Experiment: Geldscheine anzünden

Geld verbrennen: Ein Experiment für Leute, die zu viel Geld haben? Keineswegs! Mit diesem chemischen Zaubertrick könnt ihr eure Zuschauer verblüffen (oder sogar erschrecken), ohne dabei arm zu werden!

Viel zu lange war es still in der Kiste – aber keine Sorge, Reto und mir geht es gut. Das ‚erzwungene‘ Innehalten während der COVID-Lockdowns hat mir bloss bewusst gemacht, wie sehr es mich nach einer Pause von allem verlangte. Und dann ergab sich die Möglichkeit, ein Traumprojekt endlich in die Tat umzusetzen!

Zu Keinsteins Kiste gibt es jetzt ein Buch!

Richtig gelesen: Nicht nur viele spannende Experimente aus Keinsteins Kiste, sondern auch zahlreiche neue Versuche und Wissenswertes findet ihr jetzt als „Chemische Spielereien“ im Verlag Wiley VCH Weinheim beim Buchhändler eurer Wahl!

Während der vermeintlichen Stille um die Kiste habe ich euch die spannendsten Experimentieranleitungen und interessante Einblicke in die Chemie eures Alltags auf 150 Seiten stets griffbereit als Hardcover oder E-Book zusammengestellt und freue mich, euch „Chemische Spielereien“ endlich präsentieren zu können.

Und… heisst das nun, dass das Geld ab jetzt in Strömen fliesst, sodass ich ohne Schmerz etwas davon verbrennen kann? Nicht ganz – weshalb ich in diesem Experiment zwar Geldscheine anzünde, aber keinen davon beschädige. Und ihr könnt das auch.

Haltet bei Experimenten mit offenem Feuer stets die Sicherheitsregeln zur Vermeidung von Bränden und Verletzungen ein! Kurz heisst das: Habt einen feuerfesten Experimentierplatz, tragt schwer entflammbare Kleidung, haltet leichtendzündliche Chemikalien von Zündquellen fern und habt bestenfalls ein passendes Löschmittel griffbereit!

Ihr braucht dazu

  • Geldschein, beliebiger Nennwert (z.B. Euro oder Schweizer Franken)
  • Tiefe Schale oder ähnlichen Behälter
  • Grosse Pinzette oder Grillzange aus Metall
  • Brennsprit/Spiritus (Ethanol)
  • Leitungswasser
  • Kochsalz
  • Messgefäss (z.B. Trinkglas)
  • Kerze oder Teelicht
  • Streichhölzer oder Feuerzeug
  • Feuerfesten Experimentierplatz!
Was ihr zum Geld verbrennen braucht

So geht’s

  • Mischt in der tiefen Schale einen Teil Alkohol mit einem Teil Wasser. Gebt einen gestrichenen Teelöffel Kochsalz dazu und rührt um, bis das Salz sich weitestgehend gelöst hat.
  • Stellt die Kerze auf der feuerfesten Unterlage oder z.B. im Badezimmer bereit und zündet sie an (behaltet die Schale mit dem Alkoholgemisch und die Brennsprit-Vorratsflasche abseits von Kerze und Feuerquelle!).
  • Greift den Geldschein an einem Ende mit der Pinzette oder Zange und tränkt ihn vollständig im Alkohol-Wasser-Gemisch.
Ich tauche den Geldschein mit Hilfe einer Tiegelzange sorgfältig in die Flüssigkeit.
Wichtig: Taucht euren Geldschein ganz und gründlich in die Flüssigkeit ein!
  • Haltet den triefnassen Schein kurz in die Kerzenflamme und dann weiter über die feuerfeste Unterlage.

Achtung! Es kann passieren, dass brennender Alkohol auf die Unterlage tropft. Das ist nicht weiter schlimm, denn er brennt innerhalb von Augenblicken aus. Aber die Unterlage muss deshalb unbedingt feuerfest sein!

Tragt beim Geld verbrennen zudem Kleidung aus schwer entflammbarer Baumwolle und ggfs. Schutzbrille. Bei der Durchführung mit meiner Tiegelzange (ca. 15 bis 20cm Abstand zwischen Feuer und Hand) habe ich die Wärme der Flammen deutlich, aber nicht unangenehm gespürt. Ich empfehle also ein mindestens ebenso langes feuerfestes Haltewerkzeug. Die Duschwanne als Experimentierplatz bietet übrigens nicht nur durch den hohen Rand, sondern auch durch die darüber bereithängende Dusche zusätzliche Sicherheit.

Das könnt ihr beobachten

Der triefnasse Geldschein geht sofort in Flammen auf…oder? Denn obwohl der Schein für ein paar Sekunden in ausladenden, bläulich bis orangegelben Flammen steht, bleibt er unversehrt! Der Versuch funktioniert mit der jüngsten Euro-Serie ebenso wie mit den neuesten Schweizer Franken. Wenn ihr den Geldschein noch einmal in der Flüssigkeit tränkt, könnt ihr den Versuch auch gleich nach dem ersten Durchgang wiederholen.

Geld verbrennen ohne Folgen: Obwohl ich hier vorsichtigerweise eine 10-Euro- bzw. 10-Franken-Note verwendet habe, funktioniert das Experiment mit allen Nennwerten. Verschafft eurem Publikum also ruhig den ultimativen Schreckmoment, indem ihr einen Hunderter anzündet.

Entsorgung

Die nassen Geldscheine könnt ihr einfach zum Trocknen aufhängen und anschliessend normal weiterverwenden. Das Alkohol-Wasser-Gemisch könnt ihr mit viel Wasser in den Abfluss entsorgen.



Wie kann man Geld verbrennen, ohne dass es zerstört wird?

Was tatsächlich reagiert

Brennsprit, genauer Ethanol, verbrennt mit Luftsauerstoff zu Kohlenstoffdioxid und Wasser:

Bei der Verbrennung wird Energie frei, die wir als Leuchten der Flammen sehen und als Wärme spüren können. Die auf vergleichbare Weise in der Kerzenflamme freiwerdende Wärme (das „Kerzenwachs“ Paraffin besteht aus Molekülen aus Kohlenstoff- und Wasserstoff-Atomen, die bei ihrer Verbrennung ebenfalls Kohlenstoffdioxid und Wasser bilden) reicht aus, um den flüssigen Ethanol, mit dem der Geldschein getränkt ist, sofort zu entzünden. Das Gleiche gilt eigentlich für das Papier und die Kunststoffe, aus denen eine Banknote besteht.

Schutz durch Wasser

Die Flüssigkeit, mit welcher euer Schein getränkt ist, besteht jedoch zur Hälfte aus Wasser, welches nicht brennt, dafür aber in der Wärme der Flamme verdampft. Und beim Verdampfen geschieht dasselbe wie beim Schmelzen: Die Wassermoleküle nehmen Wärme auf, um von einer geregelten Anordnung zu mehr Bewegungsfreiheit zu kommen. In flüssigem Wasser kleben die gegeneinander beweglichen Moleküle nämlich stets aneinander, während sie in Wasserdampf frei im Raum herumfliegen.

Wasser ist nun ein Stoff, der beim Verdampfen besonders viel Wärme aufnehmen kann. Sein hoher Schmelzpunkt von 100°C gibt uns eine Idee davon (zum Vergleich: Schwefelwasserstoff, H2S, der aus fast gleichartigen Molekülen aufgebaut ist, ist bereits bei Raumtemperatur gasförmig!). Während die bei der Verbrennung des Ethanols freigesetzte Energie also Wasser zum Verdampfen bringt, bleibt um den Geldschein nicht genügend Wärme übrig, um das Material ebenfalls zu entzünden!

Der Schmelzpunkt von Ethanol ist mit 78°C übrigens auch niedriger als der von Wasser. Der Ethanol im und auf dem Schein verdampft also noch eher als das Wasser. Was also tatsächlich brennt, ist nicht der flüssige Ethanol im Geldschein, sondern Ethanol-Dampf drumherum.

Fazit

Der Geldschein selbst geht in diesem Experiment aus zwei Gründen nicht in Flammen auf:

  1. Die heissen Flammen entstehen nicht am Geldschein, sondern darum herum.
  2. Verdampfendes Wasser in und um den Schein ‚verbraucht‘ so viel Wärme, dass das Geld nicht heiss genug wird, um selbst in Flammen aufzugehen.

Aus vergleichbaren Gründen brennt übrigens auch der Docht einer Kerze nicht sofort nieder, sondern verkohlt langsam der schrumpfenden Wachskerze folgend. Auch das Paraffin verdampft, bevor es in der Umgebung des Dochts verbrennt! In „Chemische Spielereien“, dem Buch zu Keinsteins Kiste, könnt ihr die spannenden Einzelheiten zu den Vorgängen in Kerzenflammen nachlesen und weitere feurige Experimente machen.

Und an welche Geldsummen traut ihr euch beim Anzünden so ran?

Experiment: So wachsen Zinkbäume!

Was sind Zinkbäume? Pflanzen, die ganz aus Metall sind? Und wie können sie wachsen?

Mit Hilfe von elektrischem Strom! Wenn ihr eine Sicherheitsnadel verkupfert, könnt ihr beobachten, wie Metallatome in Form von Ionen durch Flüssigkeit von einem Metallstück zun nächsten wandern. Indem ihr statt einer Flüssigkeit festes Gemüse verwendet, könnt ihr diesen Umstand nutzen, um eine Kartoffelbatterie zu bauen. Aber wenn ihr schon eine gute Batterie oder ein Netzteil habt, könnt ihr das auch verwenden, um den Ionen vorzuschreiben, in welche Richtung sie wandern sollen. Zum Beispiel, um faszinierende Metallbäumchen wachsen zu lassen!

Ich habe dieses Experiment schon vor Jahren zu Hause gemacht, es aber bislang nicht verbloggt, weil die dabei verwendeten Stoffe nicht ganz ungefährlich sind. Unter anderem kann dabei Chlorgas entstehen. Lest deshalb die Beschreibung sehr gut durch – denn Sicherheitsmassnahmen und besonderer Aufwand bei der Entsorgung sind nötig! Wenn ihr alle Hinweise beherzigt, könnt ihr aber auch mit dem Chlor sicher umgehen.

Ihr braucht dazu

  • Zwei grosse Stahlnägel
  • Einen Weinkorken
  • Klebefilm
  • Einen kleinen, flachen Behälter (z.B. Tupperdose für Streichwurst)
  • Gleichstromquelle: Eisenbahntrafo, Netzteil, 9V-Batterie oder Batterieblock (Spannung sollte mindestens 3V betragen!)
  • Kabel oder Litze zum Verdrahten
  • Krokodilklemmen oder Löt-Ausrüstung
  • Zinkchlorid (ZnCl2)GHS-Symbole: Ätzend, Achtung, Umweltschädlich oder Zinkiodid (ZnI2)GHS-Symbole: Ätzend, Umweltschädlich
  • Destilliertes bzw. destillatgleiches Wasser (letzteres gibt es im Supermarkt)
  • Ggfs. Werkzeug und robuste Arbeitsplatte, um die Nägel zu knicken
  • Natriumthiosulfat (oder ähnliches Reduktionsmittel) für die Entsorgung
Das braucht ihr, um Zinkbäume wachsen zu lassen: Zinkchlorid, Wasser, Stromquelle, Eisennägel mit Kabel, Behälter, Korken, Klebefilm

Zinkchlorid oder Zinkiodid?

Bei der Elektrolyse von Zinkchlorid entsteht gasförmiges Chlor (Cl2), das aggressiv reagiert (es ist ein starkes Oxidationsmittel) und giftig ist. Sorgt deshalb beim Experimentieren für eine gute Belüftung: Wenn ihr ein Labor habt, arbeitet im Abzug, sonst am besten im Freien! Chlor löst sich weniger gut in Wasser und hat eine blassgrünliche Farbe. So nimmt es euch nicht die Sicht auf den Nagel, an dem die Zinkbäume wachsen.

Bei der Elektrolyse von Zinkiodid entsteht Iod (I2), das ein Feststoff ist. So besteht praktisch keine Gefahr, dass ihr etwas davon einatmet. Dafür ist Iod in Wasser gelblich bis kräftig braun, sodass es im schlimmsten Fall die Sicht auf die Zinkbäume am Nagel nebenan nehmen kann.

Somit haben beide Stoffe ihre Vor- und Nachteile. Ich überlasse es euch zu entscheiden, welchen ihr verwendet. Ich selbst habe mich, obwohl ich zu Hause keinen Laborabzug habe, für Zinkchlorid entschieden und das Experiment auf dem Balkon aufgebaut. So hatte ich sicher freie Sicht für alle Aufnahmen.

Verwendet von beiden möglichen Chemikalien so wenig wie möglich, denn so entsteht einerseits möglichst wenig giftiges Chlor, andererseits müsst ihr umso weniger entsorgen, je weniger Chemikalien ihr einsetzt!

So geht’s

  • Bearbeitet beide Nägel so, dass sie nach etwa einem Drittel ihrer Länge einen Knick von ca. 120° machen.
  • Verbindet die abgeknickten Köpfe der Nägel mit Kabeln, die ihr später an eure Stromquelle anschliessen könnt. Entfernt dazu die Isolierhülle der Litze und lötet je ein Kabelende an einem Nagel fest oder, wenn ihr Experimentierkabel mit Krokodilklemmen verwendet, klemmt jedes davon an Kopf eines Nagels.
  • Schneidet den Weinkorken längst in zwei Hälften. Klebt die Nägel so auf die Wölbung einer Korkenhälfte, dass sie sich nicht berühren! Die abgeknickten Köpfe mit den Lötverbindungen bzw. Klemmen sollen dabei nach oben ragen. Legt die Korkenhälfte mitsamt der Nägel in den kleinen Behälter und klebt ihn mit dem Klebefilm am Boden fest (der Korken soll nicht wegschwimmen!).
  • Löst rund 13,5g Zinkchlorid oder 31,9g Zinkiodid in 100 Milliliter destilliertem Wasser auf. So erhaltet ihr eine Lösung mit einer Konzentration von rund 1 mol/l (Mehr zu Stöchiometrie hier).
  • Gebt eben so viel von dieser Lösung in den Behälter mit den Nägeln, dass die flach liegenden Teile der Nägel vollständig bedeckt sind. Die abgeknickten Enden mit den Kontakten sollen jedoch ausserhalb der Lösung und trocken bleiben!
  • Verbindet einen Nagel mit dem Plus-, den anderen mit dem Minuspol eurer Stromquelle.
  • Wenn alles bereit ist, schaltet den Strom ein und dreht ihn ggfs. (wenn ihr einen Trafo mit Drehschalter benutzt) langsam auf.
  • Schaltet den Strom unbedingt wieder ab, wenn eure Zinkbäume gross genug sind!

Zinkbäume: Das könnt ihr beobachten

Wenn eine ausreichend hohe Spannung anliegt, bildet sich auf dem Nagel am Pluspol ein mattgrauer Überzug, aus dem bald feine metallische Verästelungen in Richtung des anderen Nagels herauswachsen: Auf dem Nagel wachsen kleine Zinkbäume!

Blick von oben in das Versuchsgefäss nach 20 Minuten Laufzeit: Am rechten Nagel wachsen Zinkbäume in Richtung des linken Nagels. Gelöstes Chlor lässt die Flüssigkeit ein wenig grün erscheinen.
Mein Versuchsgefäss nach 20 Minuten Laufzeit: Die Zinkbäume am rechten Nagel wachsen entlang des elektrischen Feldes (das die Bewegungsrichtung der Ionen vorgibt) zwischen den Nägeln. Gelöstes Chlor lässt die Flüssigkeit etwas grünlich erscheinen.

Wenn ihr eine Zinkchlorid-Lösung verwendet, bilden sich am anderen Nagel kleine Gasblasen und ihr könnt bald einen stechenden Geruch wahrnehmen. Möglicherweise könnt ihr auch erkennen, dass das Gas eine grünliche Farbe hat.

Achtung! Atmet das Gas nicht ein! Es handelt sich um giftiges Chlor (Cl2)! Deshalb sollt ihr dieses Experiment unbedingt im Freien oder in einem Labor im laufenden Abzug („Kapelle“) machen. Lasst das Experiment nicht unnötig lange und nicht unbeaufsichtigt laufen, ganz besonders, wenn ihr im Freien experimentiert!

Wenn ihr eine Zinkiodid-Lösung verwendet, entsteht kein Gas. Dafür färbt sich die Flüssigkeit um den zweiten Nagel mit der Zeit bräunlich. Das elementare Iod (I2) ist bei Raumtemperatur nämlich ein Feststoff, der sich in einer Lösung mit Iodid-Ionen lösen kann oder sich in kleinen, festen Partikeln absetzt. Auch Iod ist gesundheitsschädlich, lässt sich aber wesentlich leichter im Zaum halten als das gasförmige Chlor.


Was passiert da?

Eine Batterie oder andere Gleichstromquelle hat zwei Pole mit unterschiedlich grossen Elektronenvorräten. Am Minuspol gibt einen grossen Überschuss an negativ geladenen Elektronen, während am Pluspol gemessen an den sonstigen Atombestandteilen sehr wenig Elektronen vorhanden sind. Verbindet man den Minuspol der Batterie über eine elektrisch leitendes Kabel mit dem Pluspol, fliessen die überschüssigen Elektronen vom Minuspol schnell zum Pluspol, bis an beiden Polen gleich viele Elektronen sind. Elektronen, die durch ein leitendes Material fliessen, sind somit „Stromteilchen“.

Aber auch andere geladene, bewegliche Teilchen können zu Stromteilchen werden. So zum Beispiel Ionen in einer Lösung. Die beiden Nägel in diesem Versuch sind nichts anderes als Verlängerungen der beiden Pole eurer Stromquelle. Sobald die Quelle eingeschaltet ist, drängen die Elektronen vom Minuspol in den daran angeschlossenen Nagel, während Elektronen aus dem anderen Nagel zum Pluspol hin abfliessen. So ist der Minuspol-Nagel nun seinerseits negativ und sein Gegenüber positiv geladen.

Wie Zinkbäumchen wachsen können

Als ihr das Zinkchlorid (bzw. -iodid) im Wasser aufgelöst habt, sind die festen Kristalle zu einzelnen Ionen zerfallen:

Da gegensätzliche Ladungen sich anziehen, wandern die Zn2+-Ionen zum bei eingeschalteter Stromquelle negativ geladenen Nagel. Wenn sie dort ankommen, nimmt jedes Zink-Ion zwei Elektronen aus der wartenden Menge auf. So entsteht ein ungeladenes Zink-Atom:

Und viele Zink-Atome, die sich übereinander stapeln, bilden das Metall Zink. So bekommt der negativ geladene Stahlnagel mit der Zeit einen Überzug aus Zinkmetall. Zum Glück leitet auch das Zinkmetall elektrischen Strom, sodass aus der Stromquelle nachfolgende Elektronen einfach hindurchdringen und weitere Zink-Ionen ergänzen (Chemiker sagen „reduzieren“) können.

Wenn das an allen Stellen der (verzinkten) Nageloberfläche gleichmässig geschähe, würde die Zinkschicht einfach immer dicker. Tatsächlich läuft der Prozess aber keineswegs so gleichmässig ab. Vielmehr bilden einzelne Zinkatome, die sich auf der vormals glatten Stahlfläche ablagern, eine raue Oberfläche voller Vorsprünge und „Noppen“. Für die nachfolgenden Zink-Ionen ist der Weg zu diesen vorspringenden Atomen bzw. Atomgruppen kürzer als der bis ganz zur Stahloberfläche. So lagern sich sich aussen auf diesen „Noppen“ ab, bevor sie den eigentlichen Nagel erreichen: Die betreffenden „Noppen“ wachsen weiter und werden zu Ästen, von denen ausgehend bald weitere Ästchen wachsen. Mit der Zeit entstehen ganze filigrane „Bäumchen“ aus Zinkmetall.

Und woher kommt das Chlor (bzw. Iod)?

