Es gibt unzählige Mittel und Wege, wie wir klimaschonend leben und Energie sparend leben können. Und jede Familie bzw. jeder Haushalt mag seine ganz eigenen Baustellen haben, an welchen jeweils mehr oder weniger bewegt werden.

Einige Schweizer Kantone haben dazu eine spannende Infoseite voller Tipps für euch zusammengestellt. Auch die folgenden, hier sehr kurz gehaltenen Vorschläge findet ihr darunter wieder:

  • Mit klimaschonenden bzw. energieeffizienten Verkehrsmitteln und in Massen reisen
  • Mit klimaschonenden bzw. energieeffizienten Verkehrsmitteln zur Arbeit/Schule pendeln
  • In der näheren Umgebung hergestellte Lebensmittel verwenden
  • Moderne, energieeffiziente Elektrogeräte und Lampen verwenden
  • Unnötigen Stromverbrauch vermeiden (nicht gebrauchte Geräte abschalten!)
  • Und wenn ihr Hausbesitzer, Vermieter oder Bauherren seid: energieeffizient bauen und renovieren

Und wie steht ihr zum Klimaschutz? Was macht ihr bereits? Was könntet/werdet ihr noch tun?

Einkochen und Einwecken mit Mehl - Warum geht das nicht?

Kürzlich hat meine Leserin Pia geäussert, was ich daraufhin vielfach in Foren zum Einkochen wiedergefunden habe:

Beim Einkochen (Einwecken) darf man nichts mit Mehl binden – das säuert. Aber Kuchen mit Mehl kann man einkochen. Auch Brot und Nudeln darf man – überall Mehl drin. Nur die Sauce darf nicht mit Mehl … warum nicht?

Eine spannende Frage – die mich veranlasst hat, mich näher mit der Physik und Chemie des Einkochens zu beschäftigen.

Einkochen: Wieso? Weshalb? Warum?

Durch Einkochen oder Einwecken werden Lebensmittel haltbar gemacht. Die sind nämlich nicht nur für uns äusserst nahrhaft, sondern auch für allerlei Mikroorganismen. Die nisten sich in Lebensmitteln ein, verändern ihr Aussehen und ihren Geschmack in oft nicht gewünschter Weise, und machen uns im schlimmsten Fall auch noch krank.

Eine einfache Methode, diese Störenfriede loszuwerden, ist, sie mitsamt ihrer Umgebung so gründlich zu erhitzen, dass sie selbst gekocht werden und damit absterben. Die meisten Lebewesen bestehen nämlich aus Proteinen, die ab 42°C ihre Form und damit ihre Funktionsfähigkeit verlieren: Sie denaturieren. Und damit ist es dann vorbei mit Leben. Wenn man dann noch dafür sorgen kann, dass es auch so bleibt…

Konservieren durch Erhitzen

Zum Einkochen werden die Lebensmittel in Gläsern erhitzt, die mittels eines Dichtungsringes oder Schraubdeckels luftdicht verschlossen werden können. Dabei dehnen sich Luft und allenfalls entstehender Wasserdampf (dank der Anomalie des Wassers auch flüssiges Wasser ein wenig) aus und können sich notfalls an der Dichtung vorbei nach draussen zwängen.

Sobald solch ein Glas jedoch abkühlt, zieht sich die Luft darin zusammen (und allfälliger Wasserdampf kondensiert zu flüssigem Wasser). So entsteht im Glas ein Unterdruck, der dafür sorgt, dass die Dichtung fest gezogen wird. Nun kann nichts mehr aus dem Glas hinaus oder hinein. Auch keine Mikroorganismen oder ihre Sporen.

Damit ist sicher gestellt, dass nicht nur alle Bakterien und Pilze im Einkochgut tot sind, sondern auch keine neuen mehr hinein gelangen können. Um dessen wirklich sicher zu gehen, erhitzt man das Einkochgut entsprechend gründlich und lange (in der Regel auf 100°C, die Siedetemperatur von Wasser bei Atmosphärendruck). So soll auch das Innerste eines Einmachglases warm genug werden, um lebensfeindlich zu sein.

Die Industrie gibt dem Ganzen einen Namen

Der deutsche Chemiker Rudolf Rempel hat das Einmachglas Ende des 19. Jahrhunderts erfunden und sich 1892 patentieren lassen – und starb ein Jahr darauf mit nur 34 Jahren. So kam es, dass der Unternehmer Johann Carl Weck das Patent erwarb und zum ersten industriellen Hersteller von Einmachgläsern und Zubehör wurde. Mit dem Namen Weck verbreitete sich bald der Begriff „Einwecken“ für die Verwendung der Gläser.

Inzwischen hat das „Einwecken“ Eingang in den Duden gefunden und darf damit als allgemeingültiger Teil der deutschen Sprache als Synonym für das Einkochen verwendet werden – ganz gleich welche Gläser man dazu benutzt. Anders verhält es sich jedoch mit dem Wortteil „Einweck-„. Der ist nach wie vor geschützt. Ein Einweckglas oder einen Einweckring gibt es somit bis heute nur von der Firma Weck.

Und wenn sich jetzt die österreichischen Leser fragen, wovon ich eigentlich schreibe: Bei euch war im frühen 20. Jahrhundert die Rex-Konservenglas-Gesellschaft Hersteller Nummer 1 für Einmachgläser. So hat sich in Österreich der Begriff „Einrexen“ eingebürgert.

Warum klappt das Einwecken nicht mit Mehl?

Mehl enthält Amylasen: Das sind Enzyme, also Proteine, welche die langen Stärke-Ketten in kürzere Einfach- oder Zweifachzucker spalten können.

Strukturformel Stärke bzw. Amylose
Einfaches Stärkemolekül („Amylose“) – eine Kette aus Glucose-Molekülen, hier als Sechsringe dargestellt.

Der Name verrät uns das: Die unverzweigte Form der Stärke nennen die Chemiker auch Amylose, wobei die Endung „-ose“ auf ein Kohlenhydrat hinweist. Die verzweigte Form dieser Molekülketten nennen sie hingegen Amylopektin. Die Endung „-ase“ der Amylase weist hingegen auf ein Enzym hin, das spaltet bzw. zerlegt, was im Namen davor steht.

Wie kommen solche Enzyme in das Mehl?

Die Amylasen sind ein wichtiger Bestandteil von Getreidekörnern. Sie werden von der Mutterpflanze darin eingelagert, damit sie die Stärke im Samenkorn spalten können. Denn der Keimling, der daraus wächst, kann nur mit kleinen Zuckermolekülen etwas anfangen.

So lange die Amylasen funktionsfähig sind (und das bleiben sie beim Mahlen und bei vielen Vorgängen der Lebensmittelzubereitung auch), machen sie ihren Job jedoch auch in Lebensmitteln. Dabei entstehen aus Stärke und Wasser kleinere Zuckermoleküle wie z.B. Maltose (Malzzucker), ein Zweifachzucker aus zwei Glucose-Einheiten.

Ein Maltose-Molekül besteht aus zwei Glucose-Ringen

Zucker sind süss. Warum wird dann das Eingemachte sauer?

Geschmacksveränderungen in verderbenden Lebensmitteln sind in der Regel die Folge von Gärung. Dabei erzeugen wie Bakterien und Hefen aus den Lebensmittelbestandteilen neue Stoffe, die anders schmecken. Die beiden wichtigsten Gärungsprozesse sind die alkoholische (hierbei entsteht der „Trinkalkohol“ Ethanol) und die Milchsäuregärung (hierbei entsteht Milchsäure bzw. das Lactat-Anion). Und zwar ganz ohne Sauerstoff-Zufuhr.

Wie die alkoholische Gärung genau funktioniert, könnt ihr hier nachlesen und im Experiment gleich selbst beobachten. Dabei zeigt sich, dass als Nebenprodukt des Gärprozesses das Gas Kohlenstoffdioxid, CO2, entsteht. Und mit der Entstehung von Gas erhöht sich der Druck im Einmachglas – bis der Verschluss undicht wird.

Um das zu bewerkstelligen, brauchen die Mikroben Zucker aus kleinen Molekülen. Ergo solche Zucker, wie die Amylasen ihn aus der Stärke freisetzen. Nicht inaktivierte Amylasen können also nicht nur Pflanzenkeimlinge, sondern auch Mikroorganismen wie Bakterien und Hefen ernähren.

Bakterien und Hefen im Einmachglas?!

Nun sollte man annehmen, dass Amylasen im Einmachglas kein Problem darstellen sollten. Schliesslich werden beim Einkochen die Mikroben im Einmachgut totgekocht. Und an diesem Punkt sind alle meine bisherigen Recherchen ins Leere gelaufen.

So bleibt mir als Erklärung letztendlich nur der Umstand, dass auch der Einkochvorgang keine perfekte Konservierung ermöglicht. Irgendwo wird da immer die ein oder andere Zelle überleben. Oder zumindest ihre Enzyme für die Gärung werden nicht vollständig unbrauchbar gemacht (sind die richtigen Enzyme beisammen, funktioniert Gärung nämlich auch ohne Zellen).

Wenn diese letzten Überlebenden nichts zu futtern haben, können sie jedoch nichts – oder nur sehr, sehr langsam etwas – ausrichten. Mit einer Zuckerquelle aus Stärke samt Amylasen können diese Mikroben jedoch mit der Gärung beginnen und sich womöglich sogar etwas vermehren. Dabei muss nicht all zu viel CO2 entstehen, um den Unterdruck im Einmachglas aufzuheben. Und schon können weitere Mikroorganismen durch den undichten Verschluss eindringen, sich vermehren und im Einmachgut eine grosse Biochemie-Party schmeissen. Dabei entstehen dann noch mehr Stoffe, darunter noch mehr Gas, was den Verschluss um so undichter werden lässt…

Kurzum: Stärke mit Amylasen ist demnach nicht Voraussetzung für eine Gärung im Einmachglas, sondern beschleunigt sie „bloss“ um ein Vielfaches.

Wie kann man das Stärke- Desaster verhindern?

  • Stärke ohne Amylasen verwenden: Stärke ohne Enzyme gibt es sicher für den Laborbedarf, (bio-)synthetisch hergestellt oder entsprechend gereinigt. Für den Hausgebrauch in der Küche aber viel zu teuer.
  • Saucen und anderes erst nach dem Einkochen mit Mehl binden: Dem Einmachglas ist die Konsistenz der Speisen egal. Die können daher auch erst beim Wiederaufwärmen kurz vor dem Verzehr angedickt werden.
  • Mehl und Mehlspeisen so stark erhitzen, dass die Amylasen sicher denaturiert werden: Dazu sind Temperaturen von deutlich mehr als 100°C nötig! Gebackenes Brot oder Kuchen sind daher durch und durch amylasefrei – die werden im Ofen heiss genug. Auch bei der Herstellung von trockenen Teigwaren (Nudeln, Pasta) scheinen die Amylasen beseitigt zu werden. Und wer nicht auf eine Mehlschwitze zum Andicken verzichten will, kann diese in Pflanzenöl ansetzen. Öl wird in der Pfanne nämlich heisser als wasserhaltige Butter und kann so die nötigen Temperaturen erreichen.
  • Wirklich lange und gründlich einkochen: Die in der Literatur empfohlenen Kochzeiten mindestens einhalten! Dabei steigt nicht nur die Wahrscheinlichkeit, möglichst viele Amylasen auszuschalten, sondern auch die Mikroben sterben zu einem grösseren Anteil ab. Der Nachteil: Je zerkochter die Mikroben werden, desto zerkochter wird auch das restliche Einmachgut.
  • Einen Dampfdrucktopf zum Einkochen verwenden: Unter steigendem Druck steigt auch der Siedepunkt von Wasser. Das Gargut wird damit heisser als im offenen Kochtopf. So gart es nicht nur schneller, sondern auch gründlicher: Die zur Denaturierung von Amylasen notwendige Temperatur kann so womöglich erreicht werden.

Wirklich sicher (und praktikabel) ist jedoch nur der zweite Vorschlag – auf Mehl, welches nicht gebacken wurde, beim Einkochen ganz zu verzichten.

Und welche Erfahrungen habt ihr beim Einkochen mit oder ohne Mehl schon gemacht? Wisst ihr bezüglich der Folgen des Vorhandenseins von Amylasen im Einmachgut mehr als ich?

Zeolithe: Wo die nützlichen Steine uns im Haushalt helfen

Zeolithe sind nicht nur im Haushalt äusserst nützlich. Auch als Nahrungsergänzungsmittel für Entgiftungskuren ist „Zeolith“ überaus populär. Da diese Anwendung dieser vielseitigen Stoffgruppe hier aber den Rahmen sprengen würde, kommt ein zweiter Artikel zu Zeolithen und Detox nächste Woche!

Was ist eigentlich in unserem Waschpulver drin? Diese Frage kam neulich beim Nachtessen mit der Schwiegermutter auf. Na klar: Seife. Oder in der Chemiker-Sprache: Tenside. Und über deren Super-Waschkraft habe ich hier ja schon geschrieben. Aber nachsehen schadet ja nichts, dachte ich. Und siehe da: Mein Universal-Waschpulver vom orangen M enthält nur 5-20% Tenside – und 15%-30% Zeolithe. Was ist das denn nun schon wieder?

Was sind Zeolithe?

Laut Definition im Chemiebuch oder auf Wikipedia sind Zeolithe eine Gruppe von „kristallinen Alumosilikaten“… mit anderen Worten: Steine. Und zwar Steine, welche die chemischen Elemente Silizium und Aluminium enthalten. Das ist an sich nichts besonders, sind Silizium und Aluminium doch das zweit- und dritthäufigste Element in der Erdkruste.

So hübsch sind Zeolithe selten: Natrolith aus meiner Mineraliensammlung – ein natürlicher Zeolith auf Basalt. Dieses Grundgestein hat Naturzeolithen auch die Bezeichnung als „natürliches Vulkangestein“ eingebracht.

Das Ionengitter der Zeolith-Kristalle, aus welchen diese Steine bestehen, ist allerdings ein ganz besonderes: Es enthält grosse Lücken, die den ganzen Kristall zu einem porösen Schwamm machen!

Wie sind Zeolith-Kristalle aufgebaut?

Die allgemeine Verhältnisformel der Zeolithe lautet:

Mn+x/n [(AlO2)x (SiO2)y. z H2O

Ein Schweizer Käse aus Si- und Al-Atomen

Der Inhalt der eckigen Klammer beschreibt das eigentliche Kristallgitter: Es besteht aus Silizium (Si)-, Aluminium (Al)- und Sauerstoff (O)-Atomen, wobei auf x Silizium-Atome stets y Aluminium-Atome kommen. Jedes dieser Atome ist mit vier Sauerstoffatomen verbunden (die wiederum werden dazu je zweimal verwendet, weshalb die Formel nur 2 Sauerstoff-Atome je Metallatom enthält). Anders eingeteilt besteht das Zeolith-Gitter somit einander überlappenden Sauerstoff-Tetraedern mit je einem Silizium- oder Aluminiumatom im Zentrum.