Während die Zink-Ionen zum negativ geladenen Nagel wandern, wandern die Chlorid-Ionen (Cl) zum positiv geladenen Nagel. Dort gibt jedes Cl-Ion ein Elektron an den Nagel ab, um den Mangel darin auszugleichen. So entsteht ein ungeladenes Chlor-Atom. Da aber nicht gern allein sind, tun sie sich zu Paaren zusammen, die durch eine Atombindung zusammengehalten werden:

Mit Iodid-Ionen (I) verhält es sich ganz genauso:

Der entscheidende Unterschied ist, dass Chlormoleküle (Cl2) bei uns angenehmer Temperatur ein Gas bilden, Iodmoleküle (I2) aber einen Feststoff (oder sie lagern sich an weitere Iodid-Ionen an und bleiben als „I3“ im Wasser gelöst).

Schematische Darstellung der Elektrolysezelle: So entstehen Zinkbäume
Was im Versuchsgefäss passiert (hier mit Zinkiodid: Positiv geladene Zink-Ionen (d.h. Kationen) wandern zum negativ geladenen Nagel (deshalb Kathode genannt) und nehmen je 2 Elektronen auf. Die entstehenden Zinkatome bilden die Zinkbäume. Negativ geladene Iodid-Ionen (d.h. Anionen) wandern zum positiv geladenen Nagel (deshalb Anode genannt) und geben je ein Elektron ab, ehe sie Iodmoleküle bilden. Ein Voltmeter kann die Spannung, die die Stromquelle liefert, anzeigen, ein Amperemeter die Stärke des fliessenden Stroms. (nach: Niko Lang, CC BY-SA 2.5, via Wikimedia Commons)

Wieviel Spannung muss die Stromquelle hergeben, damit die Zinkbäume wachsen?

Wenn ihr ein Netzteil mit Dreh- oder Schieberegler (z.B. einen Eisenbahntrafo) verwendet und diesen langsam aufdreht, werdet ihr feststellen, dass an euren Nägeln bei ganz langsamer „Fahrt“ nichts passiert. Es braucht also eine gewisse elektrische Spannung – also eine gewisse Grösse des Unterschiedes zwischen den Elektronenvorräten – damit die oben genannten Reaktionen wirklich ablaufen. Wie kommt das?

In dem Moment, da die ersten Zink-Ionen zu Zink-Atomen werden, stehen Zink-Ionen und Zinkmetall in direktem Kontakt. Das ist die gleiche Situation, wie ihr sie z.B. von Kartoffelbatterien kennt. Auch am anderen Nagel gibt es solch eine Gegenüberstellung. Mit anderen Worten: Mit dem Beginn des Experiments werden beide Nägel zu den Polen einer Batterie! Und die will ihren Strom in genau der entgegengesetzten Richtung liefern wie eure eigentliche Stromquelle.

Eure Stromquelle muss also gegen die „Nagelbatterie“ in eurem Versuchsgefäss anarbeiten. Damit der Strom in die Richtung fliesst, in die ihr ihn haben wollt, muss die Stromquelle also mehr Spannung liefern als die „Nagelbatterie“. Wieviel mehr, das haben fleissige Forscher unlängst ausgemessen:

Wenn ihr eure Zinkbäumchen aus Zinkchlorid züchten möchtet, benötigt ihr mindestens 2,3 Volt, wenn ihr stattdessen lieber mit Zinkiodid arbeitet, sollten schon 1,3 Volt genügen. Zumindest in der Theorie. Tatsächlich hängt diese sogenannte „Zersetzungsspannung“ auch von eurem Versuchsaufbau ab. Schlecht gelötete Kontakte, lange Leitungen und ähnliches können dazu führen, dass ihr etwas mehr als die Zersetzungsspannung braucht. Mein Eisenbahn-Trafo liefert jedoch bis zu etwa 15 Volt, ein Batterieblock mit vier AA-Batterien 6 Volt und eine 9 Volt-Batterie was draufsteht. So habt ihr mit solchen Stromquellen in jedem Fall genügend Spannung zur Verfügung.


Entsorgung

Wenn ihr unbenutzte Zinksalz-Lösung übrig habt, könnt ihr sie in einem dicht verschlossenen Behälter aufbewahren und für spätere Versuche benutzen. Die Zinkbäumchen sind leider sehr zerbrechlich und lassen sich kaum im Ganzen aufheben. Sie bestehen aber aus reinem Zinkmetall, dass ihr ebenfalls sammeln und für andere Versuche nutzen könnt.

Gebt etwas Natriumthiosulfat (ein kristalliner Feststoff) in die Versuchslösung, nachdem ihr die Nägel herausgenommen habt. Dieser Stoff reduziert allenfalls noch vorhandenes Chlor bzw. Iod wieder zu Chlorid- bzw. Iodid-Ionen. Damit sind die gefährlichsten Abfälle bereits beseitigt.

Reste der gebrauchten (und reduzierten) und der ungebrauchten Lösung dürfen dennoch nicht in den Abfluss! Sie sind giftig für Wasserorganismen! Entsorgt beide an einer Sondermüll-Sammelstelle (wenn ihr ein Schullabor mit Entsorgungssystem habt: In den Behälter für anorganische Salze und Schwermetalle).

Und habt ihr schon einmal Zink- oder andere Metallbäume gezüchtet? Welche Erfahrungen habt ihr gemacht?

Weichspüler - Fluch oder Segen?

Weichspüler haben einen schlechten Ruf: Ich lese auf Facebook in einigen Haushaltsgruppen mit und schnappe dort auf, was euch Haushaltsbetreibende so bewegt. Dabei lese ich immer wieder Beiträge nach dem Prinzip „Hilfe, meine Waschmaschine stinkt!“ und die dazugehörigen Antworten. Die gehen dann meistens in Richtung „Benutzt du Weichspüler? Mach das bloss nicht, die schaden der Maschine und können der Grund für den miesen Geruch sein!“

Obendrauf kam im Sommer 2019 ein wohl ziemlich unsachlicher Beitrag des SWR, der anprangerte, dass eklige Schlachtabfälle als Rohstoffe für Weichspüler verwendet würden und sie damit alles andere als vegan seien.

Wenn diese Waschhilfsmittel so viele schlechte Eigenschaften in sich vereinen, warum werden sie dann in so vielfältiger Ausführung produziert und gekauft?

In diesem Artikel gehe ich den Weichspüler-Mythen auf den Grund: Schaden Weichspüler wirklich der Waschmaschine (oder gar unserer Gesundheit) oder werden sie fälschlicherweise verteufelt?

Was sind eigentlich Weichspüler?

Weichspüler sind in der Regel flüssige Produkte, die kationische Tenside (auch „Invertseifen“ genannt) enthalten. Diese besonderen Tenside werden in der Waschmaschine beim letzten Spülgang hinzugefügt und sollen dafür sorgen, dass die Wäsche nach dem Trocknen weicher ist.

Zusätzlich wirken viele Weichspüler gegen elektrische Aufladung (einige der kationischen Tenside sind sogenannte Antistatika), enthalten verschiedene Duftstoffe, optische Aufheller und zuweilen geruchsbindende Moleküle.

Warum wird Wäsche beim Trocknen hart?

Beim Trocknen von Wäsche kann es zur sogenannten „Trockenstarre“ der Textilien kommen. Dabei bilden sich Wasserstoffbrücken-Bindungen zwischen Fasern aus Zellulose, die diese Fasern vorübergehend „verkleben“. So wird ein ursprünglich flexibler Stoff hart und steif.

Zellulose ist doch der Pflanzenbestandteil, aus dem man Papier macht? Richtig! Aber ebenso ist er der Hauptbestandteil von Baumwollfasern, aus denen man Textilien macht.

Ganz besonders deutlich erlebe ich die Trockenstarre an meinem Oberteil aus Viskose. Dieses Material ist nämlich nichts anderes als Gewebe aus einem Garn, das aus verflüssigter Zellulose neu gesponnen wurde (eine sogenannte Regeneratfaser). Chemisch unterscheiden sich die Moleküle in diesem Garn nicht von natürlicher Baumwolle. Die Neigung zur Trockenstarre eingeschlossen.

Wenn ich besagtes Kleidungsstück wasche und auf der Leine trockne, fühlt es sich nachher steif wie ein Brett an. Allerdings nicht für lange. Spätestens wenn ich es ein paar Minuten getragen habe, fällt es wieder weich und geschmeidig, als wäre nichts gewesen. Das rührt daher, dass Wasserstoffbrücken im Vergleich zu „richtigen“ chemischen Bindungen (d.h. Atombindungen) nicht besonders fest sind. Das macht sie bei ausreichend Bewegung entsprechend kurzlebig.

Was kann ein Weichspüler dabei bewirken?

Die kationischen Tenside im Weichspüler heissen so, weil ihre Moleküle eine positive elektrische Ladung tragen. Damit finden sie dicht mit Elektronen umgebene (und damit leicht negativ geladene) Atome äusserst anziehend und lagern sich an solche gerne an. Doch genau diese elektronenreichen Atome sind auch für die Entstehung von Wasserstoffbrücken notwendig. Wenn jedoch ein kationisches Tensid solch ein Atom besetzt, bleibt dort kein Platz mehr für eine Wasserstoffbrücke. Und ohne Wasserstoffbrücken keine Trockenstarre.

Was genau sind kationische Tenside?

Tenside im Allgemeinen sind Moleküle, deren eines Ende gut wasserlöslich ist, während das andere Ende überhaupt nichts von Wasser hält. Die Wasserlöslichkeit eines Moleküls geht mit einer elektrischen Ladung oder ungleicher Elektronenverteilung zwischen den Atomen einher. Die alltäglichsten Tenside sind Seifen. Sie tragen eine negative elektrische Ladung („anionische Tenside“) und sind für ihre Superwaschkraft hoch geschätzt (mehr dazu erfahrt ihr hier).

Ein Tensid (hier ein Anionisches) ähnelt im Prinzip einem Streichholz: Der „Kopf“ ist wasserlöslich, der „Schaft“ ist wasserabweisend und fettlöslich. So kann dieses Molekül mit zwei miteinander unverträglichen Stoffen gleichzeitig wechselwirken.

Kationische Tenside tragen dagegen eine positive elektrische Ladung. Sie enthalten in der Regel ein Stickstoffatom, das vier Bindungen statt seiner üblichen drei eingegangen ist. Damit teilt das Stickstoffatom ein Elektron mehr als üblich mit seinen Nachbarn, weshalb seine Kernladung um +1 überwiegt.

Vom Ammonium zum Tensid

Das einfachste Molekül dieser Art ist das Ammoniumion NH4+, in dem vier Wasserstoffatome an den Stickstoff gebunden sind. Klein und geladen ist dieses Molekül sehr gut wasserlöslich. In einem kationischen Tensid sind die vier Wasserstoffatome jedoch durch Kohlenwasserstoffreste ersetzt. Wenn mindestens einer davon so lang ist, dass seine Unlöslichkeit in Wasser sich bemerkbar macht, ist das Molekül ein Tensid.

Strukturformel für DSDMAC, ein typisches kationisches Tensid für Weichspüler
„DSDMAC“, ein typisches kationisches Tensid: Der „Kopf“ (rot) mit dem Stickstoffion ist wasserlöslich, der „Schaft“ (blau), bestehend aus zwei langen Kohlenwasserstoffketten, nicht. Da positiv geladene Teilchen nicht allein vorkommen, wird die Verbindung als Salz aus DSDMAC- und Chlorid-Ionen verwendet.

Weil sie sich vom Ammonium ableiten und alle vier H-Atome durch Kohlenwasserstoffreste ersetzt sind, werden Moleküle dieser Sorte „quartäre Amine“ oder kurz „Quats“ genannt.

Quats sind im Alltag weit verbreitet

Vielleicht kennt ihr das ein oder andere schon als Antistatika zum Aufsprühen oder für seine Wirksamkeit gegen Bakterien und Pilze (Benzalkoniumchlorid, ein bekanntes Konservierungsmittel, gehört auch zu dieser Familie!). Oder als „Weichmacher“ der anderen Art: Polyquaternium-Verbindungen sind, als Alternative zu Silikonöl, Bestandteile z.B. von Haarspülungen. Darin sind die positiv geladenen Stickstoffatome zu längeren Ketten verknüpft, die sich um die Haare legen und ihnen eine glatte Oberfläche und damit leichte Kämmbarkeit verleihen.

Wie gut sind Weichspüler biologisch abbaubar?

In den 1990ern kamen in Weichspülern meist simple „Quats“ wie das oben gezeigte DSDMAC zum Einsatz. Die haben jedoch einen entscheidenden Nachteil: Es gibt sie in der Nahrung von Lebewesen, insbesondere Kleinstlebewesen, nicht, was bedeutet, dass sie nur schwerlich bis gar nicht biologisch abbaubar sind.

Da eine vernünftige biologische Abbaubarkeit von Tensiden wie in Weichspülern aber seit 2006 von der EU vorgeschrieben ist, kommen heutzutage angepasste Moleküle zum Einsatz. Anstatt einfacher Kohlenwasserstoffreste sind darin Alkohol-Gruppen an den Stickstoff gebunden, die mit Fettsäuren verestert sind. Diese Verbindungen, kurz „Esterquats“ genannt, ähneln damit den Fetten bzw. Triglyceriden, die wir alle als Nahrung kennen. Somit ist die Natur gut für die Spaltung und Verwendung solcher Verbindungen gerüstet. Das heisst, die Esterquats sind gut biologisch abbaubar.

Strukturformel eines Esterquats
Ein Esterquat mit drei Alkohol-, d.h. OH-Gruppen: Zwei davon sind mit Fettsäuren verestert, die dritte links nicht. Dieses Molekül kann von Lebewesen an den Estergruppen (-O-CO-) leicht gespalten werden.

Zumindest in der Theorie ist das eine tolle Sache. Beim Herumstöbern im Netz nach den Inhaltsstoffen von Weichspülern bin ich allerdings auf ein Sicherheitsdatenblatt eines Produkts einer aus der Werbung gut bekannten Firma gestossen – und siehe da: Der wirksame Bestandteil ist kein Esterquat, sondern unter anderem das (un)gute alte DSDMAC. Immerhin habe ich diese Angabe des betreffenden Herstellers gefunden, während sich andere gar nicht in die Karten schauen lassen.

So halte ich die Aussage auf Wikipedia, dass DSDMAC und Co. Heutzutage durch Esterquats ersetzt sind, für höchst fraglich.

Schlachtabfälle?! – Wie man quartäre Amine herstellt

Der anfangs erwähnte Beitrag des SWR wurde nicht zuletzt dafür kritisiert, dass er den Eindruck erweckte, in Weichspülern ’seien eklige Schlachtabfälle drin‘ (was von der Boulevardpresse nur zu gern aufgegriffen wurde).

Tatsächlich sind die Rohstoffe, aus denen man „Quats“ für Weichspüler herstellt, Fette, die von Pflanzen oder Tieren stammen können. Da diese Fette keinen besonderen Qualitätsansprüchen genügen müssen, sind Schlachtabfälle letztlich eine wirtschaftliche und nachhaltige Quelle dafür. Dass die auch rege genutzt wird, ist auch seit langem hinlänglich bekannt.

Die Fette werden jedoch in einer ganzen Reihe von Schritten verarbeitet:

  1. Die Fette werden zunächst wie bei der Seifenherstellung gespalten („verseift“), um freie Fettsäuren zu gewinnen. Das ebenfalls entstehende Glycerin wird davon abgetrennt.
  2. Anschliessend lässt man die Fettsäuren bei hoher Temperatur und einem Metallkatalysator (ein Hilfsstoff, der die Reaktion erleichtert) mit Ammoniak (NH3) reagieren, um das Stickstoffatom einzuführen. Es entstehen sogenannte Fettsäurenitrile.
  3. Nach weiterer Reinigung werden die Fettsäurenitrile mit Wasserstoff (H2) umgesetzt. Auch für diese Hydrierung genannte Reaktion ist ein Metall als Katalysator nötig. Dabei können „Fettamine“ mit einem (wenn dabei Ammoniak anwesend ist), zwei oder drei gebundenen Kohlenwasserstoffresten entstehen.
  4. In einer Reaktion, die Alkylierung genannt wird, kann ein Fettamin mit drei Kohlenwasserstoffresten (d.h. ein tertiäres Amin) schliesslich mit einem vierten solchen Rest versehen werden.

Nach einem letzten Aufreinigungsschritt ist das quartäre Amin bzw. kationische Tensid dann fertig. Insgesamt braucht es also vier chemische Reaktionen und mindestens fünf Reinigungsschritte, um vom natürlichen Rohstoff zum Inhaltsstoff für Weichspüler zu kommen. Nach so viel Aufwand und chemischen Umbau-Aktionen bleibt vom Charakter des ursprünglichen Rohstoffs, ob nun tierisch oder pflanzlich, im Endprodukt nichts mehr übrig.

Weichspüler und vegan? Eine Frage der Definition!

Weichspüler mögen also nicht vegan sein (wenn man „vegan“ denn streng als „ohne Tierprodukte“ definiert). Aber dafür müssen keine Tiere sterben! (Denn die werden für Steak und Hamburger geschlachtet.) So lange ein erheblicher Teil der Menschheit also Fleisch isst, ist es (nicht nur) in meinen Augen wesentlich nachhaltiger, Chemikalien aus dem zu produzieren, was soundso anfällt, als unnötig Ressourcen und Energie aufzuwenden sowie Pestizid- und ähnliche Belastung zu riskieren, um extra pflanzliche Rohstoffe zu produzieren.

Wenn man „vegan“ mit Hintergedanken an Umwelt, Tierschutz und Nachhaltigkeit als „dafür müssen keine Tiere sterben“ bzw. „verbraucht minimale Ressourcen“ definiert, könnte man selbst die Produkte aus tierischen Rohstoffen guten Gewissens als ‚vegan‘ bezeichnen.

Weitere Nachteile von Weichspülern

  • In manchen Textilien können Weichspüler ähnliche Probleme machen wie ihre Verwandten in den Haar-Conditionern: Sie lagern sich auf den Geweben ab (das ist ja ihre Funktion!) und „verkleben“ bzw. „verschliessen“ sie so, dass ihre Durchlässigkeit für andere Stoffe beeinträchtigt wird. Das ist vor allem bei Funktionstextilien („atmungsaktive“ Sportkleidung) oder Daunen ein Problem.
  • Tatsächlich können Weichspüler sich auch in ähnlicher Weise auf den Oberflächen in der Waschmaschine ablagern und zu einem behaglichen Zuhause für Bakterien und Pilze werden (von denen dann der unangenehme Geruch der Maschine herrührt).
  • Unterschiedliche Ladungen ziehen sich an: So bilden kationische Tenside mit den herkömmlichen anionischen Waschmittel-Tensiden schwer wasserlösliche Aggregate. So ist bei der nächsten Wäsche nach dem Weichspülereinsatz mehr Waschmittel nötig als ohne.
  • Duftstoffe (und weitere Zusätze) können Allergien auslösen (müssen aber nicht). Grundsätzlich sind Allergien bzw. die Neigung dazu von Mensch zu Mensch sehr verschieden, sodass kaum vorauszusagen ist, wer auf was empfindlich reagiert.

Was (oder wem) nutzen Weichspüler dann überhaupt?

Mangelnde biologische Abbaubarkeit, unliebsame Rohstoffe, Probleme bei Funktionstextilien, Keime in der Waschmaschine und allergenes Potential… das ist eine lange Liste von Nachteilen, wenn die Wirkung von Weichspülern sich bloss auf das Verhindern der zeitlich begrenzten Trockenstarre, Duft und etwas Antistatik beläuft.

Ich habe allerdings von Menschen gelesen, die womöglich nicht darauf warten können/mögen, dass eine Trockenstarre von selbst verfliegt: Nämlich solche, die an Neurodermitis oder anderen Erkrankungen mit leicht reizbarer Haut leiden. Solchen sollen Hautärzte tatsächlich den Einsatz von Weichspülern empfehlen, wenn damit Reizungen durch „kratzige“ Textilien zuvorgekommen werden kann.

Aus dem eigenen Familienkreis kenne ich Neurodermitis nur mit allergischem Ursprung, wenngleich wohl Nahrungsmittelproteine (Milch, Ei) die Ursache waren. Nichts desto trotz erscheint es mir hier sinnvoll, von Person zu Person abzuwägen, inwieweit der Nutzen eines Weichspülers mögliche Reaktionen auf seine Inhaltsstoffe überwiegt.

Gibt es denn (Hausmittel-)Alternativen zu industriellem Weichspüler?

In den Haushaltsgruppen und auf zahllosen Websites werden immer wieder vor allem Essig, Natron/Soda (oder gleich beide miteinander) und/oder ätherische Öle als Weichspüler-Ersatz empfohlen. Doch was taugen diese Alternativen?

Aus Chemikersicht gar nichts:

  • Essig: Enthält Essigsäure – die reagiert mit dem schwach basischen Kalk in (hartem) Waschwasser. Essig trägt also zur Wasserenthärtung bei und kann allenfalls dazu beitragen, den Verbrauch von Waschmittel durch die Entstehung von Kalkseifen oder Kalkablagerungen auf den Textilien zu verhindern. Heute Waschmittel enthalten allerdings bereits Enthärter (vor allem Zeolith A), die das übernehmen. Und zu viel Essigsäure in der Maschine kann um ungünstigsten Fall ihre Bauteile angreifen.
  • Natron und Soda (Natriumhydrogencarbonat, NaHCO3 bzw. Natriumcarbonat Na2CO3): Sind basisch und und fluoreszieren in UV-Licht. Letztere Eigenschaft macht sie zu optischen Aufhellern: Sie lassen die Wäsche weisser erscheinen (zumindest theoretisch: Die Stiftung Warentest hat 2013 keinen solchen Effekt nachweisen können) – machen sie aber nicht weicher. Ausserdem sind Basen ähnlich wie Säuren aggressiv: Nicht alle Fasern vertragen sie so ohne weiteres.
  • Essig und Natron oder Soda: Reagieren miteinander. Die dabei freigesetzte Kohlensäure zerfällt in CO2-Gas und Wasser. So gehen sowohl die enthärtende Wirkung des Essigs als auch die Fluoreszenz verloren.
  • Ätherische Öle: Werden gerne als „natürlicher“ Ersatz für die Duftstoffe in Weichspülern genannt. Dabei geht jedoch gerne vergessen, dass auch und gerade die Bestandteile ätherischer Öle Allergien auslösen können (viele der fraglichen Duftstoffe in industriellen Produkten kommen sogar auch in ätherischen Ölen vor oder leiten sich davon ab!). Dazu kommt: Die Zusammensetzung von Naturprodukten wie ätherischen Ölen ist weder vollständig bekannt noch garantiert immer gleich – anders als bei „chemischen“ Zubereitungen, die stets bis ins Detail bekannt sind. Daher solltet ihr beim Einsatz fortwährend genau und von Person zu Person beobachten, wer was verträgt und was nicht.  

Wie ich als Chemikerin vorgehe

Da in meinem Haushalt niemand unter Neurodermitis oder ähnlichem leidet, ist mir die Liste der Nachteile von Weichspülern gegenüber ihrem Nutzen viel zu lang.

Ich wasche daher meine Wäsche nur mit einem Vollwaschmittel in Pulverform und verzichte auf Weichspüler. Frottee-Handtücher (die ich nur trocknergeeignet kaufe) trockne ich im Wäschetrockner, denn durch dessen Gebläse wird die Trockenstarre von vorneherein verhindert. Von meiner Bluse aus Viskose (und anderer betroffener Kleidung) weiss ich überdies inzwischen, dass die Trockenstarre von selbst so vollständig vergeht, dass ich die Bluse nicht einmal bügeln muss.

Und wie wascht ihr eure Wäsche? Verwendet ihr Weichspüler? Habt ihr einen besonderen Nutzen davon? Oder warum verwendet ihr sie gerade nicht?

Natur entdecken im Herbst

Kinder sind neugierig. So gibt es kein „zu früh“ für Natur und Wissenschaft. Entdeckt mit euren Nachwuchsforschern ab KiTa-Alter die Welt und ermöglicht ihnen einen guten „Draht“ zu Physik, Chemie & Co.

Den richtigen Zeitpunkt, mit dem Forschen anzufangen, gibt es eigentlich nicht. Ein positives Bild von Chemie und Physik kann man nicht zu früh aufbauen. Denn Chemie ist überall, und Physik ist, wo man (damit) spielt. Im Herbst spüren wir die Kräfte der Natur besonders deutlich. Legt doch gleich los und erforscht sie spielerisch!

Wie ihr das macht? Indem ihr rausgeht und Wind, Wasser und Farben entdeckt. Wo genau ihr ihnen begegnet und was ihr dabei lernen könnt, verrate ich euch und dem Kreis der bloggenden Mamas und Papas in meinem Gastbeitrag am Felicitas-Table. In der illustren Runde werden viele spannende Themen für Eltern und Familien von absoluten Expertinnen und Experten für das Familienleben diskutiert.

Ich bedanke mich herzlich für die Einladung, Natur und Wissenschaft für die ganze Familie in die Runde zu bringen und hoffe sehr, dass ich Lust auf mehr machen kann!

Eure Kathi Keinstein

Und auf welches Forscher-Erlebnis im Herbst freut ihr euch am meisten? Oder was habt ihr schon tolles erlebt?

Experiment: Sicherheitsnadel galvanisieren

Wie beschichtet man ein Metall mit einem anderen? Durch Galvanisieren!

Nicht alles, was glänzt ist Gold! Oder Kupfer, oder… Die Oberflächen vieler Gegenstände sind nur mit einer dünnen Schicht dieser wertvollen Metalle überzogen. Solche Dinge nennt man dann vergoldet, verkupfert, versilbert oder ähnlich. Doch das bedeutet nicht, dass solche Gegenstände minderwertig sind. Vielmehr wird ihre Haltbarkeit durch ihre besonder Metalloberfläche verbessert – und sieht auch noch hübsch aus. Denn eine Edelmetall-Schicht ist reaktionsträge und schützt den Gegenstand unter ihr vor den Kräften von Wind und Wetter. Aber wie bringt man eine dünne Metallschicht auf ein anderes Material?

Dazu wird Wanderlust geladener Metallteilchen (sogenannter Metall-Ionen) ausgenutzt – und das könnt ihr leicht selber machen!

Ihr braucht dazu

  • Eine Sicherheitsnadel
  • Eine Kupfermünze (z.B. 1,2 oder 5 Eurocent)
  • Eine Kleine Schale
  • Haushaltsessig
  • Soda oder Natron (für die Entsorgung)

Sehr dreckige Münzen könnt ihr mit Essig und etwas Kochsalz leicht reinigen – wie genau das geht, zeige ich euch hier.

Essig, Schale, Kupfermünze, Sicherheitsnadel: Das braucht ihr zum Galvanisieren
Da man nicht mit Behältern für Lebensmittel experimentiert: Der Deckel eines leeren Honigglases (das ich nur noch für Versuche, nicht für Lebensmittel verwende!) hat mir als Schale gedient.

So geht’s

Lest in jedem Fall den Abschnitt „Entsorgung“ durch, bevor ihr mit dem Experimentieren beginnt! Nach dem Versuch ist nämlich ein besonderer Entsorgungsschritt nötig. Den könnt ihr euch wesentlich leichter machen, wenn ihr von vorneherein sparsam arbeitet.

  • Legt Münze und Nadel nebeneinander in die Schale, sodass sie sich nicht berühren!
  • Gebt so viel Essig dazu, dass beide Teile vollständig bedeckt sind. Verwendet dabei so wenig Essig wie möglich – denn je weniger Essig ihr später entsorgen müsst, desto weniger Soda oder Natron werdet ihr dafür brauchen!
Münze und Sicherheitsnadel in Essig im Deckel des Honigglases: Das Galvanisieren kann beginnen!
Zu Beginn des Experiments: Kupfermünze und silbrig glänzende Sicherheitsnadel liegen im Essig ohne sich zu berühren.
  • Wartet ein paar Tage und schaut ab und zu nach, was sich verändert.
  • Wenn euch der Essiggeruch stört, könnt ihr die Schale einfach abdecken (mit einem Brett, einem Buch oder Ähnlichem)

Das könnt ihr beobachten

Die Nadel färbt sich mit der Zeit kupferrot, während die Münze zunehmend matt wird. Der Essig färbt sich zudem gelbgrün.

Nach einer Woche im Essig: Die vormals stahlglänzende Sicherheitsnadel ist nun ebenso kupferrot wie die Münze!
Nach einer Woche im Essig hat die Oberfläche der Sicherheitsnadel die gleiche Farbe wie die Münze: Kupfer hat sich darauf abgelagert!

Das passiert

Haushaltsessig besteht aus Wasser und Essigsäure. Kommt ein Metall wie Kupfer mit einer Säure in Berührung, geben stets ein paar Metallatome an der Oberfläche ein oder mehrere Elektron(en) ab. Dabei verlassen die Atome – welche zu Ionen werden – die Metalloberfläche und lösen sich im Wasser.

Das „(aq)“ in der Gleichung bedeutet „in Wasser gelöst“.

Da Kupfer ein ziemlich edles Metall ist, können zunächst nur sehr wenige seiner Atome auf diese Weise zu Ionen werden. Diese wenigen Ionen können sich jedoch frei im Wasser bewegen – und so irgendwann an die Oberfläche der Sicherheitsnadel, die aus Stahl bestehen mag, gelangen.

Stahl wiederum enthält Eisenatome. Und Eisenatome geben sehr viel leichter Elektronen ab als Kupferatome.

So kommt es, dass die Eisenatome ihre Elektronen liebend gern an Kupferionen abgeben.

Die Eisenatome werden dabei zu Ionen, die sich im Wasser lösen, während die Kupferionen wieder zu Kupfer-Atomen werden, die sich an der Eisenoberfläche niederlassen.

Sobald auf diese Weise Kupfer-Ionen aus der Lösung verschwinden, bleibt darin „Platz“ für neue Kupfer-Ionen. Die können sich somit von der Münze lösen und ihre Wanderung in Richtung Sicherheitsnadel antreten. (Alle beteiligten Reaktionen sind sogenannte Gleichgewichtsreaktionen. Le Châtelier erklärt hier am Flughafen, was es damit auf sich hat und wie die Richtung, in der sie ablaufen, von den Mengen der beteiligten Teilchen abhängt!)

Geladene Teilchen, die wandern, sind „Strom“

Geladene Teilchen, die wandern? Ja, ihr denkt richtig: Das ist nichts anderes als elektrischer Strom! Der Versuchsaufbau ist eine Art simple Batterie. Die Ionen wanderen darin so lange von der Münze zur Nadel, bis die ganze Nadeloberfläche mit Kupferatomen bedeckt ist. Dann gibt es dort nämlich keine Eisenatome mehr, die ihre Elektronen an weitere Kupferionen abgeben könnten. Die Batterie ist „leer“.

Galvanisieren im „richtigen Leben“

Wer Gegenstände mit einer edlen Metallschicht verkaufen möchte, mag in der Regel nicht tagelang warten, bis das Galvanisieren weit genug vorangeschritten ist. Deshalb benutzt er zum Einen statt Essig eine Lösung, die bereits reichlich Kupfer-Ionen (oder andere gewünschte Metall-Ionen) enthält. Zum Anderen schliesst er seine Anlage an elektrischen Strom an: Das Kupfermetall an den (physikalischen) Pluspol, das Material, das verkupfert werden soll, an den Minuspol.

Die angeschlossene Stromquelle liefert zusätzliche Elektronen in das zu verkupfernde Material, die die Kupferionen entgegen nehmen können. Zudem ermöglicht die Stromquelle den vom Kupfer abgegebenen Elektronen das Abfliessen, sodass auch leicht neue Kupfer-Ionen in Lösung gehen können.

Und zu guter Letzt leitet Kupfer selbst den Strom sehr gut. Das heisst, die zusätzlichen Elektronen gelangen auch leicht durch die neu entstehende Kupferschicht, sodass diese so lange dicker wird, wie die Stromquelle angeschlossen ist.


Vom Galvanisieren zur nutzbaren Batterie

Wenn ihr euch die oben beschriebenen Reaktionen genau anschaut, werdet ihr feststellen, dass dabei in der Kupfermünze Elektronen „übrig“ bleiben, in der Eisennadel aber nicht. Im Kupfer sammeln sich demnach mehr Elektronen als im Eisen. Verbindet man aber mit einem leitfähigen Material eine Elektronenansammlung mit einem Ort mit wenig Elektronen, so fliessen Elektronen von der Ansammlung zum „leeren“ Ort ab. Und fliessende geladene Teilchen kennen wir als elektrischen Strom!

Unser Aufbau mit Münze und Sicherheitsnadel, die lose in Essig liegen, ist als Batterie aber ziemlich unpraktisch. Denn auch der Essig ist elektrisch leitfähig und bildet, sobald Münze und Nadel vollständig eingetaucht sind, eine unumgängliche Abkürzung für den Strom.

Die könnt ihr vermeiden, indem ihr eure Metalle nicht in einer Flüssigkeit, sondern in einem festen Material, in dem auch Ionen wandern können, unterbringt. Zum Beispiel in einer Kartoffel. Wie ihr aus Kartoffeln wirklich funktionierende Batterien bauen könnt, zeige ich euch hier!

Entsorgung

Der Essig enthält nach dem Galvanisieren Kupferionen (sie geben der Flüssigkeit die grünliche Farbe), die giftig für Wasserorganismen sind und deshalb nicht ins Abwasser dürfen. Verwendet deshalb so wenig Essig wie möglich. Gebt nach dem Versuch, wenn ihr Nadel und Münze aus der Schale genommen habt, feste Soda oder Natron zu dem Essig darin. (Achtung! Geht langsam vor und rührt zwischendurch um! Die Mischung schäumt kräftig und wird warm: Allein das ist schon ein chemisches Spektakel, das schnell zur Sauerei ausarten kann!)

Mischt so lange Soda oder Natron mit dem Essigrest, bis keine Reaktion mehr sichtbar ist. Dann habt ihr die Säure neutralisiert. Mit noch ein wenig mehr Soda oder Natron wird die Lösung basisch: Das ist euer Ziel. Die Kupferionen bilden nämlich bei basischem pH-Wert ein Gemisch fester Stoffe (in eurer Schale vor allem Kupferacetat, Kupfercarbonat und Kupferhydroxid), das man Grünspan nennt.

Gebt das Gemisch aus festen Stoffen und Flüssigkeit durch ein Filterpapier (z.B. einen Kaffeefilter) und lasst das Papier mitsamt den Feststoffen trocknen, bevor ihr es in den Hausmüll gebt. Die filtrierte Lösung darf dann mit viel Wasser in den Ausguss.

Nun wünsche ich euch viel Spass beim Galvanisieren!

Wie funktioniert Fahrbahnmarkierung?

Dieses Jahr sind all unsere Ferienpläne C-bedingt ins Wasser gefallen. Trotzdem haben wir doch noch ein paar Tage auf der Strasse zugebracht – zwecks Kurz-Roadtrip durch den Alpenraum. Reto, der nicht fährt, kommt dabei oft auf Gedanken, für die ich am Steuer oft gar keine Muddr habe. Zum Beispiel während der Durchfahrt durch die x-te Strassenbaustelle des Tages. Hier in der Schweiz weist dort orange Ersatz-Fahrbahnmarkierung darauf hin, wo es vorübergehend lang geht.

„Aber woraus besteht diese Fahrbahnmarkierung eigentlich“, fragte Reto, „und wie zum Teufel bekommen sie die wieder ab, wenn die Baustelle fertig ist?“

Was da aus dem Mund eines Ingenieurs kommt, hört sich vielleicht nicht wie eine Chemiefrage an. Trotzdem ist es eine – und erst noch eine interessante. Denn immer, wenn es um Materialien, ihre Verarbeitung und Entsorgung geht, sind Chemiker gefragt. Die beschreiben und charakterisieren Stoffe schliesslich nicht nur, sondern erschaffen sie geradewegs nach ihren Wünschen.

Was muss Fahrbahnmarkierung können?

Dies ist die wichtigste Frage, die Chemiker zu beantworten haben, wenn sie einen Stoff für einen bestimmten Zweck auswählen oder erschaffen wollen.

Und gerade an Fahrbahnmarkierungen haben wir ziemlich harte Anforderungen. Sie soll den Autofahrern schliesslich zeigen, wo sie lang sollen – und das zu jeder Tages- und Nachtzeit. Eine Fahrbahnmarkierung muss also stets gut sichtbar sein, im Hellen wie auch bei Dunkelheit, bei trockenen Verhältnissen wie auch bei strömendem Regen.

Ausserdem muss sie für eine lange Zeit sichtbar bleiben – wir wollen ja nicht überall Strassenbaustellen, weil alle paar Wochen alles nachgepinselt werden muss. Und während ihrer langen Lebensdauer fahren abertausende schwere Autos und Lastwagen mit dreckigen Reifen darüber.

Abgenutzte Parkverbot-Markierung in der Schweiz
„Hier ist Parkverbot!“ bedeuten gelbe Markierungen in der Schweiz. Diese hier ist hoffentlich schon Jahrzehnte alt – denn eine Erneuerung ist längst fällig.

Eine Fahrbahnmarkierung muss sich somit deutlich von der Strasse abheben. Da der Asphalt meist dunkelgrau bis schwarz ist, sind dauerhafte Markierungen darauf in praktisch allen Ländern weiss. Und dieses Weiss darf weder von den darüberfahrenden Autos abgerieben werden, noch Sonne, Wind und Wetter zu schnell zum Opfer fallen. Folglich ist da ein besonders robustes Material gefragt.

Richtig kniffelig wird es jedoch bei vorübergehenden Markierungen in Baustellen. Für die gilt nämlich im Grossen und Ganzen das Gleiche – und sie sollen nach Abschluss der Bauarbeiten rückstandslos wieder entfernt werden können. Das ist nämlich Vorschrift: Nach dem Entfernen einer temporären Fahrbahnmarkierung dürfen keine Spuren davon zurückbleiben. Einfach überkleben ist – obwohl immer wieder praktiziert – eigentlich nicht erlaubt.

Für Baustellenmarkierungen braucht man also ein Material, das Wind, Wetter und Tausende Autos aushält, sich bei Bedarf aber vollständig wieder entfernen lässt.

Welche Stoffe können das?

Wie so oft haben Chemiker zur Lösung dieses Problems massgeschneiderte Stoffe erschaffen. Mit anderen Worten: Fahrbahnmarkierungen bestehen aus speziell dafür entworfenen Kunststoffen. Die gibt es in mehreren Varianten.

Bei dauerhaften Markierungen steht die Haltbarkeit der Stoffe im Vordergrund. Denn die sollen ja gar nicht von der Strasse verschwinden.

Farbe zum Auftragen

Ganz simple Farbe zum Aufsprühen oder -walzen, im Strassenbau Fahrbahnmarkierung Typ 1 genannt, kommt heutzutage höchstens noch in wenig befahrenen Bereichen, meist innerorts, zum Einsatz oder hat schon etliche Jahre auf dem Buckel. Denn heutzutage kennt man allerlei Tricks und Kniffe, um die Markierungen vor allem bei Regen besser sichtbar zu gestalten.

So streut man für Fahrbahnmarkierung vom Typ 2 Glitzerperlen und Streugut für bessere Griffigkeit (niemand möchte auf Linien und Pfeilen plötzlich ins Rutschen kommen) auf frisch aufgetragene Streifen oder mischt diese Zutaten gleich in die Farbe hinein. Letzteres hat den Vorteil, dass das Streugut nicht einfach von drüberfahrenden Autos von der Oberfläche abgerieben werden kann. Denn das Glitzerzeug ist dann ebenso in den tiefen Schichten wie obenauf.

Eine Maschine spritzt Fahrbahnmarkierung auf und streut Glitzerperlen hinterher. (Summysung / CC BY-SA)

Die Glitzerperlen funkeln deutlich sichtbar in der Sonne oder dem Licht von Strassenlaternen und Autoscheinwerfern. Ausserdem können sie aus einem Wasserfilm herausragen und bleiben so auch bei Regen sichtbar.