Molekülmodell: Tetraeder

Molekülmodell in Form eines Tetraeders: Die vier weissen Kugeln befinden sich in den vier Ecken dieses geometrischen Körpers, die pinke Kugel liegt in dessen Zentrum.

Wer sich ein etwas mit organischer Chemie auskennt (da sind es Kohlenstoff-Atome, die mit ihren Nachbarn Tetraeder bilden), weiss, dass man aus Tetraedern die vielfältigsten Gerüste bauen kann. Deshalb gibt es ein wahres Sammelsurium von Zeolithen:

60 natürlich vorkommende Mineralien gehören zu dieser Gruppe, über 150 weitere sind von Chemikern entworfen und künstlich hergestellt worden!

Sie alle haben eines gemeinsam: Ihre Gitter umfassen mehr oder weniger grosse Hohlräume – ein richtiger molekularer Schweizer Käse. In Waschmitteln findet man vor allem der synthetische Zeolith A, dessen Kristallgitter so aussieht:

Kristallgitter von Zeolith A

Jede Ecke in der Skizze steht für ein Silizium- oder Aluminium-Atom. Die Sauerstoff-Atome sind dazwischen entlang der Verbindungslinien angeordnet.

Grundbaustein der Zeolithe: Sodalith-Käfig mit Si-, Al- und O-Atomen
Ein Element des Zeolith-A-Gitters mit eingezeichneten Atomen

In der Mitte zwischen acht dieser Einheiten bleibt ein relativ grosses Loch, dessen Wände die Chemiker als alpha-Käfig“ bezeichnen.

Gitter des Zeolith A mit markiertem alpha-Käfig
Die Wände des Alpha-Käfigs in diesem Ausschnitt aus dem Zeolith-A-Gitter sind dunkel eingefärbt.

Im Zeolith A sind ebenso viele Silizium- wie Aluminium-Atome enthalten – die Verhältnisformel für diesen Zeolith lautet damit:

Na12((AlO2)12(SiO2)12) · 27 H2O

Zeolith-Kristalle sind Riesen-Anionen

Wenn ihr euch die allgemeine Verhältnisformel der Zeolithe oder die für Zeolith A genauer angesehen habt, ist euch vielleicht das „-“ an der Aluminium-Einheit aufgefallen. Richtig: Jeder Aluminium-Tetraeder im Gitter trägt eine negative elektrische Ladung. Damit ist das ganze Kristallgitter eines Zeoliths ein einziges riesiges und tausendfach geladenes Anion!

So etwas lässt die Natur aber nicht einfach frei und einsam existieren…entgegengesetze Ladungen müssen für den Ausgleich her. Hier kommen die positiven Metall-Ionen Mn+, die ganz links in der Verhältnisformel stehen, ins Spiel. Für jede negativ geladene Aluminium-Einheit muss ein einfach positiv geladenes (n = 1) Metall-Ion her. Wenn mehrfach positiv geladene (n > 1) Metall-Ionen zur Hand sind, ist die Anzahl x der Aluminium-Einheiten durch die Ladungszahl der Metall-Kationen zu teilen (x/n).

Zeolith A enthält einfach geladene Na+-Ionen – 12 davon für 12 Aluminium-Einheiten, die in den Lücken im Gitter Platz finden und sich locker um das negativ geladene Gerüst herum anordnen.

Zeolithe sind molekulare Schwämme

Ausserdem ist in den Lücken noch reichlich Platz für Wassermoleküle. Die finden sich ganz rechts in der Verhältnisformel wieder. Die Wassermoleküle umhüllen sowohl die Metall-Kationen als auch das Gitter selbst, was den Metallionen den Aufenthalt im Gitter erst richtig gemütlich macht (eine Wasserhülle (in Chemikersprache: „Hydrathülle“) um ein wasserlösliches Ion enthält weniger Energie als das Ion ohne Hülle, was den umhüllten Zustand erstrebenswerter macht).

Durch Erhitzen können diese Wassermoleküle jedoch zum Verdampfen gebracht werden und den Kristall verlassen. Das ist eine charakteristische Eigenschaft von sogenanntem „Kristallwasser“, das einer chemischen Formel mit einem „*“ bzw. Multiplikations-Punkt angehängt wird.

Auf eine Grundeinheit des Zeolith-A-Gitters kommen so normalerweise 27 Wassermoleküle.

Was hat die grosse Menge Zeolith A in Waschmitteln zu suchen?

Zeolithe können Wasser enthärten!

Die Hohlräume der Kristalle der Zeolithe enthalten von Wasser umhüllte Natrium-Ionen. Diese Ionen sind damit regelrecht im Kristallwasser gelöst. Das macht sie leicht darin beweglich. Tatsächlich können sie sich durch den ganzen Kristall und hinaus bewegen. Wenn sich nun andere Metall-Ionen finden, die es in einem Zeolith-Kristall noch behaglicher finden, können die Natrium-Ionen deshalb ganz leicht gegen solche ausgetauscht werden.

Und in unserem Leitungswasser, mit welchem wir unsere Wäsche waschen, finden sich solche Ionen zuhauf. Es ist schliesslich mehr oder weniger „hart“ – es enthält Kalk: Calciumcarbonat, genauer gesagt Calcium- (Ca2+) und Carbonat- (CO32-) Ionen.

[Für die Chemiker unter euch: Carbonat CO32- ist natürlich eine Base und reagiert mit Wasser zu Hydrogencarbonat- (HCO3) und Hydroxid-Ionen (OH) weiter, anstatt einfach gelöst zu werden. Aber das ist hier für einmal nicht von Bedeutung.]

Zusammen bilden diese beiden die gefürchteten Kalkbeläge, welche die Leitungen in unseren Waschmaschinen verstopfen und die Wäsche steif machen können. So etwas will keiner haben.

Wenn Zeolithe im Waschwasser sind, machen es sich die Calcium-Ionen jedoch lieber in den Hohlräumen des Zeolith-Gitters gemütlich und verdrängen dabei die Natrium-Ionen aus dem Zeolith A. Einen vollständigen Austausch von Natrium- gegen Calcium-Ionen könnte man so beschreiben:

Na12((AlO2)12(SiO2)12) · 27 H2O + 6 Ca2+(aq) –> Ca6((AlO2)12(SiO2)12) · 27 H2O + 12 Na+(aq)

Nachdem die Calciumionen sich im Zeolith eingerichtet haben, bleiben im Wasser Natrium- und Carbonat-Ionen zurück. Und Natriumcarbonat (auch als „Soda“ bekannt) ist sehr gut wasserlöslich. So lagert es sich weder in der Maschine noch in der Wäsche ab und kann einfach fortgespült werden.

Das Gleiche geschieht mit dem Zeolith-Pulver. Das ist zwar nicht wasserlöslich, aber so fein gemahlen, dass es einfach mit weggeschwemmt wird.

Womit hat man früher Wasser enthärtet?

Künstliche Zeolithe wie Zeolith A kommen erst seit den späten 1970er Jahren in Waschmitteln zum Einsatz. Davor haben Gerüste aus Phosphor und Sauerstoff – also Phosphate – diese Aufgabe übernommen. Die Phosphat-Gerüste neigen allerdings dazu zu zerfallen, was sie zu ergiebigen Nährstoffen für Pflanzen macht.

Als solche Phosphate vermehrt mit Abwässern in die Umwelt gelangten, wurde das rasch zum Problem: Die Nährstoff-Schwemme führte zu Überdüngung und brachte viele ökologische Systeme aus dem Gleichgewicht. So wurden die Phosphate zunehmend durch Zeolithe ersetzt. Denn letztere sind schliesslich Steine – die taugen nicht als (unnötiger) Dünger.

Einen Haken haben Steine aber dennoch: Sie sind wasserunlöslich. Damit gelangt das ganze Zeolith-Pulver unverändert mit dem Abwasser in die Kläranlagen…und was gibt pulverisiertes Gestein in Wasser? Richtig: Schlamm. Und der sammelt sich in den Klärbecken. Seit Zeolithe in Waschmitteln zum Einsatz kommen, müssen Klärwerke deshalb mit merklich mehr Klärschlamm fertig werden – Grund genug, auch phosphatfreie (und zeolithhaltige) Waschmittel nicht in übertriebenen Mengen einzusetzen.

Zeolithe als Helferlein im Katzenklo

Habt ihr Katzen daheim? Dann kennt ihr Zeolithe wahrscheinlich auch von anderswo. Nämlich aus dem Zoohandel. Da wird nämlich gerne ein Naturzeolith (also ein natürlich vorkommendes Mineral) namens Klinoptilolith als Katzenstreu angeboten.

Die porösen Kristallgitter lassen sich nämlich nicht nur als Ionenaustauscher nutzen, sondern auch wie ein richtiger Schwamm! Das geht dann besonders gut, wenn der Zeolith etwa ebenso viele Silizium- wie Aluminiumatome enthält. Das synthetische Zeolith A ist ein gutes Beispiel dafür: Hier ist das Verhältnis zwischen Silizium und Aluminium 1:1. Aber auch Klinoptilolith mit 5:1 ist noch ein wunderbarer Schwamm.

Diese Zeolithe sind nämlich wahnsinnig heiss darauf, ihre Poren mit zusätzlichem Wasser aus ihrer Umgebung zu füllen (buchstäblich: Da es das Wasser in den Poren so bequem hat, wird eine Menge Energie, genannt „Adsorptionswärme“, dabei frei.

Doch damit nicht genug: Mit dem Wasser saugen sie auch vieles auf, was darin gelöst ist. Zum Beispiel Geruchsstoffe im Katzenurin. So werden die Nasen der menschlichen Dosenöffner geschont, während die Katze ihr Geschäft in natürlichem Gesteinsschutt verscharren kann.

Von Zeolith-Katzenstreu zu Pflanzenerde

Natürlicher Gesteinsschutt, der Wasser und überdies noch Nährstoffe (Urin, auch von Katzen, enthält naturgemäss Stickstoffverbindungen) speichert, kann zudem als Bestandteil von Pflanzenerde nützlich sein (andere formstabile Wasserspeicher sind „Superabsorber“ aus organischen Polymeren („Kunststoffen“), die ich in diesem Experiment als Ersatz für Pflanzenerde verwendet habe). Deshalb gilt Katzenstreu aus Naturzeolithen als geeignet für den Kompost.

Eigentlich sollte für synthetische Zeolithe dasselbe gelten – es handelt sich dabei schliesslich um Designer-Steine. Aber „natürlich“ hat nunmal die weitaus grössere Werbewirkung – und ist in diesem Fall überdies billiger. Naturzeolithe kommen nämlich nahe der Erdoberfläche vor und können im Tagebau gewonnen werden (mit allen Konsequenzen für die Landschaft). Das künstliche Nachstellen der Entstehung von Steinen – so werden synthetische Zeolithe gemacht – ist hingegen ziemlich aufwändig. Mehr zum Vergleich von natürlichen und synthetischen Zeolithen findet ihr hier.

Zeolith im Geschirrspüler

Die „Saugfähigkeit“ von Zeolithen wird seit einigen Jahren auch in der Küche genutzt. Hier kommt eine fest eingebaute Schale mit Zeolith-Pellets in der Spülmaschine zum Einsatz. Und zwar zur energiesparenden Trocknung.

Die Idee dahinter: Nach dem Spülgang ist das Maschineninnere samt Geschirr und Luft noch nass. Ein Ventilator bläst diese feuchte Luft durch den Behälter mit dem Zeolith, welcher das Wasser „aufsaugt“ und dabei eine grosse Menge (Adsorptions-)Wärme abgibt. Die Luft kommt also trocken und warm in den Geschirrspüler zurück und bringt dort weiteres Wasser zum Verdampfen, das anschliessend vom Zeolith aufgenommen werden kann.

Beim nächsten Spülgang wird dagegen der Zeolith geheizt, sodass das Wasser aus den Poren im Kristallgitter verdampft und in den Geschirrspüler zurückgeführt werden kann. So wird der Zeolith für die nächste Trocknung wieder einsatzbereit gemacht.

Das Ganze gilt als sehr energieeffizient – allerdings liest man im Netzt viele Berichte über Geschirrspüler Zeolith-Trocknung (zum Beispiel hier und hier), die bereits nach drei bis fünf Jahren reif für eine unwirtschaftlich teure Reparatur sind. Ob diese Berichte repräsentativ sind, kann ich natürlich nicht sagen – aber es scheint, als wäre diese Technologie noch ausbaufähig.

Schaden oder nützen Zeolithe der Gesundheit?

Mehr dazu gibt es nächste Woche im zweiten Teil über Zeolith für Detox-Kuren!

Und wo sind euch Zeolith bzw. Zeolithe bislang begegnet?


Hochwertigen Content von Unsinn unterscheiden - So geht's!

Das Internet ist eine tolle Sache. Jeder kann veröffentlichen, was ihn bewegt, jede Information kann gefunden werden. Es gibt praktisch keine Voraussetzungen, die jemand mitbringen muss, um Informationen zu verbreiten (ausser der Fähigkeit, halbwegs gerade Sätze schreiben oder reden zu können). Nie war es so einfach, sich auszutauschen oder Wissen zu erlangen….wirklich?

Wie damals die Pioniere im Wilden Westen streben wir heute nach der Freiheit eines weitgehend unregulierten Raumes: Des Internets. Diese Freiheit ist ja schliesslich eine tolle Sache – können wir uns im Netz doch durch das Erstellen oder/und Verbreiten nützlicher Inhalte verwirklichen. Und das ganz ohne uns mit Hürden wie einer Journalisten-Ausbildung oder dem Verlagswesen herumschlagen zu müssen.

Unsinn oder wissenswert – das ist hier die Frage

Leider gilt das auch für eine grosse Menge „schwarzer Schafe“, die diese Freiheit nutzen, um teils haarsträubenden Unsinn zu verbreiten.

Viele tun das sicherlich unwissentlich, weil sie mangels Fachwissen nicht erkennen, dass sie ‚Unsinn‘ von sich geben oder zitieren.

Ein weitaus grösserer Teil scheint mir jedoch grösseren Strömungen anzuhängen, die in oft dogmatischer Weise an Fehlinformationen festhalten – zum Beispiel an Verschwörungstheorien, esoterischen Lehren oder Heilungs- bzw. Gesundheitsversprechen. Dieser Teil geht naturgemäss leicht aus der ersten Gruppe hervor.

So lange derartiger Unsinn nur kurios wäre, bräuchte man ihn ja nicht weiter beachten – ausser eben als Anlass zum Schmunzeln. Anders aber, wenn dieser Unsinn in irgendeiner Form gefährlich wird – für unsere Gesundheit, für unser Ansehen oder für unseren Geldbeutel.

Und leider wird der meiste Unsinn schon dadurch gefährlich, dass er sich nicht ohne weiteres von wissenswertem Content unterscheiden lässt.

Was ist wissenswerter oder seriöser Content?

Als wissenswerten bzw. seriösen Content sehe ich an, was dem heutigen allgemeinen Wissensstand der Menschheit entspricht oder der sachlichen Diskussion desselben dient. Schliesslich ist der ‚allgemeine Wissensstand‘ ja nicht statisch, sondern entwickelt sich ständig weiter – indem geforscht und sachlich darüber diskutiert wird.

Im Idealfall hat wertvoller Content darüber hinaus einen direkten Nutzen – also einen Mehrwert – für seinen Empfänger (nicht vergessen: auch Unterhaltung ist eine Art von Mehrwert!).

In gar keinem Fall würde seriöser Content seinem Empfänger durch Vorgaukelung falscher Tatsachen (ob nun wissentlich oder nicht) zum Schaden gereichen.

Wie könnt ihr wertvollen Content von Unsinn unterscheiden?

Gar nicht. Das zumindest mag der erste Eindruck sein, wenn wir uns unbedarft daran versuchen. Selbst Webseiten mit höchst fragwürdigen Inhalten sehen mitunter hochgradig professionell aus, während ein Talent für hochwertige Inhalte noch kein professionelles Webdesign garantiert.

Letztlich hilft nur eins, um sich in diesem Dschungel halbwegs zurecht zu finden:

Alles kritisch hinterfragen!

Das mag oft lästig sein – vor allem, wenn man eigentlich schnell vorankommen oder einfach mal jemandem vertrauen können möchte. Aber wenn wir nicht immer wieder auf Fehlinformationen hereinfallen wollen, bleibt uns nichts anderes übrig.

Ein einfaches Rezept wie bei Aschenputtel (die Guten ins Töpfchen, die Schlechten ins Kröpfchen…) zum sicheren Sortieren kann ich euch nicht bieten. Das kann wohl keiner. Es gibt aber einige Anhaltspunkte, die bei der Unterscheidung helfen können.

Seriös oder nicht? – Was euch beim Einschätzen von Content hilft


Quellenangaben zu informativen Inhalten


  • Woher hat der Herausgeber sein Wissen?
  • Können die als Quellen zitierten Websites/Medien ihrerseits als seriös eingestuft werden?

Wer die Herkunft seines Wissens offen legt und dabei seriös wirkende Quellen nennt, pflegt in der Regel selbst einen kritischen Umgang mit Informationen aus dem Internet oder anderen Medien.

Informationen über den Herausgeber


  • Welche Qualifikationen hat der Herausgeber?
  • Passen diese Qualifikationen zum Inhalt der Seite? (Die meisten Ärzte haben eindrucksvolle Doktortitel der Medizin, aber die wenigsten haben Ahnung von naturwissenschaftlichen Grundlagen!)
  • Hat die Seite ein Impressum? Wenn darin eine Firma steht: Passt die Branche zum Inhalt der Seite? (Brötchenrezepte vom Bäckermeister sind höchstwahrscheinlich sehr seriös, die neueste Auslegung der Relativitätstheorie ziemlich sicher nicht!)

Reaktion auf Feedback


  • Hat die Seite eine Kommentarfunktion? Ein Forum oder Gästebuch? Ein Social-Media-Profil? Ein Kontaktformular?
  • Wenn ja: Wie reagiert der Herausgeber auf kritisches Hinterfragen der Inhalte?

Wer selbst einen kritischen Umgang mit Quellen pflegt, wird zu Diskussionen bereit sein, auf Fragen sachlich eingehen und aufgedeckte Fehler korrigieren. Ich selbst bemühe mich sehr darum.

Werden hingegen kritische Fragen ignoriert, unsachlich kommentiert oder gar gelöscht, deutet das auf Inhalte hin, die kritischem Hinterfragen nicht standhalten. Mit anderen Worten: Auf Unsinn.

Auch wer gar keine Kontaktmöglichkeit angibt, möchte möglicherweise kritischen Fragen aus dem Weg gehen.

Besondere Vorsicht bei hochtrabenden Versprechungen

Gleich ob im geschäftlichen (Leichtes Geld verdienen…), im gesundheitlichen (Allheilmittel, Leicht abnehmen…) oder in anderen Bereichen: Hochtrabende Versprechungen sind in der Regel unrealistisch.

Seid ihr unsicher, wie realistisch eine Versprechung ist, fragt nach: Die Reaktion der Anbieter auf Feedback kann in solchen Fällen sehr aussagekräftig sein. „Leere“ Versprechungen lassen sich nämlich schwerlich erklären oder gar diskutieren.

Einmal als seriös eingestufte Seiten merken (und unseriöse auch)

Wenn ihr selbst Quellen zitiert (auf der eigenen Seite oder in Diskussionen): Merkt euch Seiten, die ihr einmal als seriös eingestuft habt und sucht künftig gezielt dort nach passendem Content. So könnt ihr mögliche Klippen unseriösen Contents, die eine unbedarfte Google-Suche zu Tage fördern könnte, von vorneherein umschiffen.

Schaut dabei ab und zu nach möglichen Änderungen der Inhaberschaft oder Philosophie der Seite – und überdenkt eure Einteilung gegebenenfalls.

Das Gleiche gilt für Seiten mit unseriösen Inhalten: Merkt euch auch solche und geht ihnen gezielt aus dem Weg.

Bei besonders anrüchigem, viral verbreitetem Content: Auf Fake-Warn-Seiten nachschlagen

Seiten wie Mimikama veröffentlichen regelmässig Einschätzungen zu weit verbreiteten fragwürdigen Nachrichten, Kettenbriefen, Phishing-Anschreiben, betrügerischen Gewinnspiel-Aufrufen auf Social Media und vielem mehr. Auch grössere Firmen geben schnell auf ihrer Seite bekannt, wenn jemand in ihrem Namen Fake-Gewinnspiele und dergleichen verbreitet.

Wie könnt ihr die Unterscheidbarkeit von Sinn und Unsinn fördern?


Veröffentlicht und verbreitet Content, den ihr einschätzen könnt

Wenn ihr eine Berufsausbildung habt/macht oder eine (Hoch-)Schule besucht (habt), seid ihr bei der Bewertung von Inhalten zu eurem Fach im Vorteil gegenüber Laien. Nutzt diesen Vorteil, indem ihr Content verbreitet, den ihr dank eures Fachwissens gut einschätzen könnt. Ich verstehe zum Beispiel eine Menge von Chemie und einiges von wissenschaftlichen Methoden, wäre aber die Falsche, um Inhalte zur Pflege von Pferden oder zur Beurteilung der Standfestigkeit von Gebäuden einzuschätzen .

Teilt und verbreitet andere Inhalte nicht unkritisch

Notiert doch eine kurze Frage zum geteilten Social-Media-Content oder Link – entweder an die allgemeine Leserschaft oder an einen Fachexperten im Freundeskreis: „Kann das wirklich sein?“ Das Bisschen Aufwand vor dem schnellen Klick auf „Teilen“ kann schon den Unterschied machen. Ganz besonders dann, wenn auf die Frage eine vernünftige Antwort kommt.

Achtet auf eure eigene erste Reaktion auf einen Beitrag: „So krass – kann das echt sein?“ zeigt an, dass sich eine Überprüfung lohnt. Wenn ihr Zeit habt, folgt dabei den Anhaltspunkten oben. Wenn ihr weniger Zeit habt:

Habt kompetente (Online-)Freunde

Meine Schwester ist Tierärztin und reitet in ihrer Freizeit – bei ihr wäre ich mit der Pferdepflege sicherlich an der richtigen Adresse. Und ich glaube auch zu wissen, wo ich den Gebäudestatiker meines Vertrauens finden könnte.

Ihr seht: Wenn ihr seriösen und wissenswerten Content produzieren oder teilen möchtet, kann euch ein Netzwerk mit Fachleuten, welchen ihr vertrauen könnt, von grossem Nutzen sein.

Teilt und kommentiert eindeutig unseriöse oder gefährliche Inhalte gar nicht

Social Media – Netzwerke leben von Interaktion: Je mehr ein Beitrag geliked, kommentiert und geteilt wird, desto weiter wird er verbreitet. Wenn ihr auf einen Beitrag stosst, der mit Sicherheit unseriös und keiner Diskussion würdig ist, geht am besten gar nicht darauf ein (nutzt allenfalls die Melden-Funktionen des Netzwerks für kriminelle/gefährliche Inhalte und Spam). So verhindert ihr eine weitere Verbreitung am effektivsten.

Wenn solche Inhalte aus dem persönlichen Freundeskreis kommen, weist stattdessen in einer persönlichen Nachricht freundlich auf den „Unsinn“ hin, den euer Freund/eure Freundin da verbreitet.

Fazit

Dieser Leitfaden zur Unterscheidung zwischen seriösem Content und „Unsinn“ läuft immer wieder auf eines hinaus: Was immer ihr im Netz (oder in anderen Medien) findet:

Hinterfragt es kritisch!

Dabei gilt, wie in vielen anderen Disziplinen: Übung macht den Meister. Mit der Zeit werdet ihr ein Gefühl dafür entwickeln, was glaubwürdig ist und was nicht.

Und wenn das Bemühen um seriöse Inhalte im Netz nun als Kampf gegen Windmühlen erscheint: Der behält seine sprichwörtliche Bedeutung nur so lange, wie es mehr Windmühlen als Don Quichotes gibt. Mit anderen Worten:

Nicht nur jeder, der Content im Netz produziert, sondern auch jeder, der ihn konsumiert, kann einen kleinen Schritt dazu beitragen, dass seriöse Inhalte sich leichter von „Fake-News“ und anderem Unsinn unterscheiden lassen. Und viele kleine Schritte mögen zusammen eine spürbar grosse Bewegung geben.

Und wie geht ihr mit Inhalten aus dem Internet um? Welche Erfahrungen habt ihr mit der Unterscheidbarkeit von Sinn und Unsinn gemacht?

Wie Streusalz wirkt - Nutzen und Gefahren im Winterdienst

(Titelbild: CC BY-SA3.0 by Heidas)

Willkommen im neuen Jahr – mit viel Schnee bis in die Niederungen und entsprechend viel Streusalz auf den Strassen. Letzten Samstag habe ich zwei Schneepflügen zugesehen, die in aller Eile unseren Busbahnhof geräumt haben. Dabei fiel mir am Heck jedes Fahrzeugs gleich ein Streuteller ins Auge. Dieses runde Gerät dreht sich fortlaufend und verteilt – die Zentrifugalkraft ausnutzend – Streusalz auf die frisch geräumte Fläche.

Tatsächlich wird in der Schweiz im Vergleich zu anderen europäischen Ländern – besonders wenn man ihre Grösse und Bevölkerung berücksichtigt – nach wie vor ziemlich viel Salz gestreut. Aber warum machen die Städte und Gemeinden das? Wie kann Streusalz verhindern, dass es Glatteis gibt? Und wie sorgt es dafür, dass Eis und Schnee schmelzen?

Was ist Streusalz?

Das Salz, welches gegen Schnee- und Eisglätte gestreut wird, ist tatsächlich nichts anderes als gewöhnliches Kochsalz, also Natriumchlorid, NaCl. In Ländern wie Deutschland, die auf geniessbares Kochsalz eine Salzsteuer erheben, wird das Streusalz „vergällt“. Das heisst, es werden Stoffe hinein gemischt, die das Salz ungeniessbar machen. Deshalb ist Streusalz – das in grossen Mengen gebraucht wird – oft wesentlich preiswerter als Tafel- oder hochreines Labor-Salz.

Wenn das Streusalz auch bei sehr hartem Frost funktionieren soll, wird das Natriumchlorid zudem mit anderen Salzen wie Calciumchlorid, CaCl2, oder Magnesiumchlorid, MgCl2, vermischt. Diese Salze haben auch bei niedrigeren Temperaturen eine auftauende Wirkung.

All diese Salze bestehen aus Ionen, also elektrisch geladenen Atomen, die sich zu einem Gitter – einem Ionenkristall – zusammengelagert haben. In Wasser werden die Ionen jedoch voneinander getrennt: Jedes dieser Salze löst sich in Wasser. Aus Natriumchlorid entstehen dabei Natrium- und Chlorid-Ionen:

NaCl –(H2O)–> Na+(aq) + Cl(aq)

Wie kann Streusalz verhindern, dass Wasser gefriert?

Wenn flüssiges Wasser auf 0°C oder darunter abkühlt, lagern sich auch Wassermoleküle zu Eiskristallen zusammen. Allerdings sind Wassermoleküle nicht elektrisch geladen. Stattdessen sind die Elektronen in solchen Molekülen nicht gleichmässig verteilt, sodass ein Ende eines Wassermoleküls negativer, das andere positiver geladen ist.

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Das Sauerstoff-Ende (rot) eines H2O-Moleküls hat einen negativen, das Wasserstoff-Ende (weiss) einen positiven Ladungsüberschuss.

Das lässt sich übrigens mit diesem spannenden Experiment ganz einfach zeigen.

Die negativ geladenen Enden wenden sich im Eiskristall den positiv geladenen Enden der nächsten Moleküle zu und umgekehrt. So bestimmen die Ladungsüberschüsse in den Wassermolekülen die Form des Eiskristallgitters.

Ein Modell eines Eiskristalls: Die schwarzen bzw. silbernen „Eckstücke“ stellen Wassermoleküle dar, die Verbindungsstäbe stehen für Wasserstoffbrücken zwischen den unterschiedlichen Ladungsschwerpunkten benachbarter Moleküle.

Wenn man nun Kochsalzkristalle („Salzkörner“ sind ganz kleine Kristalle) in flüssiges Wasser mischt, lagern sich die Wassermoleküle mit dem jeweils entgegengesetzt geladenen Ende an die Natrium- und Chlorid-Ionen im Gitter an. Dabei drängen sich die Wassermoleküle derart heftig um die Ionen, dass diese schliesslich aus dem Ionengitter herausgelöst werden! Damit können die einzelnen Ionen vollständig von Wassermolekülen umlagert werden.

Natriumion mit Hydrathülle
Ein Natrium-Ion ist vollständig von Wassermolekülen umgeben, die dem positiv geladenen Ion ihre negativ geladenen Enden zuwenden. An diese innere Hülle lagern sich weitere Wassermoleküle an – das negative Ende wiederum dem Ion zugewandt – an, sodass eine Hydrat-Hülle sehr dick werden kann.

Chemiker sagen, die Ionen sind von einer „Hydrat-Hülle“ umgeben, oder – kurz gesagt – „hydratisiert“ (das „aq“ in der Reaktionsgleichung oben meint genau diesen Zustand: Na+(aq) ist ein Natrium-Ion mit Hydrat-Hülle; „aq“ steht dabei für das lateinische „aqua“ für Wasser).

Wasser ist nicht multitaskingfähig

Damit sind die Wassermoleküle ziemlich schwer beschäftigt. Nicht einmal bei Temperaturen knapp unter 0°C können sie sich von den Ionen losreissen und ihre Plätze in einem Eiskristall einnehmen. Und da die Hydrathülle eines jeden Ions aus weit mehr als einer Molekül-Schicht besteht, ist schnell ein Grossteil aller Wassermoleküle zu beschäftigt, um zu gefrieren. Das Wasser mit den gelösten und hydratisierten Salz-Ionen bleibt also flüssig.