Ebenfalls gut bei Regen sichtbar sind Farben, die auf der Fahrbahn ein klumpiges Gitter bilden. Denn diese Gitter ragen nicht nur über der Fahrbahn empor. Die offenen Maschen und Streben erlauben Regenwasser ausserdem, zwischen ihnen hindurch abzufliessen, anstatt sie einfach zu überfluten. Dabei sind die Maschen gerade so dicht, dass sie aus der Sicht der Autofahrer wie eine durchgezogene Linie erscheinen.

Gitterartige Fahrbahnmarkierung
Gitterartige Fahrbahnmarkierung: Hier kann Regen leicht ablaufen (Dantor / CC BY-SA)

Kunststoff-Einlegearbeiten

Die haltbarste Fahrbahnmarkierung erhält man, wenn man Vertiefungen in Form der geplanten Linien und Pfeile in den Asphalt fräst und sie anschliessend mit Kunststoffmasse ausfüllt.

Dazu gibt es Kunststoffe, die „unfertig“ verkauft werden: Ihre Zutaten werden in zwei getrennten Portionen geliefert, die jede für sich unfertig aufbewahrt werden können. Mischt man die beiden Portionen (manche muss man zunächst erhitzen, damit sie schmelzen) und lässt sie an der Luft liegen, reagieren sie miteinander zu den Riesenmolekülnetzen, aus denen feste Kunststoffe bestehen. So müssen die Strassenarbeiter nur schnell genug sein und die Mischung in die ausgefrästen Vertiefungen füllen, bevor sie hart wird.

Da Fahrbahnmarkierungen innerhalb eines Landes überall gleich aussehen sollen, kann man Linien, Pfeile und Schriftzeichen aus Kunststoff auch in einer Fabrik fertig herstellen. Dann brauchen die Strassenarbeiter sie nur noch in die vorgesehenen Vertiefungen zu kleben – mit einem superfesten Klebstoff, den Chemiker für genau diesen Zweck geschaffen haben.

Klebefolien

All diese aufwändigen, superhaltbaren Markierungen eignen sich aber schlecht für Baustellen, in denen die Fahrbahnmarkierung nur für eine begrenzte Zeit halten und dann spurlos verschwinden soll. Deshalb gibt es die Pfeile und Linien auch als Aufkleber – komplett mit Farbe und Glitzerperlen beschichtet. So lassen sie sich rasch auf den Asphalt aufkleben, ohne dass viel Zeit fürs Fräsen, Pinseln oder Bestreuen aufgewendet werden muss.

Ausserdem lassen sich Aufkleber relativ leicht wieder von der Strasse abziehen. Das birgt jedoch auch ein Problem, das ich schon oft in Baustellen beobachtet habe: Wenn tausende Autos darüber fahren, lösen sich die Klebestreifen irgendwann ab und werden geknickt oder verschoben wieder auf die Fahrbahn gepresst. Das Ergebnis entspricht sicherlich nicht den gesetzlichen Regeln für Fahrbahnmarkierung, die besonders in Deutschland sehr streng sind. Und im schlimmsten Fall könnte so eine beschädigte Markierung gefährlich werden.

Um der Sicherheit willen gibt es deshalb Fahrbahnmarkierungs-Aufkleber, die mit einem massgeschneiderten Leim zusammen verkauft werden: Ähnlich wie bei den Einlegearbeiten ist auch dieser Klebstoff „unfertig“ und in zwei Portionen geteilt. Die eine befindet sich auf der Unterseite des Aufklebers, die andere wird auf den Asphalt aufgetragen. Legt man den Aufkleber auf diese „Grundierung“ und drückt ihn fest an, dann mischen sich die beiden Klebstoffe und reagieren zu einem bombenfesten Molekülgefüge.

Damit lösen sich die Baustellenmarkierungen nicht vorzeitig – allerdings bekommt man sie auch nach den Bauarbeiten nicht mehr so einfach von der Strasse. Dementsprechend grobschlächtig muss dazu vorgegangen werden: Entweder fräst man die oberste Asphaltschicht mitsamt der Aufkleber weg, oder man fackelt den Kunststoff mit einer Art Flammenwerfer ab (da Asphalt feuerfest und dunkel ist, leidet er ja nicht darunter).

Schaden diese Kunststoffe der Umwelt?

Wenn Chemiker Stoffe erschaffen und so nah an die Umwelt bringen wie auf Strassen, die mitten durch die „Natur“ verlaufen, ist auch dies eine entscheidende Frage. Denn zum Einen entsteht beim Wegfräsen von Fahrbahnmarkierung feiner Staub, und beim Verbrennen entstehen Abgase und Rauch.

Noch viel wichtiger ist aber, dass all die Autoreifen, die über die Markierungen fahren, winzigkleine Mengen davon abreiben. Und wenn tausende oder gar Millionen Autos vorbei kommen, werden diese winzigkleinen Mengen ganz schnell gross. Und Sand und Staub, die durch das Abschmirgeln von Kunststoffen entstehen, kennen die meisten von euch unter dem Begriff „Mikroplastik“. Das ja niemand haben will – und das trotzdem überall zu finden ist.

Das von der Fahrbahnmarkierung abgeriebene Mikroplastik wird vom Wind davongeweht oder vom Regen in den Boden gespült und gelangt mit dem Wasserkreislauf irgendwann in die Meere. Laut der Ergebnisse einer Studie des Dachverbands von Umweltorganisationen und -behörden IUCN machen abgeriebene Fahrbahnmarkierungen 7% des vom Land in die Meere geratenden Mikroplastiks aus. Ausgehend von geschätzten 1,5 Millionen Tonnen Mikroplastik-Eintrag im Jahr entspricht das rund 105 Tonnen Kunststoff-Staub von Fahrbahnmarkierungen (Klingt viel – der Löwenanteil des Mikroplastiks entsteht aber direkt in den Gewässern aus grösserem Plastikabfall: bis rund 10,5 Millionen Tonnen im Jahr!).

Ist Mikroplastik gefährlich?

Kann Mikroplastik unserer Gesundheit oder der von Lebewesen in den Meeren und anderen Lebensräumen gefährlich werden? Das ist eine wirklich schwierige Frage – denn man weiss die Antwort (noch) nicht. Was den menschlichen Körper angeht, geht man zur Zeit davon aus, dass es uns nicht gross schadet. Denn vornehmlich könnte Mikroplastik über den Verdauungstrakt in unsere Körper gelangen – und auf diesem Weg auch gleich wieder hinaus, da der Körper keinen Grund hat, die Kunststoffpartikel aus dem Nahrungsbrei heraus aufzunehmen. Eine andere Möglichkeit ist das Einatmen von Mikroplastik-Stäuben. Was das für Folgen haben kann, ist jedoch – wie so vieles in dem Bereich, noch nicht erforscht.

Was Meereslebewesen betrifft, gibt es Hinweise darauf, dass einzelne Arten unter Mikroplastik-Belastung leiden, besonders dann, wenn bestimmte Umweltbedingungen erschwerend dazukommen. Andere Arten scheinen sich dagegen gar nicht an den Kunststoffpartikeln zu stören. Wie beim Menschen auch gilt hier: Die Auswirkungen von Mikroplastik auf die Umwelt sind grösstenteils noch nicht erforscht.

Schon allein der erzeugten Mengen an Mikroplastik lohnt es sich, in diesen Bereichen weiter zu forschen. Und während die Forscher daran arbeiten, lohnt es sich ebenso, Vorsicht walten zu lassen und nicht unnötig Mikroplastik in die Umwelt gelangen zu lassen. Das gilt auch für die Gestaltung von Fahrbahnmarkierung, die wie so viele Kunststoff-Materialien laufend weiterentwickelt werden.

Chemie machts möglich: Markierungen der Zukunft

Fahrbahnmarkierung, die als Ganzes haltbar, zu Mikroplastik zerrieben aber biologisch abbaubar wäre (sodass kein Mikroplastik übrig bliebe, das in die Meere gelangen könnte), wäre ein Träumchen. Allerdings sind solche recht widersprüchlichen Eigenschaften meist nicht leicht zu realisieren.

Bereits Wirklichkeit ist dagegen eine Entwicklung hin zu noch besserer Sichtbarkeit bei schlechtem Wetter.

Sicher kennt ihr alle „Glow-in-the-dark“-Farbe oder ebensolche Klebesterne und andere Deko fürs Kinderzimmer. Diese Farben und Kunststoffgegenstände lassen sich mit Licht „aufladen“ und leuchten später stundenlang im Dunkeln. (Dieser Vorgang heisst Phosphoreszenz – wie er funktioniert erfahrt ihr hier in Keinsteins Kiste!) Der Niederländer Daan Roosegarde hat Fahrbahnmarkierung aus solch einem phosphoreszierenden Kunststoff gemacht: Tagsüber speichert er Sonnen- bzw. Tageslicht, und nachts leuchten die Streifen aus sich selbst heraus! Das sieht nicht nur cool aus, sondern ist für die Autofahrer unabhängig von den Lichtverhältnissen draussen gut sichtbar.

Die Idee mit den selbstleuchtenden Fahrbahnmarkierungen lässt sich sogar noch weiter spinnen: Mit Kunststoffen, die nur in einem bestimmten Temperaturbereich phosphoreszieren, zum Beispiel bei weniger als 4°C, könnte man Glatteis-Warnungen aufbringen, die nur dann leuchten, wenn es kalt genug für Glatteis ist.

Zusammenfassung

Fahrbahnmarkierung muss viel und lange aushalten – und deshalb aus besonders widerstandsfähigen Stoffen bestehen. Chemiker können Kunststoffe mit genau diesen Eigenschaften entwickeln. Vorübergehende Markierungen in Baustellen müssen sowohl widerstandsfähig als auch leicht zu entfernen sein. Solch widersprüchliche Eigenschaften sind für Kunststoffdesigner besonders herausfordernd und nicht selten unlösbar.

Eine weitere Herausforderung ist der Abrieb von Fahrbahnmarkierungen, der als Mikroplastik in die Umwelt gelangt. Das zu vermeiden ist ein lohnendes Ziel der stetigen Weiterentwicklung von künstlichen Werkstoffen wie Fahrbahnmarkierung. Andere Ziele können ganz neuartige Eigenschaften dieser Stoffe sein, wie Phosphoreszenz, die selbstleuchtende Markierungen ermöglicht.

Ein Kunst- bzw. Werkstoff ist somit kaum ein „fertiges“ Material, das unverändert bis in alle Ewigkeit weiter verwendet wird. Stattdessen entwickeln Chemiker die Materialien unserer Alltagswelt ständig weiter, um sie nützlicher, weniger gesundheitsschädlich und umweltverträglicher zu machen.

Und welche Arten Fahrbahnmarkierung sind euch schon begegnet? Habt ihr bestimmte Eigenschaften oder Mängel beobachten können? Seid ihr vielleicht sogar schon einmal auf Roosegardes phosphoreszierender Teststrecke in den Niederlanden unterwegs gewesen? Oder habt ihr beruflich mit Fahrbahnmarkierung zu tun?

Experiment: Kartoffelbatterie bauen

Endlich habe ich mal wieder Zeit zum Experimentieren gefunden. Und mich dabei einem Thema gewidmet, das in Keinsteins Kiste bislang zu kurz gekommen ist: Batterien und Strom. Dazu habe ich mir erst einmal eine Stromquelle selber gebaut: Die Kartoffelbatterie!

Mit der folgenden Experimentieranleitung könnt ihr ganz einfach eure eigenen Kartoffelbatterien bauen und so zusammenschalten, dass ihr damit eine Leuchtdiode zum Leuchten bringen könnt. Alles, was ihr dazu braucht, findet ihr in der Küche, im Werkzeugkasten – und allenfalls für kleines Geld im Fachhandel für elektronische Bauteile.

Experiment: Kartoffelbatterie bauen

Ihr braucht dazu

Das braucht ihr zum Bau einer Kartoffelbatterie samt Stromkreis.
  • 4 Kartoffeln
  • 4 blanke Kupfermünzen (z.B. Eurocents) – hier erfahrt ihr, wie ihr angelaufene Kupfermünzen ganz einfach blank bekommt!
  • Zinkdraht oder 4 Unterlegscheiben aus Zink
  • blanke Büroklammern
  • Schaltlitze oder ähnlich ummantelten Kupferdraht
  • Lüsterklemmen (oder Stecker und Muffen aus dem Modellbau)
  • LED (Leuchtdiode) für den Betrieb bei ca. 3 bis 6 Volt (aus dem Elektronikhandel)
  • Drahtschere, Küchenmesser
  • Optional: Voltmeter bzw. Multimeter
  • Tablett aus Kunststoff, Glas oder Keramik (kein Metall, trocken!)

So geht’s

  • Wenn ihr mit Zinkdraht arbeitet, wickelt etwa 15 Zentimeter Draht zu einer münzgrossen Scheibe auf, von der 2 bis 3 Zentimeter Drahtende abstehen. Fertigt insgesamt vier solcher Scheiben an. Wenn ihr mit Unterlegscheiben experimentiert, könnt ihr diesen Schritt überspringen.
Vier Zinkdraht-Spiralen als Elektroden für die Kartoffelbatterie
Vier Zinkdraht-Spiralen-Elektroden für eine Vierer- Kartoffelbatterie
  • Schneidet eine Seite jeder Kartoffel waagerecht ab, sodass die Kartoffeln nicht wackeln, wenn ihr sie auf eine Unterlage stellt.
  • Schneidet in die beiden gegenüberliegenden Enden jeder Kartoffel je einen Schlitz.
  • Steckt in die Schlitze jeder Kartoffel jeweils eine Kupfermünze und ihr gegenüber eine Zinkscheibe (Drahtspirale oder Unterlegscheibe). Die Metallscheiben dürfen sich nicht berühren! Wenn ihr ein Multimeter habt, könnt ihr es auf einen Messbereich von 1-2V einstellen und mit den beiden Messfühlern die Kupfer- und Zinkscheibe einer Kartoffel berühren. So habe ich an einer Kartoffel eine Spannung von rund 0,85V messen können.
Eine Kartoffelbatterie ohne angeschlossene Drähte
Eine Kartoffelbatterie ohne angeschlossene Drähte: Sie liefert eine Spannung von 0,85V.
  • Klemmt an jede Kupfermünze eine Büroklammer.
  • Schaltet nun die vier Kartoffeln in Reihe: Verbindet mittels Litze und Lüsterklemmen oder Steckern die Zinkscheibe einer Kartoffel mit der Kupfermünze der nächsten, die Zinkscheibe dieser nächsten mit der Kupfermünze der übernächsten Kartoffel und so weiter.
  • Wenn alle Kontakte funktionieren, solltet ihr nun zwischen der Kupfermünze der ersten und der Zinkscheibe der letzten Kartoffel eine Spannung von etwa 3,4V messen können (Messbereich ggfs. anpassen!).
Fertiger Kartoffelbatterie - Stromkreis
Fertig: Ein Kartoffelbatterie -Block aus vier Kartoffeln in Reihe samt angeschlossener LED. Jetzt nur noch das kurze Beinchen an die Zinkscheibe rechts im Bild…
  • Verbindet nun das lange Bein (Wichtig! Dioden, auch Leuchtdioden, leiten den Strom nur in eine Richtung, falschherum angeschlossen gehen sie kaputt!) der LED mit der letzten freien Kupfermünze.
  • Jetzt könnt ihr den Stromkreis schliessen: Berührt mit dem kurzen Bein (aber nicht mit dem Langen!) der LED die letzte freie Zinkscheibe: Die LED leuchtet auf!

Das passiert

Das Multimeter zeigt euch schon beim Aufbau, dass die Kartoffelbatterien funktionieren: Sie liefern eine messbare elektrische Spannung, und wenn man sie in einen Stromkreis einbaut, fliesst ein Strom! Und zwar ein so starker, dass er die LED zum Leuchten bringt.

Kartoffelbatterie betreibt rote LED
Licht aus und es wird sichtbar: Die rote LED leuchtet – dank Kartoffelbatterie!

Wo kommt der Strom her?

Die Metalle Kupfer und Zink bestehen aus elektrisch ungeladenen Atomen. Die Atome beider Metalle können Elektronen abgeben und so zu positiv geladenen Ionen werden. Diese Ionen können sich in Wasser lösen – zum Beispiel in dem Wasser in einer Kartoffel.

Allerdings ist das Bestreben der beiden Metalle, Elektronen abzugeben, sehr unterschiedlich. So gibt Zink ziemlich leicht Elektronen ab (Chemiker nennen es deshalb ein unedles Metall). Kupfer trennt sich dagegen wesentlich weniger leicht von seinen Elektronen (Chemiker nennen es deswegen ein edles Metall oder Edelmetall).

Steckt man also eine Zinkscheibe in eine Kartoffel, lassen einige Zinkatome Elektronen in der Scheibe zurück und lösen sich als Ionen im Kartoffelwasser. Die Zinkscheibe ist damit der (physikalische) Minuspol der Kartoffelbatterie.

Aus einer Kupferscheibe treten dagegen fast keine Ionen aus, sodass auch fast keine Elektronen zurückbleiben. Die Kupfermünze ist damit der (physikalische) Pluspol der Kartoffelbatterie.

Das Multimeter misst den Unterschied zwischen den Elektronenansammlungen im Zink (viele Elektronen) und Kupfer (fast keine Elektronen) und gibt ihn als Zahl mit der Einheit Volt (V) an. Diese Zahl, auch elektrische Spannung genannt, sagt Chemikern, wie unterschiedlich das Bestreben zweier Stoffe (hier Kupfer und Zink), Elektronen abzugeben, ist.

Verbindet man die Elektronenansammlung im Zink nun über elektrisch leitende Drähte mit dem elektronenarmen Kupfer, dann fliessen die Elektronen als Strom vom Zink ins Kupfer – und können auf ihrem Weg elektrische Geräte wie eine LED betreiben. So können immer neue Zink-Ionen entstehen und immer neue Elektronen zurücklassen. Damit fliesst der Strom eine ganze Weile, sodass die LED nicht sofort wieder ausgeht, sondern immer weiter leuchtet.

Und was geschieht an der Kupfermünze?

Wenn Elektronen vom Zink zum Kupfer fliessen, werden sie an ihrem Ziel von anderen, bestenfalls positiv geladenen Teilchen aufgenommen. Da Kartoffeln naturgemäss keine Kupfer-Ionen enthalten, sind das vornehmlich Wasserstoff-Ionen (H+ bzw. H3O+) aus der Kartoffel (In Wasser gibt es immer ein paar davon, und eine Kartoffel mag organische Säuren enthalten, die noch ein paar mehr liefern):

An der Kupfermünze entsteht also Wasserstoff-Gas. Die Münze selbst reagiert dagegen nicht.

Und der Rest des Stromkreises?

Der Name „Stromkreis“ verrät es: Damit ein Strom fliessen kann, braucht es einen kompletten Kreislauf. Die Elektronen fliessen aber nur durch die Kabel vom Zink zum Kupfer. Wo ist der Rest des Kreislaufs?

Für den ist die Kartoffel zuständig. Die enthält, wie schon erwähnt, eine Menge flüssiges Wasser, in dem geladene Teilchen sich bewegen können – wenn sie einen Anlass dazu haben. Zudem enthält eine Kartoffel naturgemäss eine Menge verschiedener Ionen, die nur auf einen Anlass zum Wandern warten. Und das Entstehen bzw. Verschwinden von Ionen an den Metallteilen in der Kartoffel ist solch ein Anlass.

So wandern die neu entstehenden Zink-Ionen und andere positiv geladene Ionen durch die Kartoffel in Richtung Kupfermünze, um die Ladung der dort verbrauchten Wasserstoff-Ionen zu ersetzen. Ebenso wandern negativ geladene Ionen durch die Kartoffel in Richtung Zink-Scheibe, um die Ladung der dort entstehenden Zink-Ionen auszugleichen.

Während die Elektronen also durch das Kabel vom Zink zum Kupfer fliessen, fliessen durch die Kartoffel andere Ladungen vom Kupfer zum Zink. Damit ist der Stromkreis ganz und gar geschlossen.