Erst bei Temperaturen unter -21°C (im Labor) bilden sich Mischkristalle, die aus Salz-Ionen und Wassermolekülen bestehen – kurz gesagt: Salzwasser-Eis. Das Kristallgitter von Salzwasser-Eis ist allerdings bei weitem nicht so regelmässig wie das von reinem Wasser-Eis. Das ganze Mischmasch hält einfach weniger gut zusammen. Deshalb ist der Gefrierpunkt von Salzwasser tiefer als der von reinem Wasser. Chemiker und Physiker nennen diesen Umstand „Gefrierpunkterniedrigung“.

Gefrierpunkterniedrigung auf der Strasse

Streut man also Kochsalz auf eine nasse Strasse, so bildet sich auch bei Temperaturen bis zu etwa -10°C kein Eis. Enthält das Streusalz zudem oder stattdessen Calcium- oder Magnesiumchlorid, kann das Wasser auf der Strasse auch bei bis zu -20°C flüssig bleiben. Diese Salze enthalten nämlich Ca2+– bzw. Mg2+-Ionen, die grösser als Na+-Ionen sind. Damit ist das Gitter von Calcium- bzw. Magnesium-Salzwasser-Eis noch unregelmässiger als das von Natrium-Salzwasser-Eis – und hält entsprechend noch weniger gut zusammen.

Und wenn es bereits friert: Wie kann Streusalz Eis schmelzen?

Eiswasser und Le Châtelier: Eine bewegliche Angelegenheit

Erreicht die Temperatur von Wasser (fest oder flüssig) den Gefrierpunkt (bei 0°C) können sich zuvor bewegliche Wassermoleküle zu einem festen Eiskristall zusammenlagern und sich daraus lösen und zu flüssigem Wasser werden. Das heisst: Während an einigen Orten an der Kristalloberfläche neue Moleküle hinzu kommen, werden an anderen Orten andere Moleküle wieder abgelöst. Ob dabei (mehr) Eis entsteht oder schmilzt, hängt davon ab, ob dem Wasser Energie zugeführt oder entzogen wird.

Sobald nämlich flüssiges Wasser und Eis miteinander vorhanden sind, ist das Ganze ein dynamisches (d.h. bewegliches) System, welches dem Gesetz von Le Châtelier gehorcht (das Le Châtelier höchstselbst uns hier am Flughafen erklärt).

Wird dem Eiswasser Energie entzogen (z.B. durch Kühlung), kommen mehr neue Moleküle zum Eis hinzu, als davon abgelöst werden, sodass irgendwann das ganze Wasser zu Eis erstarrt. Wird stattdessen Energie hinzugefügt (z.B. durch Erwärmen), verhält es sich umgekehrt: Es lösen sich mehr Moleküle vom Eis als hinzu kommen, bis das ganze Wasser flüssig ist.

Mit diesem spannenden Experiment könnt ihr feststellen, dass sich die Temperatur des Eiswassers durch Erwärmen tatsächlich nicht ändert, so lange Eis und Wasser miteinander vorhanden sind!

In einer Umgebung ohne sich verändernde äussere Einflüsse (insbesondere ohne Energie-Austausch, was im Alltag ziemlich unrealistisch ist), kann sich sogar ein dynamisches Gleichgewicht einstellen: Wenn stets ebenso viele Wassermoleküle zum Kristall hinzukommen wie sich davon lösen, gefriert und schmilzt das Wasser ständig – aber die Menge des Eises (und des flüssigen Wassers) ändert sich nicht!

Kochsalz übt einen Zwang auf das System aus

Bringt man nun Kochsalz (oder einen anderen Stoff mit „Auftauwirkung“) in ein solches Eiswasser-System, dann wird ein erheblicher Teil Moleküle des flüssigen Wassers mit der Bildung von Hydrat-Hüllen um die Ionen „beschäftigt“. Diese Moleküle „fehlen“ dem Eiswasser-System damit regelrecht. Und gemäss dem Gesetz von Le Châtelier ist das System umgehend darum bemüht, diesen Verlust auszugleichen.

Das Fehlen der flüssigen Wassermoleküle führt also dazu, dass sich mehr Moleküle aus dem Eis lösen, um die Fehlenden zu ersetzen. Das sind mitunter so viel mehr Moleküle, dass insgesamt mehr Wasser flüssig wird als gefriert – obwohl ohne Salz mehr Wasser gefroren wäre! So kann die Gegenwart von Streusalz selbst bei Temperaturen unter 0°C Eis zum Schmelzen bringen.

Wie kommt man bei Frost zum dynamischen System?

Wenn ihr gut aufgepasst habt, werdet ihr jetzt vielleicht einwenden, dass das Auftauen nur funktionieren kann, wenn Eis und flüssiges Wasser vorhanden sind. Und letzteres gibt es bei Frost naturgemäss nicht!

Guter Einwand. Aber die Verwender von Streusalz wissen das natürlich auch. Deshalb streuen sie das Salz gleich mit flüssigem Wasser – als pflotschigen Salz-Matsch oder gar als mehr oder weniger flüssige Salzlösung – also als „Sole“ wie die Fachleute so etwas nennen.

Ausprobieren könnt ihr das Ganze hingegen mit trockenem Salz – in eurer warmen Wohnung. Da beginnt Eis nämlich von selbst zu schmelzen und bekommt so eine feuchte Oberfläche. Wie könnt ihr das nutzen? Das zeige ich euch in dieser ganz herzigen Experimentier-Anleitung.

Wie schadet Streusalz der Umwelt?

So nützlich Auftausalz auch ist, bringt es doch eine ganze Reihe von Problemen für die Umwelt, in die es ausgebracht wird, mit sich.

Beeinträchtigung von Gewässern

Die grossen Mengen an Salzen, die auf Strassen und Wege gestreut werden, lösen sich äussert gut in Wasser. Das sollen sie ja auch, denn sonst würde das Ganze nicht funktionieren. Die Salzlösung, die aus Schneematsch und tauendem Eis entsteht, kann jedoch ebenso leicht wie ablaufendes Wasser in umliegende Gewässer geraten. Und Salzwasser hat eine höhere Dichte als das normalerweise dort vorhandene Süsswasser: Ein Volumen an Salzwasser ist schwerer als das gleiche Volumen Süsswasser!

Ein natürliches Gewässer, das aus mehreren Wasserschichten unterschiedlicher Temperatur und Dichte besteht (die Dichteanomalie des Wassers führt dazu, dass reines Wasser bei rund 4°C die grösste Dichte hat), kann durch den Zufluss von Salzwasser von gestreuten Strassen eine oder mehrere neue Schicht/en erhalten. Solche neuen oder veränderten alten Schichten bringen die natürliche, temperaturgesteuerte Umwälzung der Wassermassen im Gewässer durcheinander, was die Verteilung von Sauerstoff und Nährstoffen beeinträchtigt und damit die Lebewesen im Gewässer gefährdet.

Schädigung von Bäumen und anderen Pflanzen

Die Gewächse im Binnenland und in Süssgewässern sind daran angepasst, dass sie Süsswasser „trinken“ und ihre Nährstoffe daraus beziehen können. Das heisst, der Austausch von Wasser und darin gelösten Stoffen zwischen Wurzeln oder Blättern und ihrer Umgebung, der auf Osmose beruht (die ihr hiermit genauer erforschen könnt) ist fein auf einen geringen Salzgehalt abgestimmt.

Kurz gesagt nehmen viele Pflanzen- (und andere) Zellen um so mehr Wasser auf, je mehr Salze sie enthalten – und geben Wasser ab, wenn draussen mehr Salze sind als in ihrem Inneren. Das gilt jedoch nicht für Wurzeln, die Wasser mitsamt der darin enthaltenen Mineralstoffe (die nichts anderes als Salz-Ionen sind) aufnehmen sollen, von welchen die Pflanze sich ernährt.

Geraten diese Pflanzen nun unverhofft an Salzwasser von gestreuten Strassen, „trinken“ sie das Wasser mitsamt dem vielen Salz. Das wiederum wird in die verschiedenen Pflanzenzellen verteilt und zieht weiteres Wasser nach sich: Die Zellen schwellen an und funktionieren nicht mehr richtig. In Folge dessen kränkeln die Pflanzen und gehen im schlimmsten Fall ein.

Tiere bekommen wunde Pfoten

Wer schon einmal mit einem Kratzer in der Haut im Meer gebadet hat, wird es selbst erfahren haben: Salzlösung tut weh! Sie kann die Haut reizen, besonders an empfindlichen vorgeschädigten Stellen. Wie zum Beispiel in den Zehenzwischenräumen von Säugetieren. Wenn es uns Menschen juckt oder zwickt, dann kratzen wir – die Tiere hingegen lecken solche wunden Stellen mit der Zunge. Im Speichel der Tiere wiederum lauern Keime, die so an die wunden Stellen geraten und Infektionen hervorrufen können, welche zu stärkeren Entzündungserscheinungen führen. Und mehr Salz in diesen Wunden tut wiederum weh, sodass mehr geleckt wird…

Mit dem Haushund oder der Katze können wir zum Tierarzt gehen, Salben auftragen und eine Halskrause anlegen, um das Lecken zu unterbinden – begeistert werden die Haustiere davon aber nicht sein. Und Wildtiere wie Füchse können in der Regel nicht einmal auf diese Hilfe zählen.

Korrosion von Metall- und Betonbauteilen

Vielleicht ist euch ja auch schon einmal aufgefallen, dass man in Häfen oder allgemein an der Meeresküste besonders viel Rost antrifft – tatsächlich rostet Eisen, das Kontakt mit Salzwasser hat, deutlich schneller als Eisen fernab vom Meer.

Das rührt daher, dass Wasser mit darin gelösten Salz-Ionen wesentlich besser elektrischen Strom leitet als Süsswasser oder gar reines Wasser. Und elektrische Leitfähigkeit ist für das Rosten und ähnliche Prozesse, die die Chemiker als „Korrosion“ zusammenfassen, unverzichtbar. Korrosion ist nämliche eine Folge chemischer Reaktionen, bei welchen zwischen den Reaktionspartnern Elektronen ausgetauscht werden. Und Elektronen (oder andere geladene Teilchen) auf Wanderschaft sind…elektrischer Strom.

So können durch salzhaltiges Wasser Elektronen vom Eisen direkt zu dessen Reaktionspartnern wandern, was die Korrosion – das Rosten – besonders einfach macht. Was genau dabei geschieht, könnt ihr übrigens hier in meiner Rostparade nachlesen.

Autos, die über gesalzene Strassen fahren, rosten also ebenso schneller wie Brücken und andere Bauwerke aus Eisen, Stahl oder Stahlbeton, die rund um solche Strassen stehen.

Gibt es Alternativen zum Streusalz?

Da die Probleme, welche das Streuen mit Salz mit sich bringt, den Winterdiensten wohlbekannt sind, gibt es verschiedene Alternativen, die jedoch alle ihren eigenen Haken haben:

Harnstoff oder Ammoniumsulfat

Diese beiden Verbindungen haben eine ähnliche auftauende Wirkung wie Kochsalz und seine schwereren Verwandten. Allerdings enthalten sie Stickstoff (Harnstoff ist CO(NH2)2,Ammoniumsulfat ist (NH4)2SO4 !) in Verbindungen, die für viele Pflanzen sehr nahrhaft sind. Massenweise auf Strassen ausgebracht und im umliegenden Boden versickert können sie daher zu Überdüngung führen. Ausserdem ist auch Ammoniumsulfat eine Ionenverbindung und bringt die gleichen Probleme mit sich wie alle anderen Salze auch.

Abstumpfendes Streugut: Split, Sand, Blähton und ähnliches

Solche Streugüter sind im Prinzip nichts anderes als zerkleinerte Steine – weitgehend wasserunlöslich und unreaktiv. Damit gefährden sie zwar nicht den Stoffwechsel von Pflanzen und Tieren, müssen nach der Verwendung aber wieder eingesammelt und entsorgt werden. Würde man das nicht tun, würden Sand und Steinsplitter irgendwann Rinnsteine und Abflüsse verstopfen.

Und die Entsorgung oder gar Wiederaufbereitung von Streugut ist alles andere als einfach. Nachdem nämlich unzählige Autos darüber gefahren sind, ist das Streugut von Reifenabrieb und anderem Schmutz verunreinigt. Der müsste erst vom Streugut abgeschwaschen und dann seinerseits umweltschonend entsorgt werden.

Was ihr tun könnt, wenn euer Gehweg überfriert

Wenn ihr in Deutschland oder Österreich wohnt, werdet ihr keine grosse Wahl haben. Hier ist nämlich der Einsatz von Streusalz für Privatpersonen verboten (die Winterdienste der Kommunen streuen hingegen bei extremen Wetterbedingungen Salz auf den Strassen).

In der Schweiz gibt es dagegen kein generelles Verbot, sodass ihr hierzulande selbst entscheiden könnt, ob und womit ihr eure Gehwege streut.

Auf eurem privaten Garten- oder Fussweg, fernab von zahllosen Gummireifen, ist abstumpfendes Streugut eine gute Wahl für Pflanzen und Tiere. Ihr werdet es bloss immer wieder nachstreuen und schliesslich wieder einsammeln müssen, sobald Schnee und Eis geschmolzen sind.

Die beste Massnahme gegen Eisglätte auf Wegen und Strassen ist letztendlich das Schneeschippen. Denn was einmal geräumt ist, kann nicht mehr überfrieren und schmilzt im Frühjahr rückstandslos weg. Einzig bei überfrierendem Regen hilft das Schaufeln auch nicht weiter. Aber meiner Erfahrung nach ist das selbst hier in der Schweiz eine Ausnahme-Wettererscheinung.

Bevor ihr irgendetwas streut, empfehle ich euch, erst einmal zu schaufeln was das Zeug hält. Denn ganz ohne den Einsatz von Streugut wird es im heutigen Strassenverkehr kaum mehr gehen. Aber die Menge des dabei verwendeten Streusalzes kann so gering wie möglich gehalten werden. Und dabei könnt ihr alle mitmachen!

Und wie geht ihr gegen Schnee- und Eisglätte vor?

Rundgang im Gewächshaus - Woher unser Gemüse kommt

Dieser Beitrag ist mit freundlicher Unterstützung von Gutknecht Gemüse entstanden, die mir im Rahmen einer Betriebsführung für Blogger einen Einblick in ihre Gewächshausproduktion gewährt haben. Ich bedanke mich herzlich bei beim Unternehmen für die Einladung und bei Moana Werschler für die Organisation. Es besteht kein Interessenkonflikt hinsichtlich des Inhalts in diesem Beitrag und dessen Publikation.

Chemie im Alltag? Die ist auch in der Gemüseabteilung im Supermarkt immer wieder ein Thema. Zumindest lässt mich, was so durch die Sozialen Medien geistert, annehmen, dass ich nicht die einzige bin, die beim Einkauf darüber nachdenkt, welche ebenso beunruhigenden wie unsichtbaren Substanzen an unseren Gemüsen haften mögen: Rückstände von Pestiziden und die noch weniger greifbaren Folgen „nicht-natürlichen“ Anbaus.

Aber ganz ehrlich: Bis vor wenigen Wochen hatte ich absolut gar keine Ahnung davon, wie unser Gemüse heutzutage angebaut wird. Wie die meisten von euch vermutlich auch. Ist das eine Grundlage für eine fundierte Einschätzung der Lage im Gemüseregal? Fehlanzeige! Selbst für mich als Chemikerin.

Wie baut man heute Gemüse an?

Richtig bewusst wurde mir das allerdings erst, als ich jemanden traf, der es besser wusste – und mir und anderen Bloggern die Möglichkeit eröffnete, der Sache auf den Grund zu gehen: Ich danke Moana Werschler von „Miss Broccoli“ herzlich für die Organisation des spannenden Ausflugs in die Welt des modernen Indoor-Gemüseanbaus bei Familie Gutknecht in Kerzers! Dort habe ich nämlich aus nächster Nähe anschauen – und probieren! – dürfen, wie zeitgemässer Gemüseanbau in der Schweiz funktioniert.

Und das habe ich natürlich für euch getan, damit ich euch einen wirklich spannenden Einblick „aus erster Hand“ in die Herkunft unserer liebsten Grundlage gesunder Ernährung geben kann. Und die mutet geradezu futuristisch an: Bei Gutknecht wird nämlich „Hors Sol“ praktiziert – eine Anbaumethode, die dem Augenschein nach auch auf dem Mars funktionieren könnte.

Was wächst bei Gutknecht?

An einem heissen Juni-Tag führte mich mein Weg aus dem kleinen Dorf Kerzers (das unter Naturliebhabern und -forschern für sein Schmetterlingshaus „Papiliorama“ bekannt ist) hinaus aufs flache Feld und durch ein Industriegebiet voller grosser Logistik-Niederlassungen. Dahinter wartete natürlich kein romantischer Familien-Ferien-Bauernhof. Der hätte auch kaum die Möglichkeit gehabt, das ganze Gebiet um den „Röstigraben“ zwischen Deutsch- und Westschweiz mit frischem Gemüse zu versorgen.

Der Gutknecht-Gemüsehof hingegen kann das: Auf einer Gewächshaus-Fläche von 9 Fussballfeldern (das sind 6 bis 7 Hektar) werden das ganze Jahr über zahlreiche Gemüsesorten angebaut, die wir in den Auslagen von Migros, Coop, Spar, Lidl, Denner….eigentlich allen Supermärkten in der Region finden können. Dazu kommen 100 Hektar Anbaufläche an der frischen Luft für Obst und Gemüsesorten, die im Gewächshaus nicht gedeihen. Aber die waren für uns heute nicht von Interesse.

Uns und Pascal Gutknecht – einem der Hofbesitzer, der uns persönlich herumgeführt hat – ging es heute um die Gewächshäuser und das, was darin wächst: 29 (!) verschiedene Sorten Tomaten, dazu Auberginen, Zucchetti (in Deutschland sagt man Zucchini), Gurken, Peperoni (für Nicht-Schweizer: gemeint sind Paprika – die kleineren Scharfen, hierzulande Peperoncini genannt, gibt es bei Gutknechts allerdings auch), verschiedene Sorten frischer Kräuter und wer weiss, was wir noch alles nicht gesehen haben.

Unser Rundgang durch den Anbaubereich beginnt im Versuchsgewächshaus, in welchem in kleinerem Massstab mit Verbesserungen der Anbaumethode und neuen Sorten experimentiert wird. Das muss Pascal Gutknecht uns allerdings erst erklären – denn wir finden uns auf den ersten Blick in einer mächtigen gläsernen Halle mit Reihen um Reihen grüner Pflanzen mit Rispen voller kleiner Tomaten wieder. Die richtig grossen Gewächshäuser haben wir ja noch gar nicht gesehen.

Datteltomaten im Versuchs-Gewächshaus

Und hätte Moana uns nicht so gründlich vorinformiert, hätte der Anblick dieser Reihen vielleicht befremdlich gewirkt. Seit wann sind Tomaten lianenähnliche Schlingpflanzen? Und seit wann wachsen die auf frei hängenden Schwebebalken? Aber Moana hatte mich ja vorgewarnt: Die Gutknechts haben sich dem Hors Sol, einer etwas anderen, aber zukunftsweisenden Anbaumethode verschrieben.

 

Was ist Hors-Sol?

„Hors Sol“ ist französisch für „ausserhalb des Erdbodens“ – und genau darum geht es auch. Der Erdboden unter dem Gewächshaus wird nicht bepflanzt, sondern mit Platten oder Planen abgedeckt. Stattdessen werden Reihe um Reihe der schon erwähnten „Schwebebalken“ an Ketten unter dem Gewächshausdach aufgehängt, sodass sie etwa 30 bis 40cm über dem Boden schweben.

Die Balken werden dann mit prallvollen Kunststoffsäcken bestückt, die an Gartenerde-Säcke aus dem Baumarkt erinnern. Statt Gartenerde enthalten sie jedoch Kokosfasern, die beim Anbau von Kokospalmen (zum Beispiel für das zunehmend populäre Kokosfett) abfallen. In diesen Kokosfaserballen wurzeln die Tomaten (oder andere Pflanzen), während sie dem durch das Glasdach fallenden Licht entgegen wachsen.

Wurzelballen in einer Hors Sol - Kultur

Was sind das für seltsame Lianen-Tomaten?

Und das tun sie mit grösstem Eifer: Alle Windungen zusammengenommen sind die Tomatenpflanzen im Versuchgewächshaus gut und gerne sechs bis sieben Meter lang! Dabei werden sie sorgfältig drapiert und ihre Spitzen an Führungsketten aufgehängt. Zudem herrscht akribische Ordnung: An der Spitze blüht alles, in der Mitte hängen schwer die reifenden Früchte und der untere Teil der Haupttriebe ist vollkommen kahl (Diese Ordnung ist naturgegeben – ihr könnt sie auch an den Tomatenpflanzen in eurem Garten beobachten – wenn ihr im untersten Bereich eurer Pflanzen kräftig „ausgeizt“ und alle Blätter wegschneidet).

Dabei ist diese Pflanzung erst in der Mitte ihres Lebens angelangt: Die Tomaten wurden im Januar, also vor einem halben Jahr gesetzt und können bis zu ihrem Lebensende im Dezember eine Länge von 13 Metern erreichen! Das könnten eure Tomaten im Garten übrigens auch, wenn sie so viel Zeit und Platz zum Wachsen hätten.

In diesem Gewächshaus ist Wechselzeit: Die Kokosfaser-Säcke - Basis für die Hors Sol Kultur - warten auf neue Pflanzen

In diesem Produktions-Gewächshaus ist Wechselzeit: Die grossen Kokosfasersäcke bleiben dabei stets am Ort. Im Hintergrund wurden bereits junge Gurkenpflanzen gesetzt, die im Vordergrund folgen in den nächsten beiden Wochen.

 

Giesswasser und Dünger per Infusion

In jedem Wurzelballen steckt mindestens eine mit einem dünnen Schlauch versehene Sonde, sodass das Ganze untenherum ziemlich verkabelt wirkt. Durch die Schläuche können Giesswasser und darin gelöste Nährstoffe direkt in jeden Wurzelballen gepumpt werden. So erhält jede Pflanze „per Infusion“ genau das, was sie gerade braucht.

So brauchen zum Beispiel die mächtigen „Coeur de Boeuf“-Tomaten eine Extraportion Calcium, um nicht an Wurzelfäule zu erkranken, während die kleineren Sorten sehr gut mit geringeren Mengen auskommen. Deshalb gibt es die Extraladung Calcium nur dort ins Giesswasser, wo sie benötigt wird.

Und wenn doch mal etwas überläuft, wird es gleich zur Wiederverwendung in den Giesswasser-Vorrat zurückgeführt.

 

Wie werden die Pflanzen im Gewächshaus befruchtet?

Damit haben die Pflanzen alles, was sie zum Wachsen brauchen: Licht, Wärme, Wasser, einen Untergrund zum Wurzeln, Nährstoffe… Aber ihr denkt jetzt womöglich: „Und wie soll das unter Glas mit den Bienli und den Blüemli funktionieren?“ Richtig: Im Gewächshaus können die Pflanzen blühen – aber ohne Bestäubung werden aus den Blüten keine Früchte. Deshalb haben die Gutknechts ganz besondere Hilfsarbeiter eingestellt:

Pascal holt zwischen den Tomatenreihen einen handlichen Pappkarton mit einem feinmaschigen Gitter vor der oberen Öffnung hervor. Als er den kräftig anstösst, ertönt daraus ein ungehaltenes Summen. In dem Karton hat ein Hummelvolk sein Nest! Damit wir und die Kinder das Ganze in Ruhe betrachten können, hat Pascal das Einflugloch für den Moment verschlossen. Aber wie auf Bestellung nähert sich sogleich eine frei fliegende Hummel, die den Eingang sucht – nun aber für den Moment warten muss.

Hummelnest im Pappkarton zum Einsatz im Hors Sol Gewächshaus

Ein Hummelnest im Pappkarton: Durch das Gitter ist die Luftzufuhr garantiert. Die violette Scheibe ist drehbar und verschliesst in dieser Position das Einflugloch.

 

Im ganzen Gewächshausbetrieb gibt es 140 solcher Hummelnester und jedes davon wird von rund 250 Hummeln bewohnt. Das macht nach Adam Riese 35’000 Hummeln, deren Job es ist, auf Nektarsuche von Gemüseblüte zu Gemüseblüte zu fliegen und dabei Pollen von der einen zum Stempel der nächsten Blüte zu tragen.

Dabei sind Hummeln übrigens genügsamer als Bienen: Sie fliegen auch bei deutlich weniger Licht und Wärme (in Mutters Garten konnte ich das Mitte Juli selbst beobachten: Gegen 20:30 waren immer noch Hummeln am Sommerflieder zugange, während die Bienen schon längst verschwunden waren). Dazu kommt, dass Hummeln wesentlich friedfertiger als ihre kleineren Verwandten sind, sodass die 80 menschlichen Mitarbeiter bei Gutknecht Gemüse um vieles seltener von ihnen behelligt oder gar gestochen werden.

 

Hat die Hors-Sol-Methode Einfluss auf die Qualität des Gemüses?

Während wir die futuristisch anmutenden Pflanzungen näher in Augenschein nehmen, greift Pascal Gutknecht tief ins Grün und pflückt eine Rispe mit reifen Tomaten. Die verteilt er sogleich an uns und die Kinder – und sobald wir probieren, sind wir uns einig: Die sind megafein! Richtig süss und tomatig…

Hors Sol kommt ohne Pestizide aus!

Aber halt! Wir essen Tomaten aus solch einer Umgebung direkt vom Strauch? Denkt denn hier niemand über Pflanzenschutzmittel nach? Keine Sorge, sagt Pascal, in den Gutknecht-Gewächshäusern kommen überhaupt keine Pestizide zum Einsatz. Das wäre allein schon der Hummelvölker wegen schwierig. Das einzige, was an diesen Tomaten dran sein könnte, ist also allenfalls, was die Mitarbeiter an den Händen haben. Davon ausgehend, dass Pascal seine gewaschen hat, können wir die Kinder also bedenkenlos das Gemüse vertilgen lassen.

Und wie sie das tun! Neben Tomaten gibt es hier die als Naschwerk gezüchteten, besonders süssen Spitzpeperoni – auch unheimlich lecker.

Zweifarbige Spitzpeperoni (Spitzpaprika)

Zweifarbige Spitzpeperoni (Spitzpaprika): Absolut unbedenklich direkt ab Strauch und heiss begehrt bei den Kindern

 

Da kommt Pascal gar nicht so schnell mit dem Aufschneiden hinterher, wie die Kleinen ihm die Leckereien aus den Händen schnappen (heisst es nicht oft, dass Kinder kein Gemüse mögen würden? Hier wurde uns eindrücklich das Gegenteil bewiesen!). Selbst eine äusserlich eigenwillige Sorte im reifen Zustand grüner Zebratomaten mindert die Begeisterung nicht, sodass das Ganze schnell buchstäblich einer Raubtierfütterung gleicht.

Reife Zebratomaten in Rot und Grün

Eine besondere Rarität: Zebratomaten – beide Früchte in Pascals Händen sind reif!

 

Wie wird dann gegen Schädlinge vorgegangen?

Schon bald ist uns eine Merkwürdigkeit in der Tomatenpflanzung aufgefallen: Am Anfang jeder vielleicht fünften Pflanzreihe wächst am äussersten Ende des Schwebebalkens eine einzelne Auberginen-Pflanze. Das ist auch in den richtig grossen Tomatenhäusern so, sodass das nichts mit der Versuchsanlage zu tun haben kann. Jedenfalls nicht direkt.

Indikator-Aubergine

Diese Aubergine steht vor den Tomaten, um Schädlingsbefall frühzeitig sichtbar zu machen.

 

Stattdessen dient die Aubergine als Indikator für Schädlingsbefall. Sie hat nämlich unter allen Gemüsepflanzen im Gewächshaus die weichsten, empfindlichsten Blätter. Wenn Schädlinge ins Gewächshaus einfallen, lassen sie sich daher zu allererst auf der Aubergine nieder, wo sie von den Mitarbeitern schnell gesehen werden. Und dann wird in die biologische Trickkiste gegriffen:

Es werden Eier und Larven von nützlichen Krabbeltieren – natürlichen Feinden der Schädlinge, die in kleinen Briefchen beim Züchter eingekauft und wie Saatgut gelagert werden können, im Gewächshaus ausgesetzt.

Eine Ladung Nützlinge zur Schädlingsbekämpfung

Eine Ladung biologisches Schädlingsbekämpfungsmittel: Die winzigen aber nützlichen Bewohner des holzwolleähnlichen Substrats aus einem frisch geöffneten Briefchen machen sich eiligst davon (rote Kringel).

 

Schmeckt Hors Sol-Gemüse fad oder ist es weniger nahrhaft?

Was Pascal Gutknecht uns nun erklärt, könnt ihr auch hier in Keinsteins Kiste nachlesen (und erfahren, wie ihr Tomaten nachreifen lassen könnt): Der angenehme Geschmack reifer Tomaten oder anderer Gemüse kommt nicht aus dem „richtigen“ Boden. Dafür ist einzig und allein Wärme verantwortlich. Und die gibt es hier im Gewächshaus reichlich (wir schwitzen schon ordentlich und mein Kamera-Handy läuft immer wieder heiss).

Dass die Tomaten im Supermarkt trotzdem oft kaum Geschmack haben, rührt daher, dass die Früchte auf ihrem Weg bis in die Supermarkt-Auslagen bzw. auf unseren Esstisch nicht warm bleiben. Damit sie schön prall und fest bei uns ankommen, werden sie nämlich beim Transport in die Märkte oft gekühlt – und wenn nicht dort, dann legen wir sie zu Hause nur all zu gerne in den Kühlschrank.