Das Ganze funktioniert daher ebenso gut mit Äpfeln, Zitronen oder anderem Obst. Denn auch diese Früchte enthalten flüssiges Wasser und verschiedene Ionen, die wandern können.

Wann ist eine Kartoffelbatterie leer?

Grundsätzlich ist eine Batterie dann leer, wenn es keinen messbaren Unterschied zwischen den Elektronenansammlungen an Minus- und Pluspol mehr gibt. Denn ohne diesen Unterschied kann kein Strom fliessen.

Wenn aus Zink-Atomen Ionen werden, verlassen diese das Metall und lösen sich im Wasser der Kartoffel. Damit bleiben immer weniger Atome in der Zinkscheibe. Mit anderen Worten: Die Zinkscheibe (oder -spirale) wird immer kleiner, bis – theoretisch – irgendwann nichts mehr davon übrig ist.

Gleichzeitig entsteht an der Kupfermünze Wasserstoff und verschiedene Ionen bewegen sich innerhalb der Kartoffel hin und her. Wird dabei ein Zustand erreicht, in dem es keine Ladungsansammlung mehr auszugleichen gibt, hört der Strom auf zu fliessen und die LED leuchtet nicht länger. Dann, so sagen wir, ist die Batterie „leer“.

Warum brauchen wir mehrere Kartoffeln?

Meine Leuchtdiode, ein typisches Exemplar aus dem Handel für Elektro-Kleinteile, ist für den Betrieb in Stromkreisen mit 6-Volt-Batterieblöcken ausgelegt. Das heisst, um genügend Strom zu erzeugen, dass sie leuchtet, brauchen wir zumindest annähernd eine Spannung dieser Höhe (in jeder Schaltung ist etwas „Schwund“, sodass die LED für den 6-Volt-Antrieb schon mit weniger Strom als aus 6 Volt leuchten). Tatsächlich hat meine LED schon bei einer Spannung von gut 3 Volt zu leuchten begonnen.

Und das ist auch gut so. Denn eine höhere Batterie-Spannung kann erreicht werden, indem man mehrere Batterien hintereinander schaltet. Dann nämlich addieren sich die Spannungen über den einzelnen Batterien zur Gesamtspannung. Das funktioniert bei Kartoffelbatterien genauso wie bei richtigen Batterieblöcken: 4 „AA“-Batterien, die jede für sich 1,5V liefern, liefern in Reihe geschaltet 1,5V+1,5V+1,5V+1,5V = 6V (oder 4*1,5V=6V). Vier Kartoffeln, die jede für sich 0,85V liefern, liefern in Reihe geschaltet dementsprechend 3,4V.

Um einen 6-Volt-Batterieblock zu ersetzen, bräuchte ich also 7 Kartoffeln (7*0,85V = 5,95V), 7 Münzen und 7 Zink-Spiralen oder -scheiben, 9 Kabel und eine Menge Platz. Dazu kommt, dass ihr die Kartoffeln nach dem Experiment nicht mehr essen solltet, denn sie könnten Metallionen enthalten, die ungesund sind (Zink-Ionen sind zwar nicht ungesund und Kupferionen werden nur wenige darin sein, aber man weiss nie so genau, ob in Unterlegscheiben oder Drähten noch andere, ungesündere Metalle als Zink enthalten sind).

Sollte eure LED mit vier Kartoffeln nicht leuchten, obwohl die Kontakte als solche in Ordnung sind, schaltet einfach noch eine fünfte Kartoffelbatterie dazu.


Entsorgung

Die elektrischen Bauteile, Münzen und Kabel könnt ihr für spätere Experimente aufheben (spült die Münzen und Zinkscheiben ggfs. zuvor mit Wasser sauber und trocknet sie ab).

Die Kartoffeln solltet ihr – wie schon erwähnt – nach dem Experiment nicht essen. Wenn euer Bioabfall ähnlich wie unserer verbrannt wird, könnt ihr sie aber in die Biotonne entsorgen. Wegen der Metallionen darin solltet ihr die Kartoffeln aber besser nicht in den Kompost geben (besonders Klein- und Kleinstlebewesen mögen Kupferionen gar nicht!).

Hast du das Experiment nachgemacht: 

[poll id=“45″]

Wenn etwas nicht oder nur teilweise funktioniert haben sollte, schreibt es in die Kommentare. Ich helfe gerne bei der Fehlersuche!

Belebtes Wasser ist unwirksam - kein Gesundbrunnen, sondern Fantasieprodukt

Wenn ihr meine Kanäle verfolgt, habt ihr es wahrscheinlich schon mitbekommen: Ich schreibe an einem Mitmachbuch für Forscherkinder – über Wasser. Das ist schliesslich ein ganz besonderer Stoff und megaspannend. Da bleibt es nicht aus, dass Wasser allerorts, auch in den sozialen Medien, meine besondere Aufmerksamkeit weckt. So ist es mir unlängst in einer Kombination begegnet, die spontanes Chemiker-Augenrollen bewirkte: Als belebtes Wasser. Oder war es energetisiertes Wasser? Vitalisiertes Wasser? Aktiviertes Wasser? Magnetisiertes Wasser? Hexagonales Wasser? Oder sogar Grander-Wasser?

Merkt ihr was? So viele verschiedene und nichtssagende Begriffe für praktisch das gleiche. Und das ist nur eine Auswahl der Existierenden! Allein auf Psiram habe ich eine Liste mit 144 Firmen und Produktlinien rund um „verbessertes“ Wasser in vermutlich ebenso vielen Variationen gefunden! Also, worum geht es hier eigentlich? Um Wasser, das in irgendeiner Weise verbessert sein – und folglich positive Wirkungen auf uns haben soll.

Wie sollen wir an belebtes Wasser gelangen?

Die erwähnten Hersteller bieten entweder Gerätschaften und Anlagen zur „Verbesserung“ von Leitungswasser im eigenen Haushalt an oder sie verkaufen es fixfertig , zum Beispiel in Getränkeflaschen. Auffällig ist bei praktisch all diesen Produkten der hohe bis überrissene Preis.

Brauchen wir verbessertes bzw. belebtes Wasser?

Nein. In der Schweiz, Deutschland und Österreich geniessen wir das Privileg, einwandfreies Leitungswasser zu haben, das wir ohne Bedenken trinken können. In der Schweiz gilt das überdies für einen Grossteil der öffentlichen Brunnen.  Ausserdem können wir jederzeit ebenso einwandfreies Mineralwasser in Supermärkten kaufen. Und Leitungs- wie Mineralwasser bieten alles, was wir vom Wasser zum Gesundbleiben brauchen.

Was kann belebtes Wasser dann besser?

Ihr ahnt es sicher schon: Nichts. Zumindest nicht über einen Placeboeffekt hinaus. Und den könnt ihr wesentlich billiger haben.

Ist belebtes Wasser dann womöglich gefährlich?

Nicht direkt. Ausser für euren Geldbeutel. Denn Produkte rund um belebtes Wasser sind in der Regel mächtig teuer. Und bewirken, wie erwähnt, nichts.

Indirekt können sie aber zum Problem werden. Nämlich dann, wenn sie ein falsches Gefühl von Sicherheit vermitteln („das Wasser hält mich schon gesund“). Wenn aus diesem Sicherheitsgefühl heraus Arztbesuche verzögert, Medikamente nicht genommen oder andere wichtige Massnahmen vernachlässigt werden (Infektionsschutz ist zur Zeit ja ein ganz grosses Thema!), kann das schwerwiegende oder im schlimmsten Fall tödliche Folgen haben.

Aus diesem Anlass schreibe ich den Artikel: Nicht nur um eurer Geldbeutel willen, sondern vor allem, um euch dabei zu helfen, wirklich Gutes für die Gesundheit eurer Familie zu tun.

Um euch zu zeigen, warum belebtes Wasser nicht wirken kann, habe ich zunächst eine kleine Einführung in die Chemie des Wassers für euch.

Kleine Wasserkunde

1. Wasser ist eine Verbindung

Wasser ist einer von vielen Stoffen, aus denen unsere Welt aufgebaut ist. Dabei ist es zweifellos einer der wichtigsten Stoffe unserer Alltagswelt. Nahezu jeder von euch wird die chemische Formel, genauer die Summenformel, von Wasser schon einmal gesehen haben: H2O.

Diese Formel verrät uns schon eine ganze Menge über diesen Stoff. Sie sagt uns: Wasser besteht aus Molekülen. Ein Wassermolekül besteht wiederum aus zwei Wasserstoffatomen und einem Sauerstoffatom. Das bedeutet, Wasser ist kein Element, wie antike Philosophen annahmen, sondern eine chemische Verbindung. Ein chemisches Element besteht nämlich nur aus einer Sorte von Atomen – Wasser aber aus zwei Atomsorten.

2. Wassermoleküle sind gewinkelt

Die Atome in einem Molekül sind über Elektronenpaarbindungen miteinander verknüpft. Zwei Elektronen bilden eine solche Bindung. Die Regeln der Chemie besagen, dass ein Sauerstoffatom zwei Bindungen bilden kann und überdies noch zwei weitere, nichtbindende Elektronenpaare hat. Ein Wasserstoffatom kann dagegen nur eine Bindung bilden. Daraus ergibt sich die Strukturformel für Wasser:

Wassermolekül: Lewisformel und Modell
Links: Strukturformel für Wasser, rechts ein Kugel-Stab-Modell des Wassermoleküls

Warum stehen die drei Atome nicht einfach in einer Reihe? Jedes Elektron trägt eine negative elektrische Ladung. Und gleiche elektrische Ladungen stossen einander ab. So gehen die vier äusseren Elektronenpaare – zwei Bindungen und zwei nichtbindende Paare – des Sauerstoffs auf grösstmöglichen Abstand zueinander. Und der entspricht annähernd der Nachbildung eines Tetraeders (einer regelmässigen dreieckigen Pyramide). Das Sauerstoffatom befindet sich im Zentrum dieser Pyramide, die beiden Wasserstoffatome und die Enden der nichtbindenden Elektronenpaare an den Ecken. Zeichnet man nun einen Längsschnitt, auf dem alle drei Atome liegen, durch das Gebilde, erhält man die gewinkelte Strukturformel des Wassermoleküls.

Wassermolekül mit nichtbindenden Elektronenpaaren - die Struktur erinnert an einen Tetraeder
Die gelben Kugeln stellen die nichtbindenden Elektronenpaare dieses Wassermoleküls dar. In dieser Anordnung sind die vier gelben und weissen Kugeln weitestmöglich voneinander entfernt!

3. Wassermoleküle sind elektrische Dipole

Nun verhält es sich so, dass Sauerstoffatome die Elektronen, auch jene in den Bindungen, viel stärker zu sich hinziehen als Wasserstoffatome. Deshalb ist in der Nähe des Sauerstoff-Atoms im Wassermolekül sehr viel mehr von den bindenden Elektronen anzutreffen als in der Nähe der Wasserstoffatome. Da jedes Elektron eine negative elektrische Ladung trägt, heisst das, dass am Sauerstoffatom mehr negative Ladung zu finden ist, als dort sein sollte, während an den Wasserstoffatomen zu wenig negative Ladung zu finden ist. „Mehr“ und „zu wenig“ stehen dabei für Ladungsmengen, die kleiner als die Gesamtladung eines Elektrons sind. 

Nicht desto trotz bedeutet das, dass der Scheitel des Wassermoleküls (mit dem Sauerstoffatom) ein wenig negativ geladen ist, während sein „breites“ Ende mit den Wasserstoffatomen ein wenig positiv geladen ist (denn die positive Ladung der Atomkerne macht sich wegen des Elektronenmangels bemerkbar). Ein Wassermolekül hat also zwei elektrische Pole – deshalb nennt man es einen elektrischen Dipol.

Wasserteilchen mit zwei Ladungs-Schwerpunkten
Ein Wassermolekül trägt zwei elektrische Ladungen: Die negative Seite (-) ist rot, die positive Seite (+) ist blau schattiert.

Verschiedene elektrische Ladungen aber ziehen einander an. So zieht der negativ geladene Scheitel eines Wassermoleküls unweigerlich die Breitseite seines nächsten Nachbarn an. Ebenso werden Wassermoleküle von anderen elektrischen Polen angezogen. Das könnt ihr mit diesem Experiment ganz leicht zu Hause zeigen!

Wasserteilchen: Entgegengesetzte Ladungen ziehen sich an.

4. Wasser ist sowohl eine Säure als auch eine Base

Die sehr „schiefe“ Verteilung der Elektronen im Wassermolekül führt aber nicht nur zu zwei elektrischen Polen, sondern auch dazu, dass die Bindungen zwischen Sauerstoff- und Wasserstoffatomen sehr brüchig sind. Ein Wassermolekül kann also sehr leicht einen Wasserstoffatomkern (ein H+-Ion) verlieren. Damit ist Wasser eine Säure. Ebensogut kann ein Sauerstoffatom eines seiner nichtbindenden Elektronenpaare verwenden, um solch ein verlorenes H+-Ion zu binden.  Damit ist Wasser eine Base.

Von einem Wassermolekül, das ein H+-Ion verloren hat, bleibt ein Hydroxid-Ion (OH):

Ein Wassermolekül, das ein verlorenes H+-Ion aufnimmt, wird damit zum Hydronium-Ion (H3O+):

Tatsächlich kommt es ständig vor, dass ein Wassermolekül ein H+-Ion verliert, welches in einem anderen Wassermolekül Unterschlupf findet:

Ebenso kann das H3O+-Ion das zusätzliche H+-Ion wieder zurückgeben. So gibt es in einer Menge Wasser ein ständiges Herumgereiche von H+-Ionen zwischen den Wassermolekülen. Insgesamt findet man in einem Liter reinem Wasser zu jedem Zeitpunkt 0,0000001 mol oder 10-7 H3O+ – und ebenso viele OH -Ionen. Der Exponent der Zahl der H+-Ionen (als Zehnerpotenz) in einem Liter Flüssigkeit mit umgekehrtem Vorzeichen ist nichts anderes als der pH-Wert. Reines Wasser hat also stets einen pH-Wert von 7.

5. Wassermoleküle können Wasserstoffbrücken bilden

Allerdings wäre das Ganze viel zu einfach, wenn man so strikt zwischen Bindung und keiner Bindung unterscheiden könnte. Das kann man nämlich nicht. Die Elektronen einer Bindung zwischen Sauerstoff- und Wasserstoff-Atom im Wassermolekül sind nämlich so ungleich verteilt, dass ein entblösster Wasserstoffkern sich in die dichte Elektronenhülle eines Sauerstoffatoms im Nachbarmolekül „einkuscheln“ kann, ohne sich dazu von „seinem“ Wassermolekül lösen zu müssen. Das nennen die Chemiker eine Wasserstoffbrücken-Bindung.

Das Resultat ist eine Anziehung zwischen Wassermolekülen, die noch stärker ist als die Anziehung zwischen ihren unterschiedlichen Ladungen (aber viel weniger stark als eine echte Elektronenpaarbindung). Sie zeigt sich zum Beispiel in dem enorm hohen Siedepunkt (100°C) von Wasser – da diese starke Anziehung überwunden werden muss, wenn das Wasser gasförmig werden will. Zum Vergleich: Der sehr eng verwandte Schwefelwasserstoff, H2S, der keine Wasserstoffbrücken bildet, siedet schon bei -60°C!

6. Wasserstoffbrücken entstehen zufällig und sind extrem kurzlebig

Die Darstellung von flüssigem Wasser als H2O ist somit im Grunde genommen eine Vereinfachung. Tatsächlich besteht flüssiges Wasser aus einem wilden Gemisch von Atomen, die sich mal als H2O, mal als H3O+ bzw. OH gruppieren und sich noch viel öfter zu irgendetwas dazwischen zusammenkuscheln. Dabei kann es passieren, dass einige wenige Atome sich zu gut strukturierten Gruppen, sogenannten Clustern, zusammenrotten.

Aber dieser Austausch findet an jedem Ort im Wasser gleichzeitig und im Picosekundentakt statt. Das heisst, würde man ein Foto von den Bindungen zwischen Atomen in flüssigem Wasser machen, dann sähe ein zweites Bild davon, nur 0,000 000 000 001 Sekunden später aufgenommen, völlig anders aus – einschliesslich komplett anderer Molekül-Cluster.

Und das geschieht ganz spontan und zufällig. Die Triebkraft dafür ist zum Einen Wärmeenergie. Mit über 273°C über dem absoluten Nullpunkt (bei Atmosphärendruck) ist flüssiges Wasser nämlich immer ziemlich warm, auch wenn unsere Körper oft anderer Meinung sind. Und zum Anderen hilft das absolute Chaos, das der ständige Umbau mit sich bringt. Die Natur liebt nämlich Chaos – von Physikern und Chemikern „Entropie“ genannt – so sehr, dass sie ohne Energie von aussen ganz von selbst nach grösstmöglicher Unordnung strebt.

Warum man Wasser nicht beleben kann

Die meisten Anbieter in der „Belebtes-Wasser“-Branche behaupten, sie könnten flüssiges Wasser „besser“ machen, indem sie ihm irgendwie eine geordnetere Struktur geben. Einige fügen dem Wasser dafür Energie zu, andere berufen sich darauf, genau das nicht zu tun. Eines haben jedoch alle gemeinsam: Es kommt nichts dabei herum. Denn:

Wasser kann man nicht mit Energieeinsatz „beleben“, indem

  • Man man es über eine eingelegte Antenne mit elektromagnetischen Wellen berieselt. Würde man das mit Mikrowellen (der richtigen Frequenz bzw. Wellenlänge) machen, würde das Wasser allenfalls warm (so funktioniert ein Mikrowellenherd). Denn Mikrowellen der passenden Länge können elektrische Dipole wie Wassermoleküle in Drehung versetzen. Und die nehmen wir, wie jede andere ungerichtete Bewegung von Teilchen, als Wärme wahr. Infrarotwellen, die energiereicher als Mikrowellen sind, können ebenfalls wärmen – indem sie die Bindungen in Molekülen zum Schwingen bringen. Elektromagnetische Wellen mit weniger Energie bewirken hingegen nichts.
  • Man es mittels Elektrolyse ionisiert. Das mag zwar vorstellbar sein (wenn man vermeiden kann, dass statt irgendwelcher Ionen Moleküle von Wasserstoff- und Sauerstoff-Gas entstehen). Allerdings sorgt der stetige Austausch zwischen den Wasserteilchen dafür, dass sich nach dem Ausstellen der Elektrolysevorrichtung innert Picosekunden das oben erwähnte Gleichgewicht zwischen Wasser, H3O+– und OH-Ionen wieder einstellt. Mit anderen Worten: So schnell, wie der pH-Wert von Wasser – sollte es ionisiert worden sein – wieder 7 ist, kann man es unmöglich trinken – geschweige denn anschauen.
  • Man es ebenfalls durch Elektrolyse mit Wasserstoff anreichert. „Wasserstoffwasser“ ist besonders in Japan als Fertigprodukt im Supermarkt beliebt. Grundsätzlich lässt sich Wasserstoff durch Elektrolyse von Wasser herstellen. Allerdings löst der sich nicht besonders gut in Wasser und kann in die allermeisten Festkörper (z.B Getränkeflaschen) problemlos ein- und durch sie hindurch wandern. So lässt sich Wasser nicht nur kaum mit Wasserstoff anreichern, sondern überdies auch kaum lagern. Dazu kommt, dass der menschliche Körper elementaren Wasserstoff (H2) gar nicht verwerten kann.
  • Man Wasser in ein (unveränderliches) Magnetfeld einbringt. Richtig ist: Elektrisch geladene Teilchen in Bewegung ändern im Magnetfeld ihre Bewegungsrichtung. Das gilt aber nur für Teilchen, die als Ganzes eine merkliche Ladung tragen. Wassermoleküle tragen zwar Ladungen, aber jedes von ihnen hat zwei gleich grosse, aber entgegengesetzte Ladungen, die einander aufheben. Von aussen gesehen bleibt so keine Ladung, auf die das Magnetfeld einen Einfluss haben könnte. Überdies ist Wasser ausschliesslich diamagnetisch und lässt sich daher nicht magnetisieren (Was hinter Dia-, Para- und Ferro-Magnetismus steckt erfahrt hier hier).
  • Man Edelsteine hineinlegt, die irgendwelche „Schwingungen“ oder „Informationen“ in das Wasser übertragen sollen. Die einzigen Schwingungen, die so übertragen werden können, sind jene Bewegungen, die wir als Wärme wahrnehmen. Würde man die Steine vorher erhitzen, könnte man so allenfalls das Wasser erwärmen (so funktionieren ein Tauchsieder oder der „heisse Stein“ im Restaurant).