Das Problem dabei: Die Kälte führt zum Abbau von Aromastoffen, die von der Pflanze als Lockmittel für hungrige Pflanzenfresser geschaffen werden, welche die Samen verbreiten können. Und bei kalter Witterung macht die Verbreitung von Samen keinen Sinn (es würde schwerlich etwas daraus wachsen).

Da die Hors-Sol-Pflanzen über ihre „Infusion“ alles erhalten, was sie zum Aufbau von Nähr- und Aromastoffen brauchen, fehlt ihnen aufgrund der Anbauweise nichts, um sowohl schmackhaft als auch gesund zu sein.

Frische Kräuter aus Hors Sol - Kultur

Pascal erklärts: Auch die frischen Kräuter erhalten hier alles, was sie brauchen, um würzig zu sein.

 

Wie ihr zu Hause an schmackhafte Tomaten kommt

Wenn ihr euch geschmackvolle Tomaten wünscht, kauft sie nach Möglichkeit ungekühlt, bringt sie in der kalten Jahreszeit raumwarm heim und legt sie dort nicht in den Kühlschrank! Lagert sie stattdessen bei Raumtemperatur (nicht unbedingt neben Äpfeln, es sei denn, die Tomaten wären unreif). Dann müsst ihr sie wohl schneller aufbrauchen, aber dafür schmecken sie um so mehr nach Tomate.

Und noch ein Tipp am Rande: Kleine Tomatensorten enthalten naturgemäss mehr Zucker als grosse und schmecken daher grundsätzlich süsser. Auch deswegen sind Kirschtomaten und andere „Winzlinge“ als Nascherei besonders beliebt.

 

Warum wird dieses Gemüse nicht als „bio“ verkauft?

Meine persönliche Vorstellung von bio-Anbau beläuft sich auf „frei von Pflanzenschutzmitteln ‚aus dem Labor‘ und von umweltbedenklichen Düngemitteln. Damit wäre die pestizidfreie Hors-Sol-Methode mit ihrem wohldosierten wie geschlossenen Düngemittelkreislauf in meinen Augen des bio-Labels würdig. Das würde vor allem dem zu unrecht schlechten Image dieser Anbauweise gehörigen Auftrieb verleihen.

Leider sehen die Erfinder des bio-Labels das anders. Eine ihrer Bedingungen, die irgendwann in den 1980er Jahren für die Vergabe des Labels festgelegt wurde, ist nämlich der Anbau in „richtigem Erdboden“. Und die erfüllt die Hors-Sol-Methode mit ihren Kokosfasern auf Schwebebalken nunmal nicht.

Warum Pflanzen „ohne Boden“ ganz natürlich sind

Dabei bestehen Kokosfasern und Humusboden aus der gleichen Sorte Rohstoff: Abgestorbenen Pflanzenresten. Im Humusboden sind die bloss etwas gründlicher zerkleinert und verdaut.

Freigelegter Wurzelballen in Hors Sol - Kultur

Ein freigelegter Wurzelballen in Kokosfasern: Sieht moosigem, durchwurzeltem Waldboden ziemlich ähnlich, gell?

 

Und überhaupt: An Pflanzen, die auf Überresten anderer Pflanzen wurzeln, ist überhaupt nichts unnatürliches. Haltet beim Spaziergang im Wald einfach einmal die Augen nach alten umgestürzten Baumstämmen und Wurzelstrünken auf. Die sind nämlich eine wahre Fundgrube – nicht nur für Pilze, Moose und Farne, sondern auch für viele „höhere“ Pflanzen. Im Wald der Riesen-Sequoias an der Westküste Nordamerikas gibt solches Totholz sogar die besten „Baumkindergärten“ für junge Mammutbäumchen ab!

Es wird Zeit für zeitgemässe Regeln

In einer Zeit, in welcher der Ruf nach nachhaltiger Ernährung einer wachsenden Weltbevölkerung ebenso immer lauter wird wie der nach Natur- und Umweltschutz, ist es dringend nötig, über 30 Jahre alte Regelungen neu zu überdenken.

Denn eine Möglichkeit, in einem kleinen Land mit extremen Jahreszeiten ganzjährig Gemüse anzubauen, ohne dabei auf chemische Pflanzenschutzmittel zurückzugreifen oder die Umwelt mit Düngemitteln zu belasten, sollte nicht das Schattendasein fristen, das ihr bislang bestimmt ist.

Die Nähe der Anbaustätten zu den jeweiligen Endkunden (also uns), die dank kurzer Transportwege schon zu einem deutlich kleineren CO2-Fussabdruck führt als Import-Gemüse ihn hat, ist zudem nur ein weiterer Punkt, der für die Nachhaltigkeit des Hors-Sol-Anbaus a la Gutknecht spricht.

 

CO2-Neutralität wird grossgeschrieben

Auch in Sachen Energieversorgung setzt man hier auf bestmögliche CO2-Neutralität. So sind alle Dächer der Anlage, die nicht aus Glas sind (das sind zum Beispiel Verarbeitungs- und Lagerbereiche, in welchen das Gemüse auf Europaletten verpackt und für den Abtransport bereitgehalten wird), mit Photovoltaik-Anlagen – also Solarzellen zur Stromerzeugung (wie die funktionieren, könnt ihr hier nachlesen) – bestückt. Diese Anlagen liefern mehr als genug Strom, um den ganzen Betrieb zu versorgen.

Für 2020 ist zudem der Bau einer eigenen Heizanlage für die kalte Jahreszeit geplant, welche mit Abfallholz befeuert werden soll. Zugegeben, das ist naturgemäss nicht ganz CO2-neutral (es sei denn, die Holzabfälle müssten so oder so zur Entsorgung verbrannt werden – dann würde die darin enthaltene Energie wenigstens sinnvoll genutzt). Allerdings ist offen, was die Gutknechts mit dem Abgas letztendlich anfangen (auch dafür gibt es nämlich Verwendungsmöglichkeiten).

Fazit

Wir haben nicht nur einen inspirierenden Vormittag in einer Welt verbracht, die uns normalerweise nicht zugänglich ist (es bei Gutknechts aber auch für euch sein kann – man kann die Führung über die Website für private Gruppen, Schul-, oder Betriebsausflüge buchen!). Wir haben auch jede Menge Spannendes gelernt – über überraschend natürlichen Gemüseanbau in futuristischer Umgebung.

Die Quintessenz dessen ist: Der Hors-Sol-Gemüseanbau hat sein verbreitet schlechtes Image nicht verdient. Denn die Gemüse aus dem Hors-Sol-Gewächshaus stehen solchen aus dem Garten an sich in nichts nach – und sind, bezogen auf die benötigten grossen Mengen, erst noch nachhaltiger produziert. So trägt das Gutknecht-Gemüse immerhin das „Suisse-Garantie“-Label, das nicht zuletzt für nachhaltige Produktion, Natürlichkeit und Frische steht.

Deshalb ist es an der Zeit, überholte Regelungen anzupassen, um diesem effizienten und umweltverträglichen Anbau ein besseres Image zu verleihen.

Und bis es soweit ist: Wenn Gemüse als „Hors Sol“ ausgezeichnet seht (das ist in der Schweiz nicht Pflicht, aber erst heute habe ich die Kennzeichnung für Fleischtomaten im COOP entdeckt (und ratet einmal, was es heute zu essen gab)), kauft sie und freut euch, ein nachhaltiges Produkt ohne Pestizid-Belastung geniessen zu können.

Ich habe genau das jedenfalls im Hofladen auf dem Gutknecht-Gelände getan und mich für ein Ratatouille mit allem Nötigen eingedeckt. Mmmmhh, lecker!

Und welches Gemüse – aus welcher Anbauform – bevorzugt ihr? Warum?

Glasreiniger - Streifenfrei auch ohne Ammoniak

Die spannenden Antworten, die ich einer Leserin zur Wirkweise von WC-Reinigern gab, haben eine weitere Verfolgerin dazu bewegt, auch gleich nach der Funktion eines anderen Putzmittels zu fragen: Wie funktioniert ein Glasreiniger?

Wenn wir sauber machen, benutzen wird fast überall Seifen – denn die Superwaschkraft der Tenside darin ist einfach unschlagbar. Beinahe jedenfalls. Doch wer schon einmal Fenster geputzt hat, kennt ein leidiges Phänomen: Streifen an den Scheiben. Die entstehen entweder aus nicht gänzlich entferntem Schmutz – oder sind ein Souvenir, das die oberflächenliebenden Tenside uns hinterlassen.

Deshalb scheinen Glasreiniger anders zu funktionieren als gewöhnliche Seife, die man nach der Verwendung gründlich abwaschen muss: Einmal rasch aufgesprüht lösen sie den Schmutz ratzfatz, und nach dem Abwischen verschwinden die verbleibenden Streifen innerhalb von Sekunden. Was aber macht Glasreiniger so besonders?

 

Was im Glasreiniger drin ist

Wer Glas streifenfrei reinigen möchte, braucht eine Substanz, die sowohl ein Talent zum Schmutzlösen hat, als auch leicht und rückstandslos entfernbar ist. Deshalb enthalten Glasreiniger in der Regel

  • Organische Lösungsmittel: Ethanol oder/und andere Alkohole mit ähnlichen Eigenschaften. Organische Lösungsmittel können, was ihr Name verspricht: In ihnen lösen sich viele Stoffe leicht auf, die sich in Wasser weniger leicht lösen. Alkohole aus kleinen Molekülen lassen sich trotzdem leicht mit Wasser mischen, sodass man gemeinsam mit Wasser verwenden kann. Dabei setzen Alkohole die Oberflächenspannung von Wasser herab, sodass nicht nur sie selbst, sondern auch das Wasser schnell verdunsten kann: Flüssigkeitsreste verschwinden schnell vom Glas.
  • Wenig oder gar keine Seife: Die würde ja Streifen hinterlassen. Deshalb wird in Glasreinigern weitgehend darauf verzichtet.
  • Duftstoffe
  • Konservierungsmittel
  • Farbstoffe
  • Manche Glasreiniger enthalten zudem Ammoniak, dem eine zusätzliche Reinigungskraft zugeschrieben wird.

 

Alkohole sind umweltfreundlicher als Seifen

Organische Lösungsmittel haben vielerorts ein anrüchiges Image – aber keine Panik: Diese Stoffe sind nicht immer so schlimm, wie ihnen nachgesagt wird. Das gilt ganz besonders für Ethanol – den uns wohlbekannten Trink-Alkohol – und seine Verwandten. Die sind nämlich viel umweltverträglicher als viele Tenside in Seifen!

Als natürlicher Bestandteil vieler lebender Systeme (viele Kleinlebewesen stellen im Zuge der alkoholischen Gärung Ethanol selbst her und noch mehr – uns Menschen eingeschlossen – können ihn verstoffwechseln) ist Ethanol, anders als viele Tenside, leicht biologisch abbaubar.

In hoher Konzentration verursacht Ethanol allerdings nicht nur uns einen Kater oder schlimmeres, sondern ist auch für viele Kleinstlebewesen tödlich – was ihn zu einem beliebten Desinfektionsmittel macht. So sollten Glasreiniger auf Ethanol-Basis ohne weitere Konservierungsmittel auskommen können.

Denn die Duftstoffe und Konservierungsmittel in vielen Glasreinigern sind die gleichen zweischneidigen Schwerter wie in anderen Reinigungsmitteln, sodass mit solchen Zusätzen auch ein Glasreiniger nicht pauschal als „vollkommen harmlos“ angesehen werden kann.

 

Warum Duftstoffe bedenklich sind

Duftstoffe leisten keinen direkten Beitrag zur Funktion des Reinigungsmittels: Sie reinigen nicht. Stattdessen sollen sie dem Produkt einen angenehmen Duft verleihen, welcher dem Konsumenten vermitteln soll, dass die Anwendung ungefährlich, angenehm, mit Sauberkeit und „Frische“ und damit mit Gesundheit verbunden ist. Im „schlimmsten“ Fall werden dabei sogar unangenehme Gerüche überdeckt, die andernfalls dem Körper als (lebens-)wichtige Warnung dienen: Ich stinke, also bin ich ungesund.

In Reinigungs- und anderen Produkten ist eine Vielzahl verschiedener Duftstoffe im Einsatz, die – praktisch alle körperfremd – auch gleich eine Vielzahl möglicher Allergieauslöser darstellen. Und das gilt für „naturnahe“ bzw. natürliche ätherische Öle ebenso wie für Molekül-Kreationen aus dem Labor, wie ich hier näher erläutert habe.

Ebenso besonderes Augenmerk verdienen Konservierungsmittel: Die können nicht nur ebenso Allergien auslösen wie Duftstoffe. Sie sind überdies dem Leben nicht zuträglich – zwangsweise, denn sie sollen ja verschiedenste Kleinstlebewesen daran hindern, in unseren angebrochenen Putzmittel-Flaschen zu hausen und zu gedeihen. Das Problem dabei ist, dass viele solcher „Biozide“ – lebensvernichtende Stoffe – auch für menschliche Zellen giftig sind.

Wenn wir Reinigungsmittel in normalem Umfang dafür benutzen, wozu sie gedacht sind, werden wir kaum eine gefährliche Dosis solcher Konservierungsmittel abbekommen. Die Dämpfe solcher Produkte einzuatmen empfiehlt sich trotzdem nicht. Denn was für die Vernichtung unliebsamer Kleinstlebewesen geschaffen ist, wird auch vor den unverzichtbaren Bewohnern unserer Haut und Schleimhäute nicht Halt machen. Wer viel putzen muss, ist deshalb nicht nur möglicher Allergien wegen mit Handschuhen gut bedient.

 

Ammoniak – Warum dieser Inhaltsstoff die Geister scheidet

Manche Glasreiniger enthalten neben Alkoholen oder anderen Reinigungskünstlern Ammoniak (der gern auch als „Salmiak“ umschrieben wird). Ammoniak, NH3, ist ein Gas, das sich sehr gut in Wasser löst. Die wässrige Lösung, heute Ammoniak-Wasser genannt, war vor allem früher als Salmiakgeist bekannt.

Ammoniak ist eine Base: Beim Lösen in Wasser kann ein Ammoniak-Molekül ein H+-Ion von einem Wassermolekül aufnehmen („aq“ im Index deutet an, dass das betreffende Teilchen in Wasser gelöst ist):

Unter den alten Sammelbegriff „Salmiak“ fallen deshalb auch die Salze des Ammonium-Ions NH4+, wie sie zum Beispiel in Salmiakpastillen vorkommen! Anders als Ammoniak sind Ammoniumsalze, wenn man sie in Wasser löst, jedoch sehr schwache Säuren (das Ammonium-Ion muss schliesslich ein H+-Ion abgeben, damit daraus Ammoniak entstehen kann) – haben also ganz andere Eigenschaften!

In einer Ammoniak-Lösung liegen stets Ammoniak-Moleküle und Ammonium-Ionen zugleich vor: Ammoniak ist eine relativ schwache Base. Das bedeutet aber auch, dass sich stets gelöste Ammoniak-Moleküle im Gleichgewicht mit gasförmigem Ammoniak befinden.

Diese Moleküle können wir riechen, sodass eine Ammoniak-Lösung durch ihren mehr oder weniger stechenden Geruch auffällt.

Eine Base als Reinigungsmittel

Die Basizität ist wohl auch der Grund für die „reinigungsverstärkende“ Wirkung des Ammoniaks. Denn die Gegenwart von Basen, genauer gesagt OH-Ionen, führt dazu, dass verschiedene grössere Biomoleküle leicht in kleinere, einfach abwaschbare Bruchstücke zerfallen. Fette beispielsweise sind mittelgrosse, wasserunlösliche Moleküle, die zu den Estern gehören und deshalb in Gegenwart von Basen gespalten werden. Die Bruchstücke – Glycerin und Fettsäuren – lassen sich leicht mit Wasser oder Ethanol aufnehmen. Auch Eiweisse, d.h. Proteine, werden in Gegenwart von Basen leicht hydrolysiert, also in Bruchstücke bis hin zu ihren Aminosäuren zerlegt.

Das Problem: Ammoniak ist giftig

  • Wie alle stärkeren Säuren und Basen wirkt Ammoniak ätzend – auch auf unsere Schleimhäute – und kann, wenn es eingeatmet wird, im schlimmsten Fall ein Lungenödem verursachen.
  • Ammoniak ist ausserdem ein Nervengift, das je nach Konzentration zu neurologischen Ausfällen, Koma und Tod führen kann.
  • Da es sich um ein Gas handelt, das aus der wässrigen Lösung leicht flüchtig ist und sich im Wasser auf unseren Schleimhäuten erneut lösen kann, ist Ammoniak schwer unter Kontrolle zu halten.
  • Ammoniak ist sehr giftig für Wasserorganismen: In natürlichen Gewässern sind praktisch immer Ammoniumionen zugegen (denn die Lebewesen darin scheiden sie als Stoffwechselabfall aus). Wenn eine Base wie Ammoniak-Lösung da hinein gerät, wird der pH-Wert angehoben (d.h. es gibt vermehrt OH -Ionen und damit wenig H+-Ionen im Wasser). Gemäss Le Chateliers Prinzip des kleinsten Zwangs wird dadurch das Gleichgewicht zwischen Ammonium-Ionen und Ammoniak, das natürlicherweise weit auf der Seite von NH4+ liegt, auf die Seite von NH3 – Ammoniak – geschoben:
  • Und Ammoniak ist auch für viele Wasserlebewesen bis hin zu Fischen giftig – ganz davon abgesehen, dass sich die meisten Lebewesen bei einem erhöhten pH-Wert ohnehin nicht wohlfühlen werden.

Es gibt also genug Gründe, um auf Ammoniak in Reinigungsmitteln zu verzichten.

 

Wie du dem Ammoniak aus dem Weg gehen kannst

Das ist eigentlich ganz leicht: Ammoniak hat einen extrem unangenehmen, stechenden Geruch – wenn du einem solchen begegnest, hör auf das Fluchtsignal deines Körpers und gehe auf Abstand.

Ich habe mal vielleicht 100-200 Milliliter konzentrierte Ammoniak-Lösung in einem Labor-Abzug (einem per Schiebetür verschliessbaren Kleinraum mit eingebauter „Dunstabzugshaube“) verschüttet. Ich musste mich selbst bewusst am Weglaufen hindern und stattdessen den Abzug schliessen, um das Gas an der Ausbreitung zu hindern, bevor ich das Zeug ordnungsgemäss entsorgen konnte!)

Das heisst: Wenn du zur Zeit einen Glasreiniger mit Ammoniak verwendest:

  • Atme den Sprühnebel bzw. die Dämpfe möglichst nicht ein (auch möglicher Duft- und Konservierungsstoffe wegen)-
  • Brauche den Glasreiniger auf. Das ist meiner Meinung nach sinnvoller als Wegwerfen – es sei denn, das Mittel bereitet dir schon gesundheitliche Probleme wie beispielsweise eine Allergie. Dann bringe die Reste zur Sondermüll-Entsorgung: Ammoniak darf nicht ins Abwasser gelangen!

Wenn du einen neuen Glasreiniger kaufen möchtest:

  • Achte darauf, dass der neue keinen Ammoniak (Ammoniak-Wasser, Salmiak, Salmiakgeist,…) enthält.
  • Achte ebenso darauf, dass Stoffe, die dir bereits Allergien auslösen, nicht enthalten sind.
  • Am empfehlenswertesten ist ein Glasreiniger auf Alkohol-Basis (Spiritus-Reiniger).

Glas reinigen mit Hausmitteln

Statt einem Glasreiniger aus dem Supermarkt kannst du auch einfach Brennsprit (Spiritus) in eine Zerstäuberflasche füllen und zum Reinigen verwenden. Statt – wie oft genannt – Zeitungspapier solltest du dabei aber ein Mikrofasertuch zum Wischen verwenden. Das fusselt ebenso wenig und enthält keine Druckerschwärze, die abfärben könnte.

Beim Umgang mit Brennsprit bzw. Spiritus und anderen organischen Lösungsmitteln gilt ausserdem: Kein offenes Feuer in ihre Nähe bringen! Diese Substanzen gehen sehr leicht in Flammen auf: Rauchen oder brennende Kerzen sind beim Fensterputz daher tabu!

Ausserdem gilt auch hier: Dämpfe nicht einatmen – die können benommen oder zumindest Kopfschmerzen machen!

Überdies sind dem Brennsprit aus dem Supermarkt Spuren sehr unangenehm riechender und schmeckender Substanzen wie Denatonium (dem bittersten bekannten Stoff der Welt) oder Butanon (Methylethylketon, MEK) beigemengt. Mit anderen Worten: Der Ethanol ist vergällt. Das lässt vermutlich die meisten Menschen nicht nur Abstand davon nehmen, den Sprit zu trinken um die Alkoholsteuer zu umgehen, sondern auch davon, daran zu schnüffeln. Ich zumindest empfinde den Geruch meines Brennsprits als viel unangenehmer als jenen des wirklich reinen Labor-Ethanols. Somit ergibt sich das „nicht einatmen“ mehr oder weniger von selbst.

 

Wie ich meine Scheiben praktisch streifenfrei sauber bekomme

Ich verwende, der vermutlich vorwiegend aus Alkoholen besteht und keinen Ammoniak enthält (Ausser den Duft- und Konservierungsstoffen sind die Inhaltsstoffe nicht auf der Flasche angegeben. Der pH-Wert ist allerdings laut pH-Streifen neutral (und nicht basisch wie in Gegenwart von Ammoniak) und die Farbstoffe aus dem pH-Streifen lösen sich schnell in der Flüssigkeit (viele wasserunlösliche Farbstoffe lösen sich leicht in organischen Lösungsmitteln). Da der Reiniger beim Aufsprühen leicht schäumt, könnte überdies ein kleiner Anteil Seife enthalten sein).

  • Stark verschmutzte Aussenscheiben besprühe ich mit etwas Glasreiniger und rubble sie gründlich mit einem triefnassen Schwamm ab.
  • Das Alkohol-Wasser-Gemisch ziehe ich dann gründlich mit einem Gummi-Abzieher ab. Ein betagtes, einfaches Markenprodukt leistet mir dabei bessere Dienste als sein No-Name-Gegenstück aus Studentenzeiten.
  • Ganz wichtig: Den Abzieher wische ich nach jedem Zug über die Scheibe kurz an einem Tuch ab, sodass kein Wasser/Reiniger mehr daran klebt, das/der tropfen könnte!
  • Falls doch noch Streifen bleiben, poliere ich mit einem trockenen Mikrofasertuch kurz nach.

Und wie putzt ihr eure Fenster? Welche Glasreiniger verwendet ihr? Und wie wichtig ist euch die Zusatz-Reinigungskraft von Ammoniak?

WC-Reiniger enthalten Säure : Achtung ätzend!

Wie funktioniert WC-Reiniger? Gibt es Hausmittel-Alternativen? Dies sind die Leser-Fragen der Woche.

Die meisten unter euch kennen sie wahrscheinlich – wie ich – als relativ dicke, knallig gefärbte Flüssigkeit aus der Flasche mit dem seltsamen Entenhals. Doch die Mutter aller WC-Reiniger war ein festes Granulat zum Aufschäumen. Farbgebung und Geruch dieser Substanzen lassen auch den Otto-Normalverbraucher erahnen, dass mit ihnen nicht zu spassen ist. Doch was verbirgt sich wirklich dahinter?

Woraus bestehen WC-Reiniger?

Die vielleicht wichtigsten – und oft nicht auf der Verpackung aufgeführten – Bestandteile von flüssigen WC-Reinigern sind Säuren. Das können Salzsäure (HCl), Phosphorsäure (H3PO4) oder Salpetersäure (HNO3) sein. Diese Säuren verleihen dem üblichen WC-Reiniger einen pH-Wert von etwa 1 (ich habe das mit einem einfachen pH-Streifen an dem Reiniger aus der Entenhals-Flasche nachgemessen!), was in etwa unserer Magensäure entspricht.

Dazu kommen Tenside, also „Seife“, Farb- und Duftstoffe sowie irgendeine Form von Verdickungsmittel.

Feste WC-Reiniger-Granulate enthalten zusätzlich Salze wie Soda (Natriumcarbonat, Na2CO3) oder Natron (Natriumhydrogencarbonat, NaHCO3), die in Wasser mit sauren Bestandteilen reagieren und dabei CO2-Gas freisetzen, welches das Ganze aufschäumen lässt (dieser Effekt lässt sich für spektakuläre Experimente nutzen).

Wie funktionieren WC-Reiniger?

Der wichtigste Wirkstoff in WC-Reinigern ist die Säure. Die reagiert nämlich mit festem Kalk (CaCO3) und Urinstein zu wasserlöslichen Stoffen, die leicht abgebürstet und weggespült werden können.

Von starken und schwachen Säuren

Eine Säure ist ein Stoff, der H+-Ionen abgeben kann. Dabei bleibt zwangsläufig ein Anion übrig, welches theoretisch das oder die H+-Ion(en) wieder aufnehmen kann: Das Anion ist eine Base. Allerdings ist das Bestreben, H+-Ionen abzugeben, nicht bei jeder Säure gleich stark. So gilt, wenn sich zwei Säuren begegnen, die Regel: Die stärkere Säure gibt H+-Ionen an die Anionen der schwächeren Säure ab – und löst diese Anionen dazu notfalls auch aus einem Salzkristall:

Salzsäure (HCl in Wasser)* ist eine starke, Kohlensäure (H2CO3) eine schwache Säure. So führt die Gegenwart von Salzsäure dazu, dass sich die Anionen der Kohlensäure (Carbonat, CO32-) aus dem festen Kalk (einem Ionenkristall) lösen, um je 2 H+-Ionen aufzunehmen. Anders als Calcium- und Carbonat-Ionen sind Calcium- und Chlorid-Ionen gemeinsam in Wasser gut löslich und können einfach fortgespült werden.

*Für jene, die es ganz genau nehmen: Tatsächlich ist Wasser auch eine Base, sodass Chlorwasserstoff-Moleküle (HCl) all ihre H+-Ionen erst einmal an Wasser-Moleküle abgeben:

Das Hydronium-Ion H3O+ ist damit in Wirklichkeit die stärkere Säure in der ersten Reaktion, welche die Kohlensäure aus dem Kalk freisetzt.

Und wer meine früheren Beiträge, zum Beispiel zum Experimentieren mit Natron und Essig, aufmerksam gelesen hat, weiss auch, dass freie Kohlensäure in Wasser nicht beständig ist. Stattdessen zerfällt sie in Wasser und CO2-Gas – ein Umstand, der, wie Le Chatelier auf dem Flughafen zu erklären weiss, das Auflösen von Kalk in Säuren nur mehr fördert.


Und was ist Urinstein?

Urinstein ist ein gelblich-braunes Kristallgemisch, das durch die Reaktion von Urin-Bestandteilen mit im Spülwasser gelöstem Kalk bei basischem, also hohem pH-Wert entsteht. Er kann unter anderem die schwerlöslichen Salze Calcium- und Magnesiumcarbonat, -sulfat, -oxalat, -phosphat, -hydroxid sowie ebenfalls abgelagerten Harnstoff (eine elektrisch ungeladene organische Verbindung) enthalten.

Poröse Ablagerungen von Kalk und Urinstein können Bakterien eine Heimat bieten, die wiederum mit ihren Stoffwechselausscheidungen für einen basischen pH-Wert in ihrer Umgebung sorgen können.

In Gegenwart von Säure lösen sich die Urinstein-Bestandteile jedoch leichter in Wasser, sodass saure WC-Reiniger auch bei der Entfernung von unschönem Urinstein samt enthaltener Bakterien (die in stark saurer Umgebung meist nicht lange überleben) helfen.


Die ausserdem im WC-Reiniger enthaltenen Tenside helfen mit ihrer Super-Waschkraft, angelöste Ablagerungen gänzlich von den Oberflächen im WC zu lösen. Ausserdem verbleiben zähflüssige WC-Reiniger länger auf den verschmutzten Oberflächen als dünnflüssigeres Wasser, sodass die Säuren Zeit zum Reagieren haben.

Die knalligen Warnfarben der WC-Reiniger-Flüssigkeit dienen schliesslich in meinen Augen der Abschreckung: Was giftig blau erscheint, nehmen wir meist instinktiv als „nicht zum Verzehr geeignet“ wahr – und in den Mund genommen oder gar verschluckt können die ätzenden Flüssigkeiten unseren Schleimhäuten und schlimmstenfalls unserem Leben sehr gefährlich werden.

Welche Gefahren gehen von WC-Reinigern aus?

Kontakt mit Umgebung und anderen Reinigern

WC-Schüsseln bestehen in der Regel aus Keramik, die nicht mit Säuren reagiert und daher problemlos damit gereinigt werden kann. Das gilt jedoch nicht für Marmoroberflächen im Bad, kalkhaltige Füllungen von Fliesen-Fugen und einige Kunststoffe und Textilien! Gebt also gut acht, dass eure WC-Reiniger-Flüssigkeit nur dahin gelangt, wo sie hin soll (nämlich in die WC-Schüssel).

Die Säuren im WC-Reiniger können zudem mit starken Basen (zum Beispiel in Abflussreinigern!) unter Freigabe von viel Energie reagieren: Gebt das eine nicht mit dem anderen zusammen – schäumende und spritzende ätzende Flüssigkeit und aufsteigende ätzende Dämpfe wären die gefährliche Folge!

Gebt besonders mit chlorhaltigen Bleichmitteln (Javel-Wasser!) acht: Die Säuren können aus solchen hochgiftiges Chlor-Gas freisetzen! Bringt also niemals Javel-Wasser und WC-Reiniger zusammen!