Wasser kann man erst recht nicht ohne Energiezufuhr beleben, indem

  • Man in irgendeiner anderen Weise „Informationen“, „Schwingungen“ oder „Energie“ auf das Wasser überträgt (belebtes Wasser ‚im eigentlichen Sinn‘). Wie ihr in der kleinen Wasserkunde gelernt habt, hat flüssiges Wasser eine äusserst unstete Struktur: Seine Atome gruppieren sich in allerkürzesten Zeitabständen laufend neu. Das macht es zur Speicherung von Information für länger als 0,000 000 000 001 Sekunden vollkommen ungeeignet.

Kommt dazu – wie so oft – der ausdrückliche Verzicht auf Energie von aussen, gibt es zudem ein unlösbares Problem mit der Thermodynamik. Deren zweiter Hauptsatz besagt nämlich, dass die Schaffung von Ordnung in einem geschlossenen System ohne das Einbringen von Energie einfach nicht möglich ist. Und eine Struktur (z.B. in Form gespeicherter „Information“) in vormals chaotischem Wasser zu erzeugen, heisst Ordnung schaffen.

Das gilt gleichermassen für alle Spielarten belebten Wassers, ob sie nun belebtes Wasser, aktiviertes, vitalisiertes, levitiertes Wasser, „Grander-Wasser“ oder sonstwie heissen.

Aber der „Stand der Wissenschaft“ ist doch nicht unumstösslich?

Stimmt. Aber ein Grossteil dessen, was wir über Wasser wissen, ist so deutlich belegt, dass dort keine grossen Anpassungen des heutigen „Lehrbuchwissens“ mehr zu erwarten sind. Das gilt insbesondere für das unstete Betragen der Teilchen in flüssigem Wasser. Wir mögen zwar noch längst nicht alles über die erwähnten Wassercluster wissen. Doch das liegt eben gerade daran, dass diese Strukturen so kurzlebig sind, dass Wissenschaftler sie selbst mit hochtechnischen Apparaturen kaum vermessen können. Und ebendiese Kurzlebigkeit macht das Speichern von jedweder „Information“ in Wasser unmöglich.

Auch die Gesetze der Thermodynamik sind heute derart gut belegt, dass wir sie in unserer Welt getrost als unumstösslich annehmen können. Sollten Physiker dennoch jemals einen Weg finden, der am 2. Hauptsatz vorbei führt, dann nicht in der Welt, wie wir sie kennen, sondern unter höchst exotischen Bedingungen, die weit ausserhalb unserer persönlichen Reichweite liegen. Also nicht in unserem eigenen Keller oder einer mystischen Getränkefabrik.

Ausserdem haben sich die Wissenschaftler, die so gerne auf belastbare Studien pochen, sich nicht lumpen lassen. So gibt es auch Untersuchungen zur Wirksamkeit von belebtem Wasser auf Mensch, Tier und Pflanze – unabhängig von der Frage, ob sie mit heutigem Wissen theoretisch erklärbar wäre. Und hat man – unter belastbaren (also methodisch einwandfreien und wiederholbaren) Versuchsbedingungen – eine Wirkung gefunden? Nein.

Es gibt also weder eine nachweisliche Wirkung noch eine schlüssige Theorie, wie sie zustandekommen könnte. Mit anderen Worten: Belebtes Wasser ist demnach mit höchster Wahrscheinlichkeit ein reines Fantasieprodukt.

Wie ihr derartige Fantasieprodukte oder -angebote erkennen könnt

Einige auffällige Merkmale hat belebtes Wasser mit vielen anderen fragwürdigen Produkten und Angeboten im Gesundheitsbereich gemein: Es wird ihm eine so vielfältige Heilkraft nachgesagt, dass es leicht als Wundermittel durchgehen könnte.

  • Was gleichermassen gegen alles von Hauterkrankungen über Magenbeschwerden, Migräne, Depressionen u.v.a.m. bis hin zu Krebs hilft, kann nicht wirklich nützen. Verschiedene Krankheiten haben verschiedene Ursachen, die verschiedene Behandlungen erfordern. Darüber hinaus ist in der Schweiz und Deutschland die Werbung für Wasser mit Heilversprechen gesetztlich verboten, was eine solche um so unseriöser macht.
  • Ähnliches gilt für Angaben wie ‚hilft bei der „Entgiftung“ (Entschlackung,…). Die Notwendigkeit, Giftstoffe oder „Schlacken“ aus unserem Körper zu entfernen, ist ebenfalls ein Fantasieprodukt entsprechender Anbieter (denn das besorgen gesunde Leber und Nieren ganz allein).
  • Beliebte „Buzzwörter“ aus dem Alternativheilkunde-Bereich in Beschreibungen können ein Hinweis sein, dass dem Produkt das wissenschaftliche Fundament fehlt: Neben den genannten Synonymen für belebtes Wasser bzw. Wasserbelebung sind das z.B. „Schwingungen„, „Energien“ (Naturwissenschaftler verwenden „Energie“ nie in der Plural!), oder „feinstofflich„, die allesamt bedeutungslose Worthülsen sind. Dazu kommen die Namen Nicola Tesla, wenn es um mysteriöse Technik geht, oder – speziell im Wasserbereich – Gerald H. Pollack oder Masaru Emoto, auf deren nicht haltbare Theorien sich viele „Wasserbeleber“ beziehen, sowie Johann Grander.

Dazu kommen einige eigene Merkmale von Produkten rund um „verbessertes“ Wasser.

  • Das Verbot von Werbung für Wasser und Wasseraufbereitungsgeräte mit Heilversprechen in einem Grossteil des D-A-CH-Raums umgehen viele Anbieter, indem sie angebliche Wirkungen ihres Produkts nur über Kundenaussagen „kommunizieren“. Das geht über Kundenbewertungen und Testimonials oder Mund-zu-Mund-Propaganda. Hat euch „nur“ jemand von einem tollen Gerät/Produkt/Angebot erzählt? Findet ihr Aussagen zu gesundheitlichen Wirkungen nur von anderen Kunden und nicht vom Hersteller selbst? Dann ist Vorsicht angesagt!
  • Wirkungslose Anlagen und Geräte zur „Verbesserung“ von Wasser wie auch fixfertig belebtes Wasser werden häufig zu horrenden Preisen angeboten. Wenn ihr ein fragwürdiges Angebot unter die Lupe nehmen möchtet, vergleicht es einmal mit ähnlichen Produkten ohne „Esoterik“-Label. Fixfertig belebtes Wasser also mit Mineralwasser, als besonders wirksam oder geeignet deklarierte Edelsteine mit den gleichen Steinen ohne solche Attribute beim Mineralienhändler, Elektrokleingeräte mit Haushaltsgeräten aus ähnlichen Bestandteilen, Geräte zum Einbau ins Eigenheim mit „herkömmlichen“ Wasserfiltern für die Trinkwasserzuleitung. Beträgt der Unterschied ein Vielfaches, ist da in der Regel etwas faul.

Wenn euch ein Angebot mit solchen Merkmalen über den Weg läuft, verzichtet guten Gewissens darauf. Dann könnt ihr das Geld für andere Dinge einsetzen, die wirklich gesundheitsfördernd sind: Für einen schönen Familienurlaub zum Beispiel, Mitgliedschaften im Sportverein, Musikstunden, oder einfach für abwechslungsreiches Essen.

Und wenn es dazu schon zu spät ist?

Ihr habt bereits eine Anlage zur Wasserbelebung im Keller? Oder ist der bereits in ein Lager für fixfertig belebtes Wasser umgewandelt?

Zunächst einmal: Ihr seid damit nicht allein. Selbst Betreiber von Schwimmbädern, Spitäler oder eine österreichische Gewerkschaft haben sich schon von solchen Angeboten ködern lassen und eine Menge Geld verbraten. Die können nämlich – ganz offensichtlich – ziemlich verlockend sein und auf den ersten Blick sehr seriös wirken. Bloss zeigt das nicht, wie nützlich die Produkte sind, sondern die Geschäftstüchtigkeit ihrer Anbieter. Und die mag nicht zuletzt daher rühren, dass die Hersteller und Vertreiber selbst an die Wirksamkeit ihrer Produkte glauben (zumindest konnten selbst Anwälte vor Gericht ihnen bislang nichts Gegenteiliges nachweisen).

Besonders wenn Mund-zu-Mund-Propaganda ins Spiel kommt – im schlimmsten Fall innerhalb einer eingeschworenen Community rund um Hersteller und Produkt oder im eigenen Freundeskreis – kann der Einfluss bzw. Druck von „aussen“ auf eure Entscheidungen immens werden. Und wer will es sich schon mit der besten Freundin oder dem netten Forum verscherzen, weil er ein ja soo nützliches Ding kategorisch ablehnt?

Wirksames von Fantasieprodukten zu unterscheiden ist manchmal schwierig

Dazu kommt, dass viele Produkte, Angebote und auch Literatur so seriös und „medizinisch“ aussehen, dass es für Laien echt schwierig sein kann, wirklich Sinnvolles von Fantasieprodukten zu unterscheiden.

Selbst ich als Chemikerin habe einmal mit grossem Interesse in einem populärwissenschaftlichen Buch von Gerald H. Pollack gelesen. Das fiel mir in der Stadtbibliothek auf der Suche nach Literatur über Wasser in die Hände. Das las sich spannend und erst einmal schlüssig – davon abgesehen, dass ich von den dargestellten Theorien und Phänomenen weder in der Schule noch im Studium gehört hatte. Doch was wäre ich für eine Chemikerin, würde ich, ein paar Jahre aus dem Uniumfeld draussen, neue Forschungsergebnisse von vorneherein als unmöglich abstempeln? So fühlte ich mich selbst mit Chemie-Diplom nicht in der Lage, das Buch aus dem Stand sicher einzuordnen. Dabei haben mir erst weitere Recherchen geholfen.

Was tun, wenn das Geld weg ist?

Ist das belebte Wasser erst einmal im Haus und das Geld weg, wenn eure Zweifel überhand nehmen, verbucht das Ganze am besten als Gelegenheit zum Lernen. Wie mein Vater immer sagt: Geld ist den grossen Kummer nicht wert. Und ein Grund, sich zu schämen oder hämische Bemerkungen anhören zu müssen, ist das Ganze meines achtens auch nicht (dahingehend können Anhänger der Skeptiker-Szene im Umgang mit Anhängern solcher Fantasien oft noch eine Menge lernen).

Wichtig ist: Selbstreflexion

Stattdessen fragt euch, was euch wirklich dazu gebracht hat, euch auf belebtes Wasser einzulassen und allenfalls viel Geld dafür auszugeben? Hattet ihr wirklich ein eigenes Bedürfnis danach (z.B. um eine Krankheit zu lindern)? Da belebtes Wasser nachweislich nicht wirkt: Überlegt euch – was fehlt euch wirklich (oder hat gefehlt)? Welche andere(n) Massnahme(n) könnte(n) für eine scheinbare Wirkung des Wassers verantwortlich sein?

Oder habt ihr euch unter dem Einfluss anderer entschieden – Familie, Freunde, (Online-)Community? Wie könnt ihr euch solchen Einflüssen künftig entziehen? Und was bedeuten euch die betreffenden Personen oder Gruppen wirklich? Denn im schlimmsten Fall, wenn ein Druck sich nicht abwehren lässt, kann eine Trennung von ihnen der beste Ausweg sein.

Was ihr in jedem Fall tun könnt

Ob ihr nun selbst in die Falle hineingetappt seid oder nicht, ihr könnt eure Mitmenschen davor bewahren, auf solche sinnlosen Angebote einzugehen.

Dabei erachte ich dies als ganz besonders wichtig:

Nehmt euer Gegenüber ernst. Hinter der Entwicklung unsinniger Glaubensvorstellungen stecken praktisch immer Bedürfnisse oder Ängste, die befriedigt oder gelöst werden wollen, und oft ein erheblicher Einfluss eines äusseren Umfelds (Familie, Freundeskreis, Onlinecommunity,…), der eben diese Bedürfnisse bedient.

Ermuntert eure Mitmenschen, diese Bedürfnisse zu ergründen und sich die unter „Selbstreflexion“ vorgeschlagenen Fragen zu stellen.

Verkneift euch, wenn ihr euch zu den „Skeptikern“ zählt, hämische Bemerkungen oder Bezeichnungen. Zeigt den Betroffenen stattdessen, dass ihr sie als Menschen wertschätzt und gebt ihnen so einen Anreiz, die vermeintliche Zuflucht fragwürdiger Glaubenssätze oder Umfelder zu verlassen.

Und tut das vor allem von Anfang an. Denn je früher Anhänger von Glaubenssätzen, wie jenen um belebtes Wasser, Alternativen zu ihren „Alternativen“ aufgezeigt bekommen, desto höher ist die Chance, sie noch zu erreichen.

Auch wichtig ist: Weitere Verbreitung verhindern

Erinnert euch daran, wie diese fragwürdigen Produkte verbreitet werden. Nämlich über Mund-zu-Mund-Propaganda.

Wenn ihr eure Mitmenschen davor bewahren wollt, auf den Hype um belebtes Wasser (oder andere Fantasie-Produkte) hereinzufallen, dann hört, falls ihr das je getan habt, in jedem Fall auf, sie weiter zu verbreiten und schön zu reden. Oder fangt erst gar nicht damit an. Entfernt oder ändert allfällige positive Bewertungen im Internet, sofern ihr das selbst könnt (Testimonials, die Firmen selbst auf ihren Seiten einfügen, werden diese kaum wieder löschen).

Denn was andere auch behaupten: Belebtes Wasser wirkt nicht über einen Placeboeffekt hinaus.

Besonders lobenswert ist natürlich, wenn ihr euch aktiv für die Aufklärung rund um belebtes Wasser und Co. einsetzt. Erst recht, wenn ihr eine Entscheidungsposition bezüglich der Weiterverbreitung fragwürdiger (und nicht fragwürdiger) Angebote innehabt – sei es auf eurer eigenen Website, in den „grossen“ Medien, einschliesslich Magazinen von Krankenversichereren, Grossverteilern und anderen Branchen, oder gar in der Politik.

Dazu könnt ihr gerne diesen Artikel weiterverbreiten und findet weiteres Material in den Links darin. Zum Beispiel diesen Artikel, in dem Dr. Erich Eder, ein grosser Kritiker des „Grander-Wassers“, beschreibt, wie ihr eure Kritik so formulieren könnt, dass ihr möglichst kein juristisches Vorgehen der Anbieter belebten Wassers riskiert (und wie ihr damit umgehen könnt, falls es doch dazu kommt).

Scheut euch dabei nicht, euren eigenen Fehlentscheid einzugestehen, falls euch einer unterlaufen ist. Hört oder lest darüber hinweg, solltet ihr anfangs abfällige Bemerkungen und Kommentare kassieren. Und trennt euch rigoros von jenen, die sie nicht lassen können. Denn (nicht nur) in meinen Augen zeugt es von wahrer Grösse, seine Ansicht aufgrund neuer Erkenntnisse zu ändern und das auch kundzutun. Und letztendlich kann ein „ich habe das selbst durch, ich weiss, wovon ich rede“ eure Position nur stärken.

Seid ihr belebtem oder sonstwie „verbessertem“ Wasser auch schon begegnet? Wie geht ihr mit Leuten um, die darauf schwören oder/und zu seiner Verbreitung beitragen?

Silikone - Pro und Kontra - Nützlich oder gefährlich?

Der letzte Teil der Kunststoff-Serie in Keinsteins-Kiste ist einer ganz besonderen Familie von Kunststoffen gewidmet: Es geht um Silikone. Vor vielen Jahren ist mir diese Stoff-Gruppe im Studium zum ersten Mal begegnet, als ich vor den versammelten Kommilitonen und Dozenten einen Vortrag darüber halten durfte.

So war ich nun besonders neugierig, wie sich der Wissensstand rund um Silikone in den letzten eineinhalb Jahrzehnten verändert hat. Das ist nämlich eine wesentliche Eigenschaft von „Wissen“ im Sinne der Wissenschaft: Es ist nicht unverrückbar festgelegt, sondern kann durch neue Forschungsergebnisse ständig verändert – z.B. verbessert oder überholt – werden.

Deshalb konnte ich nicht einfach mein altes Vortrags-Skript als Grundlage für diesen Artikel hernehmen. Stattdessen habe ich dessen Kernaussagen neu recherchiert, um sie dem heutigen Stand entsprechen anzupassen. Und wie sich dabei zeigte, hat sich bezüglich der Eigenschaften der Silikone gar nicht so viel getan. Einzig in Punkto Abbaubarkeit ist man heute spürbar weniger optimistisch als vor 15 Jahren.

Die anderen Beiträge rund um Kunststoffe findet ihr übrigens hier:

Was sind Silikone?

Silikone sind ganz besondere Kunststoffe. Wie die anderen Materialien, die wir landläufig gern als „Plastik“ bezeichnen, bestehen auch sie aus Polymeren – also langen Molekülketten.  Doch die Molekülketten der Silikon-Ketten bestehen nicht wie die des üblichen „Plastiks“ aus Kohlenstoffatomen. Die sind nämlich nicht die einzigen Atome, die bis zu vier kovalente Bindungen eingehen und damit vielfältige Möglichkeiten zur Vernetzung und Verkettung bieten können.

Der Kohlenstoff hat nämlich einen nahen chemischen Verwandten: Das Element Silizium (Si). Ihr findet es im Periodensystem der Elemente direkt unter dem Kohlenstoff in der vierten Hauptgruppe (wer sich mit Chemie auskennt, weiss, dass verwandte Elemente in dieser Weise untereinander stehen). In Reinform glänzt Silizium wie ein Metall und findet als Rohstoff für Halbleiter und Solarzellen Verwendung. Daneben kann es jedoch wie Kohlenstoff vier kovalente Bindungen eingehen. Oder sogar etwas mehr.

Zum Beispiel in Silikonen (der Name verrät das enthaltene Element). So haben die Ketten der Silikone ein Rückgrat aus Silizium- und Sauerstoff-Atomen, die sich immer abwechseln. Das erinnert Mineralienfans nicht von ungefähr an Quarz (SiO2) und die verschiedenen Silikat-Minerale, die meistens ziemlich harte Steine sind.

Silizium-Sauerstoff-Bindungen sind nämlich ausserordentlich stabil. In ihnen ist nämlich mehr Elektronendichte versammelt, als für eine normale kovalente Bindung üblich ist. Damit hat eine Si-O-Bindung, die der Einfachheit und der Edelgasregel wegen als Einfachbindung dargestellt wird, tatsächlich etwas von einer Doppelbindung! Anders als die Doppelbindungen zwischen Sauerstoff- und Kohlenstoffatomen sind diese Bindungen in natürlicher Umgebung aber kaum reaktiv.

Brustimplantate aus Silikon
So sind Silikone legendär geworden: Als Brustimplantate! Die Aussenhülle besteht aus Silikonkautschuk, gefüllt sind sie mit Silikonöl. Moderne Implantate haben sogar zwei Hüllen, zwischen denen sich Kochsalzlösung befindet. So soll bestmöglich verhindert werden, dass Silikonöl durch einen Riss in den Körper laufen kann.

Sind Silikone organisch oder anorganisch?

Während jedes Siliziumatom im Silikon also zwei Bindungen zu den benachbarten Sauerstoffatomen hat, bleiben zwei weitere Bindungsstellen frei, um daran Kohlenwasserstoffgruppen zu binden, wie wir sie aus organischen Verbindungen kennen. Chemiker nennen die Silikone deshalb auch Poly(organo)siloxane. Der einfachste Vertreter dieser Gattung ist Poly(dimethyl)siloxan, in welchem jedes Siliziumatom zwei Methyl-, also CH3-Gruppen trägt.