Gesundheit

Doch auch WC-Reiniger als solche wirken ätzend, aber mindestens reizend auf Haut und Schleimhäute. Haltet sie – wie alle Reinigungsmittel – von Kindern (und allen anderen, bei welchen der Instinkt „knatschbunt ist nicht essbar“ nicht funktioniert) fern. Wenn ihr selbst etwas davon auf die Haut bekommt, spült es rasch mit viel Wasser ab. Bei Schleimhaut-Reizungen entfernt euch von den Dämpfen und geht an die frische Luft. Solltet ihr einen Spritzer in die Augen bekommen, spült sie mehrere Minuten lang gründlich mit Wasser und geht bestenfalls zur Sicherheit zum Augenarzt.

Wenn trotz aller Vorsicht jemand WC-Reiniger verschluckt hat: Ruft in der Giftnotruf-Zentrale (Schweiz, Deutschland, Österreich) an, lasst euch Anweisungen geben und alarmiert schlimmstenfalls gleich den Rettungsdienst. Grundsätzlich gilt nach Verschlucken ätzender Stoffe: Kein Erbrechen herbeiführen, viel Wasser oder anderes Getränk (ohne Kohlensäure, ohne Alkohol) schluckweise trinken.

Umwelt

Nahezu alle Lebewesen sind für eine Umgebung mit mehr oder weniger neutralem pH-Wert (pH = 7) geschaffen. Starke Säuren in grossen Mengen sind also nahezu jedem Leben abträglich – je kleiner die Lebewesen, desto schneller. Je stärker eine Säure verdünnt ist, desto weniger gefährlich ist sie allerdings.

Lasst deshalb unverdünnten WC-Reiniger nicht in die Umwelt gelangen. Braucht ihn möglichst ganz auf – und wenn ihr doch einmal grössere Reste loswerden möchtet, bringt sie zur Sondermüll-Entsorgung. Kleine Reste können mit viel Wasser in den Ausguss gespült werden.

Es ist zwar möglich, WC-Reiniger vor der Entsorgung mit Natriumcarbonat-Lösung oder verdünnter Natronlauge zu neutralisieren, allerdings erfordert das Sicherheitsmassnahmen (Schutzbrille, ggfs. Handschuhe!), eine Möglichkeit, den pH-Wert zu messen, viel Umsicht und einiges an Geschick, sodass dieses Vorgehen im Haushalt kaum praktikabel ist.

Verwendet WC-Reiniger daher grundsätzlich sparsam und spült nach der Reinigung der WC-Schüssel reichlich nach!

Gibt es Hausmittel-Alternativen für WC-Reiniger?

Vor der Markteinführung von WC-Reinigern in den 1950er Jahren wurden WCs mit verdünnter Salzsäure gereinigt. Die ist dünnflüssig und farblos, sodass man ihr ihre ätzenden Eigenschaften äusserlich nicht ansieht. So findet man Salzsäure heute nur noch selten bis gar nicht im Putzmittelregal – dafür aber etwas anderes: Haushaltsessig.

Auch Essigsäure ist eine stärkere Säure als Kohlensäure und in der Lage, Urinstein aufzulösen – wenn sie auch nicht ganz so stark ist, wie die im WC-Reiniger enthaltenen Säuren. Damit eignet sich auch Haushaltsessig – eine Lösung von etwa 10% Essigsäure oder mehr („Essigessenz“) in Wasser – zum Reinigen von WCs, auch wenn man damit vielleicht etwas kräftiger schrubben muss. Denn der dünnflüssige Essig haftet weniger gut auf der Keramik-Oberfläche und reagiert weniger schnell mit den Ablagerungen darauf.

Dafür ist Haushaltsessig generell weniger stark ätzend als Salzsäure und Co und grundsätzlich haut- und umweltverträglicher (im Allgemeinen gelten die gleichen Sicherheitsvorkehrungen wie für die starken Säuren – die Gefahr ernster Verletzungen ist aber geringer).

Mit Marmor und anderen carbonathaltigen Stoffen reagiert Essig allerdings ebenso wie andere Säuren. Das gilt auch für Javel-Wasser und basische Abflussreiniger. Gebt diese auch mit Essig nie zusammen!

Fazit

WC-Reiniger sind meist flüssige Reinigungsmittel, die starke Säuren enthalten. Sie lösen Kalk und Urinstein in der WC-Schüssel, reagieren aber ebenso gut mit säureempfindlichen Stoffen wie Marmor oder Körpergeweben. Beim Umgang damit ist daher Vorsicht angesagt!

Haushaltsessig ist ebenfalls eine – wenn auch schwächere – Säure und eignet sich damit auch zum Reinigen von WCs, auch wenn er weniger effektiv ist.

Damit haben WC-Reiniger in meinen Augen durchaus eine Daseinsberechtigung – wenn sie sparsam eingesetzt werden. Ich setze meinen Reiniger alle ein bis zwei Wochen ein. So können sich keine nennenswerten, hartnäckigen Ablagerungen bilden, sodass ich jeweils mit relativ wenig Reinigungsflüssigkeit auskomme. Nach dem Schrubben leere ich dann zwei komplette Spültanks, um alles sorgfältig und verdünnt wegzuspülen.

Und wie reinigt ihr eure WCs?

Mit Aluminium gegen Flugrost?

Als ich die Spülmaschine ausräumte, fiel mir ein, dass wir früher mal ein Stück Alufolie mit hineingetan haben, um den Flugrost zu minimieren bzw. “zu fangen”. Kennst du das bzw. macht das Sinn?

Diese Frage hat nicht nur ein Keinsteins-Kiste-Leser. Sie tauchte zudem vor knapp 2 Wochen zur Prime-Time im Fernsehen auf, als ein Erfinder den Investoren in der „Höhle der Löwen“ einen Flugrost-Fänger für die Spülmaschine vorstellte, der nach dem gleichen Prinzip funktionieren soll.

Deshalb gewähre ich euch hier einen Einblick in die Chemie dahinter (denn Chemie ist überall und alles ist Chemie – das gilt auch für dieses Gadget, wie Ole von Bananabond bereits festgestellt hat). Und ich verrate euch ein „Hausmittel“, das den gleichen Zweck erfüllt – und eine Möglichkeit zur Vorbeugung von Flugrost, die das eine wie das andere unnötig machen kann!

 

Was ist Flugrost?

Rost mit einer chemischen Formel zu beschreiben ist längst nicht so einfach wie bei vielen anderen Stoffen. Das liegt daran, dass Rost nicht einfach „ein Stoff“ ist, sondern sich gleich aus mehreren zusammensetzt.

Rost als Stoffgemisch

Eine chemische Formel für Rost, die dieses Stoffgemisch zu beschreiben sucht, lautet:

In Worten: Rost ist ein wasserhaltiges Gemisch aus verschiedenen Eisenoxiden.

Diese Eisenoxide sind Salze. Das heisst, sie bestehen aus Eisen- (Fe2+ bzw. Fe3+ )Ionen und Oxid-(O2-)-Ionen, also elektrisch geladenen Atomen der Elemente Eisen und Sauerstoff. Solche Ionen entstehen, wenn ungeladene Atome der jeweiligen Elemente Elektronen abgeben bzw. aufnehmen – also eine chemische Reaktion eingehen.

Chemische Reaktionen, bei welchen in dieser Weise Elektronen weitergegeben werden, nennt man Redox-Reaktionen. Das Abgeben von Elektronen wird dabei Oxidation genannt, das Aufnehmen von Elektronen heisst Reduktion.

Bei der Entstehung von Rost geben Eisen-Atome Elektronen ab, die letztlich von Sauerstoff-Atomen aufgenommen werden. Wie das genau vor sich geht, könnt ihr in meinem Artikel über Rost nachlesen.

Damit Rost entsteht, braucht es also Eisen-Atome, die Elektronen abgeben können, und Sauerstoff-Atome, die die Elektronen aufnehmen. Ausserdem werden für die erfolgreiche Elektronen-Übergabe in diesem Fall Wasser-Moleküle benötigt.

Wie der Rost das Fliegen lernt

Die Eisen-Atome können dabei Teile eines massiven Stücks Metall sein oder winzige, frei bewegliche Staubpartikel bilden. Staubpartikel haben im Vergleich mit einem Metallstück sehr viel mehr Oberfläche, die mit Sauerstoff und Wasser in Kontakt kommen kann. So werden sie besonders leicht oxidiert – und die entstehenden Eisenoxid-Partikel setzen sich gern auf anderen Metalloberflächen – selbst „rostfreiem“ Stahl – ab: Es scheint, als komme der Rost „angeflogen“.

Da der Flugrost sich von aussen absetzt, lassen sich diese Flecken leicht abwischen. Lästig ist das aber allemal, und wirklich schön sieht das Ganze meist nicht aus.

 

Wie kann man die Flugrost-Entstehung verhindern?

Für eine Redox-Reaktion braucht es immer zwei Partner: Einen, der Elektronen abgibt, und einen, der sie aufnimmt. Dabei ist jedem Stoff ein ganz „persönliches“ Bestreben, Elektronen abzugeben oder aufzunehmen – das sogenannte Redox-Potential – zu eigen. Und nur, wenn diese beiden Partner zueinander passen – der eine also lieber Elektronen aufnimmt als der andere (der lieber welche abgibt) – kann eine Redox-Reaktion stattfinden.

Bei der Rost-Entstehung ist es der Sauerstoff, der sehr danach strebt, Elektronen aufzunehmen, und nur auf einen Reaktionspartner wartet, welcher ihm Elektronen überlässt. Was also, wenn sich ein Reaktionspartner findet, der leichter Elektronen abgibt als Eisen? Genau: Dann holt sich der Sauerstoff seine Elektronen dort! Denn die Natur ist einmal mehr sehr bequem.

Ersatz für Eisen als Elektronen-Spender

Ein solcher Stoff, der in unserem Alltag verbreitet ist, ist das Metall Aluminium (andere Kandidaten sind zum Beispiel Magnesium oder Zink). Aluminium gibt so leicht Elektronen ab, dass es an feuchter Luft eigentlich kaum beständig ist, sondern rasch zu Aluminiumoxid bzw. Aluminiumhydroxid reagiert.

Dass wir trotzdem Aluminiumwerkstücke herstellen und an normaler Luft verwenden können, haben wir dem Umstand zu verdanken, dass eine oxidierte Aluminium-Oberfläche (anders als eine Eisen-Oberfläche) so dicht mit Ionen bedeckt ist, dass die ungeladenen Aluminium-Atome darunter unter normalen Umständen gar nicht mit weiterem Sauerstoff in Kontakt kommen. So können keine weiteren Elektronen übergeben werden – und das Metall-Stück bleibt intakt.

In einer laufenden Spülmaschine sind die Umstände allerdings alles andere als normal: Es ist nass, es ist warm, und Luft-Sauerstoff ist auch noch da. Ausserdem können die Inhaltsstoffe im Spülmittel die Umstände weiter beeinflussen. So ist Aluminium-Metall in der Spülmaschine in der Lage, Eisenstaub beim Liefern von Elektronen an Sauerstoff zuvor zu kommen. Anstelle von Eisen wird also Aluminium oxidiert. Die dabei entstehenden Salze sind farblos (also „weiss“) – nicht rostrot – und setzen sich weniger leicht auf Stahloberflächen ab. So entstehen keine rostroten Partikel, die unangenehm auffallen könnten.

Ohne Opfer geht es nicht

Der Haken daran: Die Aluminium-Atome, die durch die Abgabe von Elektronen zu Aluminium-Ionen werden, sind für die weitere Flugrost-Abwehr verloren. Überdies werden die Aluminium-Salze früher oder später mit dem Abwasser fortgespült.

Ein Aluminium-Metallstück in der Spülmaschine wird also immer weiter schrumpfen und irgendwann verbraucht sein. Deshalb wird solch ein Metallstück unter (Elektro-)Chemikern auch als Opfer-Anode bezeichnet: Es wird zum Schutze anderer Materialien vor der Sauerstoff-Korrosion geopfert.

 

Hausmittel zum Flugrost-fangen

Es ist nicht unbedingt nötig, eigens Aluminium-Rostfänger zu kaufen. Denn das Metall findet ihr auch anderswo im Haushalt. Ein locker zu einem Ball gerolltes Stück Aluminiumfolie (zum Abdecken von Lebensmitteln) erfüllt zum Beispiel den selben Zweck. Da seine Oberfläche viel grösser ist als die eines massiven Metallblocks, dürfte sie sogar noch effektiver sein – allerdings auch noch schneller verbraucht werden.

Eine weitere Möglichkeit haben mein Mann und ich zu Anfang unseres gemeinsamen Lebens eher ungewollt angewendet, indem wir unseren Sparschäler mit Aluminiumgriff mit in die Maschine getan haben. Der betätigt sich nämlich auch als Opfer-Anode – geht allerdings früher oder später dabei drauf.

Sparschäler passiviert und nach einigen Maschinen-Spülgängen korrodiert

Links: Sparschäler wie neu – wird von Hand abgewaschen: das Metall ist matt, aber inakt; Rechts: Sparschäler nach einigen Spülgängen in der Maschine: die Oberfläche ist sichtlich angegriffen

Aber ob Folie, Sparschäler oder kommerzieller Rostfänger: Die Herstellung von Aluminium-Metall kostet grosse Mengen an Energie und ist nicht gerade das, was viele als „umweltschonend“ bezeichnen (Ole „Bananabond“ geht genauer darauf ein). Und wer sich Gedanken über Aluminium-Salze in Deodorants macht, sollte sich ebenso Gedanken über Aluminium-Salze im Spül-Abwasser machen. Deshalb tut ihr gut daran, euch zu überlegen, ob ihr einen Flugrost-Fänger wirklich braucht.

 

Flugrost vorbeugen

Ich selbst hatte nämlich nur so lange mit Flugrost in der Spülmaschine zu tun, wie ich die scharfen Schneidemesser in der Maschine mitgewaschen habe.

Die heute in der Küche gängigen Stähle sind nämlich durch Mischung der Eisen-Atome mit Chrom und anderen Elementen so hart geschaffen und glatt verarbeitet, dass sie weder am Stück rosten noch abgeschliffen werden. So können erst gar keine Eisenstaub-Partikel, die rosten könnten, entstehen.

Einzig die scharfen Messer bilden offensichtlich eine Ausnahme: Eine geschliffene Messerklinge läuft an der Kante so dünn zusammen, dass das Atomgemisch, aus dem der Stahl besteht, Luft und Wasser ganz besonders ausgesetzt ist. So können sich dort offenbar doch Eisen-Atome herauslösen und Flugrost bilden.

Seit ich die scharfen Messer – ebenso wie die Alu-Sparschäler – mit der Hand abwasche, habe ich jedenfalls keinen Flugrost mehr an meinem Edelstahl-Besteck (ich verwende „All-in-One“-Spülmaschinentabs von wechselnden Herstellern).

Und habt ihr schon Flugrost in der Spülmaschine beobachten können?