Strukturformel für Polydimethylsiloxan
Poly(dimethyl)siloxan : Zwischen den beiden Enden befinden sich n gleichartige Glieder.

Damit sind Silikone sowohl anorganischer als auch organischer Natur – oder weder noch. Ihr Rückgrat enthält schliesslich keinen Kohlenstoff (und organische Verbindungen sind als alle Kohlenstoffverbindungen abzüglich einiger Ausnahmen definiert). Stattdessen ist es an (Halb-)Metalloxide angelehnt, die klassische anorganische Verbindungen sind. Die Seitenketten sind wiederum organisch, sodass Silikone auch nicht einfach als anorganisch bzw. mineralisch gelten können.

Silikone sind ein Kunstprodukt

So etwas gibt es in der Natur (meineswissens) nicht. Silikone sind denn auch vollkommen künstliche Produkte – und tragen die Bezeichnung „Kunststoff“ damit völlig zu Recht. Diese Künstlichkeit verleiht ihnen jedoch einzigartige und nützliche Eigenschaften, die dazu führen, dass Silikone in unserem Alltag heute nicht mehr wegzudenken sind.

Silikone haben Vor- und Nachteile

Wie jeder Stoff bzw. jede Stoffgruppe, den/die wir für irgendetwas verwenden, bringen auch die Eigenschaften von Silikonen sowohl Vor- als auch Nachteile mit sich. In meinen Augen wiegen die vorteilhaften Eigenschaften der Silikone gegenüber ihren Nachteilen jedoch viel schwerer als bei anderen Kunststoffen.

Vorteile von Silikonen

  • Sie sind chemisch und physiologisch inert, d.h. sehr reaktionsträge. Für etwas, das es in der Natur nicht gibt, kennt die (belebte) Natur auch keine Prozesse zur Verstoffwechselung oder Abwehr. Deshalb sind Silikone nach heutigem Stand ungiftig für Lebewesen!
  • Sie sind schwer entflammbar: Auch gegenüber Reaktionen in der unbelebten Umwelt sind Silikone widerstandsfähig – selbst bei Einfluss grosser Mengen Energie, die zum Entstehen von Feuer nötig sind.
  • Temperaturbeständigkeit: Silikone sind von etwa -40 bis 250°C stabil. Das sind wesentlich höhere Temperaturen, als praktisch alle anderen Alltagskunststoffe vertragen!
  • Silikone sind hydrophob: Sie bilden wasserabweisende Beschichtungen.

Nachteile

  • Silikone sind nur schwerlich biologisch abbaubar: Was die Natur nicht kennt, kann auch nicht von Lebewesen abgebaut werden. So bleiben Silikone, die in die Umwelt gelangen, dort lange Zeit erhalten. Auch die gute Witterungsbeständigkeit trägt zu diesem Umstand bei.
  • Silikone lassen sich nur schwerlich in Flüssigkeiten lösen: Sie sind weder wasser- noch fettliebend. Das heisst, sie lösen sich weder in Wasser noch in unpolaren organischen Lösungsmitteln wie Benzin wirklich gut. So lassen sie sich ohne besondere Hilfsmittel (Tenside mit auf sie abgestimmter Superwaschkraft) kaum abwaschen oder mit anderen Stoffen mischen und reichern sich dementsprechend leicht an.

Erscheinungsformen und Verwendung der Silikone

Silikonöle

Silikonöle bestehen in der Regel aus Ketten von Poly(dimethyl)siloxan, dem einfachsten Vertreter der Silikone. Sie sind bei Temperaturen von -60 / -35°C bis 250°C flüssig. Zum Vergleich: Wasser erstarrt bei 0°C und verdampft bei 100°C, Pflanzenöle verdampfen oft schon zwischen 100 und 150°C, wenn sie sich nicht zuvor zersetzen, und werden oft noch über dem Gefrierpunkt von Wasser zunehmend fest. Nicht so Silikonöle: Die sind immer gleich flüssig, ob bei Frost oder auf über 200°C erhitzt. Dazu kommen eine niedrige Oberflächenspannung und gute Durchlässigkeit für Gase.

Anwendungen für Silikonöle

  • Wärmeüberträger (Heizbad im Labor)
  • Gleit- und Schmiermittel
  • Hydraulikflüssigkeit, z.B. im frostkalten Sibirien
  • Antihaftbeschichtungen (Sektkorken, Aufkleberuntergrund, Garne,…)
  • Füllstoff für Implantate
  • Bestandteil von Kosmetik und Pflegeprodukten wie Haar-Conditionern

Silikone in Pflegeprodukten? Sind die nicht furchtbar böse?

In letzterem Bereich, Kosmetik und Haarpflegeprodukte, sind Silikone in den Medien sehr umstritten. Das rührt letztlich von ihrer Funktionsweise her. In Pflegeprodukten werden die unlöslichen Silikone durch aufwändige und genau abgestimmte ‚Formulierungen‘ mit den anderen Bestandteilen mischbar gemacht. So können wir sie z.B. mit einer Pflegespülung in die Haare einmassieren.

Beim Auswaschen mit Wasser geht diese Feinabstimmung allerdings verloren. Die Silikone verlassen folglich das Gemisch (Chemiker sagen „sie fallen aus“) und bleiben auf den Oberflächen, die sie gerade antreffen: Unseren Haaren. Und genau das ist ihr Sinn und Zweck: Die glatte, andere Stoffe abweisende Silikonschicht lässt die Haare glatt und glänzend wirkend. Da Silikone aber schlecht löslich sind, besteht die Gefahr, dass sie sich in immer dickeren Schichten ansammeln (Haarpflege-Experten nennen das „Build-up“). Den Haaren schadet das nicht direkt, aber sie werden dadurch immer dicker und schwerer.

Gleiches gilt auch für die Hautoberfläche: Ein sich dort bildender Silikonfilm kann allerdings auch den Stoffaustausch über die Haut und ihre Poren beeinträchtigen. So kann er die Entstehung bzw. Verschlimmerung von Hautunreinheiten fördern. Überdies gelangen ab- und ausgewaschene Silikonöle mit dem Abwasser in die Klärwerke, wo sie mangels Abbaubarkeit im unlöslichen Klärschlamm landen.

„Böse“ ist sehr relativ

ABER: Bei all dem sind Silikone nicht giftig. Anders als viele andere Stoffe stellen sie somit keine direkte Gefahr für uns und die Lebewesen in unserer Umwelt dar. Überdies sind sie laut meiner Kollegin Mai die am besten wirkenden Haar-Conditioner, die wir kennen. Hier ist das spannende Mailab-Video, in dem es auch um Silikone geht:

Deshalb haben sich die Hersteller von Haarpflegemitteln auch darum gekümmert, uns das Abwaschen von Silikonölen leichter zu machen.  Mit Hilfe von passenden Tensiden können Silikone nämlich durchaus mit Wasser gemischt werden (wenn auch nicht wirklich gelöst: „wasserlösliche Silikone“ sind Werbesprech für ebendiese Kombination von Silikonen mit „ihrem“ Tensid!). Es macht also durchaus Sinn, Conditioner (mit dem Silikonöl) und Shampoo (mit dem passenden Tensid) der gleichen Produktreihe zu verwenden, sodass etwaige Silikonreste von der letzten Behandlung vor dem Eintreffen der nächsten Ladung beseitigt werden können.

Polyquaternium: (K)Eine Alternative

Eine verbreitete Alternative zu Silikonen in Kosmetik sind Polyquaterniumverbindungen. Das sind Polymere, die z.B. Zellulose ähneln, aber zusätzlich Stickstoffatome mit vier Bindungen enthalten. Da Stickstoffatome aber auf nur drei Bindungen ausgelegt sind, sind solche „quartären Amine“ positiv geladen. Die funktionieren als Conditioner nicht ganz so gut wie Silikone, machen aber die gleichen Schwierigkeiten.

Zudem können Polyquaterniumverbindungen (wie z.B. Polyquaternium-7) Pigmentpartikel binden und so zu hartnäckigen Flecken auf Textilien (Handtüchern!), mit denen sie in Berührung kommen, führen. Und das lässt sich, nachdem sich die Verbindungen beim Duschen auf Haut und Haaren abgelagert haben, beim Abtrocknen kaum vermeiden.

Dahingegen ist die Angst vor Verunreingigungen von Polyquaternium-Verbindungen mit Acrylamid, unbegründet: Heute weiss man, dass wir mit der Nahrung wesentlich mehr (und immer noch zu wenig, um uns zu schaden) davon aufnehmen, als dass Spuren in Pflegeprodukten eine Rolle spielen würden.

Verwenden oder nicht?

Wie oft ist eine pauschale Aussage dazu schwierig, da Menschen so verschieden sind. Ich halte es da mit Mai: Sie hat lange, asiatisch-dicke Haare, bei denen ein Conditioner viel bewirken kann. Deshalb zieht Mai die wirksamen Silikone den Alternativen vor. Um eine Belagerung der Kopfhaut zu vermeiden, trägt sie den Conditioner allerdings nicht auf die Kopfhaut, sondern nur auf die unteren Enden der Haarsträhnen auf.

Menschen wie ich mit feinen Haaren, die zum Fetten neigen, haben allerdings weniger von der Wirkung eines Conditioners und mehr von seinen unerwünschten Eigenheiten. Deshalb benutze ich in der Regel auch keinen. Nichts desto trotz hat ein professioneller Conditioner vom Coiffeur (Friseur) mit Silikonöl (den habe ich für „Notfälle“) auch bei mir neulich Wunder in Sachen Kämmbarkeit gewirkt, nachdem sich meine Mähne nach einem Ausflug vollkommen verzottelt hatte.

Auch meine Sonnencreme enthält übrigens Silikonöl – das würde erklären, warum ich das Gefühl habe, dass der Wärmeaustausch über die beschmierte Haut beeinträchtigt ist. Aber ich vertrage das Produkt sonst sehr gut und sein Nutzen ist unumstritten, sodass ich es weiter verwenden werde.

Wer allerdings zu Hautunreinheiten neigt, sollte von Silikonen (und Polyquaternium) auf der Haut besonders Abstand nehmen.

Woran ihr Silikone in Produkten erkennt

Auf der Verpackung jedes Kosmetik- und Pflegeprodukts findet ihr eine Liste mit seinen Inhaltsstoffen gemäss der Internationalen Nomenklatur für Kosmetik-Inhaltsstoffe (INCI). Auch wenn diese Bandwurmnamen Nicht-Chemikern oft kryptisch erscheinen, sind Silikone doch leicht zu erkennen, da sie auf -cone oder -xane enden. Ein verbreitetes Beispiel ist Dimethicone – eine INCI-Bezeichnung für Poly(dimethyl)siloxan.

Polyquaternium-Verbindungen erscheinen in der Liste übrigens als „Polyquaternium“ in Verbindung mit einer Zahl, z.B. „Polyquaternium-7“.

Silikonkautschuk

Flexible Backform aus Silikonkautschuk im Vergleich mit klassischer Backform aus Metall
Links: Flexible Kuchenform aus Silikonkautschuk: Dieser Kunststoff hält locker eine Stunde im Backofen aus! (EvaK / CC BY-SA)

Silikonkautschuk hat mit echtem Kautschuk, einem Naturprodukt, nichts gemein ausser der gummiartigen Konsistenz. Die bewahrt Silikonkautschuk dafür in dem grossen Temperaturbereich von -75 bis 250°C. Und das ganz ohne Weichmacher! Diese Konsistenz, die ihn zu einem praktischen Ersatz für echten Kautschuk macht, hat dem Silikonkautschuk seinen Namen gegeben. Er besteht aus miteinander vernetzten Silikonketten. Die sind allerdings auch unvernetzt als Paste oder Gussmasse lagerbar, sodass die Vernetzung zum „Gummi“ an der Luft binnen Stunden oder Minuten herbeigeführt werden kann. Zudem ist Silikonkautschuk nicht nur wie alle Silikone sehr reaktionsträge, sondern man kann – anders als bei Naturprodukten – leicht nachvollziehen, was genau darin ist.

Silikonkautschuk...aber was ist das?
Was ist das wohl? (Tatsuo Yamashita / CC BY)

Anwendungen für Silikonkautschuk

  • Elastische Back- und Eiswürfelformen
  • Nuggis (Schnuller) und Sauger für Babyflaschen
  • Dichtungsmasse für Fugen (zum Aushärten an der Luft)
  • Implantate
  • Technische Bauteile, Kabelummantelungen, elektrisches Isoliermaterial
Faltbarer Becher aus Silikonkautschuk
Ein faltbarer Becher aus Silikonkautschuk! Platzsparend für die Handtasche… Den Symbolen auf der Packung nach nehmen Japaner mit dessen Hilfe wohl ihre Tabletten. (Tatsuo Yamashita / CC BY)

Silikonharze

Noch stärker vernetzt als im Silikonkautschuk sind die Ketten in Silikonharzen. Dementsprechend sind diese Stoffe hart oder thermoplastisch (d.h.. nur bei höheren Temperaturen formbar). Sie können in flüssiger bzw. plastischer, also wenig vernetzter Form vertrieben und nach dem Auftragen durch Hitzeeinwirkung zum Aushärten gebracht werden. Die gehärteten Silikonharze sind dann sehr beständig gegenüber Wettereinflüssen.

Strukturformel für ein Silikonharz
Dicht vernetzt: Struktur eines Silikonharzes

Anwendungen für Silikonharze

  • Temperatur- und witterungsbeständige Lacke und Beschichtungen
  • Gebäude-Schutzüberzüge (wasserabweisend)
  • Isolierlacke
  • Giessharz für Isoliermaterial

Zusammenfassung

Silikone sind reine Kunstprodukte, die einzigartige Vorteile für viele Anwendungen bieten. Vor allem in Bereichen, in welchen sie mit dem Körper in Kontakt kommen oder hohe Temperaturen herrschen, denen andere Kunststoffe nicht standhalten, sind sie sehr beliebt. Nachteilig ist die schwierige Abbaubarkeit in der Umwelt – die aber dadurch relativiert wird, dass Silikone für Organismen nicht giftig sind!

Wie rund um alle Kunststoffe wird auch zu Silikonen laufend geforscht und Materialien weiterentwickelt, sodass von früher bekannte Nachteile heute immer weniger von Bedeutung sind. So ordne ich die Silikone heute mehr denn je als „sauberste“, also ungiftigste und risikoärmste Vertreter der grossen Familie die Kunststoffe ein.

Und wie steht ihr zu Silikonen? Achtet ihr darauf, wo ihr ihnen begegnet? Verwendet ihr gezielt silikonfreie Pflegeprodukte? Wenn ja, zu welchen Alternativen greift ihr? Oder seht ihr den Silikonen ähnlich gelassen entgegen wie Mai und ich?

Additive : Böse Stoffe in Plastik - Was ist wirklich drin?

Welch ein Zufall: Da plane ich diesen Artikel über über Zusatzstoffe, sogenannte Additive, in Kunststoffen und Gefahren für uns, die davon ausgehen sollen. Und auf Facebook stolpere ich heute morgen über einen Artikellink mit dem Titel „Kinder in Deutschland haben zu viele Chemikalien im Blut“ und eindeutigem (wenn auch nicht korrektem) Bezug im Bild auf Plastik-Spielzeug.

Die Reaktionen sind mustergültig: „Zuviel Plastikspielzeug“, „Zuviel made in China“, „Wir werden von unseren Lebensmitteln vergiftet…“, „Wasser in Plastikflaschen…“, „gespritztes Obst…“, „Impfungen…“ (WTF? Was in Impfstoffen drin ist, erfahrt ihr anbei hier!),…

Zur Aufklärung: Es geht in besagtem Artikel um PFAS-Chemikalien, eine Gruppe von Verbindungen, die vor allem bei der Herstellung von Teflon zum Einsatz kommt. Diesen besonderen Kunststoff kennen wir nicht nur als Beschichtung von Bratpfannen. Er ist auch als Bestandteil wasserabweisender Textilien, zum Beispiel im Outdoor-Bereich („GoreTex“). Dabei sind PFAS gar keine Additive im eigentlichen Sinne, sondern Hilfsstoffe, die bei der Produktion verwendet werden und nachher entsorgt werden müssen.

Die zitierten Kommentare wiederum sind ebenso weit hergeholt wie auf den Aufschrei übertragbar, der auf die Erwähnung eigentlicher Kunststoff-Zusätze folgt. Und um die – beziehungsweise um die beliebtesten Zankäpfel unter ihnen – soll es hier und heute gehen.

Was sind Kunststoff-Additive und warum können sie zum Problem werden?

Wie ich im 1×1 der Kunststoffe genauer erkläre, bestehen Kunststoffe aus riesenlangen Kettenmolekülen (sogenannten Polymeren). Die wiederum stellt man her, indem man kleine Gliedmoleküle in chemischen Reaktionen fest miteinander verbindet. Die Ergebnisse kennen wir meist als mehr oder minder flexible, leichte und robuste Feststoffe („Plastik“), deren Eigenschaften die Hersteller genau nach ihren Wünschen designen können.

Und dabei kommen die Additive zum Einsatz. Vieles, was Polymerketten und -netze nicht alleine können, erreichen die Kunststoff-Designer, indem sie die Polymere mit anderen, kleinen Molekülen vermischen. Die bleiben zwischen den Polymerfäden und -maschen hängen und machen die Kunstoffe weicher, feuerfest, farbig, widerstandsfähig gegenüber Verwitterung und vieles mehr.

Das Problem dabei: Die Moleküle, die im Fadengewirr hängen bleiben, sind sehr viel weniger fest im Kunststoff gebunden als die Kettenglieder der Polymere selbst. Die Additive können also mehr oder weniger leicht aus dem Kunststoff herauskommen und in dessen Umgebung, zum Beispiel den Inhalt von Behältern, einwandern. Und nicht alle davon sind gesundheitlich unbedenklich.

Aus der unüberschaubaren Vielfalt der Plastik-Zusatzstoffe habe ich mir ein paar Bereiche herausgegriffen, dir mir besonders populär und damit vieldiskutiert erscheinen:

  • Weichmacher
  • Bisphenol A (und Verwandte)
  • PET-Getränkeflaschen

Weichmacher

Viele unserer Alltagskunststoffe sind bei uns angenehmen Temperaturen hart und spröde. Dabei benötigen wir in einer Vielzahl von Situationen weiche und flexible Stoffe. Deshalb haben die Kunststoffhersteller verschiedene Kniffe entwickelt, um solche Stoffe schaffen:

Passende Struktur aus Polymerfäden

Die Kunststoffe Polyethylen (PE) und Polypropylen (PP) kennen wir in zwei Erscheinungsformen: Als festes, steifes Material (z.B. für „Tupper“-Dosen) und als durchsichtige, flexible Folie (z.B. für Gefrierbeutel). Beide Varianten bestehen jeweils aus der gleichen Sorte Polymer – Ketten aus Ethylen- bzw. Propylen-Gliedern. Der Unterschied besteht in der Verknüpfung dieser Ketten.

Festes Polyethylen (oder -propylen), oft gekennzeichet als PE-HD bzw. HDPE (oder PP-HD bzw. HDPP) besteht aus einfachen, unverzweigten Polymerketten. Die lassen sich säuberlich und dicht nebeneinander anordnen, etwa wie Spaghetti in einer Packung, sodass der Kunststoff eine kristallähnliche Struktur erhält. Das „HD“ in der Kennzeichnung steht deshalb für „high density“, also „hohe Dichte“.

In den folienartigen weichen Spielarten dieser Kunststoffe sind die Ketten dagegen verzweigt: Von einigen Kettengliedern zweigen mehr oder weniger lange Seitenketten ab. Ein Kunststoff aus solchem Molekülen gleicht eher einem Haufen Daunen, deren Kiele ebenfalls Fasern tragen. Daunen lassen sich kaum säuberlich aufschichten, gleiten aneinander vorbei und sind als Haufen leicht und fluffig. So verhält es sich auch mit weichem PE oder PP, die deshalb als PE-LD bzw. LDPE (oder PP-LD bzw. LDPP), also mit „low density“ – „niedriger Dichte“ – bezeichnet werden.

Polyethylen und Polypropylen enthalten deshalb keine Weichmacher – die sind gar nicht nötig!

Innere Weichmachung durch Copolymere

Eine all zu dichte Anordnung von Polymerketten können Hersteller auch vermeiden, indem sie Ketten aus verschiedenen Gliedern zusammensetzen. Solche Ketten aus sich mehr oder minder regelmässig abwechselnden Gliedern nennen die Kunststoffchemiker Copolymere. Durch die Auswahl (un-)passender Zwischenglieder können solche Copolymere weicher als die ursprünglichen Kunststoffe gestaltet werden. Die als „Weichmacher“ verwendeten Zwischenglieder werden dabei ebenso fest wie die übrigen Glieder in die Ketten gebunden. Man nennt das Verfahren deshalb „innere Weichmachung“.

Innere Weichmacher können „ihren“ Kunststoff ebenso wie die anderen Kettenglieder im Normalfall praktisch nicht verlassen!

Äussere Weichmachung durch Additive

Wenn die beiden oberen Verfahren nicht in Frage kommen, können Polymere mit kleineren Molekülen gemischt werden, die wie ein Lösungsmittel wirken. Im Gemisch mit solchen Weichmachern sind die Polymerketten leichter gegeneinander beweglich und ein wenig auf Abstand zueinander. Die Struktur des Kunststoffs ist damit „fluffiger“ als eine kristallähnliche Packung Spaghetti.

Unter den Alltagskunststoffen ist diese „äussere Weichmachung“ vor allem für Polyvinylchlorid (PVC) von Bedeutung. Neben Kabeln und Folien ist Weich-PVC auch als Material für Spielzeuge, zum Beispiel Badeenten, beliebt – und kontrovers diskutiert.

Lieblings-Weichmacher für PVC: Phthalate

Die mit am weitesten verbreiteten Weichmacher für PVC sind Ester der Phthalsäure (gesprochen Ftálsäure, die unsägliche Rechtschreibung kommt von der Übertragung von griechisch „ναφθα“ (naphtha) = Erdöl in die lateinische Schrift), genannt Phthalate.

Allgemeine Strukturformel für Phthalate mit Benzolring
Grundstruktur aller Phthalate: Die Reste R1 und R2 stehen für Kohlenwasserstoffketten mit 4 bis 15 Kohlenstoff-Atomen. Im DEHP-Molekül bestehen beide Reste aus je 8 Kohlenstoff-Atomen und haben je eine Verzweigung.

In der Vergangenheit meistgebraucht und entsprechend berüchtig ist das Diethylhexylphthalat (DEHP), das auch asl Dioctylphthalat (DOP) bekannt ist.

Warum Weichmacher problematisch sind

Das Problem dabei: Es hat sich herausgestellt, dass dieses Molekül im menschlichen Körper ähnliche Wirkungen wie Geschlechtshormone entfalten kann. Durch die Aufnahme von DEHP kann also der Hormonhaushalt im Körper durcheinandergebracht werden, was unter anderem die Fortpflanzungsfähigkeit beeinträchtigen, Leber und Nieren schädigen und möglicherweise sogar Krebs verursachen kann. Es ist also gar nicht erstrebenswert, dass dieser Zusatzstoff aus „seinem“ Kunststoff aus- und in dessen Benutzer einwandert.

Deshalb ist DEHP in der EU schon lange als Bestandteil von Kleinkinderspielzeug verboten. Seit 2015 gibt es die Zulassung dafür überdies nur noch für medizinische Verpackungen. Firmen aus Übersee (vor allem aus Fernost) unterliegen diesem Verbot jedoch nicht unbedingt. So fährt letztlich am sichersten, wer seine Kunststoffprodukte von europäischen Herstellern bezieht.

Dort kommen nämlich Ersatzstoffe für DEHP zum Einsatz, die anders als Phthalate als unbedenklich gelten. Ein Beispiel ist „Hexamoll DINCH“. Die Moleküle dieses Stoffgemischs sind unübersehbar mit den Phthalaten verwandt, weisen aber einen in Sachen Hormonwirkung entscheidenden Unterschied auf:

Allgemeine Strukturformel für Bestandteile von Hexamoll-DINCH ohne Benzolring
Grundstruktur der Bestandteile von Hexamoll-DINCH: Im Unterschied zu den Phthalaten enthalten diese Moleküle keinen Benzolring, sondern einen einfachen Kohlenstoffring. Was in dieser Skelettformel nicht zu sehen ist: Im einfachen Kohlenstoffring kommen auf jede freie Ecke zwei Wasserstoffatome, die nach vorn und hinten ragen. Ausserdem sind solche Ringe naturgemäss geknickt. Im Benzolring gibt es hingegen nur ein Wasserstoffatom je freie Ecke, das jeweils in der Ebene des flachen Ringes liegt. Damit unterscheiden sich die Formen von Phthalaten und diesen Molekülen ganz erheblich.

Tatsächlich geht der Einsatz von Phthalaten in Kunststoffprodukten laut Testergebnissen der Stiftung Warentest in den letzten Jahren merklich zurück.

Bisphenol A

Bisphenol A und andere mit ihm verwandte Bisphenole werden zuweilen im Zusammenhang mit Weichmachern genannt. Dabei sind sie selbst gar keine Weichmacher, sondern Antioxidantien. Sie werden einem Kunststoff zugegeben, damit sie verhindern, dass Weichmacher darin durch Oxidation zersetzt werden.

Ausserdem dienen sie als Kettenglieder für die Herstellung von Polycarbonaten, einer weiteren Sorte Kunststoffe, und sind als Bestandteile von Thermopapier (z.B. für Kassenbons) und Epoxidharzen (Kunststoffe z.B. zur Beschichtung von Behältern) bekannt.

Das Problem mit den Bisphenolen ist das gleiche wie mit den Phthalat-Weichmachern: Sie können „ihre“ Kunststoffe verlassen und haben eine hormonähnliche Wirkung. Da sie uns in der Vergangenheit in vielen Bereichen besonders nahe kamen, haben sie deshalb einen ziemlich schlechten Ruf.

Bisphenole verschwinden aus unserer Umgebung

„Vergangenheit“ ist jedoch das entscheidende Stichwort: Bisphenole verschwinden zunehmen aus den Kunststoffen im Lebensmittelbereich und unserer direkten Umgebung.

So waren Polycarbonate bis vor knapp 10 Jahren ein beliebtes Material für Babyflaschen. Aufgrund der Sorge, aus den Polycarbonaten könnten Bisphenole in Milch&Co einwandern, werden Babyflaschen jedoch schon seit 2011 in Europa aus anderen, unbedenklichen Kunststoffen wie PE oder PP hergestellt. Wenn eure Flaschen also jünger als 9 Jahre sind, braucht ihr euch um Bisphenole keine Sorgen zu machen.

Auch als Bestandteil von Thermopapieren sind Bisphenole seit diesem Jahr (2020) sowohl in der EU als auch in der Schweiz verboten. Viele Supermärkte haben allerdings schon vor Jahren auf bisphenolfreie Kassenzettel umgestellt.

Was ist gefährlicher? Bekanntes oder Unbekanntes?

Nicht nur viele Forscher, sondern auch Regierungen beschäftigen sich mit Bisphenol A und seinen Verwandten hinsichtlich unerwünschter Wirkungen in verschiedenen Bereichen. Während die EU die Verwendung schon in den vergangenen Jahren immer stärker eingeschränkt hat, hat sich die Schweizer Regierung bislang auf den Wissensstand von 2009 berufen. Dem gemäss seien die unerwünschten Wirkungen von Bisphenol A zwar gegeben, aber erst ab einer Dosis, mit der wir Endverbraucher gar nicht in Berührung kämen. Deshalb haben die Schweizer mit Verboten zunächst gezögert und damit einem weiteren Problem Rechenschaft getragen:

Das Verbot von in der Industrie weit verbreiteten Stoffen macht die Verwendung von Ersatzstoffen nötig. Und die sind oft viel weniger erforscht als lang verwendete und oft untersuchte Stoffe. So ist stets abzuwägen, was letztendlich schädlicher ist: Die ‚Katze im Sack‘ in Folge eines vorschnellen Verbots oder ein Übel, das dank seiner Bekanntheit klein gehalten werden kann.

Wichtig ist, eine Entscheidung für das kleingehaltene Übel regelmässig zu überprüfen. Denn der Stand der Wissenschaft ist glücklichlicherweise einem steten Wandel unterzogen. So können nicht nur die möglichen Gefahren des kleingehaltenen Übels immer näher bestimmt, sondern auch die Katzen aus dem Sack geholt und untersucht werden, bevor man sie auf die Allgemeinheit loslässt.

Bisphenole werden, in der EU schneller als in der Schweiz, zunehmend aus den Kunststoffen in unserer Umgebung verbannt. Inwieweit Ersatzstoffe einen Vorteil bringen, wird sich erst noch erweisen.

Additive in PET-Getränkeflaschen?

Ebenfalls heiss diskutiert werden Meldungen um Stoffe, die aus PET-Flaschen in Getränke gelangen sollen, nicht zuletzt unter dem Einfluss von Wärme, Sonne, säurehaltigem Inhalt und ähnlichen Faktoren. Tatsächlich gibt es Studien, die eine hormonähnliche Wirkung von Getränken in solchen Flaschen nach Lagerung unter solchen Bedingungen aufzeigen.

Darin liegen aber gleich zwei Hunde begraben:

Der erste wird schon im vorangehenden Satz ersichtlich: Die Studienersteller messen eine hormonähnliche Wirkung, stellen aber nicht fest, von welchem Stoff bzw. welchen Stoffen sie ausgeht.

Der zweite bezieht sich auf die gemessenen Mengen. Da die Forscher nicht wissen, nach welchem Stoff sie suchen, messen sie die Hormonwirkung als ‚entsprechend der Wirkung des Geschlechtshormons Östradiol‘. Zunächst war, laut DLG, von Werten bis zur Entsprechung von 75 Nanogramm, das sind 75 Milliardstel oder 0,000000075g Östradiol pro Liter die Rede. Gefunden hat das deutsche Bundesamt für Risikobewertung schliesslich die Entsprechung von 5 Picogramm, also 5 Billionstel oder 0,000000000005g Östradiol pro Liter Mineralwasser.

Das heisst, selbst wenn nun jemand misst, die Hormonwirkung sei in Limonade, oder nach drei Tagen in der Sonne, oder… um 100% höher – also doppelt so hoch – handelt es sich immernoch um Werte im Bereich von Billionsteln Gramm pro Liter. Solche Zahlen wecken meine Hochachtung vor der unglaublichen Genauigkeit der Spurenanalytik, sind aber für eine spürbare Wirkung im „richtigen Leben“ nicht relevant.

Nichts desto trotz wird heiss diskutiert, was für diese hormonähnliche Wirkung verantwortlich sein mag.

Wo könnten hormonähnlich wirkende Stoffe herkommen?

Additive wie Phthalat-Weichmacher

Der Fund von hormonähnlich wirkenden Stoffen im Inhalt von PET-Flaschen legt den Gedanken an Weichmacher, die genau dafür bekannt sind, nahe. Allerdings sollen PET-Getränkeflaschen ja steif sein und ihre Form bewahren können. Die bekannte Flexibilität beruht nämlich auf der enormen Dünne des Materials, die die Festigkeit gerade notwendig macht. Allein deshalb enthält Getränkeflaschen-PET gar keine Weichmacher.

Dazu kommt, dass Zusatzstoffe das Recycling von Kunststoffen erheblich erschweren können. Deshalb sind sie in PET-Flaschen allgemein um so weniger zu erwarten, je ausgefeilter der PET-Recyclingkreislauf des Herkunftslandes ist.

Das Material PET als solches

PET steht für Polyethylenterephthalat. In diesem Wort fällt schnell einmal die unsägliche Schreibweise mit ph und th hintereinander auf und verleitet dazu, an eine Verwandschaft mit Phthalaten zu denken. Tatsächlich sehen die namensgebenden Kettenglieder dieses Polymers so aus:

Strukturformeln von Terepthalsäure und Ethandiol
Die beiden Gliedmoleküle, aus denen PET-Ketten bestehen: Links Terephthalsäure, rechts Ethandiol

Gemeinsam haben Phthalsäure und Terephthalsäure den Benzolring mit zwei Carbonsäuregruppen. Der entscheidende Unterschied besteht aber darin, dass die Säuregruppen der Terephthalsäure an gegenüberliegenden Ecken des Benzolrings stehen. Währenddessen befinden sich jene der Phthalsäure in den Weichmachern an benachbarten Ecken. Die Form der Moleküle ist damit vollkommen unterschiedlich.

Da Hormone im Körper nun ihre Botschaften überbringen, indem sie in massgeschneiderten Taschen von Proteinen binden, ist die Form ihrer Moleküle aber entscheidend für die Wirkung. So kann davon ausgegangen werden, dass Terephthalsäure und ihre Ester die Hormonwirkung von Pththalaten nicht nachahmen kann.

Frühere Inhalte von recycelten PET-Behältern

Kosmetik- und Hygieneartikel, zum Beispiel Shampoo, können hormonähnlich wirksame Stoffe enthalten, die in ihre Behälter aus- und nach deren Recycling in den neuen Inhalt einwandern mögen. So zumindest die Vorstellung. Auch deshalb wohl werden Shampoo- und ähnliche Flaschen meist gar nicht aus PET hergestellt. Zudem sind sie, wenn es sie doch gibt, – vor allem in der Schweiz – gar nicht Teil des Recyclingkreislaufs für PET-Getränkeflaschen.

Rückstände von Antimontrioxid

Antimontrioxid (Sb2O3) wird bei der Herstellung von PET als Katalysator eingesetzt. Da ist kaum vermeidbar, dass ein winziger Rest davon im Kunststoff zurückbleibt. Anders in Glas: Für dessen Herstellung der Katalysator nicht gebraucht, deshalb ist in Glas gar kein Antimontrioxid drin.

Auch dieses Salz ist, wenn es in zu grossen Mengen auftritt, für eine hormonähnliche Wirkung bekannt. Deshalb hat die WHO einen Grenzwert für den Gehalt von 5 Mikrogramm (0,000005g) Antimontrioxid pro Liter Trinkwasser festgelegt (und der ist in der EU Gesetz). Untersuchungen zeigten jedoch, dass dieser Grenzwert selbst bei jahrelanger Lagerung von Getränken in PET-Flaschen oder unter ungünstigen Bedingungen gar nicht überschritten werden kann. Eine bedenkliche Hormonwirkung seitens Antimontrioxid in PET-Flaschen gibt es folglich nicht.

Der eigentliche Inhalt der PET-Flaschen

Aufgrund ihrer weiten Verbreitung in (nicht all zu viel) früheren Zeiten sind Phthalate in unserer Umwelt heute allgegenwärtig. Da würde ich nicht ausschliessen wollen, dass sie auf anderen Wegen als aus den PET-Flaschen in die Getränke geraten. Auch wenn es auch diesbezüglich strenge Grenzwerte gibt.

Ausserdem sind Wärme und vor allem Sonnenstrahlung mächtige Triebkräfte für chemische Reaktionen. Was dabei aus den verschiedenen Inhaltsstoffen von Softdrinks entstehen mag (etwas mit hormonähnlicher Wirkung?), kann ich keinesfalls überblicken (und wäre vermutlich auch für Wissenschaftlerteams in Labor sehr aufwändig).

Obwohl diese beiden Punkte ziemlich spekulativ sind, würde ich spontan in diesem Bereich nach Ursachen für die gefundene hormonähnliche Wirkung suchen – sofern sich das bei deren geringem Umfang überhaupt lohnt.

Woher rührt dann der oft monierte „Plastik“-Geschmack?

Eine PET-Flaschenwand kommt keineswegs einer hermetischen Abriegelung gleich. Stattdessen ist sie vor allem für kleine Gasmoleküle durchlässig. So können Stoffe wie CO2 zwischen Inhalt und Aussenraum ausgetauscht werden. Das kann wiederum dazu führen, dass kohlensäurehaltige Getränke in einer geschlossenen PET-Flasche mit der Zeit ein wenig „schal“ werden (da sich durch das Entweichen von CO2 wiederum Kohlensäure im Getränk zersetzt). Mit der Kohlensäure geht dem Getränk, selbst Wasser, auch eine säuerliche Geschmacksnote verloren.

Ausserdem gibt es tatsächlich einen Stoff, der aus PET in dessen Inhalt einwandern kann: Acetaldehyd. In grossen Mengen giftig (z.B. verursacht es den „Kater“ bei starkem Alkoholkonsum) kommt dieses Molekül in Spuren praktisch überall vor, wo Leben ist. Kleine Mengen davon kommen also nicht nur in unserem Körper, sondern auch in Säften und Softdrinks naturgemäss vor. So schaden sie uns nicht.

Allerdings hat Acetaldehyd einen süsslichen Geschmack, den wir schon bei ziemlich kleinen Mengen (20 Mikrogramm pro Liter) wahrnehmen. In Süssgetränken fällt der gar nicht auf. Den Geschmack von Wasser kann er allerdings spürbar verändern. Deshalb achten Getränkehersteller darauf, das Auswandern von Acetaldehyd aus ihren Wasserflaschen zu verhindern (bzw. den Gehalt daran niedrig zu halten).

Dazu kann wiederum ein Additiv namens Anthranilamid eingesetzt werden, das das Acetaldehyd im Kunststoff bindet, seinerseits aber (in wesentlich geringeren Mengen) in den Inhalt einwandern kann. Dort verursacht es aber weder einen Geschmack noch eine hormonähnliche Wirkung.

Eine schnelle Geschmacksveränderung in PET-Flaschen-Wasser mag also ein Hinweis darauf sein, dass Acetaldehyd, aber kein Anthranilamid im Material ist. In Flaschen für Süssgetränke und Säfte ist dagegen niemals Anthranilamid.

Die in PET-Flaschen gefundene hormonähnliche Wirkung ist marginal und das Material sehr wahrscheinlich nicht die Ursache. Geschmacksveränderungen rühren von Gasaustausch und harmlosem Acetaldehyd her.

Fazit

Bezüglich bedenklichen Zusatzstoffen in Kunststoff hat sich in den letzten Jahren und Jahrzehnten vieles getan. Was vor zehn oder mehr Jahren problematisch war, ist heute oft Geschichte oder auf dem besten Weg, dazu zu werden.

Zudem wird in den Medien so manches in Bezug auf Additive in Kunststoffen heisser gekocht als ihm gebührt.

Was ihr selbst tun könnt, um schädlichen Additiven aus dem Weg zu gehen

  • Frei nach meinem persönlichen Paretoprinzip: Meidet Kinderspielzeug und andere Kunststoffgegenstände für körpernahe Anwendungen zweifelhafter Herkunft. Zieht solche namhafter europäischer Hersteller vor.
  • Informiert euch bei der Stiftung Warentest bzw. dem Schweizer K-Tipp über die gefundene Belastung in einzelnen Produktgruppen. Tests mit schwerwiegendem Ergebnis werden im Laufe der Zeit oft wiederholt. So lohnt es sich, von Zeit zu Zeit nach Veränderungen bei den einzelnen Herstellern zu schauen.
  • Ersetzt Gegenstände wie Babyflaschen, die aus Zeiten vor der jeweiligen Ausmusterung kritischer Materialien stammen, durch neue.
  • Behaltet angesichts reisserischer Meldungen oder heisser Online-Diskussionen zu Plastik und Zusatzstoffen die Nerven. Informiert euch, bevor ihr unnötig Panik schiebt. Ich stehe immer gerne für Fragen zur Verfügung.

Und wie steht ihr Zusatzstoffen in Plastik gegenüber? Bereiten sie euch Sorgen? Oder geht ihr damit gelassen um?

Mehr rund um Kunststoffe findet ihr hier in Keinsteins Kiste: